# Lecture 2

Constructing a Training Target for Flow and Diffusion Models

### MIT IAP 2025 | Jan 22, 2025

Peter Holderrieth and Ezra Erives



Sponsor: Tommi Jaakkola



### **Reminder: Flow and Diffusion Models**



To get samples, simulate ODE/SDE from t=0 to t=1 and return  $\,X_1$ 

### Next step: Training the model

Without training, the model produces "non-sense"  $\rightarrow$  We need to train  $u_t^{\theta}$ 

Training = Finding parameters  $\theta$  such that

$$X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t = u_t^{\theta}(X_t)\mathrm{d}t \quad \text{Implies} \quad X_1 \sim p_{\mathrm{data}}$$

Start with initial distribution

Follow along the vector field

The distribution of the final point = data distribution

## Goal of lecture 2 (today) and lecture 3 (tomorrow):

**Derive training algorithm** 

### Today's goal: Derive a Training Target

- Typically, we train the model by minimizing a mean squared error:

$$L(\theta) = \|u_t^{\theta}(x) - u_t^{\text{target}}(x)\|^2$$
Training target

- In regression or classification, the training target is the label.
- Here: No label :(  $\rightarrow$  We have to derive a training target

Today: Derive a formula for the training target:  $u_t^{target}(x)$ Tomorrow: Training algorithm using  $u_t^{target}(x)$ 

#### **Today: Training target**



#### **Tomorrow: Training algorithm**



Marginal Vector Field

Marginal Score Function

Flow Matching

Score Matching

### Section 2:

## **Constructing a Training Target**

Goal: Derive a formula for a training target for training our models

Today will be the **technically most challenging lecture**!

The next lectures will **be much much easier**!



Key terminology: "Conditional" = "Per single data point" "Marginal" = "Across distribution of data points"

#### Probability Paths: The Path from Noise to Data





t=0

t=1





#### Conditional Prob. Path



Conditional Vector Field

Conditional Score Function

### Marginal Prob. Path

|                                 | Notation | Key property                                 | Formula                                  |
|---------------------------------|----------|----------------------------------------------|------------------------------------------|
| Marginal<br>Probability<br>Path | $p_t$    | Interpolates $p_{ m init}$ and $p_{ m data}$ | $\int p_t(x z) p_{\rm data}(z) {\rm d}z$ |
| Marginal<br>Vector<br>Field     |          |                                              |                                          |
| Marginal<br>Score<br>Function   |          |                                              |                                          |

Simulating ODE with Conditional Vector Field for Conditional Probability Path

NOTE: This is an animated gif and is static in a PDF



#### **Ground truth**



 $p_t(\cdot|z)$ 



#### **ODE** samples





#### **ODE Trajectories**





**Continuity Equation** 

Randomly initialized ODE

Given: 
$$X_0 \sim p_{ ext{init}}, \quad rac{\mathrm{d}}{\mathrm{d}t} X_t = u_t(X_t)$$

Follow probability path:   
 
$$X_t \sim p_t \quad (0 \leq t \leq 1)$$
   
  $P_t$ 

PDE holds

equivalent

Continuity equation holds

 $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$ 

### **Continuity Equation**

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$$

Change of probability mass at x Outflow - inflow of probability mass from u



Gaussian Conditional Probability Path And Conditional Vector Field



Toy example

NOTE: This is an animated gif and is static in a PDF



Simulating ODE with Marginal Vector Field for Gaussian Probability Path



#### Conditional Prob. Path, Vector Field, and Score



Conditional Score Function

### Marginal Prob. Path, Vector Field, and Score

|                                 | Notation                | Key property                                 | Formula                                                                  |
|---------------------------------|-------------------------|----------------------------------------------|--------------------------------------------------------------------------|
| Marginal<br>Probability<br>Path | $p_t$                   | Interpolates $p_{ m init}$ and $p_{ m data}$ | $\int p_t(x z) p_{\rm data}(z) {\rm d}z$                                 |
| Marginal<br>Vector<br>Field     | $u_t^{	ext{target}}(x)$ | ODE follows $\int dx$                        | $u_t^{	ext{target}}(x z)rac{p_t(x z)p_{	ext{data}}(z)}{p_t(x)}	ext{d}z$ |
| Marginal                        |                         |                                              |                                                                          |

1

Score

Function

#### **Outlook (Next class) - Flow Matching Loss**

The Flow Matching loss is a mean squared error between the neural network and the marginal vector field:

$$L_{\rm fm}(\theta) = \mathbb{E}_{t \sim {\rm Unif}, x \sim p_t} [\|u_t^{\theta}(x) - u_t^{\rm target}(x)\|^2]$$

Training a Flow Model Consists of Learning the Marginal Vector Field (How? Next lecture!)

#### Example marginal vector field - Meta MovieGen



These videos are generated by simulating the ODE with the (learnt) marginal vector field

#### **Ground truth**



 $p_t(\cdot|z)$ 

#### **SDE** samples





#### **SDE Trajectories**





Fokker-Planck equation Randomly initialized SDE

Given: 
$$X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t = u_t(X_t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$$



### **Continuity Equation**

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$$

Change of probability mass at x Outflow - inflow of probability mass from u







#### Outlook (Next class) - Score Matching Loss

The Score Matching loss is a mean squared error between the neural network and the marginal score function:

$$L_{\rm sm}(\theta) = \mathbb{E}_{z \sim p_{\rm data}, x \sim p_t(\cdot|z)} [\|s_t^{\theta}(x) - \nabla \log p_t(x)\|^2]$$

To train a diffusion model, we need to train the score network by minimizing the score matching loss (How? Next class!)

### Marginal VF



#### Marginal VF + Score



### Training a Diffusion Model = Learning the Score Function

Conversion of of noise into protein structure by marginal vector field

Slide credit: Jason Yim



NOTE: This is an animated gif and is static in a PDF

#### Conditional Prob. Path, Vector Field, and Score



#### Marginal Prob. Path, Vector Field, and Score

|                                 | Notation                | Key property                                      | Formula                                                                            |
|---------------------------------|-------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|
| Marginal<br>Probability<br>Path | $p_t$                   | Interpolates $p_{ m ini}$ and $p_{ m data}$       | t $\int p_t(x z) p_{\text{data}}(z) \mathrm{d}z$                                   |
| Marginal<br>Vector<br>Field     | $u_t^{	ext{target}}(x)$ | ODE follows<br>marginal path                      | $\int u_t^{	ext{target}}(x z) rac{p_t(x z)p_{	ext{data}}(z)}{p_t(x)} \mathrm{d}z$ |
| Marginal<br>Score<br>Function   | $\nabla \log p_t(x)$    | Can be used<br>to convert<br>ODE target<br>to SDE | $\int \nabla \log p_t(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} dz$           |

Today was the **technically most challenging lecture**!

The next lectures will **be much much easier**!



These 6 formulas is all we need for training!

### Next class:

## Thursday (Tomorrow), 11am-12:30pm Training algorithm!

## E25-111 (same room)

#### Office hours: Today, 3pm-4:30pm in 37-212