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Abstract

High-resolution Large Multimodal Models (LMMs) encounter the challenges of
excessive visual tokens and quadratic visual complexity. Current high-resolution
LMMs address the quadratic complexity while still generating excessive visual
tokens. However, the redundancy in visual tokens is the key problem as it leads
to more substantial compute. To mitigate this issue, we propose ConvLLaVA,
which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM
to replace Vision Transformer (ViT). ConvLLaVA compresses high-resolution
images into information-rich visual features, effectively preventing the generation
of excessive visual tokens. To enhance the capabilities of ConvLLaVA, we propose
two critical optimizations. Since the low-resolution pretrained ConvNeXt under-
performs when directly applied on high resolution, we update it to bridge the gap.
Moreover, since ConvNeXt’s original compression ratio is inadequate for much
higher resolution inputs, we train a successive stage to further compress the visual
tokens, thereby reducing redundancy. These optimizations enable ConvLLaVA to
support inputs of 1536×1536 resolution generating only 576 visual tokens, capable
of handling images of arbitrary aspect ratios. Experimental results demonstrate
that our method achieves competitive performance with state-of-the-art models on
mainstream benchmarks. The ConvLLaVA model series are publicly available at
https://github.com/alibaba/conv-llava.

1 Introduction

Large Multimodal Models (LMMs; [40, 45, 1]) have achieved notable advancements in recent years,
demonstrating superior performance in diverse domains, including image and video understanding [54,
11], digital agent development [53], and robotics [24]. The imperative to comprehend a wide range of
tasks and intricate scenes underscores the critical role of the visual encoder, which is mostly a Vision
Transformer (ViT; [12]). However, ViT’s quadratic spatial complexity and output of excessive visual
tokens limit its application in diverse and high-resolution tasks [54, 21, 11, 8]. The excessive visual
tokens lead to a significant computational burden in the Large Language Model (LLM; [46, 47]), far
exceeding the computational cost imposed by the quadratic spatial complexity in the visual encoder.
Such redundancy in the visual tokens not only sacrifices efficiency but also impedes the effective
extraction of visual information [31, 11]. While a range of methods (Tab. 1; [31, 27, 49]) have been
proposed to remedy the quadratic spatial complexity of ViT, they fail to mitigate the key problem, the
redundancy in the visual tokens [5, 28].
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Table 1: Comparison with previous methods. Res., VE, #V Tokens denote resolution, visual encoder,
and the number of visual Tokens. Enumerate aspect ratio (Enum) indicates that the model supports a
set of predefined aspect ratios. Fix aspect ratio means the model supports fixed resolution input. Any
aspect ratio means the model supports arbitrary aspect ratio input. ∗: OtterHD does not actually have
a visual encoder. The spatial complexity for its visual tokens is quadratic.

Method Res. #V Tokens Complex Design Visual Encoder
Cropping Extra VE Model Complexity Aspect Ratio

LLaVA-1.5 336 576 ViT Quadratic Fix
OtterHD 1024 1225 None Quadratic∗ Any
LLaVA-NExT 672 2880 ✓ ViT Linear Enum
MiniGemini-HD 1536 2880 ✓ ✓ ViT,ConvNeXt Linear Enum

ConvLLaVA 1024 256 ConvNeXt Linear Any
ConvLLaVA 1536 576 ConvNeXt Linear Any

Hierarchical visual backbones [15, 16, 10], which can be considered as counterparts to ViT, can
well address the problem of excessive visual tokens due to their inherent Information Compression
process. Specifically, features are sequentially compressed across stages in hierarchical backbones.
They compress visual features by 32× [15, 34] compared to ViT with only 14× [12]. Therefore,
at the same resolution they generate fewer than 1/4 visual tokens compared to ViT, significantly
alleviating computational burdens on the LLM. Moreover, hierarchical visual encoders, typically
designed with linear spatial complexity [34, 10, 15], effectively tackle both the issue of excessive
visual tokens and the quadratic visual complexity.

We choose to employ ConvNeXt among the hierarchical visual encoders due to its excellent
performance [48, 56] and the availability of off-the-shelf contrastive language-image pretrained
weights (CLIP; [41]), which mainstream visual encoders of LMMs adopt [23, 32, 2, 39]. However,
directly replacing ViT with ConvNeXt leads to inferior performance on general capabilities bench-
marks (Section 3.2). This can be attributed to the fact that ConvNeXt is pretrained on low resolution,
whereas we directly apply it to high-resolution [17, 43]. Moreover, the pretraining data for ConvNeXt
is considered to be of low quality [51, 17, 43] compared to ViT’s pretraining data [41]. To address
these issues, we propose to update the visual encoder rather than freezing it. Surprisingly, updating
the visual encoder enables ConvNeXt to perform comparably to ViT on general benchmarks. On
fine-grained benchmarks, we observe that ConvNeXt outperforms ViT. These findings indicate that
even when compressing visual tokens to an equal quantity, the higher resolution model’s features still
contain more fine-grained information. This observation inspires us to further scale up the resolution.
However, further scaling the resolution beyond 1024 leads to the generation of excessive visual tokens.
To mitigate this issue, we further compress the visual information with an additional ConvNeXt
stage to enhance the inherent information compression of hierarchical backbones. The visual inputs
would be compressed by 64× rather than 32× to further reduce the redundancy. Hence, ConvLLaVA
generates only 576 visual tokens when processing 1536 resolution inputs, which is equivalent to the
number of visual tokens generated by ViT when processing 336 resolution inputs (Section 3.3).

In summary, we introduce ConvLLaVA whose visual encoder is a five-stage ConvNeXt. ConvLLaVA
compresses high-resolution images into information-rich visual features, effectively avoiding the
generation of excessive visual tokens (in Tab. 1; [31, 27, 25, 36]). Furthermore, thanks to the
translation equivalence of convolution, ConvLLaVA can be trained on low-resolution and evaluated on
higher resolutions, and it can also handle images of arbitrary aspect ratio. Extensive experiments have
demonstrated the effectiveness of our method. ConvLLaVA 7B outperforms LLaVA-1.5-13B across
various benchmarks, including MME [13], MMBench [33], SEEDBench [22], RealWorldQA [50],
TextVQA [44], DocVQA [38], POPE [26], and MMVet [57].

2 Related Work

Large Multimodal Models. To harness the potential of Large Language Models and incorporate
visual information, BLIP series models [23, 9] propose the Q-former, which generates visual tokens
for LLMs to interpret visual data. Meanwhile, LLaVA [32] employs a single linear layer to map
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Figure 1: We show the structure for LLaVA and ConvLLaVA in (a) and (b). ConvNeXt has a
hierarchical structure which compresses visual tokens between stages. The training procedure is
composed of three training stages and the trainable parameters for each stage are shown in (c).

visual features to the word embedding space, allowing LLMs to perceive vision features. These
approaches utilize the ViT as the visual encoder [41, 12, 3, 28, 60], primarily tailored for low-
resolution visual data (e.g., 224 or 336 resolution). Moreover, Qwen-VL [2] and mPLUG-owl2 [55]
scale the resolution of ViT to 448 by updating the weights of ViT. However, these methods fail to
further scale up resolution due to the quadratic spatial complexity of ViT, while ConvNeXt can scale
up the resolution with the linear cost increase. Qwen-VL [2] and mPLUG-owl2 [55] also explore
to reduce the visual tokens via resampler. However, recent studies [3, 11] show that convolution or
simply concatenation performs better than resampler.

High-resolution LMMs with Cropping. The representative cropping method for high-resolution
LMMs is introduced in LLaVA-NExT [31], which partitions an image into four patches, each encoded
separately by ViT and subsequently concatenated for LLM processing. A collection of methods
have adopted cropping to scale up resolution [54, 29, 27, 11]. While effective in reducing ViT
complexity, cropping compromises the structural integrity of the image, thus potentially impacting
overall performance. Moreover, the proliferation of visual tokens introduced by cropping poses
significant complexity on LLMs and challenges the retrieval capabilities of LLMs [11].

High-resolution LMMs with Extra Visual Encoders. Incorporating an auxiliary visual encoder for
high-resolution image understanding would not significantly increase the number of visual tokens.
Vary [49] and Deepseek-VL [35] utilize SAM [20] as a high-resolution visual encoder to augment the
feature of ViT. MiniGemini-HD [25] and LLaVA-HR [36] employ ConvNeXt [17] to process high-
resolution images and use cross-attention or adapters to extract features from the high-resolution input.
However, these methods introduce additional complexity through supplementary visual encoders and
associated hyperparameters. Furthermore, extracting features from low-quality representations (e.g.,
LAION-CLIP-ConvNeXt) may potentially compromise LMMs’ performance [14, 51].

3 ConvLLaVA

We present ConvLLaVA, as illustrated in Fig. 1 (b), whose visual encoder is a five-stage ConvNeXt.
We first introduce the overall architecture and the advantages of our ConvLLaVA in Section 3.1. The
two major optimizations: updating the visual encoder and training an additional stage are introduced
in Section 3.2 and Section 3.3.

3.1 ConvNeXt as Standalone Visual Encoder

The architecture of ConvLLaVA is identical to most popular general LMMs, e.g., LLaVA [32, 30],
Qwen-VL [2], and VILA [28]. These models comprise three components as shown in Fig. 1 (a): a
vision encoder g(), a large language model f(), and a vision-language projector h(). Specifically, the
vision model encodes the visual inputs x into latent visual embeddings g(x). The vision-language
projector then maps the latent visual embeddings into the embedding space of the language model
z = h(g(x)). Given the visual embeddings z and text embeddings t encoded by the language
tokenizer, these embeddings are concatenated along the sequence dimension and then passed to the
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language model. Finally, the vision language model is trained with language modeling loss [42].
Considering that our study mainly focuses on the visual encoder, we employ a two-layer MLP and
Vicuna-7B [59] as the projector and language model following LLaVA-1.5 [30]. Rather than using
CLIP-VIT [41], we introduce CLIP-ConvNeXt [34, 17] as the standalone visual encoder.
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Figure 2: Estimated FLOPs v.s. image
resolution for different backbones. We
estimate total FLOPs with the number of
visual tokens.

ConvNeXt. The basic block of ConvNeXt comprises a
depth-wise convolution and a feed-forward network [34].
The depth-wise convolution has a 7×7 kernel size, and the
computation complexity is O(k2CN), where k, C, and
N are the kernel size, number of channels, and number
of visual tokens, respectively. In contrast, the complexity
of self-attention in ViT is O(4C2N + 2CN2). Conse-
quently, the spatial complexity of ConvNeXt is signifi-
cantly lower than ViT. The input is initially processed by
a 4×4 non-overlapping convolution downsampling layer.
Subsequently, the features are successively fed into the
four stages of ConvNeXt, while each stage comprises sev-
eral ConvNeXt blocks. Feature maps are downsampled by
2×, and dimensions are expanded by 2× between stages.
The output of the ConvNeXt is downsampled by 32×,
rather than 14× of ViT-L. Hence, ConvNeXt produces less
than 1/4 visual tokens compared to ViT, which alleviates
the computation load of the language model. Benefiting
from the linear spatial complexity and fewer visual tokens,
the computation reduction of LMMs from ViT-L (red line) to ConvNeXt (blue line) is almost 8× as
illustrated in Fig. 2.

Five-stage ConvNeXt†. Leveraging ConvNeXt as the visual encoder is efficient for encoding 768
resolution images, while scaling resolutions to higher than 768 produces excessive visual tokens.
Previous studies [31, 25] neglect to explore compressing visual tokens, while compressing visual
tokens has been proven to be reasonable since there is redundancy in the visual representation [28, 5].
These studies suggest that we can further downsample visual features using ConvNeXt. We propose
to compress visual features by incorporating ConvNeXt blocks for stage 5 into the original four-stage
model. We prefer using ConvNeXt blocks over other structures due to the following three reasons
(1) The five-stage ConvNeXt, as a whole, could be transferred as a visual encoder for other LMMs,
whereas downsampling in the projector does not offer such flexibility (2) ConvNeXt blocks maintain
translation equivariance, allowing them to effectively process images of any aspect ratio, unlike
attention blocks. (3) The impact on performance from the downsampling stage is minimal, except that
the resampler consistently underperforms compared to other methods, as evidenced by [3, 11, 39].
Finally, we denote the overall five-stage ConvNeXt as ConvNeXt†. At 1536 resolution, ConvNeXt†
reduces the number of visual tokens to 576, equivalent to that of ViT at 336 resolution. This would
reduce the total computation by 6× w.r.t. the original ConvNeXt (blue line) to ConvNeXt† (green
line) as shown in Fig. 2. Our approach is more computationally efficient than cropping methods,
which often produce an excessive number of visual tokens [39, 31, 27]. Furthermore, by eliminating
the need for cropping and merging, ConvLLaVA avoids the global view, thereby further reducing the
number of visual tokens.

3.2 Updating ConvNeXt is Essential

The mainstream optimization approach [32, 28] freezes the vision encoder during training, as it has
better performance and is more efficient than updating the visual encoder [18]. However, freezing
ConvNeXt during training is sub-optimal. Hence, we conduct depth analysis to prove that freezing the
visual encoder (i.e., ConvNeXt) would inherit the defects from pretraining, and updating ConvNeXt
may both improve the quality of representations and adapt them to high-resolution inputs.

Setups of Freezing ConvNeXt. The optimization procedure is the same as LLaVA-1.5 [30]. For
training the projector and instruction tuning, we use the same 558k caption dataset and 665k instruc-
tion data, respectively. Our visual encoder CLIP-ConvNeXt-L is pretrained on 256 resolution and
fine-tuned with 320 resolution based on LAION-2B [34, 17]. We directly increase the resolution
to 512 and 768 when applying ConvNeXt as the vision encoder. As for the baseline, we use ViT
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Table 2: Comparison on different visual encoders. Visual encoders are frozen during training.
#Params, Res., PT Data is short for Number of Parameters, Resolution, and Pretraining Data.

Visual Encoder #Params Res. PT Data MMBench SEEDBench TextVQA DocVQA

ViT-L 304M 336 WIT 66.5 65.3 45.5 21.2

ConvNeXt-L 200M 512 LAION-2B 64.5 63.8 49.3 23.0
ConvNeXt-L 200M 768 LAION-2B 63.2 65.7 53.7 29.8

Table 3: Comparison on different visual encoders. The visual encoders are updated during training.
The number in the bracket is the improvement compared with freezing the visual encoder. The
absolute improvement shown in green is according to the results in Tab. 2. #V Tokens stands for the
number of visual tokens.

Visual Encoder Res. #V Tokens MMBench SEEDBench TextVQA DocVQA ∆

ViT-L 336 576 66.8(+0.3) 68.1(+2.8) 50.1(+4.6) 26.4(+5.2) +3.2

ConvNeXt-L 512 256 65.5(+1.0) 67.9(+4.1) 55.1(+5.8) 31.4(+8.4) +4.8
ConvNeXt-L 768 576 66.5(+3.3) 68.6(+2.9) 60.0(+6.3) 40.2(+10.4) +5.7

which is pretrained on 336 resolution with OpenAI WIT dataset [41]. The training and inference
speed for ConvNeXt on 768 resolution is on par with ViT on 336 resolution. Hence, we consider the
comparison between 768-resolution ConvNeXt and 336-resolution ViT to be fair. Detailed training
procedure is shown in Tab. 12.

Benchmarks. We use four standard benchmarks to evaluate the results: two general capability bench-
marks, MMbench [33], SEEDBench [22], and two fine-grained OCR benchmarks, TextVQA [44]
and DocVQA [38]. It is worth noting that our evaluation procedure for TextVQA differs slightly from
LLaVA-1.5 [30], as we use VLMEVALKIT which does not include OCR tokens in the question.

Results for Freezing the Visual Encoder. As shown in Tab. 2, we observe the following results:

(1) ConvNeXt has significant advantages over ViT on OCR benchmarks. On TextVQA and DocVQA,
both 512 and 768 resolution ConvNeXt outperforms ViT due to their higher resolution [18, 55]. Even
with fewer visual tokens, the 512-resolution ConvNeXt still outperforms the 336-resolution ViT.

(2) The overall general capability of ConvNeXt is inferior to ViT. For general benchmarks, on
SEEDBench, 768-resolution ConvNeXt performs comparably with ViT. While on MMBench, Con-
vNeXt underperforms ViT. We hypothesize that there are two reasons for the performance gap on
MMbench: First, ConvNeXt is pretrained on low resolution but directly applied on high resolution.
Such employment affects the quality of visual features. Second, the pretrained representation for
ConvNeXt may be inferior to OpenAI’s ViT [41].

The results imply that increasing resolution without training could affect the quality of represen-
tation and hamper the performance of LMMs. However, studies have shown that simply updating
the visual encoder during instruction tuning can hinder performance [18]. To mitigate this issue,
ShareGPT4V [6] provides an effective training protocol and a high-quality dataset for updating the
visual encoder. Therefore, we adopt this effective method to update the visual encoder.

Setups of Updating ConvNeXt. To update the visual encoder, we first leverage the 558k caption
dataset for projector initialization [30]. Then, we apply a high-quality caption dataset, ShareGPT4V-
PT [6], to train the entire vision-language model including the visual encoder. Finally, the LLaVA
665k instruction tuning dataset is used for visual instruction tuning. The detailed training procedure
is shown in Tab. 13. The last 12 layers of ViT-L are trainable (according to ShareGPT4V [6]). For
ConvNeXt, we update the last 18 blocks (ConvNeXt-L has a total of 36 blocks).

Results for Updating the Visual Encoder. As shown in Tab. 3, we observe the following results:

(1) ConvNeXt has significant advantages over ViT on the OCR benchmark. The improvement for
768 resolution ConvNeXt is larger than 336 resolution ViT (6.3/10.4 v.s. 4.6/5.2). These results
demonstrate the idea of compressing high-resolution visual inputs to a small number (e.g., 576) of
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Table 4: Results of training stage 5 ConvNeXt model. The number of visual tokens does not greatly
increase when scaling up resolution.

Visual Encoder Resolution #Visual Tokens MMBench SEEDBench TextVQA DocVQA

ConvNeXt-L† 768 144 65.3 67.7 54.7 31.1
ConvNeXt-L† 1024 256 65.1 68.3 59.4 35.8
ConvNeXt-L† 1536 576 64.3 69.1 60.7 42.5

information-rich visual tokens is feasible. Compressing does not lead to great information loss. Even
with the same number of tokens, ConvNeXt preserves more fine-grained visual information and
significantly outperforms ViT.

(2) For general benchmarks, ConvNeXt performs on par with ViT. Specifically, ConvNeXt outper-
forms ViT on SEEDBench and performs on par with ViT on MMBench. Notably, the performance
gap between the 768 resolution ConvNeXt and the 336 resolution ViT on MMBench is narrowed
from 3.3 to 0.3 compared with freezing the visual encoder. This implies that updating the visual
encoder is essential. To further support this, we show the results of updating the visual encoder with
more data in Appendix A.

Generally, the updated ConvNeXt performs better than ViT on these 4 benchmarks. This evidences
that updating the ConvNeXt significantly enhances the performances, underscoring its critical impor-
tance. Previous methods employ ConvNeXt as an auxiliary visual encoder and directly increase the
resolution to 1024 [36] or 1536 [25]. They fail to identify the problem that scaling up the resolution
without updating ConvNeXt would compromise the performance. Our method, delving deeper into
the root of the issue, provides a simple yet effective solution to scaling up the resolution.

3.3 Training with Stage 5 Scales up Resolution to 1536

As we mentioned in Section 3.1, scaling resolution to higher than 768 would generate excessive
visual tokens. To reduce the redundancy and mitigate the excessive computational demands on the
large language model (LLM), we propose training stage 5 for the ConvNeXt model to compress the
visual information (training protocol shown in Fig. 1 (c)).

Implementation Details. We employ a three-stage training protocol. In the projector initialization
stage, we train the fifth stage layers and the projector with the ShareGPT4V-PT data [6]. In the second
stage, we train the entire model with the ShareGPT4V-PT data. For instruction tuning, we utilize the
665k LLaVA instruction data to train the LLM and the projector. The training protocol is similar to
the protocol for updating the visual encoder. The only difference is that we train the fifth stage and
projector with ShareGPT4V-PT data, while experiments in Section 3.2 train the projector with the
558k caption data in the first training stage. We add 6 layers in stage 5 and tune the last three stages
in the second training phase. Ablation studies on these hyper-parameters are included in Appendix B.

Results for ConvNeXt†. We present the results of adding stage 5 to ConvNeXt in Tab. 4. Scaling up
the resolution consistently improves performance on SEEDBench, TextVQA, and DocVQA, which
require fine-grained understanding and benefit from the higher resolution. These results highlight
the effectiveness of our method of training stage 5. However, on MMBench, the performance of
ConvNeXt† exhibits a slight drop when scaling the resolution from 1024 to 1536. The resolution of
1536 is approximately six times higher than the pretraining resolution (256). Adapting the pretrained
visual encoder to effectively extract global information from such a significant increase in resolution
requires a substantial amount of training data. In Section 4, we verify this hypothesis by providing
sufficient data to the visual encoder in the second training stage.

On Scaling Resolution. When we increase the resolution, the number of visual tokens also increases.
These two factors are entangled, and there has been a lack of in-depth investigation into the relation-
ship between them. Previous work claims that raw resolution matters more than the number of visual
tokens [28]. We experiment on the general benchmark SEEDBench and OCR benchmark DocVQA
to investigate these assumptions. Our method provides control experiments to reveal the relationship
between resolution and the number of visual tokens. We compare the results of ConvNeXt (trained
in Section 3.2) and ConvNeXt† (trained in Section 3.3) as the visual encoder for LMMs under the
same number of visual tokens. The two series of models are pretrained with ShareGPT4V-PT and
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Figure 3: Comparisons of ConvNeXt and ConvNeXt† on SEEDBench and DocVQA. The marked
number above the line shows the resolution of the model.

instruction-tuned with 665k LLaVA instruction data. ConvNeXt† has an additional stage to compress
the number of visual tokens to 1/4. Hence, the differences between these two series models have been
largely reduced. Our control experiments reveal novel findings:

(1) When the number of visual tokens is the same, the higher resolution model exhibits better
performance on SEEDBench and DocVQA. In the Fig.3, the green line consistently outperforms the
blue line. This is because that high-resolution model provides finer-grained and higher-quality visual
features even if the output number of visual tokens is the same. Previous work [31, 27, 11] which
scales up the resolution by splitting the image into patches would generate excessive visual tokens.
Such cropping methods significantly sacrifice efficiency and challenge the retrieval capability of
LLM. Our core discovery presents a promising approach to enrich the information contained in visual
features without compromising efficiency. Compressing high-resolution images into information-rich
visual tokens is more efficient than the cropping method. Training a stage to further compress visual
features provides a manner to increase resolution and maintain a moderate computational cost.

(2) The importance of the number of visual tokens varies across different benchmarks at equivalent
resolution. For general benchmarks like SEEDBench, the performance drop brought by compressing
visual tokens for the 768-resolution models is marginal (0.9 on SEEDBench). However, for OCR
benchmarks like DocVQA, the performance drop for the model with fewer visual tokens is substantial
(9.1 on DocVQA). Overall, these results demonstrate that while compressing visual tokens causes
only slight information loss on general benchmarks, but leads to significant information loss on
fine-grained OCR benchmarks.

4 Experiments

Our results demonstrate that scaling up the resolution of ConvNeXt and updating the visual encoder
are two effective approaches to training an advanced, high-resolution Language-Multimodal Model.
However, we found that the available training data was insufficient to fully unleash the potential of
these approaches. Consequently, we scaled up the high-quality training data to address this limitation.

4.1 Training Setups

Training Stages. We adopt a three-stage training protocol to train ConvLLaVA as shown in Fig. 1 (c).
The training process is categorized into three stages: (1) Projector Initialization. We train the fifth
stage of the ConvNeXt model and the vision-language projector. We utilize caption data including
ShareGPT4V-PT [6], ShareGPT4V [6], and ALLaVA captions [4], totaling approximately 2M
examples. (2) Vision-Language Pretraining. We employ caption data including ShareGPT4V-PT [6],
ShareGPT4V [6], ALLaVA [4], and a 190k open-sourced subset of VFLAN [52], amounting to
2.9M data. (3) Visual Instruction Tuning. We fine-tune the model with the 665k LLaVA instruction
dataset [30]. In each stage, we train the model for 1 epoch with the AdamW optimizer. The cosine
learning rate schedule is also applied.

Implementation Details. We utilize the LAION-2B pretrained ConvNeXt-L model as our visual
encoder [17]. In the three training stages, the resolution is scaled up to a fixed value. We train
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Table 5: Comparisons with different resolution multi-modality models. ∗The results are measured by
VLMEVALKIT with official checkpoints. †The results are measured with the original image aspect
ratio and the short side of the image is resized to 1536. ‡OtterHD is tested with the original resolution
of the images and the number of tokens varies. We mark the best performance of the 7B model bold
and the second-best underlined.

Method Res. #V Tokens LLM MME MMB SEED RWQA MMMU MMVet Text Doc POPE

LLaVA-1.5 336 576 13B 1531 68.2 68.2 55.3 36.4 38.3 48.7∗ 23.7∗ 85.9
VILA 336 576 13B 1570 70.3 – – – 38.8 54.5∗ 39.2∗ 84.2

LLaVA-Next 672 2880 13B 1575 70 71.9 – 36.2 48.4 67.1∗ – 86.7

OtterHD –‡ –‡ 8B 1223 58.3 – – – 26.3 – – 86
Qwen-VL-Chat 448 256 7B 1488 60.6 64.8 – – – 61.5 62.6 –

LLaVA-1.5 336 576 7B 1510 64.3 66.2 54.8 – 30.5 45.5∗ 21.6∗ 85.9
ShareGPT4V 336 576 7B 1567 68.8 69.7 56.5 – 37.6 51.1∗ 26.6∗ 86

VILA 336 576 7B 1533 68.9 – – – 35.1 53.2∗ 35.8∗ 86.3
LLaVA-Next 672 2880 7B 1519 67.4 70.2 – 35.8 43.9 64.4∗ – 86.5

MiniGemini-HD 1536 2880 7B 1546 65.8 – – 36.8 41.3 – – –

ConvLLaVA 768 144 7B 1541 68 68.8 55.9 36.3 44.8 59.1 44.8 87.3
ConvLLaVA 1024 256 7B 1553 68.8 69.3 58.8 35.1 44.4 62.5 48.5 87.7
ConvLLaVA 1536 576 7B 1575 68.7 70.2 59.9 35.8 45.9 65.8 59/65 87.3

Table 6: Results on referring expression comprehension tasks. The models in this table are trained
with the same grounding data. We mark the best performance of the model bold.

Method Res. #V Tokens LLM RefCOCO RefCOCO+ RefCOCOg Avg
val test-A test-B val test-A test-B val test

LLaVA-1.5 336 576 7B 76.3 83.2 67.9 66.8 77.0 56.8 70.4 70.0 71.1
LLaVA-1.5 336 576 13B 84.0 89.5 77.1 76.3 84.3 66.1 78.8 78.3 79.3

ConvLLaVA 768 144 7B 84.5 89.0 79.2 77.7 84.9 69.7 79.8 79.7 80.6
ConvLLaVA 1024 256 7B 85.5 89.6 78.8 79.3 86.1 70.3 80.6 81.2 81.4
ConvLLaVA 1536 576 7B 86.5 90.6 80.5 80.0 86.8 71.5 82.0 82.4 82.3

ConvLLaVA at 768, 1024, and 1536 resolutions. The learning rates in the three training stages are
3e-4, 2e-5, and 2e-5, respectively. Meanwhile, the batch sizes are 256, 256, and 128. Training
the ConvLLaVA 768 resolution model takes approximately 18 hours on 2 A800 machines. The
instruction tuning costs 20 hours for LLaVA-NExT 7B on an A100 machine [31], while it tasks only
9 hours for our 1536 resolution ConvLLaVA on a single machine.

Evaluation Benchmarks. To systematically investigate the performance of our model, we in-
clude more benchmarks for evaluation, including MME [13], MMBench [33], SEEDBench [22],
MMMU [58], MMVet [57], RealWorldQA [50], TextVQA [44], DocVQA [38], and POPE [26]. Our
results are measured by VLMEVALKIT. We also assess the performance on grounding benchmarks,
including RefCOCO [19], RefCOCO+, and RefCOCOg [37].

4.2 Quantitative Results

We perform a comprehensive comparison with state-of-the-art models on 7 different bench-
marks (Tab. 5). Our model achieves consistent improvements compared to LLaVA-1.5. Our 7B
model even exhibits comparable performance with LLaVA-1.5 13B and LLaVA-NExT 7B [31].
On OCR benchmarks like TextVQA and DocVQA, our model outperforms the LLaVA-1.5 7B and
13B models. Since OCR benchmarks are sensitive to resolution, our ConvLLaVA series models
demonstrate consistent improvement on TextVQA and DocVQA with higher resolution, showcasing
the effectiveness of scaling up resolution. Notably, our model surpasses Qwen-VL-Chat on DocVQA
which has millions of document training data. While there is only a limited number of document
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data in our training dataset. This shows the benefits of the high-resolution design of our model.
ConvLLaVA outperforms LLaVA-NExT on MMBench, TextVQA, POPE, and MMVet.

For grounding benchmarks, our model and LLaVA are trained with the same set of grounding data.
The comparison between them is fair. On RefCOCO, RefCOCO+, and RefCOCOg, ConvLLaVA
exhibits consistent improvement when increasing resolution (Tab. 6). ConvLLaVA outperforms
LLaVA-7B and 13B model on all 8 test splits. This demonstrates the benefits of higher resolution for
grounding tasks. Our 7B model also surpasses 13B LLaVA model on all 8 benchmarks.

4.3 Understanding Any Aspect Ratio Images and Highre Resolutions

Thanks to the translation equivalence of convolution neural network, our model could be trained on a
fixed resolution but inference on higher resolution and with an arbitrary aspect ratio. We test such
ability on our 1536 resolution model ConvLLaVA.

Table 7: Results for different aspect ra-
tios and higher resolution.

Input Shape SEED Text Doc

(1536, 1536) 70.2 65.8 59.0
short side=1536 68.9 64.6 65.0
short side=1664 67.3 64.2 65.7

The original image preprocessing process is padding the
image to a square, resizing the image to 1536, and center
cropping [30]. We canceling padding and center cropping.
Hence, the short side of the image should just be resized
to 1536 and keep the original aspect ratio. This is the
setting of how we test images of any aspect ratio. The
results are shown in Tab. 7. We observe that on the gen-
eral benchmark, SEEDBench, the performance slightly
decreases. On OCR benchmarks, especially on DocVQA,
the performance is improved. The reason for this we think
is that the image aspect ratio in DocVQA is not 1:1, forcely transforming the image into a square
would lower the resolution of the image.

We also test ConvLLaVA when resizing the short side of images to 1664 resolution which is higher
than its pretrained 1536 resolution. We observe that on DocVQA the performance could be further
improved to 65.7.

4.4 Discussions

Architectures and data. While we have demonstrated the effectiveness of our method, there remains
room for further improvement. The ConvNeXt architecture we use is tailored for low-resolution
image understanding (e.g., 256), with a kernel size of 7 optimized for such resolutions. However, as
the resolution increases to 1536, the relatively small kernel size may limit the model capacity when
the resolution is extremely high. Besides, the number of layers in the ConvNeXt four stages (3, 3,
27, 3) is designed for a 4-stage model and may not be optimal for our 5-stage model. Therefore, a
potential future direction could involve designing a five-stage, linear spatial complexity, hierarchical
high-resolution vision encoder. We emphasize the critical role of the five-stage visual encoder since it
is fit for high-resolution LMM. It compresses visual features by 64×, greatly reducing the redundancy
in its visual tokens. In contrast, four-stage visual encoders, designed for traditional computer vision
tasks, output excessive tokens when resolution is high.

Linear spatial complexity and information compression. We identify linear spatial complexity
and information compression procedure as two critical properties for future visual encoders of
LMMs. These properties ensure the efficiency of both the visual encoder and the LLM, respectively.
Furthermore, they are crucial for multi-image, interleaved image and text, and video understanding
tasks, as these tasks commonly result in numerous visual tokens. We anticipate that future research
will focus more on these two directions to further advance the research of LMMs.

Trade-off between compression and retrieval for high-resolution understanding. Our method,
ConvLLaVA, compresses a 1536-resolution image to 576 visual tokens with a 64× compression
ratio. While concurrent work [11, 7] explores retrieving fine-grained image information from long
visual token sequences. In the context of high-resolution image understanding, compressing visual
information maintains computational efficiency, but excessive compression may lead to information
loss. Conversely, retaining a large number of visual tokens avoids information loss but sacrifices
efficiency and challenges the retrieval capabilities of LLMs. Consequently, a trade-off emerges

9



between visual information compression and retrieval capabilities for high-resolution understanding.
Future research should explore an optimal balance between these two factors.

5 Conclusion

In this paper, we have critically examined the limitations of the visual encoder for current LMMs:
quadratic spatial complexity and numerous visual tokens. The excessive visual tokens are the more
fundamental problem. These drawbacks hinder LMMs from efficiently understanding high-resolution
images. Consequently, we propose ConvLLaVA, whose visual encoder is a hierarchical backbone,
ConvNeXt, to mitigate this issue. ConvLLaVA compresses high-resolution visual information
into information-rich visual representation rather than preserving all the redundancy in the visual
representation. Extensive experimental results have demonstrated the efficacy of our proposed
method. Our 7B parameter model exhibits superior performance compared to the LLaVA-1.5 13B
model. Furthermore, our method is flexible in encoding images with arbitrary shapes and resolutions.
Our work highlights the advantages of hierarchical visual backbones for LMMs, addressing critical
challenges while maintaining simplicity and efficiency.
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A Training Visual Encoder with More Data

In Section 3.2, we observe that updating the visual encoder is essential for ConvNeXt as the standalone
encoder. We compare the two visual encoders with more training data in Tab. 8. For the visual
language training stage, we use ALLaVA and ShareGPT4V-PT. We train the last two stages for
ConvNeXt and the last 12 layers for ViT. With more training data, ConvNeXt outperforms ViT on
all the 4 benchmarks. These results validate the advantages of ConvNeXt over ViT. This ConvNeXt
model even outperforms the 768-resolution ConvLLaVA model on some benchmarks due to its
higher number of visual tokens. However, the training and inference speed is much slower than the
768-resolution ConvLLaVA model due to the increased number of visual tokens. The 1536 resolution
ConvLLaVA, featuring outputting the same number of visual tokens, outperforms this model. This
shows higher resolution model may have a higher model capacity to learn from data.

Table 8: Comparison on different visual encoders. The visual encoders are updated during training.
#V Tokens stands for the number of visual tokens.

Visual Encoder Res. #V Tokens MMBench SEEDBench TextVQA DocVQA

ViT-L 336 576 68.1 68.0 49.6 29.2

ConvNeXt-L 768 576 68.5 69.5 62.5 51.6

B Hyperparameters for 5-stage ConvNeXt

We discuss the choice of hyperparameters in this section.

Number of Trained Stages. We conduct an ablation study to determine the optimal number of stages
for vision-language pretraining at 768 resolution. We find that fine-tuning from stage 3 yields better
results than fine-tuning from stage 4 (Tab. 9). While the performances of fine-tuning from stage 2
and stage 3 are comparable, we opt for fine-tuning from stage 3 due to its fewer trainable parameters.

Number of Layers in Stage 5. We ablate on the number of ConvNeXt layers in stage 5. Given
that the number of layers in each stage is a multiple of 3 in ConvNeXt-L, we experiment with 3, 6,
and 9 layers in stage 5. For simplicity, we perform the experiments on ConvNeXt 768. We observe
a slight decrease in performance when adding 9 layers in stage 5 (Tab. 10). However, it’s hard to
determine whether adding 3 or 6 layers is more beneficial for these four benchmarks. Hence, we
conduct experiment on the 1536 resolution to further investigate this hyperparameter (Tab. 11). The
results show that adding 6 layers could be better. We opt for 6 layers in our experiments.

C Training protocol for each experiment

The detailed training hyper-parameters are shown in the following tables.
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Table 9: Ablation on the number of trainable stages.

Visual Encoder Tune from Stage MMBench SEEDBench TextVQA DocVQA

ConvNeXt-L† 2 65.1 67.7 54.8 31.1
ConvNeXt-L† 3 65.3 67.7 54.7 31.1
ConvNeXt-L† 4 66.2 67.0 52.2 28.2

Table 10: Ablation on number of layers in stage 5.

Visual Encoder #Layers Added MMBench SEEDBench TextVQA DocVQA

ConvNeXt-L† 3 65.2 67.9 55.6 29.6
ConvNeXt-L† 6 65.3 67.7 54.7 31.1
ConvNeXt-L† 9 64.6 67.9 54.6 30.1

Table 11: Experiments on the number of layers in stage 5 on 1536 resolution.

Visual Encoder #Layers in Stage 5 MMBench SEEDBench TextVQA DocVQA

ConvNeXt-L† 3 64.6 68.4 60.6 38.8
ConvNeXt-L† 6 64.3 69.1 60.7 42.5

Table 12: The training protocol for Tab. 2.

Training Stage 1 2

Visual Encoder
Projector ✓ ✓

LLM ✓

data LLaVA LCS-558K LLaVA SFT 665k
lr 1e-3 2e-5

batch size 256 128
lr schedule cosine decay cosine decay

lr warmup ratio 0.03 0.03
epoch 1 1

optimizer AdamW AdamW

Table 13: The training protocol for Tab. 3.

Training Stage 1 2 3

Visual Encoder ✓

Projector ✓ ✓ ✓

LLM ✓ ✓

data LLaVA LCS-558K ShareGPT4V-PT LLaVA SFT 665k
lr 1e-3 2e-5 2e-5

batch size 256 256 128
lr schedule cosine decay cosine decay cosine decay

lr warmup ratio 0.03 0.03 0.03
epoch 1 1 1

optimizer AdamW AdamW AdamW
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Table 14: The training protocol for Tab. 4, Tab. 9, and Tab. 10

Training Stage 1 2 3

ConvNeXt ✓

Stage 5 ✓ ✓

Projector ✓ ✓ ✓

LLM ✓ ✓

data ShareGPT4V-PT ShareGPT4V-PT LLaVA SFT 665k
lr 3e-4 2e-5 2e-5

batch size 256 256 128
lr schedule cosine decay cosine decay cosine decay

lr warmup ratio 0.03 0.03 0.03
epoch 1 1 1

optimizer AdamW AdamW AdamW

Table 15: The training protocol for Tab. 5, and Tab. 6

Training Stage 1 2 3

ConvNeXt ✓

Stage 5 ✓ ✓

Projector ✓ ✓ ✓

LLM ✓ ✓

data
ShareGPT4V-PT ShareGPT4V-PT

LLaVA SFT 665kShareGPT4V ShareGPT4V
ALLaVA Caption ALLaVA, VFLAN

lr 3e-4 2e-5 2e-5
batch size 256 256 128
lr schedule cosine decay cosine decay cosine decay

lr warmup ratio 0.03 0.03 0.03
epoch 1 1 1

optimizer AdamW AdamW AdamW

17


	Introduction
	Related Work
	ConvLLaVA
	ConvNeXt as Standalone Visual Encoder
	Updating ConvNeXt is Essential
	Training with Stage 5 Scales up Resolution to 1536

	Experiments
	Training Setups
	Quantitative Results
	Understanding Any Aspect Ratio Images and Highre Resolutions
	Discussions

	Conclusion
	Training Visual Encoder with More Data
	Hyperparameters for 5-stage ConvNeXt
	Training protocol for each experiment

