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Last lecture

I The PSD is the DTFT of the autocorrelation function

I The PSD may be two-sided or one-sided. Careful with conventions!

I The periodogram method estimates the PSD directly from the magnitude squared of the
DFT of the windowed signal

I The periodogram is an biased estimator of the PSD, and it has large variance. Hence, the
periodogram must be averaged to produce useful estimates

I The Welch method averages several periodograms

I The Welch method breaks the data into overalapping segments, each of length L. Usually,
the segments overlap by L/2.

I Differently from the periodogram and Welch method, the Blackman-Tukey method
estimates the PSD by computing the DFT of the estimated autocorrelation function

I Although the estimator of the autocorrelation function may be unbiased, the PSD
estimate is biased. Windows with non-negative frequency response are typically preferred
e.g., Bartlett

I Increasing the sequence length Q improves accuracy. Reducing the window length L
improves accuracy at the expense of poorer frequency resolution.
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Parametric signal modeling

I Another representation of signals

I We’ll model complicated signals as the output of some system to white noise or to an
impulse.

I Hence, the signal will be described by the parameters (coefficients) of the system

I We’ll cover the all-pole model or autoregressive (AR) model
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All-pole model

H(z)
v[n] ŝ[n] ≈ s[n]

Given a signal s[n], find H(z) and v[n] such that

s[n] ≈ ŝ[n] = h[n] ∗ v[n]

I The all-pole model assumes

H(z) =
G

1− a1z−1 − . . .− aNz−N

all zeros are at the origin
I If s[n] is a finite-energy deterministic signal, v[n] is chosen to be an unit impulse
I If s[n] is a WSS random process, v[n] is chosen to be a white noise process with unit

average power

Question: how to find the coefficients a1, . . . , aN?
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All-pole model

Consider the inverse system

H(z)
v[n] ŝ[n] ≈ s[n]

H−1(z)
ṽ[n]

The inverse is an FIR system: H−1(z) = 1
G (1− a1 − . . .− aNz−N ). Therefore,

Gv[n] ≈ s[n]−
N∑

k=1

aks[n− k]

Defining the error

em[n] = Gv[n]−
(
s[n]−

N∑
k=1

aks[n− k]
)

(modeling error)
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We want to find coefficients a1, . . . , an that minimize the mean-square error

〈|em[n]|2〉 =


L∑

n=0

|em[n]|2, s[n] deterministic

E
(
|em[n]|2

)
, s[n] random

From the properties of the mean-square error, it can be shown that the error is minimum when

〈s[n− i]em[n]〉 = 0, i = 0, . . . , N

The error is orthogonal to all inputs. This is known as the orthogonality principle
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Applying the orthogonality principle:

〈
s[n− i]

(
Gv[n]− (s[n]−

N∑
k=1

aks[n− k])
)〉

= 0, i = 0, . . . , L

We’ll only consider the cases when i = 1, . . . , N :〈
s[n− i]

(
Gv[n]− (s[n]−

N∑
k=1

aks[n− k])
)〉

= 0, i = 1, . . . , N

〈s[n− i]s[n]〉 −
N∑

k=1

ak〈s[n− i]s[n− k]〉) = 0, i = 1, . . . , N

(from causality 〈s[n− i]v[n]〉 = 0)

Note that 〈s[l]s[m]〉 is equivalent to either the deterministic autocorrelation function if s[n]
is deterministic, or 〈s[l]s[m]〉 is equivalent to the autocorrelation function if s[n] is random

〈s[l]s[m]〉 =

{
css[l −m], s[n] deterministic

φss[l −m], s[n] random
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If s[n] is deterministic:

css[i] =

N∑
k=1

akcss[k − i], i = 1, . . . , N

If s[n] is random:

φss[i] =

N∑
k=1

akφss[k − i], i = 1, . . . , N

These equations are known as normal equations or Yule-Walker equations.

They form a system of N linear equations of N variables. Hence, there is at most one solution.
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In matrix notation

Define

r[i] =

{
css[i], s[n] deterministic

φss[i], s[n] random

We can write the normal equations in matrix notation:

Ra = r
r[0] r[1] . . . r[N − 1]
r[1] r[0] . . . r[N − 2]

...
...

. . .
...

r[N − 1] r[N − 2] . . . r[0]



a1
a2
...
aN

 =


r[1]
r[2]

...
r[N ]


R is the autocorrelation matrix. Note that R is symmetric R = RT .

In Matlab: >> a = R\r
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Determining the gain

Once the coefficients a1, . . . , aN have been found, we just need to determine the gain G to
completely specify H(z).

We can pick G so that the mean-square value of the model output matches the mean-square
value of the signal s[n]:

〈ŝ2[n]〉 = 〈s2[n]〉

G2 = rss[0]−
N∑

k=1

akrss[k] (after some algebra)
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Spectrum analysis with all-pole model

Deterministic case:

|S(ejω)|2 ≈ |H(ejω)|2|V (ejω)|2 = |H(ejω)|2

since by assumption v[n] = δ[n], it follows that |V (ejω)|2 = 1

Random case:
Pss(e

jω) ≈ |H(ejω)|2Pvv(ejω) = |H(ejω)|2

since by assumption v[n] is white noise, it follows that Pvv(ejω) = 1

Conclusion:

|H(ejω)|2 =

∣∣∣∣ G

1−
∑N

k=1 ake
−jωk

∣∣∣∣2
is the spectrum estimate of s[n].
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All-pole analysis of speech signals
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All-pole analysis of speech signals
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Revisiting the plant identification problem

H(z) =??
x[n] y[n]

Inject a small noise of known PSD Φxx(ejω) at the input and measure the noise PSD at the
output Φyy(ejω):

|H(ejω)|2 =
Φyy(ejω)

Φxx(ejω)
(only know the magnitude)

We can obtain the phase response by computing the Hilbert transform of the log-magnitude

arg(H(ejω)) = −H{ln |H(ejω)|}

This procedure only works if H(z) is causal and minimum phase i.e., it is stable and has a
stable inverse.
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Summary

I Parametric signal modeling is a form of representing complicated signals as the output to
some system to an impulse or to a white noise process

I The all-pole or autoregressive model assumes that all zeros are at the origin

I Under the all-pole model the signal is described by the parameters a1, . . . , aN , i.e., the
system coefficients

I The coefficients can be determined by solving the normal equations, also known as
Yule-Walker equations

I Solving these equations require estimates of either the deterministic autocorrelation
function, if the signal is deterministic, or the autocorrelation function, if the system is
random

I The magnitude square of the system is equivalent to the spectrum estimate of the signal


