
1/42

The Discrete Fourier Transform

Jose Krause Perin

Stanford University

August 8, 2018

2/42

Last lecture

I The linear combiner is the basis of adaptive systems and adaptive filtering

I We use the mean square error (MSE) as the performance metric

I The Wiener solution is the optimal set of weights that minimizes the MSE

I The LMS algorithm is a simple way to train the adaptive filter to approximate the Wiener
solution

I The LMS algorithm uses the instantaneous error to obtain an estimate of the gradient

I This estimate is very noisy, but on average it converges to the Wiener solution

I We adjust the adaption constant to control how fast the LMS algorithm converges and
how noisy the solutions near the Wiener solution (excess noise and misadjustment)

3/42

Outline

The Discrete Fourier Transform

The Fast Fourier Transform

Properties of the DFT

Block convolution

4/42

The discrete Fourier transform (DFT)

Definition

X[k] =

N−1∑
n=0

x[n]e−j(2π/N)kn, k = 0, . . . , N − 1 (direct transform)

x[n] =
1

N

N−1∑
n=0

X[k]ej(2π/N)kn, n = 0, . . . , N − 1 (inverse transform)

Notation: k indexes frequency, while n indexes time.

Important observations

I The direct and inverse transforms are periodic with period N :

x[n] = x[n+N],∀ n and X[k] = X[k +N],∀ k

I The direct and inverse transform can be computed efficiently with complexity O(N logN)
using fast Fourier transform (FFT) algorithms.

5/42

The discrete Fourier transform (DFT)

Another common notation
Represent complex exponentials by WN ≡ e−j2π/N

X[k] =

N−1∑
n=0

x[n]W kn
N , k = 0, . . . , N − 1 (direct transform)

x[n] =
1

N

N−1∑
n=0

X[k]W−knN , n = 0, . . . , N − 1 (inverse transform)

This is equivalent to the previous slide, but with a more compact notation.

6/42

Relation between the DFT and the DTFT

Suppose we calculate the DTFT of some signal x[n]:

X(ejω) =

∞∑
n=−∞

x[n]e−jωn (DTFT of x[n])

Now we sample X(ejω) at frequencies ωk = 2π/Nk, k = 0, . . . , N − 1:

X(ejω)
∣∣∣
ω=2π/Nk

=

∞∑
n=−∞

x[n]e−j(2π/N)kn =

N−1∑
n=0

x[n]e−j(2π/N)kn = X[k]

(ony if x[n] is time-limited with duration < N)

The sampled DTFT X(ejωk) is identical to the DFT X[k] only if x[n] is time-limited with
duration ≤ N .
Computing the inverse DFT of X[k] = X(ej2π/Nk) i.e., samples of DTFT:

x̃[n] =
1

N

N−1∑
k=0

X(ej(2π/N)k)ej(2π/N)kn =

∞∑
r=−∞

x[n− rN] (1)

7/42

Proof of (1):

x̃[n] =
1

N

N−1∑
k=0

X(ej(2π/N)k)ej(2π/N)kn

=
1

N

N−1∑
k=0

X[k]ej(2π/N)kn (since X(ejω)
∣∣∣
ω=2π/Nk

= X[k])

=
1

N

N−1∑
k=0

(N−1∑
m=0

x[m]e−j(2π/N)km

)
ej(2π/N)kn (defintion of DFT)

=

N−1∑
m=0

x[m]

(
1

N

N−1∑
k=0

ej(2π/N)k(n−m)

)
︸ ︷︷ ︸

inverse DFT of impulse train

(interchanging summations)

=

N−1∑
m=0

x[m]
∞∑

r=−∞
δ[n−m− rN] =

∞∑
r=−∞

N−1∑
m=0

x[m]δ[n−m− rN]

(only non-zero when m = n− rN)

=

∞∑
r=−∞

x[n− rN]

8/42

Relation between the DFT and the DTFT

Main conclusions from the previous derivation

x̃[n] =
1

N

N−1∑
k=0

X(ej(2π/N)k)ej(2π/N)kn =

∞∑
r=−∞

x[n− rN]

I The N -point DFT of x[n] is only equal to the DTFT sampled with period 2π/N if x[n] is
time-limited with duration ≤ N .

I The inverse DFT of the sampled DTFT produces a periodic signal x̃[n] with period N ,
even though x[n] is not periodic.

I x̃[n] is called the periodic extension of x[n]

I For the N -point DFT and inverse DFT, all signals are periodic with period N

9/42

DFT as a sampled DTFT example

−8 −3 3 8

1

Duration
5 samples

n

x[n]

π 2π
ω

X(ejω)

DTFT

−8 −3 3 8

1

n

x̃[n] =
∞∑

r=−∞

x[n− 8r]

π 2π

Sampled with
period 2π/8

ω

X(ejω)

IDFT

10/42

DFT as a sampled DTFT example

−5 −3 3 5

1

Duration
5 samples

n

x[n]

π 2π
ω

X(ejω)

DTFT

−5 −3 3 5

1

n

x̃[n] =
∞∑

r=−∞

x[n− 5r]

π 2π

Sampled with
period 2π/5

ω

X(ejω)

IDFT

11/42

DFT as a sampled DTFT example

−4 −3 3 4

1

Duration
5 samples

n

x[n]

π 2π
ω

X(ejω)

DTFT

−4 −3 3 4

1

Time
aliasing

n

x̃[n] =
∞∑

r=−∞

x[n− 4r]

π 2π

Sampled with
period 2π/4

ω

X(ejω)

IDFT

12/42

Relation between DFT and the DTFT

As another example, let’s consider the infinitely-long signal

x[n] =
1

2
sinc

(n−N/2
2

)
⇐⇒ |X(ejω)| =

{
1, |ω| ≤ π/2
0, π/2 < |ω| ≤ π

The DTFT of x[n] is the ideal lowpass filter with cutoff frequency π/2.

Question: what about the N -point DFT of x[n]?
Instead of applying the direct transform, let’s define a N -point truncated version of x[n]:

xN [n] = x[n]w[n] where w[n] =

{
1, n = 0, . . . , N − 1

0, otherwise

w[n] is the rectangular window.
Note:

I The DFT of xN [n] is equal to the DFT of x[n]

I xN [n] is a time-limited sequence of duration N , hence the DFT of xN [n] is equal to the
DTFT of xN [n] sampled with period 2π/N .

13/42

Graphically

Consider the particular case of N = 20. The 20-point DFT of xN [n] is equal to the DTFT of
xN [n] sampled with period 2π/20.
The rectangular window causes significant ringing.

5 10 15 20

0.5

20 samples

n

xN [n] = x[n]w[n]

π 2π

Sampled with
period 2π/20

ω

|XN(e
jω)|

DTFT of xN [n]

DFT of xN [n]

See code on Canvas/Files/Matlab/DFT sinc example.m

13/42

Graphically

Same scenario as before, but now w[n] is the Hamming window. Ringing was reduced at the
expense of slower roll-off.

5 10 15 20

0.5

20 samples

n

xN [n] = x[n]w[n]

π 2π

Sampled with
period 2π/20

ω

|XN(e
jω)|

DTFT of xN [n]

DFT of xN [n]

See code on Canvas/Files/Matlab/DFT sinc example.m

14/42

Relation between DFT and the DTFT

One more example, now with a periodic signal

x[n] = cos(nπ/2)⇐⇒ X(ejω) = πδ(ω − π/2) + πδ(ω + π/2), |ω| ≤ π

The DTFT of x[n] (in the interval [−π, π]) is simply impulses at frequencies ±π/2.

As in the previous example, define a N -point truncated version of x[n]:

xN [n] = x[n]w[n] where w[n] =

{
1, n = 0, . . . , N − 1

0, otherwise

Once again, the DFT of xN [n] is equal to the DTFT of xN [n] sampled with period 2π/N .

15/42

Graphically

Consider the particular case of N = 20.
xN [n] contains exactly 5 periods of x[n]. As a result, windowing had no effect on the DFT, as
its samples fall at frequencies where the windowed DTFT is zero.

5 10 15 20

1

20 samples

n

xN [n] = x[n]w[n]

π
2

π 3π
2

2π

Sampled with
period 2π/20

ω

|XN(e
jω)|

DTFT of xN [n]

DFT of xN [n]

15/42

Graphically

Now N = 21.
Samples of DFT fall at frequencies where the windowed DTFT is non-zero.

5 10 15 20

1

21 samples

n

xN [n] = x[n]w[n]

π
2

π 3π
2

2π

Sampled with
period 2π/21

ω

|XN(e
jω)|

DTFT of xN [n]

DFT of xN [n]

16/42

Another interpretation

Let’s look back at the sampling equation (1).
Sampling in the frequency domain results in signal replicas in time domain:

x̃[n] =

∞∑
r=−∞

xN [n− rN]

I If N is an integer multiple of the period of x[n], the replicas of xN [n] will perfectly
reconstruct the periodic signal x[n], i.e., x̃[n] = x[n].

I If N is not an integer multiple of the period of x[n], the replicas will lead to time-domain
aliasing and consequently x̃[n] 6= x[n].

Side note: Remember that cos(ω0n) and sin(ω0n) are only periodic if ω0/π is rational.
Hence, for ω0 irrational we cannot find a value of N that would allow us to eliminate the
effects of windowing.

17/42

Relation between DFT and the z-transform

For time-limited sequences of duration N :

DFT

X[k] =

N−1∑
n=0

x[n] e−j(2π/N)kn

(direct transform)

z-transform

X(z) =

N−1∑
n=0

x[n] z−n (direct transform)

The DFT is equal to samples of the z-transform on the unit circle

1

2π
N

Re{z}

Im{z}

18/42

Outline

The Discrete Fourier Transform

The Fast Fourier Transform

Properties of the DFT

Block convolution

19/42

DFT as a matrix-vector product

X[k] =

N−1∑
n=0

x[n]W kn
N , k = 0, . . . , N − 1 (direct transform)

We can write the direct transform as a matrix-vector product:

X = Qx
X[0]
X[1]

...
X[N − 1]

 =

W

0(1)
N W

0(2)
N . . . W

0(N−1)
N

W
1(1)
N W

1(2)
N . . . W

1(N−1)
N

...
...

. . .
...

W
(N−1)(1)
N W

(N−1)(2)
N . . . W

(N−1)(N−1)
N

x[0]
x[1]

...
x[N − 1]

Similarly, for the inverse transform: x = QHX, where QH = (Q∗)T is the Hermitian of Q
(conjugate transpose)

In Matlab: >> Q = dftmtx(N).

20/42

Fast Fourier transform (FFT) algorithms

I Computing x = QHX or X = Qx has complexity O(N2). That is, the number of
computations grows quadratically for N large.

I Fast Fourier transform (FFT) refers to a collection of algorithms to compute the
discrete Fourier transform (DFT) with complexity O(N logN). That is, the number of
computations grows at N logN < N2 for N large.

I This algorithm was known by Gauss back in 1800’s, and it was rediscovered by Cooley and
Tukey in 1965.

21/42

Application example: OFDM

Orthogonal frequency-division multiplexing (OFDM) is a widely used transmission
technique in digital communications.
It is based on transmitting information on narrow-band and orthogonal sub-carriers

Analog implementation of OFDM. Diagram taken from EE 379 lecture notes.

OFDM was proposed in the 60’s, but making such transmission in analog electronics was
impossible, since the oscillators had to be perfectly synchronize to guarantee orthogonality

22/42

Application example: OFDM

With the advent of the FFT, it was realized that OFDM could be implemented using the
IFFT/FFT:

FFT/IFFT-based implementation of OFDM.

OFDM is used in
I Long-term evolution (LTE), IFFT/FFT size up to 2048
I Wi-Fi, IFFT/FFT size up to 256
I Bluetooth

23/42

FFT algorithms

FFT algorithms achieve dramatic reduction in computation by

1. Exploiting the periodicity and symmetry of complex exponentials W kn:

W
k(N−n)
N =W−knN = (W kn

N)∗ (complex conjugate symmetry)

W kn
N =W

k(n+N)
N =W

(k+N)n
N (periodicity in n and k)

2. Decomposing the computation into successively smaller DFTs.
I Decomposition of x[n] into successively smaller subsequences is called decimation in time.
I Decomposition of X[k] into successively smaller subsequences is called decimation in

frequency.
I The flow graph of decimation-in-frequency decomposition can be obtained by transposing

the flow graph of decimation-in-time decomposition, and vice-versa.

24/42

Decimation-in-time decomposition

Flow graph of complete decimation-in-time decomposition of an 8-point DFT computation.
The red rectangle represents a 2-point DFT.

25/42

Decimation-in-time decomposition

Flow graph of complete decimation-in-time decomposition of an 8-point DFT computation.
The red rectangle represents a 2-point DFT, now computed with just one multiplication by
exploiting the periodicity and symmetry of W kn

N .

26/42

FFT algorithms

FFT generalizations

I Radix R-algorithms
N = Rν

DFTs are broken into factors of R

I Mixed-radix algorithms
N = N1N2 . . . Nν

DFTs are broken into factors of {N1, N2, . . . , Nν}.
I Prime-factor algorithms

N = N1N2 . . . Nν

DFTs are broken into prime factors {N1, N2, . . . , Nν}.

For more detailed information on FFT algorithms see Chapter 9 of the textbook.

For open-source implementation of FFT, see the Fastest Fourier Transform in the West
(FFTW). FFTW is used in Matlab.

http://www.fftw.org/
http://www.fftw.org/

27/42

FFT and IFFT in Matlab

Useful commands:
Compute the N -point DFT of the vector x. If N is not passed, Matlab assumes N =

length(x).
>> X = fft(x, N)

Compute the N -point inverse DFT of the vector X. If N is not passed, Matlab assumes N =

length(X).
>> x = ifft(X, N)

To obtain the N -point DFT for frequencies in [−π, π)

>> fftshift(X)

To restore the N -point DFT for frequencies in [0, 2π)

>> ifftshift(X)

28/42

Outline

The Discrete Fourier Transform

The Fast Fourier Transform

Properties of the DFT

Block convolution

29/42

Properties of the DFT

I The DFT shares many properties with the DTFT and with the z-transform

I However, since the DFT is periodic in time and frequency, most properties will appear in a
circular form

I For this reason, it is convenient to define a notation for circular indexing:

((n))N ≡ n modulo N

Examples: X[0] = X[((7))7], X[1] = X[((6))5], X[8] = X[((17))9].

I A complete list of properties is given in Table 8.2 of the textbook DTSP. This table is
shown in the next slide

I We will cover in detail the circular time shift and circular convolution properties

30/42

Properties of the DFT

31/42

Circular time shift

x[((n−m))N]⇐⇒W km
N X[k] (circular time shift)

To understand circular time shift and other properties of the DFT, it is useful to work with the
periodic extension of x[n], x̃[n]

0 N − 1
n

x̃[n]

0 m N − 1
n

x̃[n−m]

Time-shift by m

0 N − 1
n

x[n]

0 m N − 1
n

x[((n−m))N]

Circular-shift by m

32/42

Circular convolution

Product in the frequency domain means circular convolution in time domain

x[n] N y[n] =

N−1∑
m=0

x[m]y[((n−m))N]⇐⇒ X[k]Y [k] (circular convolution in time)

Similarly, product in time domain means circular convolution in frequency domain

x[n]y[n]⇐⇒ X[k] N Y [k] =

N−1∑
m=0

X[m]Y [((k −m))N] (circular convolution in frequency)

33/42

Understanding circular convolution

0 L− 1

1

Length L

n

x[n]

0 P − 1 L− 1

1

Length P

n

y[n]

0 L− 1 L+ P − 2

3.8 Linear
convolution

n

x[n] ∗ y[n]

0 P − 2 L− 1

3.8

n

x[n] N y[n]

33/42

Understanding circular convolution

0 L− 1

1

Length L

n

x[n]

0 P − 1 L− 1

1

Length P

n

y[n]

0 L− 1 L+ P − 2

3.8 Linear
convolution

n

x[n] ∗ y[n]

0 P − 2 L− 1

3.8
N -point circular

convolution
N = L

n

x[n] N y[n]

34/42

Understanding circular convolution

In this first example

I x[n] has length L, while y[n] has length P

I The result of linear convolution x[n] ∗ [y] has length L+ P − 1

I For the N -point circular convolution, the P − 1 samples that fall beyond N − 1 are added
to the beginning of the sequence

I Note that the N -point circular convolution and the linear convolution produce different
results

I We can make the circular convolution equal to the linear convolution by zero-padding the
sequences and performing the (L+ P − 1)-point circular convolution

35/42

Understanding circular convolution

0 L− 1 L+ P − 2

1

Length L

n

x[n]

0 P − 1 L− 1 L+ P − 2

1

Length P

n

y[n]

0 L− 1 L+ P − 2

3.8 Linear
convolution

n

x[n] ∗ y[n]

0 L− 1 L+ P − 2

3.8
N -point circular

convolution
N = L + P − 1

n

x[n] N y[n]

36/42

Linear convolution using circular convolution

By zero-padding and performing the (L+ P − 1)-point circular convolution, we can calculate
the linear convolution using the DFT

In Matlab:
The vector x has length L while y has length P

>> conv(x, y, ‘full’) (linear convolution)

This will produce an output of length N = L+ P − 1. The linear convolution has complexity
O(N2)

>> ifft(fft(x, N).*fft(y, N)) (circular convolution)

The parameter N tells Matlab to zero-pad vectors x and y and compute the N -point DFT. The
FFT/IFFT has complexity O(N logN)

Conclusion: for N large, it is more efficient to compute the linear convolution through the
DFT using FFT algorithm.

37/42

Linear convolution using circular convolution

Recall that for FIR filters, filtering is essentially a linear convolution between the input and the
filter coefficients:

y[n] = x[n] ∗ h[n] =
M∑
m=0

h[m]x[n−m]

where M is the filter order.

We can implement this filter using the DFT:

FFT × IFFT
X[k] Y [k]x[n] y[n]

H[k] = DFT{h[n]}

By using block convolution we process the samples in batches.

1. Overlap-add method

2. Overlap-save method

38/42

Overlap-add method

In the overlap-add method the incoming signal x[n] is broken down into several
non-overlapping segments xr[n], each of length L:

xr[n] =

{
x[n+ rL], 0 ≤ n ≤ L− 1

0, otherwise

For each segment, we compute the N -point circular convolution of xr[n] and the filter impulse
response h[n]:

yr[n] = h[n] N xr[n] = h[n] ∗ xr[n]

where N ≥ L+M so that yr[n] is equivalent to the linear convolution of xr[n] and h[n]. Note
that M is the filter order. Hence, the filter has M + 1 coefficients.
Finally, the output is computed by adding the filtered segments

yr[n] =

∞∑
r=0

yr[n− rL]

The sequences yr[n− rL] overlap by M samples.

39/42

Overlap-add method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

n

x[n]

n

n

y[n]

39/42

Overlap-add method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

x0[n]

L samples n

x[n]

y0 = h[n] N x0[n]
n

n

y[n]

39/42

Overlap-add method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

x0[n]

L samples

x1[n]

L samples n

x[n]

y0 = h[n] N x0[n] y1 = h[n] N x1[n]
n

n

y[n]

39/42

Overlap-add method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

x0[n]

L samples

x1[n]

L samples

x2[n]

L samples

n

x[n]

y0 = h[n] N x0[n] y1 = h[n] N x1[n]
y2 = h[n] N x2[n]

n

n

y[n]

40/42

Overlap-save method

In the overlap-save method the incoming signal x[n] is decomposed into several overlapping
segments xr[n], each of length L:

xr[n] =

{
x[n+ r(L−M)−M], 0 ≤ n ≤ L− 1

0, otherwise

The sequences xr[n] overlap by M samples. Then, we compute the L-point circular
convolution of h[n] and xr[n]:

yr[n] = h[n] L xr[n]

The first M samples of yr[n] are unusable, since they are not equal to the linear convolution
h[n] ∗ xr[n]. Hence, we define the usable part of yr[n]:

yr,u[n] =

{
yr[n], M ≤ n ≤ L− 1

0, otherwise

Finally, the output is computed by adding the usable parts of the filtered segments

yr[n] =

∞∑
r=0

yr,u[n− r(L−M) +M]

41/42

Overlap-save method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

n

x[n]

n

n

y[n]

41/42

Overlap-save method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

x0[n]

L samples n

x[n]

y0 = h[n] L x0[n]

M unusable
samples

n

n

y[n]

41/42

Overlap-save method

0 M

1
Filter coefficients

Length M + 1

n

h[n]

x0[n]

L samples

x1[n]

L samples n

x[n]

y0 = h[n] L x0[n]

M unusable
samples

y1 = h[n] L x1[n]

M unusable
samples

n

n

y[n]

42/42

Summary

I Sampling the DTFT in frequency domain results in signal replicas in time domain

I The N -point DFT of x[n] is equal to the DTFT of x[n] sampled with period 2π/N , only
if x[n] is time-limited with duration ≤ N

I For sequences longer than N , the N -point DFT is equal to the samples of the windowed
DTFT

I Fast Fourier transform (FFT) algorithms compute the DFT with complexity O(N log2N)

I We can use DFT to perform linear convolution (filtering) efficiently using block
convolution

I In the overlap-add method, blocks are non-overlapping and the result of circular
convolution of each block is added to produce the output signal

I In the overlap-save method, blocks do overlap and we have to discard samples that are
unusable due to the circular convolution not being equal to the linear convolution at all
points

	The Discrete Fourier Transform
	The Fast Fourier Transform
	Properties of the DFT
	Block convolution

