
1/23

Digital Filter Structures

Jose Krause Perin

Stanford University

July 25, 2017



2/23

Today’s lecture

We know that rational LTI systems can be either FIR or IIR

FIR

H(z) = b0 + b1z
−1 + . . .+ bMz−M (z-transform)

y[n] = b0x[n] + b1x[n− 1] + . . .+ bMx[n−M ] (difference equation)

All poles are at the origin

IIR

H(z) =
b0 + b1z

−1 + . . .+ bMz−M

1− a1z−1 − . . .− aNz−N
(z-transform)

y[n]− a1y[n− 1]− . . .− aNx[n−N ]

= b0x[n] + b1x[n− 1] + . . .+ bMx[n−M ] (difference equation)

There is at least one pole different from the origin



3/23

Careful with conventions

When studying digital filter structures, it is more convenient to express IIR systems according
to this convention following convention:

H(z) =
b0 + b1z

−1 + . . .+ bMz−M

1− a1z−1 − . . .− aNz−N
(1)

Note that...

1. the first denominator coefficient is made equal to 1 (i.e., a0 = 1)

2. the coefficients a1, . . . , aN appear with a minus sign. This is the same convention from
the textbook. This way the coefficients a1, . . . , aN appear without the minus sign in the
signal flow graphs.



4/23

Today’s lecture

Question: how to realize those systems efficiently?

I Structures for IIR systems

I Structures for FIR systems

I Pipelining and parallel processing



5/23

Structure for IIR systems

I Direct form I

I Direct form II

I Cascade form

I Parallel form

I Transposed forms

Ideally, they all produce the same output. However, differences arise when dealing with
finite-precision arithmetic (next lecture)



6/23

Direct form I

v[n] =

M∑
k=0

bkx[n− k] y[n] =

N∑
k=1

aky[n− k] + v[n]

x[n] y[n]

x[n− 1] y[n− 1]

z−1

b0

z−1

a1

x[n− 2] y[n− 2]

z−1

b1

z−1

a2

x[n−N + 1]

x[n−N ]

z−1

b2

bN−1

bN

y[n−N + 1]

y[n−N ]

z−1

aN−1

aN

1
v[n]

(zeros) (poles)



7/23

Direct form II

Swaps order of poles and zeros. Requires fewer delays z−1 (less memory).

w[n] =

N∑
k=1

akw[n− k] + x[n] y[n] =

M∑
k=0

bkw[n− k]

x[n] y[n]

w[n]

z−1

z−1

z−1

1

a1

a2

aN−1

aN

b0

b1

b2

bN−1

bN

(poles) (zeros)



8/23

Cascade forms

The overall system transfer function H(z) is factored into 1st or 2nd-order subsystems
{H1(z), H2(z), . . . ,HK(z)}

H(z) = H1(z)H2(z) . . . HK(z)

The goal of this factorization is to minimize effects of finite-precision arithmetic

H1(z) H2(z) H3(z)

This figure shows a 6th-order system factored into three 2nd-order subsystems. Each
subsystem is realized according to direct form II.



9/23

Parallel forms

Now the factorization is done using partial fraction expansion of H(z):

H(z) = H1(z) +H2(z) + . . .+HK(z)

The subsystems Hk(z), k = 1, . . . ,K are obtained by grouping second-order factors. These
subsystems will either be simple delays or second-order systems:

Hk(z) =

Ckz
−k, delay
e0k + e1kz

−1

1− a1kz−1 + a2kz−2
, 2nd-order system

, k = 1, . . . ,K

For partial fraction expansion use the Matlab function residuez



10/23

Transposed forms

Transposed forms are obtained by performing flow graph reversal or transposition.
In essence flow graph transposition is done by

1. reversing all branches without changing the gain (transmittance) of each branch

2. reversing the roles of input and output

For single-input single-output systems these operations do not change the system function as
long as the input and output nodes are interchanged.



11/23

Transposed direct form I

Direct form I

x[n] y[n]

x[n− 1] y[n− 1]

z−1

b0

z−1

a1

x[n− 2] y[n− 2]

z−1

b1

z−1

a2

x[n−N + 1]

x[n−N ]

z−1

b2

bN−1

bN

y[n−N + 1]

y[n−N ]

z−1

aN−1

aN

1
v[n]

(zeros) (poles)

Transposed direct form I

x[n] y[n]

z−1

a1 b1

z−1

z−1

a2 b2

z−1

z−1

aN−1

aN

z−1

bN−1

bN

b01
vT [n]

(poles) (zeros)



12/23

Transposed direct form II

Direct form II

x[n] y[n]

w[n]

z−1

z−1

z−1

1

a1

a2

aN−1

aN

b0

b1

b2

bN−1

bN

(poles) (zeros)

Transposed direct form II

x[n] y[n]

wT [n]

z−1

z−1

z−1

b0

b1

b2

bN−1

bN

1

a1

a2

aN−1

aN

(zeros) (poles)

Used in Matlab’s filter function



13/23

Structures for FIR systems

FIR systems do not have the autoregressive component (no feedback).
The direct form I simply realizes the convolution sum

H(z) =

M∑
k=0

bkz
−k =

M∑
k=0

h[k]z−k

x[n]

y[n]

z−1

h[0]

z−1

h[1] h[2]

z−1

h[M − 1] h[M ]

This operation is commonly called multiply-accumulate (MAC)



14/23

FIR transposed direct form

Similarly to IIR systems, we can apply flow graph transposition to obtain the transposed form
Direct form

x[n]

y[n]

z−1

h[0]

z−1

h[1] h[2]

z−1

h[M − 1] h[M ]

Transposed direct form

x[n]

y[n]

z−1

h[0]

z−1

h[1] h[2]

z−1

h[M − 1] h[M ]



15/23

FIR linear phase systems

The impulse response of FIR linear phase systems have either even or odd symmetry
We can halve the number of multiplications by leveraging this symmetry

Example: Direct form of a type I filter (even symmetry and M even)

x[n]

y[n]

z−1

h[0]

z−1

z−1

h[1]

z−1

h[2]

z−1

h[M/2− 1]

z−1

h[M/2]

0 M/2 M

h[0]

h[M/2]

n



16/23

Pipelining and parallel processing

Question: how to implement this filter for a signal of rate 1/T = 1 GHz when the
multiplications are performed at 1/TM = 100 MHz?

x[n]

y[n]

z−1

h[0]

z−1

h[1] h[2]

z−1

h[M − 1] h[M ]

Two solutions:

1. Pipelining

2. Parallel processing

Pipelining and parallel processing solve the problem in two complementary ways. Hence, they
can be use together, which is generally done in practice.



17/23

Pipelining

Suppose we want to implement this 3-tap FIR filter in real time.

x[n]

z−1 z−1

h0 h1

y[n]

h2

The critical path of this filter has one multiplication, which takes TM seconds, and two
additions, which take TA seconds each
Therefore the sampling period T should satisfy

T > TM + 2TA,

so that all operations in the critical path will have been finished by the time a new input
sample comes in.
Question: what can we do if T < TM + 2TA i.e., operations are too slow?



18/23

Pipelining

Solution: add memory z−1

x[n]

z−1 z−1

h0 h1

y[n]

z−1

z−1

h2

Added memory

1 2

3

By adding the extra memory the function of the filter is not altered. However, now the critical
path only has one multiplication and one addition.
Therefore, if

T > TM + TA,

the value at node 1 will be stored in the memory by the time a new input sample comes in.
Hence, the first part of the circuit can start working on the new sample, while the second part
still works on the previous sample.



19/23

The pipelined FIR filter has the following schedule assuming T > TM + TA

x[n]

z−1 z−1

h0 h1

y[n]

z−1

z−1

h2

Added memory

1 2

3

Time Input Node 1 Node 2 Node 3 Output
0 x[0] h0x[0] + h1x[−1] - - -
T x[1] h0x[1] + h1x[0] h0x[0] + h1x[−1] h2x[−2] y[0]

2T x[2] h0x[2] + h1x[1] h0x[1] + h1x[0] h2x[−1] y[1]
3T x[3] h0x[3] + h1x[2] h0x[2] + h1x[1] h2x[0] y[2]

Pipelining increases the latency. Note that the outputs are delayed by 1 sample. That is, when
the input is x[1], the output will be y[0], which corresponds to the input x[0].



20/23

Parallel processing

Processes several inputs at the same time
This difference equation takes one input x[n] and produces one output y[n]

y[n] = h0x[n] + h1x[n− 1] + h2x[n− 2]

We can rewrite it this way

y[3k] = h0x[3k] + h1x[3k − 1] + h2x[3k − 2]

y[3k + 1] = h0x[3k + 1] + h1x[3k] + h2x[3k − 1]

y[3k + 2] = h0x[3k + 2] + h1x[3k + 1] + h2x[3k]

I Now there are three inputs {x[3k], x[3k + 1], x[3k + 2]} and three outputs
{y[3k], y[3k + 1], y[3k + 2]}.

I Each difference equation is a FIR filter with the same coefficients as the original filter

I This can be extended to more inputs/outputs.



21/23

Pipelining and parallel processing

Additional comments

I Pipelining and parallel processing solve the problem of using a slow hardware to process a
fast signal in two complementary ways.

I Pipelining solves the problem by introducing memories and reducing the critical path.
These memories are used to store “partial results”, so that computations for new input
samples can start before all the output has been calculated. The name pipeline comes
from the analogy with a water pipe: “continue sending water without waiting for the
water in the pipe to come out.”

I Pipelining increases the latency and requires more memory

I Parallel processing solves the problem by processing multiple inputs simultaneously

I The effective speed of the hardware is increased by the level of parallelism

I The drawback of parallel processing is that we essentially have to replicate the hardware
several times



22/23

Summary

I There are different forms of realizing IIR and FIR rational systems

I Their difference becomes evident when considering finite arithmetic precision

I Pipelining and parallel processing solve the problem of using a slow hardware to process a
fast signal in two complementary ways.

I Pipelining adds memory (delays) to minimize the critical path. Consequently, pipelining
increases latency

I In parallel processing the hardware is replicated to allow processing of multiple input
samples simultaneously

I Pipelining and parallel processing can be realized together

I Pipelining and parallel processing are more difficult in IIR systems due to their inherent
feedback


	Outline
	Structures for IIR Systems
	Structures for FIR Systems
	Pipelining and Parallel Processing

