
1/34

Adaptive Signal Processing

Jose Krause Perin

Stanford University

August 6, 2018



2/34

Announcements

I Thank you for the feedback on the teaching evaluation

I Logistics for next lectures

Date Lecture Lecture Topic Reading
6-Aug 10 Adaptive signal processing
8-Aug 11 The discrete Fourier transform (DFT) 8.1–8.7

13-Aug 12 Spectrum analysis with the DFT 10.1–10.6
15-Aug 13 Review and conclusions

I HW6 will be assigned today and covers primarily lectures 10 and 11

I You can choose to take the final exam on either 8/16 or 8/17



3/34

Outline

Theory
The adaptive linear combiner and its performance surface
Adaptation algorithms

Application examples
Linear equalization
Noise canceling
Inverse control



4/34

The adaptive linear combiner

Σ

Σ

w1

w2

w3

wM

Xk1

Xk2

Xk3

Xkn

...

−

+

XT
k W

error εk

yk
Output

dk
Desired
response

Xk

input

We would like to tune the weights w1, . . . , wM to minimize the error εk according to some
performance metric.
In this lecture we will address the following questions:

1. What is the best set of weights w?
1 , . . . , w

?
M?

2. How to adapt the weights w1, . . . , wM to approximately achieve w?
1 , . . . , w

?
M?



5/34

The mean square error

The mean-square error (MSE) is a convenient and sensible performance metric

MSE = ξ = E(ε2k) (by definition)

= E((dk −XT
k W )2) (as εk = dk −XT

k W )

= E(d2k)− 2E(dkX
T
k )W +WT E(XkX

T
k )W

The MSE is a quadratic function of the weights. There’s only one minimum.



6/34

The performance surface

MSE = ξ = E(d2k)− 2E(dkX
T
k )W +WT E(XkX

T
k )W

To ease the notation we make a few definitions

P ≡ E(dkXk) (Cross-correlation between input and desired response)

R ≡ E(XkX
T
k ) (Autocorrelation matrix)

More explicitly:

P =


E(dkx1k)
E(dkx2k)

...
E(dkxMk)

 R =


E(x1kx1k) E(x1kx2k) . . . E(x1kxnk)
E(x2kx1k) E(x2kx2k) . . . E(x2kxnk)

...
...

. . .
...

E(xnkx1k) E(xnkx2k) . . . E(xnkxnk)





7/34

Substituting P = E(dkXk) and R = E(XkX
T
k ) in our equation for the MSE results in

MSE = ξ = E(d2k)− 2PTW +WTRW

The minimum of the quadratic function is where the first derivative is zero:

d

dW
MSE = 0 =⇒ W ? = R−1P (Wiener solution)

The Wiener solution is the set of weights W ? that minimize the MSE.

At the Wiener solution, the MSE is minimum

MSE|W=W? = ξmin = E(d2k)− PTR−1P (Minimum MSE)



8/34

The orthogonality principle

At the Wiener solution, the error is orthogonal to the input.
In statistical terms, the error is uncorrelated to the input.

E(εkXk)
∣∣∣
W=W?

= 0 (orthogonality principle)

This property is known as the orthogonality principle, and it is true for all least-squares
solution.



9/34

An FIR filter as a linear combiner

The input to the adaptive linear combiner is X = [x[n], x[n− 1], . . . , x[n−M + 1]]T

Σ

Σ

w1

w2

w3

z−1

z−1

wM

x[n]

−

+

x[n] ∗ w[n]

error εn

yn
Output

dn
Desired
response

The resulting FIR filter has coefficients {w1, . . . , wM}.



10/34

The optimal filter coefficients are given by the Wiener solution

W ? = R−1P

And we can compute the vector P and matrix R as we did before

P =


E(d[n]x[n])

E(d[n]x[n− 1])
...

E(d[n]x[n−N ])



R =


E(x[n]x[n]) E(x[n]x[n− 1]) . . . E(x[n]x[n−N ])

E(x[n− 1]x[n]) E(x[n− 1]x[n− 1]) . . . E(x[n− 1]x[n−N ])
...

...
. . .

...
E(x[n−N ]x[n]) E(x[n−N ]x[n− 1]) . . . E(x[n−N ]x[n−N ])





11/34

Recall that the autocorrelation function is defined by

φxx[m] = E(x[n+m]x∗[n])

Now we’re just writing it in matrix form

R =


φxx[0] φxx[1] . . . φxx[N ]
φxx[1] φxx[0] . . . φxx[N − 1]

...
...

. . .
...

φxx[N ] φxx[N − 1] . . . φxx[0]


In Matlab:
>> phi xx = xcorr(x, x, N)

>> R = toeplitz(phi xx(N+1:end))



12/34

Theory
The adaptive linear combiner and its performance surface
Adaptation algorithms

Application examples
Linear equalization
Noise canceling
Inverse control



13/34

Adaptation algorithms

Σ

Σ

w1

w2

w3

z−1

z−1

wM

x[n]

−

+

x[n] ∗ w[n]

error εn

yn
Output

dn
Desired
response

Problem: We know that W ? = R−1P , but in practice, R and P are either unknown or hard to
compute/estimate. How can we find some W such that W ≈W ??

1. Newton’s method

2. Steepest descent

3. The least-mean squares (LMS) algorithm



14/34

Adaptation algorithms: Newton’s method

W ←W − µR−1∇ (adaptation equation)

where µ is the adaptation constant, and ∇ is the gradient of the MSE, i.e., ∇ ≡ ∂
∂W MSE.

R−1 scales and directs the step to W ?. Convergence happens in one step!
Problem: requires knowledge of R and ∇.



15/34

Adaptation algorithms: steepest descent

W ←W − µ∇ (adaptation equation)

I W is adapted in the direction of steepest descent of the gradient

I Must estimate the gradient ∇ somehow.



16/34

Adaptation algorithms: the LMS algorithm

The least mean squares (LMS) algorithm is a form of steepest descent where the gradient is
estimated from the instantaneous error

ε2n = (dn −XT
nW )2 (instantaneous error)

∇̂ =
∂εn
∂W

= 2(dn −XT
nW )Xn = 2εnXn (gradient estimate)

W ←W + 2µenXn (LMS weight update)

Gradient estimate is very noisy, but on average the weights generally move to the Wiener
solution.



17/34

Adaptation algorithms: the LMS algorithm

The LMS algorithm:
Initialize the weights to some value W ←W0

For each input and desired response pair (Xn, dn):
Compute the output yn = XT

nW
Compute the instantaneous error en = (dn − yn)
Update the weights: W ←W + 2µenXn

end
If X is complex, then the adaptation equation changes slightly W ←W + 2µenX

∗
n.



18/34

Learning curve

I The learning curve is a plot of the average MSE E(e2n) over time.

I To obtain an empirical learning curve, we run the LMS algorithm N times with different
weight initializations.

I For each run, we obtain a MSE curve MSE(1), . . . ,MSE(N) i.e., MSE(i) = e2n.

I Then we average the result

E(ξ2k) ≈ MSE(1) + . . .+ MSE(N)

N
(1)

I The learning curve is a sum of decaying exponentials with time constants

(τMSE)n ≈
1

4µλn
iterations (Steepest descent & LMS)

where λn is the nth eigenvalue of matrix R.



19/34

Learning curve

Example of learning curve



20/34

Stability of the LMS algorithm

I The constant µ > 0 is known as the adaptation constant.

I If µ is too small, the algorithm will take too long to converge (small steps).

I If µ is too large, the algorithm can become unstable.

I It can be shown that stability is guarantee if

0 < µ <
1

traceR
(stability condition)

where trace is the sum of all elements in the main diagonal of a matrix.

I When applying the LMS algorithm to determine the coefficients of an M th-order FIR filter
we have that traceR = (M + 1)φxx[0].



21/34

Excess noise and misadjustment

Error in the gradient estimate leads to excess MSE

Misadjustment =
excess noise

minimum MSE
(definition)

For the LMS algorithm:
M = µtrace(R)



22/34

Performance metrics

Parameters to tune

I Number of weights

I Adaptation constant µ

What to look for

I Minimum MSE: is the number of weights high enough?

I Time constants: how fast will the adaptive algorithm reach the minimum MSE?

I Excess MSE or misadjustment: how oscillatory are the solutions produced by the adaptive
algorithm near the optimal solution?



23/34

Theory
The adaptive linear combiner and its performance surface
Adaptation algorithms

Application examples
Linear equalization
Noise canceling
Inverse control



24/34

Linear equalization with decision-directed learning



25/34

Eye diagram before and after equalization

Figure 1: (a) Before and (b) after equalization.



26/34

Theory
The adaptive linear combiner and its performance surface
Adaptation algorithms

Application examples
Linear equalization
Noise canceling
Inverse control



27/34

Noise canceling

ε = s+ n− y (error)

E(ε2) = E((s+ n− y)2) (Mean square error)

= E(s2) + E((n− y)2) (E(s(n− y)) = 0 from assumption)

I Minimizing the error E(ε2) is equivalent to minimizing E((n− y)2)
I After adaptation, y ≈ n and ε ≈ s (approximated in the least squares sense).



28/34

Examples of noise canceling applications

Canceling 60Hz interference from biological signals.



29/34

Examples of noise canceling applications



30/34

Theory
The adaptive linear combiner and its performance surface
Adaptation algorithms

Application examples
Linear equalization
Noise canceling
Inverse control



31/34

Inverse control

I In control problems we would like to make a plant (a system) respond to a given
command and produce a desired output (e.g., setting the room temperature, controlling
the blood pressure of a patient, etc)

I We use adaptive filters for two basic operations in control problems
I Plant identification
I Plant inversion



32/34

Basic operations: plant identification

The adaptive filter models the plant



33/34

Basic operations: plant inverse

The adaptive filter models the inverse of the plant

We need to consider what happens if the plant is non-minimum phase. That is, if it has zeros
outside the unit circle (unstable inverse).

I For any discrete-time system H(z), we can write H(z) = Hmin(z)Hap(z), where Hmin(z)
is a minimum phase system, and Hap(z) is an all-pass system.

I The adaptive filter will converge to H−1
min(z), and it’ll not compensate for phase distortion

(and delay) due to Hap(z).



34/34

Summary

I The linear combiner is the basis of adaptive systems and adaptive filtering

I We use the mean square error (MSE) as the performance metric

I The Wiener solution is the optimal set of weights that minimizes the MSE

I The LMS algorithm is a simple way to train the adaptive filter to approximate the Wiener
solution

I The LMS algorithm uses the instantaneous error to obtain an estimate of the gradient

I This estimate is very noisy, but on average it converges to the Wiener solution

I We adjust the adaption constant to control how fast the LMS algorithm converges and
how noisy the solutions near the Wiener solution (excess noise and misadjustment)


	Theory
	The adaptive linear combiner and its performance surface
	Adaptation algorithms

	Application examples
	Linear equalization
	Noise canceling
	Inverse control


