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Abstract

Currently, applying diffusion models in pixel
space of high resolution images is difficult. In-
stead, existing approaches focus on diffusion in
lower dimensional spaces (latent diffusion), or
have multiple super-resolution levels of genera-
tion referred to as cascades. The downside is that
these approaches add additional complexity to the
diffusion framework.

This paper aims to improve denoising diffusion
for high resolution images while keeping the
model as simple as possible. The paper is cen-
tered around the research question: How can one
train standard diffusion models on high resolution
images, and still obtain performance comparable
to these alternate approaches?

The four main findings are: 1) the noise schedule
should be adjusted for high resolution images,
2) It is sufficient to scale only a particular part
of the architecture, 3) dropout should be added
at specific locations in the architecture, and 4)
downsampling is an effective strategy to avoid
high resolution feature maps. Combining these
simple yet effective techniques, we achieve state-
of-the-art on image generation among diffusion
models without sampling modifiers on ImageNet.

1. Introduction
Score-based diffusion models have become increasingly
popular for data generation. In essence the idea is sim-
ple: one pre-defines a diffusion process, which gradually
destroys information by adding random noise. Then, the
opposite direction defines the denoising process, which is
approximated with a neural network.

*Equal contribution 1Google Research, Brain Team, Ams-
terdam, Netherlands. Correspondence to: Emiel Hoogeboom
<emielh@google.com>.
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Figure 1: A dslr photo of a frog wearing a sweater, An owl
playing the piano, vivid, fantasy art, and two robots playing
chess with New York in the background. Except for the
frozen text encoder, simple diffusion is trained end-to-end
and images are generated in full pixel space.

Diffusion models have shown to be extremely effective for
image, audio, and video generation. However, for higher
resolutions the literature typically operates on lower dimen-
sional latent spaces (latent diffusion) (Rombach et al., 2022)
or divides the generative process into multiple sub-problems,
for instance via super-resolution (cascaded diffusion) (Ho
et al., 2022) or mixtures-of-denoising-experts (Balaji et al.,
2022). The disadvantage is that these approaches introduce
additional complexity and usually do not support a single
end-to-end training setup.

In this paper, we aim to improve standard denoising dif-
fusion for higher resolutions while keeping the model as
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simple diffusion

Figure 2: Generated images with simple diffusion. Importantly, each image is generated in full image space by a single
diffusion model without any cascades (super-resolution) or mixtures of experts. Samples are drawn from the U-Net model
with guidance scale 4.

simple as possible. Our four main findings are that 1) the
noise schedule should be adjusted for larger images, adding
more noise as the resolution increases. 2) It is sufficient to
scale the U-Net architecture on the 16 × 16 resolution to
improve performance. Taking this one step further is the
U-ViT architecture, a U-Net with a transformer backbone.
3) Dropout should be added for improved performance, but
not on the highest resolution feature maps. And finally 4)
for higher resolutions, one can down-sample without per-
formance degradation. Most importantly, these results are
obtained using just a single model and an end-to-end train-
ing setup. After using existing distillation techniques which
now only have to be applied to a single stage, the model can
generate an image in 0.4 seconds.

2. Background: Diffusion Models
A diffusion model generates data by learning the reverse
of a destruction process. Commonly, the diffusion process
gradually adds Gaussian noise over time. It is convenient to
express the process directly in the marginals q(zt|x) which
is given by:

q(zt|x) = N (zt|αtx, σ
2
t I) (1)

where αt, σt ∈ (0, 1) are hyperparameters that determine
how much signal is destroyed at a timestep t, which can be
continuous for instance t ∈ [0, 1]. Here, αt is decreasing
and σt is increasing, both larger than zero. We consider
a variance preserving process, which fixes the relation be-
tween αt, σt to be α2

t = 1 − σ2
t . Assuming the diffusion

process is Markov, the transition distributions are given by:

q(zt|zs) = N (zt|αtszs, σ
2
tsI) (2)

where αts = αt/αs and σ2
ts = σ2

t − α2
t|sσ

2
s and t > s.

Noise schedule An often used noise schedule is the α-cosine
schedule where αt = cos(πt/2) which under the variance

preserving assumption implies σt = sin(πt/2). An impor-
tant finding from (Kingma et al., 2021) is that it is the signal-
to-noise ratio αt/σt that matters, which is then 1/ tan(πt/2)
or in log space log αt

σt
= − log tan(πt/2).

Denoising Conditioned on a single datapoint x, the denois-
ing process can be written as:

q(zs|zt,x) = N (zt|µt→s, σ
2
t→sI). (3)

where µt→s =
αtsσ

2
s

σ2
t

zt +
αsσ

2
ts

σ2
t

x and σt→s =
σ2
tsσ

2
s

σ2
t

. An
important and surprising result in literature is that when x is
approximated by a neural network x̂ = fθ(zt), then one can
define the learned distribution p(zs|zt) = q(zs|zt,x = x̂)
without loss of generality as s → t. This works because
as s → t, the true denoising distribution for all datapoints
q(zs|zt) (which is typically unknown) will become equal
to q(zs|zt,x = E[x|zt]) (Song et al., 2021).

Parametrization The network does not need to approxi-
mate x̂ directly, and experimentally it has been found that
other predictions produce higher visual quality. Studying the
re-parametrization of the marginal q(zt|x) which is zt =
αtx+σtϵt where ϵt ∼ N (0, 1), one can for instance choose
the epsilon parametrization where the neural net predicts
ϵ̂t. To obtain x̂, one computes x̂ = zt/αt − σtϵ̂t/αt. The
problem with the epsilon parametrization is that it gives un-
stable sampling near t = 1. An alternative parametrization
without this issue is called v prediction and was proposed in
(Salimans & Ho, 2022), it is defined as v̂t = αtϵ̂t − σtx̂.

Note that given zt one can obtain x̂ and ϵ̂t via the identities
σtzt+αtv̂t = (σ2

t +α2
t )ϵ̂t = ϵ̂t and αtzt−σtv̂t = (α2

t +
σ2
t )x̂ = x̂. In initial experiments we found v prediction

to train more reliably, especially for larger resolutions, and
therefore we use this parametrization throughout this paper.

Optimization To train the model, we use the standard ep-
silon loss from (Ho et al., 2020). A way to motivate this
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Figure 3: The standard and shifted diffusion noise on an image of 512 × 512, that is visualized by average pooling to a
resolution of 64 × 64. The top row shows a conventional cosine schedule, the bottom row shows our proposed shifted
schedule.

choice of loss, is that using variational inference one can
derive a lowerbound (in continuous time) on the model
log-likelihood as done in (Kingma et al., 2021):

log p(x) = logEq
p(x,z0, . . . , z1)

q(z0, . . . , z1|x)
≥ Eq log

p(x,z0, . . . , z1)

q(z0, . . . ,z1|x)

= Lx + LT − Et∼U(0,1)

[
w(t)||ϵt − ϵ̂t||2

]
,

where for a well-defined process Lx = − log p(x|z0) ≈ 0
for discrete x, LT = −KL(q(zT |x)|p(zT )) ≈ 0, and
where w(t) is a weighting function which for the equa-
tion to be true needs to be w(t) = − d

dt log SNR(t) where
SNR(t) = α2

t /σ
2
t . In practice, we generally use the un-

weighted loss on ϵt (meaning that w(t) = 1) which in (Ho
et al., 2020) was found to give superior sample quality. See
Appendix A for additional useful background information.

3. Method: simple diffusion
In this section, we introduce several modifications that en-
able denoising diffusion to work well on high resolutions.

3.1. Adjusting Noise Schedules

One of the modifications is the noise schedule that is typi-
cally used for diffusion models. The most common sched-
ules is the α-cosine schedule, which under the variance
preserving assumption amounts to σt

αt
= tan(πt/2) (ignor-

ing the boundaries around t = 0 and t = 1 for this analysis)
(Nichol & Dhariwal, 2021). This schedule was originally
proposed to improve the performance on CIFAR10 which
has a resolution of 32× 32 and ImageNet 64× 64.

However, for high resolutions not enough noise is added.
For instance, inspecting the top row of Figure 3 shows that
for the standard cosine schedule, the global structure of
the image is largely defined already for a wide range in
time. This is problematic because the generative denoising
process only has a small time window to decide on the

global structure of the image. We argue that for higher
resolutions, this schedule can be changed in a predictable
way to retain good visual sample quality.

To illustrate this need in more detail, let us study a 128×128
problem. Given an input image x the diffusion distribution
for pixel i is given by q(z

(i)
t |x) = N (z

(i)
t |αtxi, σt). Com-

monly, diffusion models use network architectures that use
downsampling to operate on lower resolution feature maps,
in our case with average pooling. Suppose we average
pool zt, where we let indices 1, 2, 3, 4 denote the pixels
in a 2 × 2 square that is being pooled. This new pixel is
z64×64
t = (z

(1)
t + z

(2)
t + z

(3)
t + z

(4)
t )/4. Recall that for

variance of independent random variables is additive mean-
ing that Var[X1 + X2] = Var[X1] + Var[X2] and that
Var[aX] = a2Var[X] for a constant a. Letting x64×64 de-
note the first pixel of the average pooled input image, we
find that z64×64

t ∼ N (αtx
64×64, σt/2). The lower resolu-

tion pixel z64×64
t only has half the amount of noise. We

hypothesize that as resolutions increase this is problematic,
as much less diffusion time is spent on the lower resolution,
a stage at which the global consistency is generated.

One can further derive that the αt to σt ratio at this lower res-
olution is twice as high, meaning that the signal to noise ratio
is 22 as high. And so SNR64×64(t) = SNR128×128(t) · 22,
or in general:

SNRd/s×d/s(t) = SNRd×d(t) · s2 (4)

In summary, after averaging over a window of size s × s,
the ratio αt to σt increases by a factor s (and thus the
SNR by s2). Hence, we argue that the noise schedule
could be defined with respect to some reference resolu-
tion, say 32 × 32 or 64 × 64 for which the schedules
were initially designed and successfully tested. In our ap-
proach one first chooses a reference resolution, for example
64 × 64 (a reasonable choice as we will see empirically).
At the reference resolution we define the noise schedule

3
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(a) A dog riding a bicycle through Amsterdam (b) A futuristic car driving through the desert (c) A distillation machine on a table creating
gold

(d) An abstract painting of an elephant (e) A futuristic city overgrown by nature (f) A Van Gogh painting of a lion

(g) A city inside a glass pearl (h) A horse wearing a hat (i) A balloon in the shape of the Google Brain
logo

Figure 4: Text to image samples at resolution 256× 256, generated by a single stage diffusion model
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Figure 5: Log signal to noise ratio for the original and
shifted cosine schedule.

SNR64×64(t) = 1/ tan(πt/2)2 which in turn defines the
desired SNR at full resolution d× d:

SNRd×d
shift 64(t) = SNR64×64(t) · (64/d)2, (5)

the signal to noise ratio is simply multiplied by (64/d)2,
which for our setting d > 64 reduces the signal-to-noise
ratio at high resolution. In log-space, this implies a simple
shift of 2 · log(64/d) (see Figure 5). For example, the
equation of a noise schedule for images of 128 × 128 and a
reference resolution of 64 the schedule is:

log SNR128×128
shift 64 (t) = −2 log tan(πt/2) + 2 log(64/128).

Recall that under a variance preserving process, the
diffusion parameters can be computed as α2

t =
sigmoid(log SNR(t)) and σ2

t = sigmoid(− log SNR(t)).

Finally, it may be worthwhile to study the concurrent and
complementary work (Chen, 2023) which also analyzes
adjusted noise schedules for higher resolution images and
describes several other improvements as well.

Interpolating schedules A potential downside of shifting
the schedule is that high frequency details are now generated
much later in the diffusion process due to the increased per-
pixel noise. However, we postulate that high-frequency
details are weakly correlated when conditioning on the
global/low-frequency features that are already generated. It
should therefore be possible to generate the high-frequency
details in few diffusion steps. Alternatively, one can interpo-
late different shift schedules, for example for a resolution of
512 one could include higher frequency details by starting
at shift 32 and interpolating in log-space to shift 256. The
schedule for log SNRinterpolate(32→256)(t) equals:

t log SNR512×512
shift 256 (t) + (1− t) log SNR512×512

shift 32 (t) (6)

which has more equal weighting over low, mid and high
frequency details. When sampling guidance is desired (for
example in our text to image experiments) we recommend
using this interpolated schedule. We found that shifted
schedules can only tolerate little guidance, and interpolated
schedules get better results with higher guidance weights.

3.2. Multiscale training loss

In the last section we argued that the noise schedule of our
diffusion model should be adjusted when training on high
resolution images so that the signal-to-noise ratio at our base
resolution is held constant. However, even when adjusting
the noise schedule in this way, the training loss on images of
increasingly high resolution is dominated by high frequency
details. To correct for this we propose replacing the stan-
dard training loss by a multiscale version that evaluates the
standard training loss at downsampled resolutions with a
weighting factor that increases for the lower resolutions. We
find that the multiscale loss enables quicker convergence es-
pecially at resolutions greater than 256× 256. The training
loss at the d× d resolution can be written as:

Ld×d
θ (x) =

1

d2
Eϵ,t∥Dd×d[ϵ]− Dd×d[ϵ̂θ(αtx+ σtϵ, t)]∥22,

where Dd×d denotes downsampling to the d × d resolu-
tion. If this resolution is identical to the native resolution
of our model ϵ̂θ and data x, the downsampling does not
do anything and can be removed from this equation. Oth-
erwise, Dd×d[ϵ̂θ] can be considered as an adjusted denois-
ing model for data at non-native resolution d × d. Since
downsampling an image is a linear operation, we have that
Dd×d[E(ϵ|x)] = E(Dd×d[ϵ]|x), and this way of construct-
ing the lower-resolution model is thus indeed consistent
with our original model.

We then propose training our high resolution model against
the multiscale training loss comprising of multiple resolu-
tions. For instance for the resolutions 32, 64, . . . , d the loss
would be: L̃d×d

θ (x) =
∑

s∈{32,64,128,...,d}
1
sL

s×s
θ (x).

That is, we train against a weighted sum of training losses for
resolutions starting at a base resolution (in this case 32×32)
and always including the final resolution of d× d. We find
that losses for higher resolution are noisier on average, and
we therefore decrease the relative weight of the loss as we
increase the resolution.

3.3. Scaling the Architecture

Another question is how to scale the architecture. Typical
model architectures half the channels each time the reso-
lution is doubled such that the flops per operation is the
same but the number of features doubles. The computa-
tional intensity (flops / features) also halves each time the
resolution doubles. Low computational intensity leads to
poor utilization of the accelerator and large activations re-
sult in out-of-memory issues. As such, we prefer to scale
on the lower resolutions feature maps. Our hypothesis is
that mainly scaling on a particular resolution, namely the
16 × 16 resolution is sufficient to improve performance
within a range of network sizes we consider. Typically, low
resolution operations have relatively small feature maps. To
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Table 1: Memory and compute for a convolutional layer
at the typical sizes encountered in diffusion architectures.
Using more channels is usually much cheaper at lower reso-
lutions in terms of memory, B = 1024 for this example.

Size (B × 2562 × 128) (B × 162 × 1024)

Conv Kernel Memory 2.8MB 180MB
Feature Map Memory 16GB 0.5GB
Total Memory 16GB 0.7GB

Compute (TFLOPS) 9 2.3

illustrate this, consider for example

1024 (batch) × 16× 16× 1024 (channel) · 2 bytes/dim

costs 0.5 GB for a feature map whereas for a 256 × 256
feature map with 128 channels, a feature map costs 16 GB,
given they are stored in a 16 bit float format.

Parameters have a smaller memory footprint: The typical
size of a convolutional kernel is 32 × 1282 dimensions ·
4 bytes/dims · 5 replications = 2.8MB and 180MB for
1024 channels, with 5 replications for the gradient, opti-
mizer state and exponential moving average. The point is,
at a resolution of 16× 16 both the size of feature maps are
manageable at 162 and the required space for the parame-
ters is manageable. Summarizing this back-of-the-envelope
calculation in Table 1 one can see that for the same memory
constraint, one can fit 16GB / 0.7GB ≈ 23 layers at 16×16
versus only 1 at 256× 256.

Other reasons to choose this resolution is because it is the
one at which self-attention starts being used in many existing
works in the diffusion literature (Ho et al., 2020; Nichol &
Dhariwal, 2021). Furthermore, it is the 16× 16 resolution
at which vision transformers for classification can operate
successfully (Dosovitskiy et al., 2021). Although this may
not be the ideal way to scale the architecture, we will show
empirically that scaling the 16× 16 level works well.

An observant ML practitioner may have realized that when
using multiple devices naively, parameters are replicated
(typical in JAX and Flax) or stored on the first device (Py-
Torch). Both cases result in a situation where the memory
requirements per device for the feature maps decreases with
1/devices as desired, but the parameter requirement is un-
affected and requires a lot of memory. We scale mostly
at a low resolution where activations are relatively small
but parameter matrices are large O(features2). We found
that sharding the weights allows us to scale to much larger
models without requiring more complicated parallelization
approaches like model parallelism.

Avoiding high resolution feature maps High resolution
feature maps are memory expensive. If the number of
FLOPs is kept constant, memory still scales linearly with
the resolution.

Figure 6: The ‘5/3’ DWT transform transforms an image
to low and high frequency responses. Left: original image.
Right: The different frequency responses of a two-level
DWT, outputs are four 128×128 maps and three 256×256
maps. Best viewed electronically.

In practise, it is not possible to decrease the channels be-
yond a certain size without sacrificing accelerator utilization.
Modern accelerators have a very high ratio between com-
pute and memory bandwidth. Therefore, a low channel
count can make operation memory bound, causing a mostly
idling accelerator and worse than expected wall-clock per-
formance.

To avoid doing computations on the highest resolutions, we
down-sample images immediately as a the first step of the
neural network, and up-sample as the last step. Surprisingly,
even though the neural networks are cheaper computation-
ally and in terms of memory, we find empirically that they
also achieve better performance. We have two approaches
to choose from.

One approach is to use the invertible and linear 5/3 wavelet
(as used in JPEG2000) to transform the image to lower res-
olution frequency responses as demonstrated in Figure 6.
Here, the different feature responses are concatenated spa-
tially for visual purposes. In the network, the responses
are concatenated over the channel axis. When more than
one level of DWT is applied (here there are two), then the
responses differ in resolution. This is resolved by finding
the lowest resolution (in the figure 1282) and reshaping pix-
els for the higher resolution feature maps, in the case of
2562 they are reshaped 1282 × 4, as a typical space to depth
operations. A guide on the implementation of the DWT can
be found here1.

If the above seems to complicated, there also exists a simpler
solution if one is willing to pay a small performance penalty.
As a first layer one can use a d× d convolutional layer with
stride d, and an identically shaped transposed convolutional
layer as a last layer. This is equivalent to what is called
patching in transformer literature. Empirically we show this
performs similarly, albeit slightly worse.

1http://trueharmoniccolours.co.uk/Blog/?p=14
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3.4. Dropout

In architecture typically used in diffusion, a global dropout
hyperparameter is used for the residual blocks, at all res-
olutions. In CDM (Ho et al., 2022), dropout is used to
generate images at lower resolutions. For the conditional
higher resolution images, no dropout is used. However,
various other forms of augmentation are performed on the
data. This indicates that regularization is important, even
for models operating on high resolutions. However, as we
will demonstrate empirically, the naive method of adding
dropout in all residual blocks does not give desired results.

Since our network design only scales the network size at
lower resolutions, we hypothesize that it should be suffi-
cient to only add dropout add the lower resolutions. This
avoids regularizing the high resolution layers which are
memory-wise expensive, while still using the dropout reg-
ularization that has been successful for models trained on
lower resolution images.

3.5. The U-ViT architecture

Taken the above described changes to the architecture one
step further, one can replace convolutional layers with MLP
blocks if the architecture already uses self-attention at that
resolution. This bridges the transformers for diffusion intro-
duced by (Peebles & Xie, 2022) with U-Nets, replacing its
backbone with a transformer. Consequently, this relatively
small change means that we now are using transformer
blocks at these resolutions. The main benefit is that the
combination of self-attention and MLP blocks has high ac-
celerator utilization, and thus large models train somewhat
faster. See Appendix B for details regarding this architecture.
In essence, this U-Vision Transformer (U-ViT) architecture
can be seen as a small convolutional U-Net which through
multiple levels down-samples to the 16× 16 resolution. At
this stage a large transformer is applied after which the
upsampling is again done via the convolutional U-Net.

3.6. Text to image generation

As a proof of concept, we also train a simple diffusion model
conditioned on text data. Following (Saharia et al., 2022)
we use the T5 XXL (Raffel et al., 2020) text encoder as
conditioning. For further details see Appendix B. We train
three models: One on images of resolution 256× 256 for a
direct comparison to models in literature, one on 512× 512
and one on 384× 640. For the last, non-square resolution,
images are rotated during prepossessing if their width is
smaller than their height, along which a ‘portrait mode’ flag
is set to true. As a result, this model can generate natively in
a 5:3 aspect ratio for both landscape and portrait orientation.

Table 2: Noise Schedule on ImageNet 128 and 256.

Noise Schedule FID train FID eval

128 × 128 resolution
cosine (original at 128) 2.96 3.38
cosine (shifted to 64) 2.41 3.03
cosine (shifted to 32) 2.26 2.88

256 × 256 resolution
cosine (original at 256) 7.65 6.87
cosine (shifted to 128) 5.05 4.74
cosine (shifted to 64) 3.94 3.89
cosine (shifted to 32) 3.76 3.71

4. Related Work
Score-based diffusion models (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020) are a generative
model that pre-defines a stochastic destruction process. The
generative process is learned by approximating the reverse
process with the help of neural networks.

Diffusion models have been succesfully applied to image
generation (Ho et al., 2020; 2022), speech generation (Chen
et al., 2020; Kong et al., 2021), video generation (Singer
et al., 2022; Saharia et al., 2022). Other types of genera-
tive models have also been successfully applied to image
generation (Chang et al., 2022; Sauer et al., 2022; Anony-
mous, 2023), although modifications such as guidance and
low temperature sampling can make it difficult to compare
these models fairly. Diffusion models for high resolutions
(for example 5122, 2562, 1282) on complicated data (such
as ImageNet) are generally not learned directly. Instead, ap-
proaches in literature divide the generative process into sub-
problems via super-resolution (Ho et al., 2022), or mixtures-
of-denoisers (Feng et al., 2022; Balaji et al., 2022). Alterna-
tively, other approaches project high resolution data down
to a lower dimensional latent space (Rombach et al., 2022).
Although this sub-division makes optimization easier, the
engineering complexity increases: Instead of dealing with a
single model, one needs to train and keep track of multiple
models. In (Gu et al., 2022) a different approach to adapt
noise to resolution is proposed, although this method seems
to generate lower quality samples with a more complicated
scheme. We show that it is possible to train a single de-
noising diffusion model for resolutions up to 512 × 512
with only a small number modifications with respect to the
original (modern) formulation in (Ho et al., 2020).

5. Experiments
5.1. Effects of the proposed modifications

Noise schedule In this experiment it is studied how the noise
schedule effects the quality of generated images, evaluated
on FID50K score on both train and eval data splits. Recall
that our hypothesis was that the cosine schedule does not add

7
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Table 3: Dropout Ablation on ImageNet 128

Starting from Resolution FID train FID eval

128 3.19 3.85
64 2.27 2.85
32 2.31 2.87
16 2.41 3.03
no dropout (at 700K iters) 3.74 3.91

sufficient noise, but can be adjusted by ‘shifting’ its log SNR
curve using the ratio between the image resolution and the
noise resolution. In these experiments, the noise resolution
is varied from the original image resolution (corresponding
to the conventional cosine schedule) all the way down to 32
by factors of two.

As can be seen in Table 2 for ImageNet at resolution 128
× 128 and resolution 256 × 256, shifting the noise sched-
ule considerably improves performance. The difference is
especially noticeable at the higher resolution, where the
difference is 7.65 for the original cosine schedule against
3.76 for the shifted schedule in FID on the train data. No-
tice that the difference in performance between the shift
towards either 64 and 32 is relatively small, albeit slightly
better for the 32 shift. Given that the difference is small and
that the shift 64 schedule performed slightly better in early
iterations, we generally recommend the shift 64 schedule.

Dropout The ImageNet dataset has roughly 1 million im-
ages. As noted by prior work, it is important to regularize
the networks to avoid overfitting (Ho et al., 2022; Dhariwal
& Nichol, 2021). Although dropout has been successfully
applied to networks at resolutions of 64 × 64, it is often
disabled for models operating on high resolutions. In this
experiment we enable dropout only on a subset of the net-
work layers: Only for resolutions below the given ‘starting
resolution’ hyperparameter. For example, if the starting res-
olution is 32, then dropout is applied to modules operating
on resolutions 32× 32, 16× 16 and 8× 8.

Recall our hypothesis that it should be sufficient to regular-
ize the modules of the network that operate on the lower
resolution feature maps. As presented in Table 3, this hy-
pothesis holds. For this experiment on images of 128× 128,
adding dropout from resolutions 64, 32, 16 all perform com-
paratively. Although adding dropout from 16 × 16 per-
formed a little worse, we use this setting throughout the
remainder of the experiments because it converged faster in
early iterations.

The experiment also shows two settings that do not work
and should be avoided: either adding no dropout, or adding
dropout starting from the same resolution as the data. This
may explain why dropout for high resolution diffusion has
not been widely used thus far: Typically dropout is set as
a global parameter for all feature maps at all resolutions,
but this experiment shows that such a regularization is too

Table 4: Scaling the U-Net architecture

# blocks at 16× 16 FID train FID eval steps / sec

2 + 3 3.42 3.59 114%
4 + 5 2.98 3.29 100%
8 + 9 2.46 3.00 76%
12 + 13 2.41 3.03 62%

Table 5: Downsampling strategies on ImageNet 512 × 512.

Strategy FID train FID eval steps / sec

None 5.60 5.23 100%
DWT-1 5.42 4.97 139%
DWT-2 4.85 4.58 146%
Conv-(2 × 2) 5.99 5.33 137%
Conv-(4 × 4) 5.04 4.80 146%

aggressive.

Architecture scaling In this section we study the effect of
increasing the amount of 16× 16 network modules. In U-
Nets, the number of blocks hyperparameter typically refers
to the number of blocks on the ‘down’ path. In many imple-
mentations, the ‘up’ blocks use one additional block. When
the table reads ‘2 + 3’ blocks, that means 2 down blocks
and 3 up blocks, which would in literature be referred to as
2 blocks.

Generally, increasing the number of modules improves the
performance as can be seen in Table 4. An interesting
exception to this is the eval FID going from 8 to 12 blocks,
which decreases slightly. We believe that this may indicate
that the network should be more strongly regularized as it
grows. This effect will later be observed to be amplified for
the larger U-ViT architectures.

Avoiding higher resolution feature maps In this experi-
ment, we want to study the effect of downsampling tech-
niques to avoid high resolution feature maps. For this experi-
ment we first have a standard U-Net for images of resolution
512. Then, when we downsample (either to 256 or to 128)
using conventional layers or the DWT. For this study the
total number of blocks is kept the same, by distributing the
high resolution blocks that are skipped over the lower res-

Table 6: Multiscale loss. Note that the 256 models use the
shift 32 and the 512 use shift 64. This loss modifications
is helpful for the highest resolution, but diminishes perfor-
mance slightly for lower resolutions.

Resolution FID train FID eval IS

256 3.76 3.71 171.6
+ multiscale loss (32) 4.00 3.89 171.0

512 4.85 4.58 156.1
+ multiscale loss (32) 4.30 4.28 171.0
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Table 7: Comparison to generative models in the literature
on ImageNet without any guidance or other sampling modi-
fications, except (∗) which use temperature scaling.

FID
Method train eval IS

128 × 128 resolution
ADM (Dhariwal & Nichol, 2021) 5.91
CDM (32, 64, 128) (Ho et al., 2022) 3.52 3.76 128.8 ± 2.51
RIN (Jabri et al., 2022) 2.75 144.1
simple diffusion (U-Net) (ours) 2.26 2.88 137.3 ± 2.03
simple diffusion (U-ViT 2B) (ours) 1.94 3.23 171.9 ± 3.24

256 × 256 resolution
BigGAN-deep (no truncation) 6.9 171.4 ± 2
MaskGIT (Chang et al., 2022) 6.18 182.1
DPC⋆ (full 5) (Anonymous, 2023) 4.45 244.8

Denoising diffusion models
ADM (Dhariwal & Nichol, 2021) 10.94
CDM (32, 64, 256) (Ho et al., 2022) 4.88 4.63 158.71 ± 2.26
LDM-4 (Rombach et al., 2022) 10.56 103.49
RIN (Jabri et al., 2022) 4.51 161.0
DiT-XL/2 (Peebles & Xie, 2022) 9.62 121.5
simple diffusion (U-Net) (ours) 3.76 3.71 171.6 ± 3.07
simple diffusion (U-ViT 2B) (ours) 2.77 3.75 211.8 ± 2.93

512 × 512 resolution
MaskGIT (Chang et al., 2022) 7.32 156.0
DPC (U)⋆ (Anonymous, 2023) 3.62 249.4

Denoising diffusion models
ADM (Dhariwal & Nichol, 2021) 23.24
DiT-XL/2 (Peebles & Xie, 2022) 12.03 105.3
simple diffusion (U-Net) (ours) 4.30 4.28 171.0 ± 3.00
simple diffusion (U-ViT 2B) (ours) 3.54 4.53 205.3± 2.65

olution blocks (see Appendix B for more details). Recall
our hypothesis that downsampling should not cost much
in sample quality, while considerably making the model
faster. Surprisingly, in addition to being faster, models that
use downsampling strategies also obtain better sample qual-
ity. It seems that downsampling for such a high resolution
enables the network to optimize better for sample quality.
Most importantly, it allows training without absurdly large
feature maps without performance degradation.

Multiscale Loss For this final experiment, we test the dif-
ference between the standard loss and the multiscale loss,
which adds more emphasis on lower frequencies in the im-
age. For the resolutions 256 and 512 we report the sample
quality in FID score for a model trained with the multiscale

Table 8: Text to image result on zero-shot COCO

Method FID@30K 256

GLIDE (Nichol et al., 2022) 12.24
Dalle-2 (Ramesh et al., 2022) 10.39
Imagen (Saharia et al., 2022) 7.27
Muse (Chang et al., 2023) 7.88
Parti (Yu et al., 2022) 7.23
eDiff-I (Balaji et al., 2022) 6.95
simple diffusion (U-ViT 2B) (ours) 8.30

loss enabled or disabled. As can be seen in Figure 6, for 256
the loss does not seem to have much effect and performs
slightly worse. However, for the larger 512 resolution the
loss has an impact and reduces FID score.

5.2. Comparison with literature

In this section, simple diffusion is compared to existing
approaches in literature. Although very useful for generating
beautiful images, we specifically choose to only compare to
methods without guidance (or other sampling modifications
such as rejection sampling) to see how well the model is
fitted. These sampling modifications may produce inflated
scores on visual quality metrics (Ho & Salimans, 2022).

Interestingly, the larger U-ViT models perform very well
on train FID and Inception Score (IS), outperforming all
existing methods in literature (Table 7). However, the U-Net
models perform better on eval FID. We believe this to be an
extrapolation of the effect we observed before in Table 4,
where increasing the architecture size did not necessarily
result in better eval FID. For samples from the models see
Figures 2 & 10. In summary, simple diffusion achieves
SOTA FID scores on class-conditional ImageNet generation
among all other types of approaches without sampling mod-
ifications. We think this is an incredibly promising result:
by adjusting the diffusion schedule and modifying the loss,
simple diffusion is a single stage model that operates on
resolutions as large as 512 × 512 with high performance.
See Appendix C for additional results.

Text to image In this experiment we train a text-to-image
model following (Saharia et al., 2022). In addition to the
self-attention and mlp block, this network also has cross-
attention in the transformer that operates on T5 XXL text
embeddings. For these experiments we also replaced convo-
lutional layers with self-attention at the 32 resolution feature
maps to improve detail generation. As can be seen in Ta-
ble 8, simple diffusion is a little better than some recent
text-to-image models such as DALLE-2, although it still
lacks behind Imagen. For the resolution 512 × 512, the
FID@30K score is 9.57. Importantly, our model is the first
model that can generate images of this quality using only a
single diffusion model that is trained end-to-end.

6. Conclusion
In summary, we have introduced several simple modifica-
tions of the original denoising diffusion formulation that
work well for high resolution images. Without sampling
modifiers, simple diffusion achieves state-of-the-art perfor-
mance on ImageNet in FID score and can be easily trained
in an end-to-end setup. Furthermore, to the best of our
knowledge this is the first single-stage text to image model
that can generate images with such high visual quality.
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A. Additional Background Information on Diffusion Models
This section is a more detailed summary of relevant background information on denoising diffusion. For one, it can be
helpful to understand how modern denoising diffusion models (Ho et al., 2020) are trained using the formulations from
(Kingma et al., 2021) First we define how signal is destroyed (diffused), which is the algorithmic equivalent to sampling
zt ∼ q(zt|x):
def diffuse(x, alpha_t , sigma_t):
eps_t = noise_normal_like(x)
z_t = alpha_t * x + sigma_t * eps_t
return z_t , eps_t

For the specific optimization setting we generally use (v-prediction, epsilon loss) the loss can be computed as defined below.
This is the algorithmic equivalent of Et∼U(0,1),zt∼q(zt|x)||f(zt, t)− ϵt||2 as proposed by (Ho et al., 2020; Kingma et al.,
2021):

def loss(x):
t = noise_uniform(size=x.shape [0]) # Sample a batch of timesteps.
logsnr_t = logsnr_schedule(t)
alpha_t = sqrt(sigmoid(logsnr))
sigma_t = sqrt(sigmoid(-logsnr))
z_t , eps_t = diffuse(x, alpha_t , sigma_t)
v_pred = uvit(z_t , logsnr_t)
eps_pred = sigma_t * z_t + alpha_t * v_t
return mse(eps_pred , eps_t)

In case of conditioning (for example ImageNet class number of a text embedding), these are added as an input to the uvit
call, but do not influence the diffusion process in other ways. The conditioning is dropped out 10% of the time, so that the
models can additionally be used with classifier-free guidance.

The standard cosine logsnr schedule (taking care of boundaries) can be defined as:

def logsnr_schedule_cosine(t, logsnr_min =-15, logsnr_max =+15):
t_min = atan(exp(-0.5 * logsnr_max))
t_max = atan(exp(-0.5 * logsnr_min))
return -2 * log(tan(t_min + t * (t_max - t_min)))

One can then define the shifted schedule as:

def logsnr_schedule_cosine_shifted(t, image_d , noise_d):
return logsnr_schedule_cosine(t) + 2 log(noise_d / image_d)

And the interpolated schedule as:

def logsnr_schedule_cosine_shifted(t, image_d , noise_d_low , noise_d_high):
logsnr_low = logsnr_schedule_cosine_shifted(t, image_d , noise_d_low)
logsnr_high = logsnr_schedule_cosine_shifted(t, image_d , noise_d_high)
return t * logsnr_low + (1 - t) * logsnr_high

Care needs to be taken that the minimum and maximum logsnr hyperparameters are shifted along with the entire schedule,
so care needs to be taken when these endpoints are used to define the embedding in the architecture.

Sampling In this work we use the standard ddpm sampler unless noted otherwise. Below is the algorithmic equivalent of
the generative process of sampling zT ∼ N (0, I) and then repeatedly sampling zs ∼ p(zs|zt):
def sample(x_shape):
# lowest_idx can be 0 or 1.
z_t = noise_normal(x_shape)
for t in reversed(range(lowest_idx +1, num_steps +1)):
u_t = t / num_steps
u_s = (t - 1) / num_steps
logsnr_t = logsnr_schedule(u_t)
logsnr_s = logsnr_schedule(u_s)
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v_pred = uvit(z_t , logsnr_t)
z_t = sampler_step(z_t , v_pred , logsnr_t , logsnr_s)

# Final prediction , do not sample x ~ p(x | z_lowest) but take the mean prediction:
logsnr_lowest = logsnr_schedule(lowest_idx / num_steps)
v_pred = uvit(z_t , logsnr_lowest)
x_pred = alpha_t * z_t - sigma_t * v_pred
x_pred = clip_x(x_pred)
return x_pred

def ddpm_sampler_step(z_t , v_pred , logsnr_t , logsnr_s):
x_pred = alpha_t * z_t - sigma_t * v_pred
x_pred = clip_x(x_pred)

mu = exp(logsnr_t - logsnr_s) * alpha_st * z_t + (1 - exp(logsnr_t - logsnr_s)) *
alpha_s * x_pred

# Variance can be any interpolation of the following two in log -space:
min_lvar = (1 - exp(logsnr_t - logsnr_s)) + log_sigmoid(-logsnr_s)
max_lvar = (1 - exp(logsnr_t - logsnr_s)) + log_sigmoid(-logsnr_t)
noise_param = 0.2
sigma = sqrt(exp(noise_param * max_logvar + (1 - noise_param) * min_logvar))
return mu + sigma * normal_noise_like(z_t)

where noise_param is set to 0.2 with the exception of MSCOCO FID evaluation, where it is set to 1.0.

An important but not often discussed detail is that during sampling it is helpful to clip the predictions in x-space, below
gives an example for static clipping, for dynamic clipping see (Saharia et al., 2022):
def clip_x(x):
# x should be between -1 and 1.
return clip(x, -1, 1)

Classifier-free guidance In classifier-free guidance (Ho & Salimans, 2022), one drops out the conditioning signal
occasionally during training (Usually about 10% of the time). This allows one to train models, p(x) in addition to the model
one normally trains which is p(x|cond). The epsilon predictions of these models can then be recombined with a guidance
scale. For η > 0:

ϵ̂(x) = (1 + η)ϵ̂(x, cond)− ηϵ̂(x). (7)

One can substitute ϵ̂ by v̂ or x̂ and the result ends up being equivalent due to linearity and terms cancelling out. Note we
will report the guidance scale as (1 + η) as is done often in literature, not to be confused by reporting η itself.

Distillation Like many diffusion models, simple diffusion can also be distilled to reduce the number of sampling steps and
neural net evaluations (Meng et al., 2022) to reduce the number of sampling steps. For a distilled U-ViT model, generating a
single image takes 0.42 seconds on a TPUv4. Similarly, generating a batch of 8 images takes 2.00 seconds.

B. Experimental details
In this section, specific details on the experiments are given. Firstly, the standard optimizer settings for the U-Net experiments.

B.1. U-Net settings
unet default optimization settings:

batch_size =512,
optimizer=’adam ’,
adam_beta1 =0.9,
adam_beta2 =0.99 , except for ImageNet 128 which is adam_beta2 =0.999
adam_eps =1.e-12,
learning_rate =5e-5,
learning_rate_warmup_steps =10_000 ,
weight_decay =0.0,
ema_decay =0.9999 ,
grad_clip =1.0,
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Specific settings for the UNet on ImageNet 128 experiment:
base_channels =128,
emb_channels =1024, (for diffusion time , image class)
channel_multiplier =[1, 2, 4, 8, 8],
num_res_blocks =[3, 4, 4, 12, 4], (unless noted otherwise)
attn_resolutions =[8, 16],
num_heads =4,
dropout_from_resolution =16, (unless noted otherwise)
dropout =0.1,
patching_type=’none ’
schedule={’name ’: ’cosine_shifted , ’shift ’: 64} (unless noted otherwise)
num_train_steps =1 _500_000

Specific settings for the UNet on ImageNet 256 experiment:
base_channels =128,
emb_channels =1024, (for diffusion time , image class)
channel_multiplier =[1, 1, 2, 4, 8, 8],
num_res_blocks =[1, 2, 2, 4, 12, 4],
attn_resolutions =[8, 16],
num_heads =4,
dropout_from_resolution =16,
dropout =0.1,
patching_type=’none ’
schedule={’name ’: ’cosine_shifted , ’shift ’: 64} (unless noted otherwise)
num_train_steps =2 _000_000

Setting for the UNet on ImageNet 512 experiment:
base_channels =128,
emb_channels =1024, (for diffusion time , image class)
attn_resolutions =[8, 16],
num_heads =4,
dropout_from_resolution =16,
dropout =0.1,
patching_type=’dwt_2 ’ (unless noted otherwise)
schedule={’name ’: ’cosine_shifted , ’shift ’: 64} (unless noted otherwise)
num_train_steps =2 _000_000

To keep the number of residual blocks the same, high resolution blocks that are skipped by down-sampling are added to the
lower resolution levels. With no downsampling, the architecture uses:

channel_multiplier =[1, 1, 1, 2, 4, 8, 8], num_res_blocks =[1, 1, 2, 2, 4, 12, 4],

In case of 2× downsampling the architecture uses:

channel_multiplier =[1, 2, 2, 4, 8, 8], num_res_blocks =[2, 2, 2, 4, 12, 4],

In case of 4× downsampling the architecture uses:

channel_multiplier =[2, 3, 4, 8, 8], num_res_blocks =[3, 3, 4, 12, 4],

B.2. U-ViT settings

The U-ViT is a very similar architecture to the U-Net (see Figure 7). The two major differences are that 1) When a module
has self-attention, it uses an MLP block instead of a convolutional layer, making their combination a transformer block. And
2) the transformer blocks in the middle do not use skip connections, only residual connections. The default optimization
settings for ImageNet for the U-ViT are:

uvit default optimization settings:
optimizer=’adam ’,
adam_beta1 =0.9,
adam_beta2 =0.99 ,
adam_eps =1.e-12,
learning_rate =1e-4,
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Figure 7: The difference between the U-Net and U-ViT architecture. In essence, the convolutional layers are replaced by
MLP blocks on levels with self-attention. These now form transformer blocks which are connected via residual connections,
only the ResBlocks on higher levels use skip connections. Circular arrows denote that such a block can be repeated multiple
times.

learning_rate_warmup_steps =10_000 ,
weight_decay =0.0,
ema_decay =0.9999 ,
grad_clip =1.0,
batch_size =2048 ,
num_train_steps =500_000 ,

And the architecture settings are almost the same for all resolutions 128, 256 and 512.

uvit default architecture settings for 512:
optimizer=’adam ’,
adam_beta1 =0.9,
adam_beta2 =0.99 ,
adam_eps =1.e-12,
learning_rate =1e-4,
learning_rate_warmup_steps =10_000 ,
weight_decay =0.0,
ema_decay =0.9999 ,
grad_clip =1.0,
batch_size =2048 ,
base_channels =128,
emb_channels =1024,
channel_multiplier =[1, 2, 4, 16],
num_res_blocks =[2, 2, 2],
num_transformer_blocks =36,
num_heads =4,
transformer_dropout =0.2,
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logsnr_input_type=’linear ’,
patching_type=’dwt_5 /3_2’,
mean_type=’v’,
mean_loss_type=’v_mse ’,

where the patching type is either ’none’ for 128, ’dwt_1’ for 256 and ’dwt_2’ for 512. Note also that the loss is computed
on v instead of epsilon. This may not be very important: in small experiments we observed only minor performance
differences between the two. Note also that the batch size is larger (2048) which does affect FID and IS performance
considerably. The text to image model was trained for 700K steps.

B.2.1. PSEUDO-CODE FOR U-VIT MODULES

The Transformer blocks consist of a self-attention and mlp block. These are defined as one would expect, for completeness
given below in pseudo-code:

def mlp_block(x, emb , expansion_factor =4):
B, HW , C = x.shape
x = Normalize(x)
mlp_h = Dense(x, expansion_factor * C)
scale = DenseGeneral(emb , mlp_h.shape [2:])
shift = DenseGeneral(emb , mlp_h.shape [2:])

mlp_h = swish(mlp_h)
mlp_h = mlp_h * (1. + scale[:, None]) + shift[:, None]
if config.transformer_dropout > 0.:
mlp_h = Dropout(mlp_h , config.transformer_dropout)

out = Dense(mlp_h , C, kernel_init=zeros)
return out

def self_attention(x, text_emb):
B, HW , C = x.shape
B, T, TC = text_emb.shape
head_dim = C // config.num_heads

x_norm = Normalize(x)

q = DenseGeneral(x_norm , (num_heads , head_dim))
k = DenseGeneral(x_norm , (num_heads , head_dim))
v = DenseGeneral(x_norm , (num_heads , head_dim))

q = NormalizeWithBias(q)
k = NormalizeWithBias(k)
q = q * q.shape [-1] ** -0.5
weights = einsum("bqhd ,bkhd ->bhqk", q, k)
weights = softmax(weights)
attn_vals = einsum("bhqk ,bkhd ->bqhd", weights , v)

out = DenseGeneral(attn_vals , C, axis=(-2, -1), kernel_init=zeros)
return out

def transformer_block(x, text_emb , emb):
x += mlp_block(x, emb)
x += self_attention(x, text_emb)
return x

Another important block is the standard ResBlock, pseudo-code given below:

def resnet_block(x, emb , skip_h=None):
B, H, W, C = x.shape
h = NormalizeWithBias(x)
if skip_h is not None:
skip_h = NormalizeWithBias(skip_h)
h = (h + skip_h) / sqrt (2)
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h = swish(h)
h = Conv2D(h, out_ch , (3, 3), (1, 1))
emb_out = Dense(emb , 2 * out_ch)[:, None , None , :]

scale , shift = split(emb_out , 2, axis=-1)
h = NormalizeWithBias(h) * (1 + scale) + shift
h = swish(h)
h = Conv2D(h, out_ch , (3, 3), (1, 1), kernel_init=zeros)
return x + h

Given these building blocks, one can define the U-ViT architecture:

def uvit(x, logsnr):
B, H, W, C = x.shape
emb = get_logsnr_emb(logsnr)

h0 = EmbedInput(config.base_channels * config.channel_multiplier [0])(x)
hs = []
last_h = h0
# Down path.
for i_level in range(len(config.num_res_blocks))):
for i_block in range(config.num_res_blocks[i_level ]):
last_h = resnet_block(last_h , emb)
hs.append(last_h)

last_h = downsample(
last_h , config.base_channels * config.channel_multiplier[i_level +1])

# The transformer.
last_h = last_h.reshape(B, H * W, C)
last_h += param("pos_emb", initializers.normal (0.01) , last_h.shape [1:])[None]
for _ in range(config.num_transformer_blocks):
last_h = transformer_block(last_h , text_emb , emb)

last_h = last_h.reshape(B, H, W, C)

# Up path.
for i_level in reversed(range(len(config.num_res_blocks)))):
last_h = upsample(last_h , config.base_channels * config.channel_multiplier[i_level

])
for i_block in range(config.num_res_blocks[i_level ]):
last_h = resnet_block(last_h , emb , skip_h=hs.pop())

out = ProjectOutput(last_h , C)
return out

As one can see, it’s very similar to the UNet, the middle part is now a transformer which does not have convolutional layers
but mlp blocks with only residual connections.

Computational resources The smaller U-Net models can be trained on 64 TPUv2 devices with 1.15 steps per second
(for a resolution of 256 without patching, small differences between different model variants) with a batch size of 512 for
2000K steps (unless specified otherwise). The large U-ViT models are all trained using 128 TPUv4 devices with 1.5 steps
per second with a batch size of 2048 for 500K steps.

17



simple diffusion

C. Additional Experiments
Guidance scale In Table 9 we show the effect of guidance on the ImageNet models. For relatively small levels of guidance,
samples immediately gain a lot in IS at the cost of especially eval FID. Furthermore, Figure 8 shows the Clip versus
MSCOCO FID30K score for the text to image model. Following others such as (Saharia et al., 2022), images are sampled
by conditioning on 30K randomly sampled texts from the MSCOCO validation set, computed against the full validation set
as a reference.

Table 9: Guidance scale, the shifted schedule is quite sensitive to guidance.

U-ViT ImageNet 128 ImageNet 256 ImageNet 512

guidance FID train FID eval IS FID train FID eval IS FID train FID eval IS

1.00 1.94 3.23 171.9 ± 3.2 2.77 3.75 211.8 ± 2.9 3.54 4.53 205.3± 2.7
1.05 2.05 3.57 189.9± 3.5 2.46 3.80 235.3 ± 4.9 3.14 4.43 228.5± 4.2
1.10 2.35 4.10 207.0± 3.5 2.44 4.08 256.3 ± 5.0 3.02 4.60 248.7± 3.4
1.20 3.24 5.36 237.6± 3.6 2.96 5.10 289.8 ± 4.1 3.33 5.43 284.6± 2.8
1.40 5.58 8.26 285.2± 2.0 4.69 7.50 342.2 ± 5.1 4.97 7.89 339.9± 3.8
1.80 9.77 13.06 340.1± 3.6 8.21 11.81 398.0 ± 5.4 8.38 12.15 401.7± 5.2
2.00 11.47 14.96 359.2± 5.6 9.59 13.44 416.4 ± 4.7 9.68 13.68 416.2± 4.8
3.00 15.85 19.75 399.2± 2.9 13.61 18.00 455.7 ± 4.2 13.79 18.42 461.4± 5.0

Figure 8: Clip vs FID30K score on zero-shot MSCOCO at resolution 256 × 256. For guidance scales 1.00, 1.25, 1.40, 1.50,
2.0, 3.0, 4.0.

Experiments on 1024 To study the effects of scaling beyond 512, we run a similar experiment with U-Nets on ImageNet
resized to 1024 by 1024, even though most images are smaller than that resolution. Here, the multiscale loss has an even
more pronounced effect, resulting in a train FID that is considerably improved by using the downsample loss (6.06 versus
8.10 without). Moreover, this model is more expensive because 4 by 4 patching gives 256 resolution feature maps.

18



simple diffusion

(a) A render of a bright and colorful city under
a dome

(b) A raccoon playing the saxophone (c) A panda walking through the Jungle, fu-
turistic art

(d) A cartoon of a strawberry drinking a
smoothie

(e) A surrealistic painting of a robot riding a
skateboard

(f) A statue of a frog made of wood

(g) A sunflower wearing sunglasses (h) A neon sign of a butterfly (i) A painting of futuristic coffee machine,
vivid colors

Figure 9: Text to image samples at resolution 512× 512. This model was distilled and as a result generating a single image
takes 0.42 seconds on a TPUv4 (excluding the text encoder). Similarly, generating a batch of 8 images takes 2.00 seconds.
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(a) Guidance scale 4 (b) Guidance scale 1 (No guidance)

Figure 10: Random (not cherry picked) samples from the U-ViT on ImageNet 256 × 256.
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