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Announcements

I Thank you for the feedback on the teaching evaluation

I Logistics for next lectures

Date Lecture Lecture Topic Reading
6-Aug 10 Adaptive signal processing
8-Aug 11 The discrete Fourier transform (DFT) 8.1–8.7

13-Aug 12 Spectrum analysis with the DFT 10.1–10.6
15-Aug 13 Review and conclusions

I HW6 will be assigned today and covers primarily lectures 10 and 11

I You can choose to take the final exam on either 8/16 or 8/17
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The adaptive linear combiner
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We would like to tune the weights w1, . . . , wM to minimize the error εk according to some
performance metric.
In this lecture we will address the following questions:

1. What is the best set of weights w?
1 , . . . , w

?
M?

2. How to adapt the weights w1, . . . , wM to approximately achieve w?
1 , . . . , w

?
M?
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The mean square error

The mean-square error (MSE) is a convenient and sensible performance metric

MSE = ξ = E(ε2k) (by definition)

= E((dk −XT
k W )2) (as εk = dk −XT

k W )

= E(d2k)− 2E(dkX
T
k )W +WT E(XkX

T
k )W

The MSE is a quadratic function of the weights. There’s only one minimum.
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The performance surface

MSE = ξ = E(d2k)− 2E(dkX
T
k )W +WT E(XkX

T
k )W

To ease the notation we make a few definitions

P ≡ E(dkXk) (Cross-correlation between input and desired response)

R ≡ E(XkX
T
k ) (Autocorrelation matrix)

More explicitly:

P =


E(dkx1k)
E(dkx2k)

...
E(dkxMk)

 R =


E(x1kx1k) E(x1kx2k) . . . E(x1kxnk)
E(x2kx1k) E(x2kx2k) . . . E(x2kxnk)

...
...

. . .
...

E(xnkx1k) E(xnkx2k) . . . E(xnkxnk)


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Substituting P = E(dkXk) and R = E(XkX
T
k ) in our equation for the MSE results in

MSE = ξ = E(d2k)− 2PTW +WTRW

The minimum of the quadratic function is where the first derivative is zero:

d

dW
MSE = 0 =⇒ W ? = R−1P (Wiener solution)

The Wiener solution is the set of weights W ? that minimize the MSE.

At the Wiener solution, the MSE is minimum

MSE|W=W? = ξmin = E(d2k)− PTR−1P (Minimum MSE)
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The orthogonality principle

At the Wiener solution, the error is orthogonal to the input.
In statistical terms, the error is uncorrelated to the input.

E(εkXk)
∣∣∣
W=W?

= 0 (orthogonality principle)

This property is known as the orthogonality principle, and it is true for all least-squares
solution.
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An FIR filter as a linear combiner

The input to the adaptive linear combiner is X = [x[n], x[n− 1], . . . , x[n−M + 1]]T
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The resulting FIR filter has coefficients {w1, . . . , wM}.
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The optimal filter coefficients are given by the Wiener solution

W ? = R−1P

And we can compute the vector P and matrix R as we did before

P =


E(d[n]x[n])

E(d[n]x[n− 1])
...

E(d[n]x[n−N ])



R =


E(x[n]x[n]) E(x[n]x[n− 1]) . . . E(x[n]x[n−N ])

E(x[n− 1]x[n]) E(x[n− 1]x[n− 1]) . . . E(x[n− 1]x[n−N ])
...

...
. . .

...
E(x[n−N ]x[n]) E(x[n−N ]x[n− 1]) . . . E(x[n−N ]x[n−N ])


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Recall that the autocorrelation function is defined by

φxx[m] = E(x[n+m]x∗[n])

Now we’re just writing it in matrix form

R =


φxx[0] φxx[1] . . . φxx[N ]
φxx[1] φxx[0] . . . φxx[N − 1]

...
...

. . .
...

φxx[N ] φxx[N − 1] . . . φxx[0]


In Matlab:
>> phi xx = xcorr(x, x, N)

>> R = toeplitz(phi xx(N+1:end))
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Adaptation algorithms
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Problem: We know that W ? = R−1P , but in practice, R and P are either unknown or hard to
compute/estimate. How can we find some W such that W ≈W ??

1. Newton’s method

2. Steepest descent

3. The least-mean squares (LMS) algorithm
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Adaptation algorithms: Newton’s method

W ←W − µR−1∇ (adaptation equation)

where µ is the adaptation constant, and ∇ is the gradient of the MSE, i.e., ∇ ≡ ∂
∂W MSE.

R−1 scales and directs the step to W ?. Convergence happens in one step!
Problem: requires knowledge of R and ∇.
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Adaptation algorithms: steepest descent

W ←W − µ∇ (adaptation equation)

I W is adapted in the direction of steepest descent of the gradient

I Must estimate the gradient ∇ somehow.
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Adaptation algorithms: the LMS algorithm

The least mean squares (LMS) algorithm is a form of steepest descent where the gradient is
estimated from the instantaneous error

ε2n = (dn −XT
nW )2 (instantaneous error)

∇̂ =
∂εn
∂W

= 2(dn −XT
nW )Xn = 2εnXn (gradient estimate)

W ←W + 2µenXn (LMS weight update)

Gradient estimate is very noisy, but on average the weights generally move to the Wiener
solution.
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Adaptation algorithms: the LMS algorithm

The LMS algorithm:
Initialize the weights to some value W ←W0

For each input and desired response pair (Xn, dn):
Compute the output yn = XT

nW
Compute the instantaneous error en = (dn − yn)
Update the weights: W ←W + 2µenXn

end
If X is complex, then the adaptation equation changes slightly W ←W + 2µenX

∗
n.
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Learning curve

I The learning curve is a plot of the average MSE E(e2n) over time.

I To obtain an empirical learning curve, we run the LMS algorithm N times with different
weight initializations.

I For each run, we obtain a MSE curve MSE(1), . . . ,MSE(N) i.e., MSE(i) = e2n.

I Then we average the result

E(ξ2k) ≈ MSE(1) + . . .+ MSE(N)

N
(1)

I The learning curve is a sum of decaying exponentials with time constants

(τMSE)n ≈
1

4µλn
iterations (Steepest descent & LMS)

where λn is the nth eigenvalue of matrix R.
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Learning curve

Example of learning curve
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Stability of the LMS algorithm

I The constant µ > 0 is known as the adaptation constant.

I If µ is too small, the algorithm will take too long to converge (small steps).

I If µ is too large, the algorithm can become unstable.

I It can be shown that stability is guarantee if

0 < µ <
1

traceR
(stability condition)

where trace is the sum of all elements in the main diagonal of a matrix.

I When applying the LMS algorithm to determine the coefficients of an M th-order FIR filter
we have that traceR = (M + 1)φxx[0].
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Excess noise and misadjustment

Error in the gradient estimate leads to excess MSE

Misadjustment =
excess noise

minimum MSE
(definition)

For the LMS algorithm:
M = µtrace(R)
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Performance metrics

Parameters to tune

I Number of weights

I Adaptation constant µ

What to look for

I Minimum MSE: is the number of weights high enough?

I Time constants: how fast will the adaptive algorithm reach the minimum MSE?

I Excess MSE or misadjustment: how oscillatory are the solutions produced by the adaptive
algorithm near the optimal solution?
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Linear equalization with decision-directed learning
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Eye diagram before and after equalization

Figure 1: (a) Before and (b) after equalization.
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Noise canceling

ε = s+ n− y (error)

E(ε2) = E((s+ n− y)2) (Mean square error)

= E(s2) + E((n− y)2) (E(s(n− y)) = 0 from assumption)

I Minimizing the error E(ε2) is equivalent to minimizing E((n− y)2)
I After adaptation, y ≈ n and ε ≈ s (approximated in the least squares sense).



28/34

Examples of noise canceling applications

Canceling 60Hz interference from biological signals.
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Examples of noise canceling applications
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Inverse control

I In control problems we would like to make a plant (a system) respond to a given
command and produce a desired output (e.g., setting the room temperature, controlling
the blood pressure of a patient, etc)

I We use adaptive filters for two basic operations in control problems
I Plant identification
I Plant inversion
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Basic operations: plant identification

The adaptive filter models the plant



33/34

Basic operations: plant inverse

The adaptive filter models the inverse of the plant

We need to consider what happens if the plant is non-minimum phase. That is, if it has zeros
outside the unit circle (unstable inverse).

I For any discrete-time system H(z), we can write H(z) = Hmin(z)Hap(z), where Hmin(z)
is a minimum phase system, and Hap(z) is an all-pass system.

I The adaptive filter will converge to H−1
min(z), and it’ll not compensate for phase distortion

(and delay) due to Hap(z).
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Summary

I The linear combiner is the basis of adaptive systems and adaptive filtering

I We use the mean square error (MSE) as the performance metric

I The Wiener solution is the optimal set of weights that minimizes the MSE

I The LMS algorithm is a simple way to train the adaptive filter to approximate the Wiener
solution

I The LMS algorithm uses the instantaneous error to obtain an estimate of the gradient

I This estimate is very noisy, but on average it converges to the Wiener solution

I We adjust the adaption constant to control how fast the LMS algorithm converges and
how noisy the solutions near the Wiener solution (excess noise and misadjustment)
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