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Last lecture

I Sampling the DTFT in frequency domain results in signal replicas in time domain

I The N -point DFT of x[n] is equal to the DTFT of x[n] sampled with period 2π/N , only
if x[n] is time-limited with duration ≤ N

I For sequences longer than N , the N -point DFT is equal to the samples of the windowed
DTFT

I Fast Fourier transform (FFT) algorithms compute the DFT with complexity O(N logN)

I We can use DFT to perform linear convolution (filtering) efficiently using block
convolution

I In the overlap and add method, blocks are non-overlapping and the result of circular
convolution of each block is added to produce the output signal

I In the overlap and save method, blocks do overlap and we have to discard samples that
are unusable due to the circular convolution not being equal to the linear convolution at
all points
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Outline

Spectrum Analysis Using the DFT

Time-Dependent Fourier Transform
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Discrete Fourier analysis of analog signals

Block diagram of the spectrum analyzer of an oscilloscope

Anti-aliasing
filter

C-to-D × FFT

w[n]

x[n] v[n]sc(t)

Sc(jΩ)

xc(t)

Xc(jΩ)

V [k]

Haa(jΩ) Ωs = 2π
T

I Anti-aliasing filter band-limits the analog signal
I Continuous-to-discrete time conversion

x[n] = xc(nT )⇐⇒ X(ejω) =
1

T
Xc(jω/T ) |ω| ≤ π (no aliasing)

I Windowing time-limits the signal to N samples before FFT:

v[n] = x[n]w[n]⇐⇒ V (ejω) =
1

2π
X(ejω) ∗W (ejω)

I DFT is a sampled version of the windowed DTFT:

V [k] = V (ej2π/Nk), k = 0, . . . , N − 1
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Example
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Example



7/27

Discrete Fourier analysis of analog signals

I The goal is to estimate Sc(jΩ) by computing V (ejω)

Sc(jΩ) = V (ejΩT ), |Ω| ≤ Ωs/2 (ideally)

I However, anti-aliasing filtering and windowing cause disagreement between Sc(jΩ) and
V (ejΩT )

I In particular, windowing limits the resolution. As a result, the peaks in V (ejω) look
broader than they actually are in Sc(jΩ)

I Choosing good windows is crucial for spectrum analysis using the DFT
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DFT analysis of sinusoidal signals

As another example, let’s consider the sinusoidal signal

sc(t) = cos(Ω0t) + 0.5 cos(Ω1t).

Assuming ideal sampling with no aliasing, we obtain the discrete-time signal

x[n] = cos(ω0n) + 0.5 cos(ω1t),

where ω0 = Ω0T and ω1 = Ω1T .
After windowing

v[n] = x[n]w[n]

V (ejω) = 0.5W (ej(ω−ω0)) + 0.25W (ej(ω−ω1))

+ 0.5W (ej(ω+ω0)) + 0.25W (ej(ω+ω1)), |ω| ≤ π
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Rectangular window

Rectangular window of length L = 64
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Problems:
I Significant leakage caused by large sidelobes of rectangular window
I Poor resolution. We could not resolve the two separate frequencies when
ω1 − ω0 = 0.05π3
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Window characteristics

Main characteristics of rectangular window

I The main-lobe width is 4π/L. This determines the resolution.

I The first side lobe is −13 dB below the main lobe.

I The higher the energy (area) under the side lobes compared to the main lobe, the greater
the leakage will be.

Desired window characteristics:

I Small side-lobe energy (area) to reduce leakage

I Small main-lobe width to improve resolution

These are conflicting requirements.
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Revisiting the Kaiser window

The Kaiser window offers a nearly optimal trade-off between main-lobe width and side-lobe
area.

w[n] =


I0

(
β
√

1− (n− α)2/α2
)

I0(β)
, 0 ≤ n ≤ L− 1

0, otherwise

,

where α = (L− 1)/2, β is a design parameter, and I0(·) is the modified Bessel function of
first kind and order 0.
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Kaiser window

Time domain
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For fixed window length L, β controls the trade-off between main-lobe width and side-lobe area.
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Kaiser window

Define

I ∆ml one-sided main-lobe width

I Asl relative side-lobe level (in dB)

Asl =
amplitude of main lobe

amplitude of largest side lobe
dB

Asl approximately only depends on β. See section 10.2.2 in textbook for analytical
equation.

The following approximation was derived by Kaiser and Schafer:

L− 1 ≈ 24π(Asl + 12)

155∆ml

Conclusions:

I β controls the side-lobe area Asl (leakage)

I Main-lobe width ∆ml is directly proportional to L− 1 i.e., increasing the window length L
improves resolution
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Kaiser window

Spectrum of Kaiser window for fixed β = 6.
Amplitude of largest side-lobe Asl remains approximately constant (fixed β), while main-lobe
width ∆ml is inversely proportional to L− 1
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Kaiser windowing of sinusoidal signals
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See script Canvas/Files/Matlab/spectrum analysis of sinusoid.m

Main conclusions

I β controls the side-lobe area Asl (leakage)

I Increasing the window length L improves resolution

I Increasing the FFT size does not improve resolution
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Outline

Spectrum Analysis Using the DFT

Time-Dependent Fourier Transform
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DFT of a long signal

The DFT of the speech signal Canvas/Files/Matlab/dft speech.wav

I It has duration of about 4 seconds

I 110033 samples

I Not very informative. What are the main frequency components at the beginning of the
third second?
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Time-dependent Fourier transform (TDFT)

Time-dependent Fourier transform (TDFT) or short-time Fourier transform (STFT) is
defined as

X[n, λ) =

∞∑
m=−∞

x[n+m]w[m]e−jλm

Notation: n is discrete, while λ is continuous. This is why n appears with a square bracket [
and λ appears with parenthesis ).

If the window w[n] has finite length L

X[n, λ) =

L−1∑
m=0

x[n+m]w[m]e−jλm
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Time-dependent Fourier transform (TDFT)

Two interpretations for X[n, λ):

1. For fixed n, X[n, λ) is the DTFT of x[n+m]w[m].

X[n, λ) = Fλ{x[n+m]w[m]} (fixed n)

Hence, at fixed n, X[n, λ) has all the properties of the DTFT.

2. For fixed λ, X[n, λ) is the result of band-pass filtering the signal x[n] by the time-reversed
window W (e−jω) centered at frequency λ

X[n, λ) =

∞∑
m=−∞

x[n+m]w[m]e−jλm (definition)

=

∞∑
l=−∞

x[l]w[−(n− l)]ejλ(n−l) (change of variables l = n+m)

= x[n] ∗ hλ[n] (fixed λ)

where
hλ[n] = w[−n]ejλn ⇐⇒ Hλ(ejω) = W (e−j(ω−λ))
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Sampling and displaying the TDFT: spectrograms

Spectrogram is a useful way of visualizing the TDFT
Sampling both in time and frequency. We sample with period R in time and with period 2π/N
in frequency. R is the block spacing and N is the DFT length

X[rR, k] = X[rR, 2πk/N), k = 0, . . . , N − 1 (sample in time and frequency)

=

L−1∑
m=0

x[rR+m]w[m]e−j(2π/N)km (finite-length window)

For fixed r, X[rR, k] is the N -point DFT of x[rR+m]w[m]



21/27

Sampling and displaying the TDFT: spectrograms

Example using Kaiser window of length L = 700, FFT size N = 700, and R = 550.
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Sampling and displaying the TDFT: spectrograms

Example using Kaiser window of length L = 700, FFT size N = 700, and R = 550.
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Sampling and displaying the TDFT: spectrograms

Example using Kaiser window of length L = 700, FFT size N = 700, and R = 550.
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Sampling and displaying the TDFT: spectrograms

Example using Kaiser window of length L = 700, FFT size N = 700, and R = 550.
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Sampling and displaying the TDFT: spectrograms

Example using Kaiser window of length L = 700, FFT size N = 700, and R = 550.
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Spectrogram in Matlab

To produce spectrogram plot

>> spectrogram(x, window, noverlap, nfft) (Matlab notation)

Using notation of this lecture notes:

>> spectrogram(x, kaiser(L, beta), L-R, N) (this lecture’s notation)

The time blocks overlap by L−R samples. Kaiser window was just as an example, any other
window would work.

We can also use:

>> [s,f,t] = spectrogram(x, kaiser(L, beta), L-R, N, fs)

This will not produce the plot, but it’ll return the magnitude s in dB, the frequency vector f in
Hz, and the time vector t in s.
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Spectrogram example

Spectrogram Canvas/Files/Matlab/dft speech.wav

>> spectrogram(x, kaiser(L=441, beta=6), R=220,...

N = 441, Fs=22050, ‘yaxis’)
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Importance of window length

Consider the following signal

x[n] =


0, n < 0

cos(α0n
2), 0 ≤ n ≤ 20000

cos(0.2πn), 20000 < n ≤ 25000

cos(0.2πn) + cos(0.23πn), n > 25000

This signal has three sections

1. linear chirp section. Frequency increases linearly

2. Single tone at frequency 0.2π

3. Two tones: one at frequency 0.2π and another at 0.23π
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Importance of window length

Spectrogram of x[n] using the Hamming window of length 401 and 101.

Important: window length determines the resolution.
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Inverting the TDFT

We want to reconstruct x[n] from its TDFT X[n, λ):

xr[n] = x[rR+ n]w[n] =
1

N

N−1∑
k=0

X[rR, k]ej(2π/N)kn 0 ≤ n ≤ L− 1

If the window is non-zero, we can divide it out to recover the signal x[rR+ n] over the window
interval. If the windows overlap, we can recover all the original samples. This requires

R ≤ L ≤ N

The particular case when R = L ≤ N is called maximally decimated condition.
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Summary

I Leakage and resolution are important considerations in spectrum analysis

I By properly choosing windows we can minimize these issues

I Kaiser window is a nearly optimal choice. Must choose correct β and window length L

I β controls the ratio between the amplitudes of the main-lobe and the largest side-lobe i.e.,
β controls the amount of leakage.

I The larger the main-lobe width, the smaller the resolution

I By increasing the window length we reduce the main-lobe width and consequently improve
the resolution

I Time-dependent Fourier transform or short-time Fourier transform allows us to keep track
of frequency variation in time

I Spectrogram is a commonly used way to display the TDFT

I In the spectrogram the TDFT is sampled both in time and in frequency

I The window length determines the resolution of the spectrogram
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