Adaptive Signal Processing

Jose Krause Perin

Stanford University

August 6, 2018

- Thank you for the feedback on the teaching evaluation
- Logistics for next lectures

Date	Lecture	Lecture Topic	Reading
6-Aug	10	Adaptive signal processing	
8-Aug	11	The discrete Fourier transform (DFT)	8.1-8.7
13-Aug	12	Spectrum analysis with the DFT	10.1 - 10.6
15-Aug	13	Review and conclusions	

- \blacktriangleright HW6 will be assigned today and covers primarily lectures 10 and 11
- > You can choose to take the final exam on either 8/16 or 8/17

Outline

Theory

The adaptive linear combiner and its performance surface Adaptation algorithms

Application examples Linear equalization Noise canceling Inverse control

The adaptive linear combiner

We would like to *tune* the weights w_1, \ldots, w_M to minimize the error ϵ_k according to some performance metric.

In this lecture we will address the following questions:

- 1. What is the best set of weights $w_1^\star, \ldots, w_M^\star$?
- 2. How to adapt the weights w_1, \ldots, w_M to approximately achieve $w_1^{\star}, \ldots, w_M^{\star}$?

The mean square error

The mean-square error (MSE) is a convenient and sensible performance metric

$$MSE = \xi = \mathbb{E}(\varepsilon_k^2)$$
 (by definition)
$$= \mathbb{E}((d_k - X_k^T W)^2)$$
 (as $\varepsilon_k = d_k - X_k^T W$)
$$= \mathbb{E}(d_k^2) - 2 \mathbb{E}(d_k X_k^T) W + W^T \mathbb{E}(X_k X_k^T) W$$

The MSE is a quadratic function of the weights. There's only one minimum.

The performance surface

$$MSE = \xi = \mathbb{E}(d_k^2) - 2 \mathbb{E}(d_k X_k^T) W + W^T \mathbb{E}(X_k X_k^T) W$$

To ease the notation we make a few definitions

 $P \equiv \mathbb{E}(d_k X_k)$ (Cross-correlation between input and desired response) $R \equiv \mathbb{E}(X_k X_k^T)$ (Autocorrelation matrix)

More explicitly:

$$P = \begin{bmatrix} \mathbb{E}(d_k x_{1k}) \\ \mathbb{E}(d_k x_{2k}) \\ \vdots \\ \mathbb{E}(d_k x_{Mk}) \end{bmatrix} \qquad \qquad R = \begin{bmatrix} \mathbb{E}(x_{1k} x_{1k}) & \mathbb{E}(x_{1k} x_{2k}) & \dots & \mathbb{E}(x_{1k} x_{nk}) \\ \mathbb{E}(x_{2k} x_{1k}) & \mathbb{E}(x_{2k} x_{2k}) & \dots & \mathbb{E}(x_{2k} x_{nk}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}(x_{nk} x_{1k}) & \mathbb{E}(x_{nk} x_{2k}) & \dots & \mathbb{E}(x_{nk} x_{nk}) \end{bmatrix}$$

Substituting $P = \mathbb{E}(d_k X_k)$ and $R = \mathbb{E}(X_k X_k^T)$ in our equation for the MSE results in

$$MSE = \xi = \mathbb{E}(d_k^2) - 2P^T W + W^T R W$$

The minimum of the quadratic function is where the first derivative is zero:

$$\frac{d}{dW}MSE = 0 \implies W^* = R^{-1}P \qquad (Wiener solution)$$

The **Wiener solution** is the set of weights W^* that minimize the MSE.

At the Wiener solution, the MSE is minimum

$$MSE|_{W=W^{\star}} = \xi_{min} = E(d_k^2) - P^T R^{-1} P$$
 (Minimum MSE)

At the Wiener solution, the error is **orthogonal** to the input. In statistical terms, the error is **uncorrelated** to the input.

$$\mathbb{E}(\varepsilon_k X_k)\Big|_{W=W^{\star}} = 0 \qquad \qquad \text{(orthogonality principle)}$$

This property is known as the **orthogonality principle**, and it is true for all least-squares solution.

An FIR filter as a linear combiner

The input to the adaptive linear combiner is $X = [x[n], x[n-1], \dots, x[n-M+1]]^T$

The resulting FIR filter has coefficients $\{w_1, \ldots, w_M\}$.

The optimal filter coefficients are given by the Wiener solution

$$W^{\star} = R^{-1}P$$

And we can compute the vector \boldsymbol{P} and matrix \boldsymbol{R} as we did before

$$P = \begin{bmatrix} \mathbb{E}(d[n]x[n]) \\ \mathbb{E}(d[n]x[n-1]) \\ \vdots \\ \mathbb{E}(d[n]x[n-N]) \end{bmatrix}$$
$$R = \begin{bmatrix} \mathbb{E}(x[n]x[n]) & \mathbb{E}(x[n]x[n-1]) & \dots & \mathbb{E}(x[n]x[n-N]) \\ \mathbb{E}(x[n-1]x[n]) & \mathbb{E}(x[n-1]x[n-1]) & \dots & \mathbb{E}(x[n-1]x[n-N]) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}(x[n-N]x[n]) & \mathbb{E}(x[n-N]x[n-1]) & \dots & \mathbb{E}(x[n-N]x[n-N]) \end{bmatrix}$$

Recall that the autocorrelation function is defined by

$$\phi_{xx}[m] = \mathbb{E}(x[n+m]x^*[n])$$

Now we're just writing it in matrix form

$$R = \begin{bmatrix} \phi_{xx}[0] & \phi_{xx}[1] & \dots & \phi_{xx}[N] \\ \phi_{xx}[1] & \phi_{xx}[0] & \dots & \phi_{xx}[N-1] \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{xx}[N] & \phi_{xx}[N-1] & \dots & \phi_{xx}[0] \end{bmatrix}$$

In Matlab:

>> phi_xx = xcorr(x, x, N)
>> R = toeplitz(phi_xx(N+1:end))

Theory

The adaptive linear combiner and its performance surface Adaptation algorithms

Application examples

Linear equalization Noise canceling Inverse control

Adaptation algorithms

Problem: We know that $W^* = R^{-1}P$, but in practice, R and P are either unknown or hard to compute/estimate. How can we find some W such that $W \approx W^*$?

- 1. Newton's method
- 2. Steepest descent
- 3. The least-mean squares (LMS) algorithm

Adaptation algorithms: Newton's method

 $W \leftarrow W - \mu R^{-1} \nabla$ (adaptation equation)

where μ is the adaptation constant, and ∇ is the gradient of the MSE, i.e., $\nabla \equiv \frac{\partial}{\partial W}$ MSE.

 R^{-1} scales and directs the step to W^* . Convergence happens in one step! **Problem:** requires knowledge of R and ∇ .

Adaptation algorithms: steepest descent

(adaptation equation)

- \blacktriangleright W is adapted in the direction of **steepest descent** of the gradient
- Must estimate the gradient ∇ somehow.

The **least mean squares (LMS)** algorithm is a form of steepest descent where the gradient is estimated from the **instantaneous error**

$$\varepsilon_n^2 = (d_n - X_n^T W)^2$$
 (instantaneous error)

$$\hat{\nabla} = \frac{\partial \varepsilon_n}{\partial W} = 2(d_n - X_n^T W) X_n = 2\varepsilon_n X_n \qquad (\text{gradient estimate})$$

 $W \leftarrow W + 2\mu e_n X_n$ (LMS weight update)

Gradient estimate is very noisy, but on average the weights *generally* move to the Wiener solution.

The LMS algorithm:

Initialize the weights to some value $W \leftarrow W_0$ For each input and desired response pair (X_n, d_n) : Compute the output $y_n = X_n^T W$ Compute the instantaneous error $e_n = (d_n - y_n)$ Update the weights: $W \leftarrow W + 2\mu e_n X_n$

end

If X is complex, then the adaptation equation changes slightly $W \leftarrow W + 2\mu e_n X_n^*$.

Learning curve

- \blacktriangleright The learning curve is a plot of the average MSE $\mathbb{E}(e_n^2)$ over time.
- ► To obtain an empirical learning curve, we run the LMS algorithm N times with different weight initializations.
- ▶ For each run, we obtain a MSE curve $MSE^{(1)}, \ldots, MSE^{(N)}$ i.e., $MSE^{(i)} = e_n^2$.
- Then we average the result

$$\mathbb{E}(\xi_k^2) \approx \frac{\mathrm{MSE}^{(1)} + \ldots + \mathrm{MSE}^{(N)}}{N}$$
(1)

▶ The learning curve is a sum of decaying exponentials with time constants

$$(au_{MSE})_n pprox rac{1}{4\mu\lambda_n}$$
 iterations

(Steepest descent & LMS)

where λ_n is the *n*th eigenvalue of matrix *R*.

Learning curve

Example of learning curve

Stability of the LMS algorithm

- The constant $\mu > 0$ is known as the **adaptation constant**.
- If μ is too small, the algorithm will take too long to converge (small steps).
- If μ is too large, the algorithm can become unstable.
- It can be shown that stability is guarantee if

$$0 < \mu < \frac{1}{\text{trace}R}$$
 (stability condition)

where trace is the sum of all elements in the main diagonal of a matrix.

▶ When applying the LMS algorithm to determine the coefficients of an *M*th-order FIR filter we have that $traceR = (M + 1)\phi_{xx}[0]$.

Excess noise and misadjustment

Error in the gradient estimate leads to excess MSE

(definition)

For the LMS algorithm:

 $M = \mu \operatorname{trace}(R)$

Parameters to tune

- Number of weights
- Adaptation constant μ

What to look for

- Minimum MSE: is the number of weights high enough?
- ▶ Time constants: how fast will the adaptive algorithm reach the minimum MSE?
- Excess MSE or misadjustment: how oscillatory are the solutions produced by the adaptive algorithm near the optimal solution?

Theory

The adaptive linear combiner and its performance surface Adaptation algorithms

Application examples Linear equalization Noise canceling Inverse control

Linear equalization with decision-directed learning

Eye diagram before and after equalization

Figure 1: (a) Before and (b) after equalization.

Theory

The adaptive linear combiner and its performance surface Adaptation algorithms

Application examples

Linear equalization Noise canceling Inverse control

Noise canceling

27/34

Examples of noise canceling applications

Canceling 60Hz interference from biological signals.

Examples of noise canceling applications

Theory

The adaptive linear combiner and its performance surface Adaptation algorithms

Application examples

Linear equalization Noise canceling Inverse control

Inverse control

 In control problems we would like to make a plant (a system) respond to a given command and produce a desired output (e.g., setting the room temperature, controlling the blood pressure of a patient, etc)

- We use adaptive filters for two basic operations in control problems
 - Plant identification
 - Plant inversion

Basic operations: plant identification

The adaptive filter models the plant

Basic operations: plant inverse

The adaptive filter models the inverse of the plant

We need to consider what happens if the plant is **non-minimum phase**. That is, if it has zeros outside the unit circle (unstable inverse).

- For any discrete-time system H(z), we can write $H(z) = H_{min}(z)H_{ap}(z)$, where $H_{min}(z)$ is a minimum phase system, and $H_{ap}(z)$ is an all-pass system.
- The adaptive filter will converge to $H_{min}^{-1}(z)$, and it'll not compensate for phase distortion (and delay) due to $H_{ap}(z)$.

Summary

- > The linear combiner is the basis of adaptive systems and adaptive filtering
- ▶ We use the mean square error (MSE) as the performance metric
- ▶ The Wiener solution is the optimal set of weights that minimizes the MSE
- The LMS algorithm is a simple way to train the adaptive filter to approximate the Wiener solution
- ▶ The LMS algorithm uses the instantaneous error to obtain an estimate of the gradient
- > This estimate is very noisy, but on average it converges to the Wiener solution
- ▶ We adjust the adaption constant to control how fast the LMS algorithm converges and how noisy the solutions near the Wiener solution (excess noise and misadjustment)