
Solutions Homework #06 EE 264 (Summer 2018)

Problem 1

(a) Perfect noise cancellation is achieved if y[n] = r̃[n], where r̃[n] is the noise r[n] filtered by H(z).

Therefore, the transfer function of the adaptive filter F (z) is simply

F (z) = H(z) (1)

(b) If x[n] (the desired response) and r[n] (the input) are uncorrelated, then the vector P is the zero vector,

since the ith entry of P is simply Pi = E(x[n]r[n− i]) = 0. Therefore,

W ? = R−1P = 0. (2)

That is, the Wiener solution is zero, which implies that all the weights of the adaptive filter are zero.

As a result, for any input, the adaptive filter produces a zero output.

(c) Note that the R matrix is simply R = σ2
rIL+1, where IL+1 is the (L + 1) × (L + 1) identity matrix.

Therefore,

µ =
0.001

trace(R)
=

0.001

(L+ 1)σ2
r

= 0.01 (3)

(d) Since R = σ2
rIL+1, all eigenvalues of R are equal to λ = σ2

r . The time constant of the LMS algorithm

is given by

τ =
1

4µλ
= 12, 500 samples (4)

T = τ/Fs = 0.63 seconds (5)

Therefore, it takes roughly 4T = 2.27 seconds for the LMS algorithm to converge. This convergence

time could be substantially shortened by increasing the adaptation constant µ.

(e) Assuming that µ still satisfies

the stability condition µ < trace(R), we can make the following conclusions:

• The convergence time or learning curve time constants are inversely proportional to the adaptation

constant. Therefore, the convergence time decreases by increasing µ.

• The minimum mean square error does not depend on the adaptation constant. Hence, it remains

the same.

• The excess MSE is proportional to the misadjustment, which in turn is proportional to µ. Hence,

the excess MSE increases by increasing µ.

(f) The code is attached at the end of this file. The requested plots are shown below.

Ideally the adaptive filter would converge to H(z). However, since H(z) is IIR the adaptive FIR filter

of order L = 49 cannot match it perfectly. Note that the first 20 coefficients of the adaptive

filter are zero because of the 20-sample delay in H(z).

Page 1 of 17

Solutions Homework #06 EE 264 (Summer 2018)

0 5 10 15

Time (seconds)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
ve

ra
ge

 n
oi

se

Figure 1: Average noise averaged over 20 independent noise realizations. Note that convergence happens
approximately after 4.5 seconds, which is consistent with part 1(d)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 A
m

pl
itu

de

Impulse Response

0 5 10 15 20 25 30 35 40 45

n (samples)

(a) Adaptive filter coefficients after adaptation.

0 0.2 0.4 0.6 0.8 1

Normalized frequency (rad/samples)

-100

-50

0

50
M

ag
ni

tu
de

 r
es

po
ns

e
(d

B
)

H(z)
Adaptive filter

0 0.2 0.4 0.6 0.8 1

Normalized frequency (rad/samples)

-80

-60

-40

-20

0

P
ha

se
 r

es
po

ns
e

(r
ad

)

H(z)
Adaptive filter

(b) Magnitude and phase response of adaptive filter after
adaptation compared to H(z).

Figure 2: Coefficients and frequency response of adaptive filter.

Code for part (1)

1 %% Noise canceling

2 clear, clc, close all

3

4 [s, Fs] = audioread(’guitartune.wav’); % Fs is sampling frequency

5

6 Nruns = 20; % number of independent runs to average learning curve

7 var_r = 2e-3; % variance of white Gaussian noise

8

9 L = 49; % adaptive filter order. L+1 coefficients

10

Page 2 of 17

Solutions Homework #06 EE 264 (Summer 2018)

11 % H(z) filter coefficients

12 % Although H(z) is "unknown", for developing your answers you can use this

13 % filter. It is a eighth-order IIR Chebyshev type II filter with bandwidth

14 % 0.55*Fs. Chebyshev type II filters have constant gain at the passband,

15 % but they exhibit ripples in the stopband.

16 [hb, ha] = cheby2(6, 30, 0.55);

17 hb = [zeros(1, 20) hb]; % Add a delay of 20 samples to H(z)

18 % Hint: for filtering, use the function filter, e.g., output = filter(hb, ha, input)

19

20 %% Your solutions go here

21 % Matlab hints:

22 % - The function randn() generates zero-mean, unit-variance,

23 % Gaussian-distributed numbers

24 % - Fixed filters can be easily implement using the function filter()

25 % - Adaptive filters are can be implemented in a for loop

26 % - To plot the coefficients of an FIR filter, use the function impz

27 % (impulse response)

28 % - To plot the magnitude and phase response, use the function freqz()

29 % - To play a signal use the function sound(x, Fs). Don’t forget to include

30 % the sampling frequency when calling sound, otherwise Matlab will assume

31 % Fs = 8 kHz, which is not the correct value.

32 sound(s, Fs) % example

33

34

35 %% Your solutions go here

36 % (C) adaptation constant

37 lamb = var_r; % all eigenvalues are equal to var_r since R = var_r*I

38 mu = 0.001/((L+1)*var_r)

39

40 % (D) convergence time

41 tau = 1/(4*mu*lamb); % learning curve time constants

42 T_conv = 4*tau/Fs % convergence time

43

44 % (F) Implementation

45 % Generate input white noise

46 r = sqrt(var_r)*randn(size(s));

47 rf = filter(hb, ha, r);

48

49 % Generate signal x

50 x = s + rf; % from diagram in Fig. 2

51

52 avg_noise = zeros(size(s));

53 for q = 1:Nruns

54 y = zeros(size(s)); % output of adaptive filter

55 e = zeros(size(s)); % error signal

Page 3 of 17

Solutions Homework #06 EE 264 (Summer 2018)

56 W = zeros(1, L+1); % initial weight vector

57 for k = L+1:length(s)

58 y(k) = W*r(k:-1:k-L);

59 e(k) = x(k) - y(k);

60 W = W + 2*mu*e(k)*r(k:-1:k-L).’;

61 end

62

63 avg_noise = avg_noise + (s-e).ˆ2;

64 end

65

66 avg_noise = avg_noise/Nruns;

67

68 figure, box on

69 plot((0:length(s)-1)/Fs, avg_noise)

70 xlabel(’Time (seconds)’)

71 ylabel(’Average noise’)

72 saveas(gca, ’../figs/part1_average_noise’, ’epsc’)

73

74 figure, impz(W)

75 saveas(gca, ’../figs/part1_coeff’, ’epsc’)

76

77 [H1, w] = freqz(hb, ha);

78 H2 = freqz(W, 1, w);

79

80 figure

81 subplot(211), hold on, box on

82 plot(w/pi, 20*log10(abs(H1)))

83 plot(w/pi, 20*log10(abs(H2)))

84 xlabel(’Normalized frequency (\times\pi rad/samples)’)

85 ylabel(’Magnitude response (dB)’)

86 legend(’H(z)’, ’Adaptive filter’)

87

88 subplot(212), hold on, box on

89 plot(w/pi, unwrap(angle(H1)))

90 plot(w/pi, unwrap(angle(H2)))

91 xlabel(’Normalized frequency (\times\pi rad/samples)’)

92 ylabel(’Phase response (rad)’)

93 legend(’H(z)’, ’Adaptive filter’)

94 saveas(gca, ’../figs/part1_freqz’, ’epsc’)

Page 4 of 17

Solutions Homework #06 EE 264 (Summer 2018)

Problem 2

(a) The DFT of a constant signal is an impulse scaled by the d.c. value:

X[k] = {8, 0, 0, 0, 0, 0, 0, 0} (6)

(b) This signal can be represented as x[n] = ejπn, n = 0, . . . , 7. Start with the result from part (a) and use

the circular time shift property of the DFT. Note that for N = 8,

(−1)n = ejπn = W
−nN/2
N (7)

Using the circular frequency shift property, the DFT is a shift of the DFT from part (a) by N/2 = 4:

X[k] = {0, 0, 0, 0, 8, 0, 0, 0}

(c) This is similar to part (b). Note that for N = 8

ejπ/2n = ej2π/NN/4n = W
−N/4n
N . (8)

Using the circular frequency shift property, the DFT is a shift of the DFT from part (a) by N/4 = 2:

X[k] = {0, 0, 8, 0, 0, 0, 0, 0}

(d) Start with the the result of part (c). Note that sin(πn/2) = −j/2(ejπn/2 − e−jπn/2). Using the circular

frequency shift property, we find that X[k] = {0, 0,−4j, 0, 0, 0, 4j, 0}

(e) The DFT of an impulse is constant in frequency: X[k] = {1, 1, 1, 1, 1, 1, 1, 1}.

(f) Circularly shifting a signal in time corresponds to multiplication by a complex exponential in frequency.

Using part (e), we find that: X[k] = {1,−j,−1, j, 1,−j,−1, j}.

Problem 3

Signal DFT Justification

1 d x[n] is real and x[n] = x[((−n))N] (x̃[n] is even), so X[k] is purely

real, thus ∠X[k] ∈ {0, π}. Also,
∑N−1
n=0 x[n] = X[0] = 5.

2 a x[n] is real and x[n] = x[((−n))N] (x̃[n] is even), so X[k] is purely

real, thus ∠X[k] ∈ {0, π}. Also,
∑N−1
n=0 x[n] = X[0] = 1.

3 c x[n] is real and x[n] = −x[((−n))N] (x̃[n] is odd), so X[k] is

purely imaginary, thus ∠X[k] ∈ {−π/2, π/2}. Also,
∑N−1
n=0 x[n] =

X[0] = 0.

4 f x[n] is delayed impulse, so |X[k]| = 1 ∀ k
5 b Signal 5 is a delayed version of signal 1, so |X[k]| same as for signal

1. But signal 5 lacks symmetry, so ∠X[k] is more complicated

than for signal 1.

6 e Signal 6 is a delayed version of signal 3, so |X[k]| same as for signal

3. But signal 6 lacks symmetry, so ∠X[k] is more complicated

than for signal 3.

Page 5 of 17

Solutions Homework #06 EE 264 (Summer 2018)

Problem 4: Linear convolution and circular convolution

(a)

We will have x[n] ∗ h[n] = x[n] N h[n] as long as

N ≥ L+ P − 1 (9)

(b)

cxy[m] = x[m] ∗ y∗[−m]

= x[m] N y∗[−m] (as long as N ≥ 2L− 1)

= IFFT{FFT{x[m]}(FFT{y[m]})∗},

where the last equality follows since circular convolution in time domain corresponds to product of DFTs

in frequency domain. Moreover, we’ve used the conjugate and time reversal properties of the DFT i.e.,

FFT{y∗[−m]} = (FFT{y[m]})∗. The FFT/IFFT involved in this calculation are N = 2L− 1.

As mentioned in the hint, this computation will provide cxy[m] indexed from 0 up to N − 1. We would

need to use the function fftshfit, for instance, to produce cxy[m] in the conventional representation from

−N/2 + 1 up to N/2− 1.

(c)

If x[n] = y[n], then

cxx[m] = IFFT{|FFT{x[m]}|2} (10)

Hence this computation requires one fewer FFT.

Problem 5: Overlap-add or overlap-save

(a)

The code for for part (a) is attached at the end of this question. The implementation assumes FFT length

N = 256, and M = 52.

The Figures below show the results of comparison for overlap-add and overlap-save methods. We obtain

the same results as with direct implementation of the FIR filter. The disagreement at the end of the sequence

is simply because we did not have an entire block to perform block convolution.

Page 6 of 17

Solutions Homework #06 EE 264 (Summer 2018)

0 0.5 1 1.5 2 2.5 3

Time (s)

-500

-400

-300

-200

-100

0

100

E
C

G

Clean ECG
Overlap-add
Direct form implementation

Figure 3: Result using the overlap-add method

0 0.5 1 1.5 2 2.5 3

Time (s)

-500

-400

-300

-200

-100

0

100

E
C

G

Clean ECG
Overlap-save
Direct form implementation

Figure 4: Result using the overlap-save method.

(b)

Without any simplification, the block convolution requires 3 FFTs (including IFFT) are necessary to produce

N −M useful output samples. Therefore,

C =
(3× (2N(log2(N)− 1)) +N)

N −M
= 53.4369 (block convolution)

Page 7 of 17

Solutions Homework #06 EE 264 (Summer 2018)

for N = 256 and M = 52.

The direct form implementation of a Mth-order FIR filter (without any symmetry) requires M + 1

multiplications per useful output. Thus,

C = M + 1 = 53 (FIR direct implementation)

Simplifications:

Note that the FFT to compute the filter coefficients may be computed in advance and stored in a memory

since the filter is assumed constant. Thus, we could avoid 1 FFT:

C =
(2× (2N(log2(N)− 1)) +N)

N −M
= 36.038 (block convolution)

assuming N = 256 and M = 52.

An linear phase FIR filter requires b(M + 1)/2c multiplications per useful output, since equal coefficients

can be combined. Therefore,

C = b(M + 1)/2c = 26 (linear phase FIR direct implementation)

For M = 52.

Solutions with or without these simplifications are accepted.

(c)

For both overlap-add and overlap-save methods, we need 3 FFTs (including IFFT), and an N -point multi-

plication. Moreover, for each block of length L only N −M outputs are useful. In the overlap-save method

there are M unusable outputs per block. In the overlap-add method the M outputs will only be useful at

the next block.

C =
3× (2N(log2(N)− 1)) +N

N −M
(block convolution)

Assuming that the DFT of the filter coefficients is computed in advance:

C =
2× (2N(log2(N)− 1)) +N

N −M
(block convolution 2 FFTs)

Both results for C are accepted. The figure below assumes that C was computed in accordance with the

equation above, assuming that the DFT of the filter coefficients was computed in advance:

Page 8 of 17

Solutions Homework #06 EE 264 (Summer 2018)

0 1000 2000 3000 4000 5000

FFT length, N

35

40

45

50

55

60

C
om

pl
ex

ity
, C

M = 50
M = 100
M = 150

Figure 5: Complexity of overlap-save or overlap-add method as a function of the FFT length. These curves
assumed that the DFT of the filter coefficients was computed in advance, hence saving one FFT in the
complexity calculations.

Note that for each filter length there is an optimal FFT length.

Moreover, note that as the filter-order becomes large, the FFT implementation becomes more attractive

even if we assume that there’s symmetry in the impulse response of the filter. For M = 100, the block

convolution method has complexity close to C = 40, while a direct implementation assuming symmetry

would have complexity C = 50.

Note: the particular formula for the number of real multiplications of N -point FFT considered in this

problem is only valid when N is a power of 2. The actual number of multiplications in a FFT depend on

whether the FFT is radix-2, radix-4, prime radix, etc. The actual values will vary slightly, but the main

conclusions from this problem remain the same.

(d) (optional)

See Matlab code below for solution. Plots are shown in part (a).

Matlab code for Problem 4

1 %% Overlap and save or overlap and add

2 clear, clc, close all

3

4 load(’notch_filter_coeff’); % loads filter coefficients

5 load(’ecg_recording.mat’) % loads ECG data

6

7 % Definitions

8 Nfft = 256; % FFT length

9 M = length(hls) - 1; % M = 52

Page 9 of 17

Solutions Homework #06 EE 264 (Summer 2018)

10 Loa = Nfft - M; % block length for overlap-add

11 Los = Nfft; % block length for overlap-save

12 H = fft(hls, Nfft); % FFT of filter coefficients

13

14 t = 0:T:(N-1)*T; % time vector

15 ecg_fir = filter(hls, 1, ecg_60Hz);

16 ecg_fir = circshift(ecg_fir, [0, -M/2]); % remove group delay

17

18 %% Overlap-add

19 yoa = zeros(size(ecg_60Hz));

20 select = (1:Loa);

21 for r = 0:floor(length(ecg_60Hz)/Loa)-1

22 xr = ecg_60Hz(select); % non-overlapping segments of length Loa

23 yr = ifft(H.*fft(xr, Nfft)); % compute Nfft-point circular convolution

24 yoa(select(1):(select(1)+Nfft-1)) = yoa(select(1):(select(1)+Nfft-1)) + yr; % add

25 select = select + Loa;

26 end

27

28 figure, hold on, box on

29 n = 0:length(ecg_60Hz)-1;

30 yoa = circshift(yoa, [0, -M/2]); % remove group delay

31 plot(t, ecg_clean, ’LineWidth’, 2, ’DisplayName’, ’Clean ECG’)

32 plot(t, yoa, ’--’, ’LineWidth’, 2, ’displayname’, ’Overlap-add’)

33 plot(t, ecg_fir, ’:’, ’LineWidth’, 2, ’displayname’, ’Direct form implementation’)

34 legend(’-dynamiclegend’)

35 xlabel(’Time (s)’, ’FontSize’, 12)

36 ylabel(’ECG’, ’FontSize’, 12)

37 saveas(gca, ’../figs/fir_notch_overlap_add’, ’epsc’)

38

39 %% Overlap-save

40 yos = zeros(size(ecg_60Hz));

41 select = (1:Los);

42 for r = 0:floor(length(ecg_60Hz)/Los)

43 xr = ecg_60Hz(select); % non-overlapping segments of length Loa

44 yr = ifft(H.*fft(xr, Nfft)); % compute Nfft-point circular convolution

45 yoa(select(M+1:end)) = yr(M+1:end); % save

46 select = select + Los - M;

47 end

48

49 figure, hold on, box on

50 n = 0:length(ecg_60Hz)-1;

51 yoa = circshift(yoa, [0, -M/2]); % remove group delay

52 plot(t, ecg_clean, ’LineWidth’, 2, ’DisplayName’, ’Clean ECG’)

53 plot(t, yoa, ’--’, ’LineWidth’, 2, ’displayname’, ’Overlap-save’)

54 plot(t, ecg_fir, ’:’, ’LineWidth’, 2, ’displayname’, ’Direct form implementation’)

Page 10 of 17

Solutions Homework #06 EE 264 (Summer 2018)

55 legend(’-dynamiclegend’)

56 xlabel(’Time (s)’, ’FontSize’, 12)

57 ylabel(’ECG’, ’FontSize’, 12)

58 saveas(gca, ’../figs/fir_notch_overlap_save’, ’epsc’)

59

60 %% Complexity calculation

61 M = 50:50:150;

62

63 C = @(N, M) (2*2*N.*(log2(N)-1) + N)./(N-M);

64

65 figure, hold on, box on

66 for k = 1:length(M)

67 N = linspace(M(k)*2, 5e3);

68 plot(N, C(N, M(k)), ’LineWidth’, 2, ’DisplayName’, sprintf(’M = %d’, M(k)))

69 end

70 xlabel(’FFT length’, ’FontSize’, 12)

71 ylabel(’Complexity’, ’FontSize’, 12)

72 legend(’-dynamiclegend’)

73 saveas(gca, ’../figs/block_conv_complexity’, ’epsc’)

Problem 6: Spectrograms

(a) Spectrograms (a) and (c) were computed with the rectangular window. This can be infered from the

amount of leakage in the spectrogram. This is a result from the large sidelobes of the rectangular

window.

(b) Spectrograms (a) & (b) have approximately the same frequency resolution, as do spectrograms (c) &

(d). Note that the the lines in these spectrograms have approximately the same thickness

(c) Spectrogram (c) has the shortest time window. Although spectrograms (c) and (d) have virtually

the same frequency resolution i.e., same main-lobe width, the Hamming window has to be longer to

achieve the same main-lobe width of a rectangular window. This is the reason that, for instance, a

filter designed by window using the Hamming window would have slower roll-off than a filter designed

using a rectangular window of same length.

(d) The discrete-time signal has three frequency components

x[n] =

A1 cos(0.7πn+ φ1) +A2 cos(0.4πn+ φ2), 0 ≤ n ≤ 1000

A2 cos(0.4πn+ φ2), 1000 < n ≤ 2000

A2 cos(0.4πn+ φ2) +A3 cos(0.5πn+ φ3), 2000 < n ≤ 3000

(11)

We cannot specify the amplitudes {A1, A2, A3} and the phases {φ1, φ2, φ3}.

Page 11 of 17

Solutions Homework #06 EE 264 (Summer 2018)

To obtain the continuous-time signal, we simply replace n by t/T

xc(t) =

A1 cos(7000πt+ φ1) +A2 cos(4000πt+ φ2), 0 ≤ n ≤ 1000

A2 cos(4000πt+ φ2), 1000 < n ≤ 2000

A2 cos(4000πt+ φ2) +A3 cos(5000πt+ φ3), 2000 < n ≤ 3000

(12)

Note that the anplitudes should be scaled by T , but we simply redefined the amplitudes for simplicity.

Problem 7: Frequency modulation

(a)

Ωi(t) =
dθ(t)

dt
= Ωc + βΩm cos(Ωmt) (13)

Hence, the maximum frequency deviation from Ωc is βΩm.

0 0.5 1 1.5 2 2.5 3 3.5 4

t (s)

999.8

999.9

1000

1000.1

1000.2

i/2
 (

H
z)

 = 0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

t (s)

500

1000

1500

i/2
 (

H
z)

 = 500

Figure 6: Ωi(t)/(2π) for β = 0.2 (top) and β = 500 (bottom).

(b)

xFM (t) = cos(Ωct+ β sin(Ωmt))

= cos(Ωct) cos(β sin(Ωmt))− sin(Ωct) sin(β sin(Ωmt))

≈ cos(Ωct)− β sin(Ωmt) sin(Ωct) (small-angle approximation when β << π/2)

By inspecting the equation above, we can see that F{xFM (t)} has impulses at frequencies ±Ωc, ±Ωc+Ωm,

and ±Ωc − Ωm.

Page 12 of 17

Solutions Homework #06 EE 264 (Summer 2018)

(c)

We simply replace t = nT in (3) of the assignment,

xFM [n] = xFM (nT) = cos(2π(1000)n/8000 + β sin(2πn/8000))

cos(π/4n+ β sin(πn/4000)) (14)

(d)

Code for this part is attached at the end of this problem

(i)

990 995 1000 1005 1010

Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

|X
(j

)|

Figure 7: DFT of xFM (t) for β = 0.2.

(ii)

Page 13 of 17

Solutions Homework #06 EE 264 (Summer 2018)

0 0.5 1 1.5 2 2.5 3 3.5 4

Frequency (kHz)

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
(s

ec
s)

-140

-120

-100

-80

-60

-40

-20

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Figure 8: Spectrogram of xFM (t) for β = 0.2.

The spectrogram does not show the frequency variation observed in part (a) because the window does

not have enough resolution to resolve the frequency variation when β = 0.2.

(e)

Code for this part is attached at the end of this problem

(i)

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Frequency (Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

|X
(j

)|

Figure 9: DFT of xFM (t) for β = 500.

(ii)

Page 14 of 17

Solutions Homework #06 EE 264 (Summer 2018)

0 0.5 1 1.5 2 2.5 3 3.5 4

Frequency (kHz)

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
(s

ec
s)

-140

-120

-100

-80

-60

-40

-20

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Figure 10: Spectrogram of xFM (t) for β = 500.

Now the frequency variation is large enough that we can observe it in the spectrogram.

(iii)

Increasing the window length improves frequency resolution. However, by making the window length too

large may lead to excessive leakage, since the sidelobes area may become significant.

If Ωm is small, we must make the window longer in order to improve the frequency resolution.

The window length does not depend on Ωc provided that the frequency variations Ωc + βΩm does not

cause aliasing. That is, Ωc + βΩm < Ωs/2.

Code for Problem 6

1 %% Problem 6: Frequency modulation

2 %% a)

3 t = linspace(0,4);

4 Wc = 2*pi*1e3;

5 Wm = 2*pi;

6

7 Wi = @(beta, t) Wc + beta*Wm*cos(Wm*t);

8

9 figure

10 subplot(211)

11 plot(t, Wi(0.2, t)/(2*pi), ’k’, ’LineWidth’, 2);

12 xlabel(’t (s)’, ’FontSize’, 12);

13 ylabel(’\Omega_i/2\pi (Hz)’, ’FontSize’, 12);

14 legend(’\beta = 0.2’)

15

16 subplot(212)

17 plot(t, Wi(500, t)/(2*pi), ’k’, ’LineWidth’, 2)

Page 15 of 17

Solutions Homework #06 EE 264 (Summer 2018)

18 xlabel(’t (s)’, ’FontSize’, 12);

19 ylabel(’\Omega_i/2\pi (Hz)’, ’FontSize’, 12);

20 legend(’\beta = 500’)

21 saveas(gca, ’../figs/hw6_fm_a’, ’epsc’)

22

23 %% d)

24 beta = 0.2;

25 N = 32768;

26 n = 0:N-1;

27 %

28 x = cos(pi/4*n) - beta*sin(pi/4e3*n).*sin(pi/4*n);

29

30 % soundsc(x)

31

32 % (i)

33 dt = 1/8e3;

34 df = 1/(N*dt);

35 f = -1/(2*dt):df:1/(2*dt)-df;

36 X = fftshift(fft(x, N)/N);

37

38 figure

39 plot(f, abs(X), ’k’)

40 ylabel(’|X(j\Omega)|’, ’FontSize’, 12)

41 xlabel(’Frequency (Hz)’, ’FontSize’, 12)

42 axis([990 1010 0 0.5])

43 saveas(gca, ’../figs/hw6_fm_di’, ’epsc’)

44

45 % (ii)

46 figure

47 spectrogram(x, 256, 250, 256, 8e3);

48 saveas(gca, ’../figs/hw6_fm_dii’, ’epsc’)

49

50 %% e)

51 beta = 500;

52 N = 32768;

53 n = 0:N-1;

54

55 x = cos(pi/4*n + beta*sin(pi*n/4e3));

56 % soundsc(x)

57

58 % (i)

59 dt = 1/8e3;

60 df = 1/(N*dt);

61 f = -1/(2*dt):df:1/(2*dt)-df;

62 X = fftshift(fft(x, N)/N);

Page 16 of 17

Solutions Homework #06 EE 264 (Summer 2018)

63

64 figure

65 plot(f, abs(X), ’k’)

66 ylabel(’|X(j\Omega)|’, ’FontSize’, 12)

67 xlabel(’Frequency (Hz)’, ’FontSize’, 12)

68 saveas(gca, ’../figs/hw6_fm_ei’, ’epsc’)

69

70 % (ii)

71 figure

72 spectrogram(x, 256, 250, 256, 8e3);

73 saveas(gca, ’../figs/hw6_fm_eii’, ’epsc’)

Page 17 of 17

	Problem 1
	Code for part (1)

	Problem 2
	Problem 3
	Problem 4: Linear convolution and circular convolution
	(a)
	(b)
	(c)

	Problem 5: Overlap-add or overlap-save
	(a)
	(b)
	(c)
	(d) (optional)
	Matlab code for Problem 4

	Problem 6: Spectrograms
	Problem 7: Frequency modulation
	(a)
	(b)
	(c)
	(d)
	(i)
	(ii)

	(e)
	(i)
	(ii)
	(iii)

	Code for Problem 6

