
1/35

Changing the Sampling Rate in DSP

Jose Krause Perin

Stanford University

July 11, 2017

2/35

Last lecture

I Sampling a continuous-time signal results in replicas of the spectrum at multiples of the
sampling frequency Ωs (or 2π of the normalized frequency ω)

I A band-limited signal has highest frequency ΩN (Xc(jΩ) = 0, |Ω| > ΩN)

I If a band-limited signal is oversampled (Ωs > 2ΩN) there’ll be gaps between the spectrum
replicas

I If the signal is undersampled (Ωs < 2ΩN) the spectrum replicas will overlap resulting in
aliasing distortion

I We can perfectly reconstruct a signal from its samples, provided that there is no aliasing
and that we use the ideal lowpass filter as reconstruction filter

I In practice, we use different reconstruction filters, since the ideal lowpass filter is
unfeasible.

I Oversampling relaxes the reconstruction filter specifications

I In theory, we can perform any LTI continuous-time filtering in discrete-time (in DSP),
provided that there is no aliasing and that we use the ideal reconstruction filter

3/35

Today’s lecture

I Downsampling and decimation

I Upsampling and interpolation

I Noninteger rate change

I Multi-rate processing

4/35

Downsampling

Downsampling by an integer factor M is equivalent to sampling the discrete-time signal x[n]
with sampling period M .

M
x[n]

X(ejω)

xd[n] = x[Mn]

Xd(e
jω)

Downsampling

To understand what happens in the frequency domain, we can think that we’re sampling the
original continuous-time signal xc(t) with sampling period Td = MT :

xd[n] = x[Mn] = xc(nMT)

5/35

Downsampling: frequency domain interpretation

Sampling xc(t) with sampling period Td = MT results in

Xd(e
jω) =

1

Td

∞∑
k=−∞

Xc
[
j
(ω
Td

− 2πk

Td

)]
(spectrum replicas appear with period Ωs = 2π/Td)

=
1

MT

∞∑
k=−∞

Xc
[
j
(ω

MT
− 2πk

MT

)]
(Td = MT)

=
1

MT

M−1∑
m=0

∞∑
l=−∞

Xc
(
j
(ω

MT
− 2πl

T
− 2πm

MT

))
(change of variables: k = m+ lM)

=
1

M

M−1∑
m=0

1

T

∞∑
l=−∞

Xc
(
j
(ω − 2πm

MT
− 2πl

T

))
(rearranging)

=
1

M

M−1∑
m=0

X(ejω
′
)
∣∣∣
ω′=ω−2πm

M

(is equivalent to X(ejω
′
) for ω′ = ω−2πm

M
)

Conclusion: X(ejω) is stretched by a factor of M (ω/M), and there will be replicas of the spectrum
with period 2π/M .

6/35

Downsampling: frequency domain interpretation

Example of downsampling with M = 2 i.e., Td = 2T .
Impulse sampling interpretation:

−ΩN ΩN

1

− π
T

π
T

Ω

Xc(jΩ)

− 2π
T

−ΩN ΩN 2π
T

1
T

− π
T

π
T

Sampling period T

Ω

X(ejω)

− 2π
Td

−ΩN ΩN 2π
Td

1
Td

= 1
MT

− π
Td

π
Td

Downsampled by 2
Td = MT

Ω

Xd(e
jω)

After downsampling spectrum replicas appear with period 2π/Td

7/35

Downsampling: frequency domain interpretation

Same example of downsampling with M = 2 i.e., Td = 2T .
Discrete-time interpretation:

−ΩN ΩN

1

Ω

Xc(jΩ)

−2π −ΩNT ΩNT 2π

1
T

−π π

Oversampled by 2

ω = ΩT

X(ejω)

−2π −ΩNTd ΩNTd 2π

1
Td

= 1
MT

−π π

Downsampled by 2

ω = ΩTd = ΩMT

Xd(e
jω)

To obtain the spectrum we discrete time, we just need to use the change of variables ω = ΩT
and ω = ΩTd

8/35

Downsampling: frequency domain interpretation

Downsampling may lead to spectrum overlapping (aliasing distortion).
Example of downsampling with M = 3 i.e., Td = 3T .

−ΩN ΩN

1

Ω

Xc(jΩ)

−2π −ΩNT ΩNT 2π

1
T

−π π

Oversampled by 2

ω = ΩT

X(ejω)

Downsampled by 3

−2π −ΩNTd ΩNTd 2π

1
Td

= 1
MT

−π π
ω = ΩTd

Xd(e
jω)

9/35

Decimation

Similarly to sampling, it is common to employ an anti-aliasing filter before downsampling in
order to minimize aliasing.
Pre-filtering followed by downsampling is called decimation.

Lowpass filter
Gain = 1

Cutoff = π/M
M

x̃[n]x[n] xd[n] = x̃[Mn]

DownsamplingAnti-aliasing filter

Decimator

x[n]⇐⇒X(ejΩT) =
1

T

∞∑
k=−∞

Xc

(
j
(

Ω− 2πk

T

))
(from sampling)

x̃[n]⇐⇒X̃(ejΩT) = H(ejΩT)X(ejΩT) (LTI output)

xd[n] = x̃[nM]⇐⇒ 1

M

M−1∑
m=0

X̃(ej(ΩT−2πT)/M) (downsampling by M)

10/35

Decimation: frequency domain interpretation

Decimation with M = 3 i.e., Td = 3T .

−2π −ΩNT ΩNT 2π

1
T

−π π

Oversampled by 2

ω = ΩT

X(ejω)

−2π −π/M π/M 2π

1

ω = ΩT

H(ejω)

−2π −π/M π/M 2π

1
T

−π π

ω = ΩT

X̃(ejω)

−2π −π π 2π

1
Td

= 1
MT Downsampled by 3

ω = ΩTd

Xd(e
jω)

Now the spectrum replicas do not overlap after downsampling by 3.

11/35

Interpolation

Interpolation is used to increase the sampling rate by an integer factor L.

L

Lowpass filter
Gain = L

Cutoff = π/L

xe[n]x[n] xi[n]

Upsampling Interpolation filter

xe[n] =

{
x[n/L], 0,±L,±2L, . . .

0, otherwise
(after upsampling)

In the frequency domain:

Xe(e
jω) =

∞∑
n=−∞

xe[n]e−jωn (definition of DTFT)

=
∑

n=0,±L,...
x[n/L]e−jωn (from xe[n] equation above)

=

∞∑
k=−∞

x[k]e−jωkL (change of variable: k = n/L)

= X(ejωL) (from DTFT equation with ωL)

12/35

Interpolation: frequency domain interpretation

Example of interpolation with L = 2

−2π −ΩNT ΩNT 2π

1
T

−π π

ω = ΩT

X(ejω)

−2π −π −ΩNT
2

ΩNT
2

π 2π

1
T Upsampled by 2

ω = ΩT
L

Xe(e
jω) = X(ejωL)

−2π −π/L π/L 2π

L

ω = ΩT
L

H(ejω)

−2π −ΩNT
2

ΩNT
2

2π

L
T

ω = ΩT
L

Xi(e
jω) = H(ejω)Xe(e

jω)

13/35

Practical interpolation filters

I Similarly to what we saw in reconstruction (D-to-C), the ideal lowpass filter is not
practical. Hence, we must use practical interpolation filters such as ZOH, linear
interpolator, or cubic spline.

I One important difference: The interpolation filter used in reconstruction to convert
from discrete-time to continuous-time was an analog filter (a continuous-time filter). The
interpolation filter used for upsampling is realized in discrete-time (in DSP). Therefore, we
have more flexibility.

14/35

Example of interpolation

I The original signal has maximum frequency ΩN = 1 rad/s.
I From the Nyquist-Shannon theorem, we need Ωs > 2ΩN in order to be able to achieve

perfect reconstruction. Or equivalently, T < π s.
I Sampling period is T = π

Upsampled
by L = 2

t

Samples
ZOH
Linear interp.
Truncated sinc

Truncated sinc filter had 11 coefficients, while ZOH had 2 and linear interpolator had 3.

15/35

Example of interpolation

Same example as before, but now sampling period is T = 0.4π.

Upsampled
by L = 2

t

Samples
ZOH
Linear interp.
Truncated sinc

Truncated sinc filter had 11 coefficients, while ZOH had 2 and linear interpolator had 3.

16/35

I In the first example the continuous-time signal was sampled at the Nyquist rate, whereas
in the second example the continuous-time signal was oversampled by 2.5.

I In both cases, we upsample by a factor of 2 and use practical reconstruction filters: ZOH,
a linear interpolator, and a truncated sinc with 11 samples.

I The ZOH filter only has two coefficients, the linear interpolator has three coefficents, and
the truncated sinc has 11 coefficients.

I Although we use the same filters in both examples, the interpolated sequences are much
closer to the original continuous-time signal in the second example. This illustrates how
oversampling can help the interpolation filters.

I In these examples, the linear interpolator offers that best performance vs complexity
trade-off, as it achieves performance close to the truncated sinc, but only uses 3 samples.

I Even with high oversampling, we see that the truncated sinc filter didn’t achieve perfect
reconstruction. This is a consequence of the Gibbs phenomenon, discussed in lecture 1.
Recall that a truncated sinc will produce a DTFT that is different from the ideal lowpass
filter. Specifically, the DTFT of the truncated sequence will have oscillations, which will
affect the signal and will not suppress the spectrum replicas centered at multiples of 2π.
Using an even larger sequence (sinc with more samples) would not help much, since the
ripples would only become more rapid, but their amplitude would not decrease.

17/35

In Matlab

Sampled signal with period T
>> T = 0.5*pi

>> t = -20:T:20

>> x = cos(t/2) - sin(t) + cos(t/2-pi/4) - sin(t/4-deg2rad(154)); % Sampled

signal

Upsample
>> xu = upsample(x, L) % Upsample

Interpolation filters
>> hZOH = [1 1] % ZOH

>> hlin = [1/2 1 1/2] % Linear interpolator

>> hsinc = sinc(-(5:5)/2) % truncated sinc with 11 samples

Interpolate
>> yzoh = filter(hZOH, 1, xu)

>> ylin = filter(hlin, 1, xu)

>> ysinc = filter(hsinc, 1, xu)

% since these filters are FIR we could also have used the conv command

Before plotting we need to remove the group delay introduced by the filters (more on this next
week)

18/35

Interpolation/Decimation by a non-integer factor

I We have seen how to increase the sampling period by an integer factor M and how to
decrease the sampling period by an integer factor L

I By cascading interpolation and decimation we can change the sampling period by a
non-integer factor M/L.

Cascading interpolation and decimation

L

Lowpass filter
Gain = L

Cutoff = π/L

Lowpass filter
Gain = 1

Cutoff = π/M
M

Interpolator Decimator

xu[n] xi[n] x̃[n]x[n] y[n]

T
Sampling
Period

T
L

T
L

T
L

TM
L

Equivalent diagram

L

Lowpass filter
Gain = L
Cutoff =

min(π/L, π/M)

M
xu[n] x̃u[n]x[n] y[n]

T
Sampling
Period

T
L

T
L

TM
L

19/35

Example

I Let’s combine the examples we saw earlier with L = 2 and M = 3. Recall that with
M = 3, there would be aliasing if we didn’t use the anti-aliasing filter.

I The filter cutoff is min(π/2, π/3) = π/3.

−2π −ΩNT ΩNT 2π

1
T

−π π

ω = ΩT

X(ejω)

−2π −π −ΩNT
2

ΩNT
2

π 2π

1
T Upsampled by 2

ω = ΩT
L

Xu(ejω) = X(ejωL)

−2π −π/3 π/3 2π

L

ω = ΩT
L

H(ejω)

−2π −π/3 π/3 2π

L
T

−π π

ω = ΩT
L

X̃u(ejω)

−2π −π π 2π

L
MT Downsampled by 3

ω = ΩTM
L

Y (ejω)

19/35

Example

continuing...

−2π −ΩNT ΩNT 2π

1
T

−π π

ω = ΩT

X(ejω)

−2π −π −ΩNT
2

ΩNT
2

π 2π

1
T Upsampled by 2

ω = ΩT
L

Xu(ejω) = X(ejωL)

−2π −π/3 π/3 2π

L

ω = ΩT
L

H(ejω)

−2π −π/3 π/3 2π

L
T

−π π

ω = ΩT
L

X̃u(ejω)

−2π −π π 2π

L
MT Downsampled by 3

ω = ΩTM
L

Y (ejω)

The resulting signal has sampling period MT/L = 3T/2. Note that aliasing was prevented by
selecting the cutoff frequency min(π/2, π/3) = π/3.

20/35

Multirate processing

In practice, it is common to have parts of the system operating at one sampling rate and other
parts operating at a different sampling rate.

I Interchanging filtering and downsampling

I Interchanging filtering and upsampling

I Multi-stage decimation

I Multi-stage interpolation

I Polyphase decomposition

21/35

Interchanging filtering and downsampling

These two systems are equivalent i.e., y1[n] = y2[n]

M H(z)
x1[n]x[n] y1[n]

Downsampling Filter

H(zM) M
x2[n]x[n] y2[n]

DownsamplingFilter

To move the filter before downsampling by M , we must stretch its frequency response by a

factor of M : H(zM)
z=ejω−−−−→ H(ejωM).

22/35

Proof:
Staring with the second system: X2(ejω) = H(ejωM)X(ejω). Now we can apply the equation
for downsampling to obtain Y2(ejω)

Y2(ejω) =
1

M

M−1∑
m=0

X2(ej(ω/M−2πm))

=
1

M

M−1∑
m=0

X(ej(ω/M−2πm))H(ej(ω−2πm))

= H(ejω)
1

M

M−1∑
m=0

X(ej(ω/M−2πm))

(periodicity of the DTFT =⇒ H(ej(ω−2πm)) = H(ejω))

= H(ejω)
1

M

M−1∑
m=0

X(ej(ω/M−2πm))

= H(ejω) X1(ejω) = Y1(ejω)

23/35

Comments on stability:
Note that if H(z) is a rational z-transform with poles {p1, p2, . . . , pN} and zeros
{z1, z2, . . . , zR}:

H(z) =
b0
a0
zN−R

(z − z1)(z − z2) . . . (z − zR)

(z − p1)(z − p2) . . . (z − pN)

Then H(zM) will be

H(zM) =
b0
a0
zM(N−R) (zM − z1)(zM − z2) . . . (zM − zR)

(zM − p1)(zM − p2) . . . (zM − pN)
,

with poles { M√p1, M
√
pN , . . . , M

√
pN}, and zeros { M√z1, M

√
zN , . . . , M

√
zR}.

If H(z) is stable and causal, the poles of H(zM) will lie inside the unit circle, and therefore
H(zM) will also be stable.
Similarly, if H(z) is anti-causal and stable, the poles of H(zM) will lie outside the unit circle,
and therefore H(zM) will also be stable.

24/35

Interchanging filtering and interpolation

These two systems are equivalent i.e., y1[n] = y2[n]

L H(zL)
x2[n]x[n] y2[n]

Upsampling Filter

H(z) L
x1[n]x[n] y1[n]

UpsmaplingFilter

Proof:
Top diagram:

Y1(ejω) = X1(ejωL) = X(ejωL)H(ejωL)

Bottom diagram:

Y2(ejω) = X2(ejω)H(ejωL) = X(ejωL)H(ejωL)

25/35

Multi-stage decimation

Suppose we want to decimate by a factor M = 20. The cutoff frequency of the lowpass filter
would be π/20.

Sharp filter =⇒ long impulse response =⇒
higher complexity

higher cost
higher power consumption

It’s more efficient to use several decimation stages

H1(z) M1 H2(z) M2

x[n] y[n]

Decimator 1 Decimator 2

Interchanging filter and downsampling results in the equivalent system:

H1(z)H2(zM1) (M1M2)
x[n] y[n]

I The equivalent downsampling factor is M = M1M2.
I Design H1(z) and H2(z) so that H1(z)H2(zM1) has the desired frequency response.

26/35

Multi-stage interpolation

The same rationale applies to interpolation

L1 H1(z) L2 H2(z)
x[n] y[n]

Interpolator 1 Interpolator 2

Interchanging filter and downsampling results in the equivalent system:

(L1L2) H1(zL2)H2(z)
x[n] y[n]

I The equivalent upsampling factor is L = L1L2.

I Design H1(z) and H2(z) so that H1(zL2)H2(z) has the desired frequency response.

27/35

Polyphase decomposition

What if the filter is placed before downsampling?

H(z) M
x̃[n]x[n] y[n]

I To interchange filter and downsampling in this case, we’d need to express H(z) as some
G(zM). Generally not easy.

I Practical problem: this implementation wastes computation. All samples of the output
of H(z) are calculated, but only 1 out of M is used after downsampling.

I If H(z) is FIR of length N , there are N multiplications per sample. Downsampling by M
discards M − 1 samples every M samples.

28/35

Polyphase decomposition

We can decompose any given sequence h[n] into M subsequences such that

hk[n] =

{
h[n+ k], n integer multiple of M

0, otherwise
, k = 0, 1, . . . ,M − 1

It follows that

h[n] =

M−1∑
k=0

hk[n− k]⇐⇒ H(z) =

M−1∑
k=0

Hk(z)z−k

29/35

Polyphase decomposition

Example of decomposition with M = 2

n

h[n]

n

h1[n]

n

h2[n]

30/35

Polyphase decomposition

We can downsample hk[n] in order to discard the zero samples

ek[n] = hk[Mn]⇐⇒ Ek(zM) = Hk(z) (upsamling by M)

The subsequences ek[n] are called the polyphase components of h[n]

n

h[n]

n

e1[n] = h1[2n]

n

e2 = h2[2n]

31/35

Polyphase decomposition

How to recover h[n] from e0[n], . . . , eM−1[n]?

1. Upsample ek[n] by M , and we’re back with hk[n]
2. Delay by k and add

In terms of the z-transform:

H(z) =

M−1∑
k=0

Ek(zM)z−k

E0(zM)

E1(zM)

...

EM−1(zM)

+

z−1

z−1

z−1

x[n]

H(z)

y[n]

32/35

Polyphase decimation

Back to the original problem: how to interchange filter and downsampling?

H(z) M
x̃[n]x[n] y[n]

Using the polyphase decomposition of H(z)

E0(zM)

E1(zM)

...

EM−1(zM)

+

z−1

z−1

z−1

x[n]

H(z)

M
y[n]

33/35

Polyphase decimation

First interchange sum and downsampling:

E0(zM)

E1(zM)

...

EM−1(zM)

M

M

...

M

+

z−1

z−1

z−1

x[n]

y[n]

34/35

Polyphase decimation

Now it is easy to interchange Ek(zM) with downsampling resulting in the filters Ek(z)

M

M

...

M

E0(z)

E1(z)

...

EM−1(z)

+

z−1

z−1

z−1

x[n]

y[n]

Computation: Each polyphase filter Ek(z) requires N/M multiplications, which are realized
at the lower rate (higher sampling period) TM .
Similarly for polyphase interpolation (Textbook section 4.7.5)

35/35

Summary

I Downsampling by an integer factor M stretches the discrete-time spectrum by a factor M
and causes replicas of the spectrum to appear at 2π/M . The amplitude of the spectrum is
attenuated by M

I It’s often easier to think of downsampling as sampling the original continuous-time signal
with a sampling period Td = MT

I Anti-aliasing filtering followed by downsampling is called decimation

I Upsampling by an integer factor L compresses the discrete-time spectrum by a factor L.
The interpolation filter is assumed to have gain L, so the spectrum amplitude is scaled by
L

I We can achieve non-integer sampling rate changes by cascading interpolation and
decimation stages

I For large downsampling/uspsampling factors, it’s generally more efficient to realized
multistage decimation/interpolation

I Polyphase decomposition allows efficient implementation of filtering followed by
downsampling and upsampling followed by filtering.

	Downsampling and Decimation
	Upsampling and Interpolation
	Non-Integer Rate Change
	Multi-rate processing

