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Diffusion Models



Overview

• Diffusion Models

• Energy-based Models and Score Matching



largely ignored boom



Diffusion Models



Diffusion Models
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objective
• from Hierarchical VAE to L2 loss

Noise Conditional Network
• represent distributions



... in a nutshell

Forward process: add noise

datanoise



... in a nutshell

Reverse process: denoise

datanoise



What is noise?
• Adding Gaussian noise ⇔ sampling



What is noise?
• Adding Gaussian noise ⇔ sampling

convolution
(of pdf)
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What is noise?
• Adding Gaussian noise ⇔ sampling



What is noise?

data 
distribution

noise 
distribution



Diffusion Models
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objective
• from Hierarchical VAE to L2 loss

Noise Conditional Network
• represent distributions



Forward Process

coefficients:
variance preserving 



Forward Process

t: “schedule”,
key to Diffusion Models’ success



Forward Process

mean of xt std of xt



Forward Process

mean of xt var of xt



Forward Process

identity matrix
• sampling is i.i.d.
• dim = dim of data



Forward Process

• sampling without simulation
• xt from x0 in closed form

coefficients
given by β



Forward Process: Noise Schedule schedule of β

schedule of !⍺

noisiest

cleanest



Forward Process

tl; dr:
• pre-defined conditional distributions
• Gaussian w/ controllable mean/std
• divide and conquer



Diffusion Models
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objective
• from Hierarchical VAE to L2 loss

Noise Conditional Network
• represent distributions



Reverse Process



Reverse Process

reverse the 
time steps

parameterized 
by a network

• known
• but not our target



Reverse Process

• our target
• but unknown



Figure adapted from: Joseph Rocca “Understanding Variational Autoencoders (VAEs)” 
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

sampledq(xt | xt-1 = △)

q(xt | xt-1 = ○) q(xt | xt-1 = ◻)

• known (Gaussian)

Why are the reverse conditionals unknown? 



Figure adapted from: Joseph Rocca “Understanding Variational Autoencoders (VAEs)” 
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

sampledq(xt | xt-1 = △)

q(xt | xt-1 = ○) q(xt | xt-1 = ◻)

q(xt-1 | xt = ○)

Why are the reverse conditionals unknown? 

• unknown
(depends on data 
distribution)



Reverse Process

• known
• Gaussian



Reverse Process



Reverse Process

var



Reverse Process

mean var



Reverse Process

mean var
linear combinaFon



Reverse Process

mean var



Reverse Process

mean var
“noise”



Reverse Process

mean var
“noise”

tl; dr:
• outcome of the dependency graph
• some linear combinations



Reverse Process

• tl; dr: a known Gaussian
• we want to learn it by pθ
• we can represent pθ by a Gaussian
• minimize KL divergence



Reverse Process DKL of two Gaussians is like L2 loss: (pset 1)



Reverse Process

learn preset

DKL of two Gaussians is like L2 loss: (pset 1)



Reverse Process

learn preset

DKL of two Gaussians is like L2 loss: (pset 1)

“noise”



Reverse Process

learn preset
estimate noise

DKL of two Gaussians is like L2 loss: (pset 1)

“noise”



Reverse Process DKL of two Gaussians is like L2 loss: (pset 1)



Reverse Process

• a network to predict noise
• input: noisy image

DKL of two Gaussians is like L2 loss: (pset 1)



Reverse Process

• weights due to 𝛼t , βt

• but set as 1 (critical)
• a network to predict noise
• input: noisy image

DKL of two Gaussians is like L2 loss: (pset 1)



tl; dr

• some dependency graphs

• some linear combinaVons

• DKL

• L2 loss of noise



Diffusion Models
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objective
• from Hierarchical VAE to L2 loss

Noise Conditional Network
• represent a distribution



Training Objective



Training Objective

• variational lower bound
• like ELBO



Training Objective

• variaFonal lower bound
• like ELBO

it’s ELBO if one step



Training ObjecBve

no parameter, unlike VAE’s qφ

Gaussianconstant



Training Objective

reconstruction loss,
like VAE



Training ObjecBve

L2 loss on noise



Training ObjecBve



Training Objective

over pdata 
over [1, T ]

over



Training Objective

set as 1 (cri<cal)

[Ho et al. 2020]; see more in [Salimans & Ho, 2022]



Training ObjecBve

conditioned on 
noise level (critical)

network to 
predict noise



Diffusion Models
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objective
• from Hierarchical VAE to L2 loss

Noise Conditional Network
• represent a distribution



Noise Conditional Network
• Diffusion models decompose a distribuVon into many simpler ones.

• We need the same # networks to fit all of them.

• We can combine all into one “powerful” network.

• This network is condiVoned on noise level t.

• Noise Condi<onal Network [Song & Ermon 2019]: things made work

*It is called Noise Condi0onal Score Network (NCSN) in [Song & Ermon 2019] in the context of score matching.



Noise CondiBonal Network
How to represent 
• network input: xt

• network output: μ and σ of a distribution

• parametrize μ by:  

noise level:
• condition
• network input

noisy image:
• condition
• network input



Noise Conditional Network

also 
network 

input

network 
input

Unet, ViT, ...
(behaves like Denoising AE)

output:
same size



Diffusion algorithm annotated:

xt

estimated μ 

sampling from 
estimated distribution



Diffusion algorithm annotated:

tl; dr: noising and denoising
• Turns out to be extremely simple
• Being “simple and effecVve” moves the needle



Example: Uncondi0onal Genera0on on CIFAR-10

noise
xT

generated
x0

[Ho et al, 2020] 



Example: shared intermediate latents 

[Ho et al, 2020] 



Summary
Forward process
• add noise to data

Reverse process
• learn to denoise

Training objec<ve
• from Hierarchical VAE to L2 loss

Noise Condi<onal Network
• represent distribuVons



Energy-based Models
and Score Matching



• Diffusion Models are closely related to Score Matching.

• Score Matching is one soluVon to Energy-based Models.

• Energy-based Models:
• can be probabilisFc or non-probabilisFc
• can be generaFve or discriminaFve

• Many useful concepts in diffusion co-evolved w/ score matching
• Annealed importance sampling [Neal 1998]

• Denoising score matching [Vincent 2011]

• Noise CondiFonal Score Network [Song & Ermon 2019]

Diffusion and Score Matching



E(x)

Energy-based Models
• Define a scalar function, called “energy”.
• At inference time, find x that minimizes energy



Energy-based Models
• We can use an energy to model a probability distribuVon

normalizing 
constantE(x)

p(x)



Energy-based Models
• “Score function”: gradient of log-probability

E(x)

w.r.t. x =0

p(x)



Energy-based Models
• “Score function”: gradient of log-probability

p(x)
E(x)

“non-normalized probabilistic models”



Energy-based Models
• “Score func<on”: gradient of log-probability

“non-normalized probabilistic models”

*only visualize direcTons



• Instead of parametrizing p, we can parametrize the score

Score Matching

score of data parameterized scoreFisher divergence

*only visualize direcTons



• Instead of parametrizing p, we can parametrize the score

Score Matching

score of data parameterized scoreFisher divergence

*only visualize directions

match



Denoising Score Matching
• with noised data                      , it can be proven: [Vincent, 2011]

See: Vincent, “A Connec0on Between Score Matching and Denoising Autoencoders”, Neural Computa0on, 2011

Fisher divergence
of noised data

parameterized scorescore of conditionaljoint 
distribution



Denoising Score Matching
• with noised data                      , it can be proven: [Vincent, 2011]

See: Vincent, “A Connec0on Between Score Matching and Denoising Autoencoders”, Neural Computa0on, 2011

Gaussian 
noise:

a network to predict
(negative) noise



Langevin Dynamics
• Given a score function, we can sample x from p by iterating: 

score function
(don’t need to know p)

step size

(neg) gradient of energy



Langevin Dynamics
• Given a score funcVon, we can sample x from p by iteraVng: 

Gradient decent in the 
energy landscape

gradient“learning rate” perturbation



(Recap) Diffusion algorithm

score funcFon

score funcFon

Langevin Dynamics



More about Energy-based Models ... 
• At inference time, find a solution that minimizes energy

LeCun et al., “A Tutorial on Energy-Based Learning”, 2006



Various Perspectives on Diffusion Models ...
• Hierarchical VAE

• Energy-based Models and Score Matching

• Autoregressive models

• SDE and ODE

• Normalizing Flows

• Recurrent Neural Networks

[Ho et al, 2020] 

See also: Dieleman, “Perspec0ves on diffusion”. hTps://sander.ai/2023/07/20/perspec0ves.html 



This Lecture

• Diffusion Models

• Energy-based Models and Score Matching
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