
Solutions Homework #01 EE 264 (Summer 2018)

Problem 1

(i) y[n] = x[n]− 0.5x[n− 1] + 0.5x[n− 2]

(a)

By applying the linearity and time shift properties of the z-transform:

Y (z) = X(z)(1− 0.5z−1 + 0.5z−2)

H(z) =
Y (z)

X(z)
= 1− 0.5z−1 + 0.5z−2 (1)

H(z) =
z2 − 0.5z + 0.5

z2
(2)

(b)

From the derivation above we can see that H(z) has two poles at the origin (p1 = p2 = 0). We can use the

function roots([1, -1, 0.5]) to determine that H(z) has two zeros z1 = 0.5+j0.5 and z∗1 = 0.5−j0.5.

Note that since the polynomial coefficients are real, complex roots appear in complex conjugate pairs.

We can determine that this system is causal by inspecting the difference equation and noticing that at

any given time n, the output only depends on the current and past samples {x[n], x[n− 1], x[n− 2]}.
As the system is causal, the ROC is the exterior of a circle whose radius is the magnitude of the outermost

pole. In this case, we only have poles at the origin. Hence, the ROC is the entire z-plan with the exception

of z = 0. Hence, ROC = C∗.
Since the ROC contains the unit circle, this system is stable.

0.5

−0.5

0.5

2

ROC: z ∈ C∗

Re{z}

Im{z}

(c)

>> freqz([1, -0.5, 0.5], 1)

Note that the Matlab uses the coefficients of polynomials of z−1.
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Figure 1: Maginute and phase response for the system defined by the difference equation (i).

(ii) y[n]−0.5y[n−1]+0.2y[n−2]+0.3y[n−3] = x[n]+0.5x[n−1]+0.1x[n−2]+0.5x[n−3]

(a)

By applying the linearity and time shift properties of the z-transform:

Y (z)(1− 0.5z−1 + 0.2z−2 + 0.3z−3) = X(z)(1 + 0.5z−1 + 0.1z−2 + 0.5z−3)

H(z) =
Y (z)

X(z)
=

1 + 0.5z−1 + 0.1z−2 + 0.5z−3

1− 0.5z−1 + 0.2z−2 + 0.3z−3
(3)

H(z) =
z3 + 0.5z2 + 0.1z + 0.5

z3 − 0.5z2 + 0.2z + 0.3
(4)

(b)

For the zeros:

roots([1, 0.5, 0.1, 0.5])

This results in z1 = 0.9494, z2 = 0.2247 + j0.69, z3 = z∗2 = 0.2247− j0.69.

For the poles:

roots([1, -0.5, 0.2, 0.3])

This results in z1 = 0.9494, z2 = 0.2247 + j0.69, z3 = z∗2 = 0.2247− j0.69.

This system is also causal, since, from the difference equation, at any given time n, the output only

depends on the current and past samples. In this case, the outermost poles are the complex conjugate pair

with |p2| = 0.8043. Therefore, ROC = {|z| > 0.8043}.
The ROC contains the unit circle, therefore this system is stable.
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(c)

>> freqz([1, 0.5, 0.1, 0.5], [1, -0.5, 0.2, 0.3])
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Figure 2: Maginute and phase response for the system defined by the difference equation (ii).

(d)

By inspecting the magnitude plots of both systems, we see that while system (i) has a gain of −6.4 dB at

ω = 0.4π, system (ii) has a gain of 0 dB at the same frequency. Therefore, system (ii) will produce the

output with highest amplitude when the input is x[n] = cos(0.4πn).
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Problem 2: Echo cancellation

(a)

For the first echo generating system:

Y (z) = X(z) + αX(z)z−NH1(z) =
Y (z)

X(z)
= 1 + αz−N

For the second echo generating system:

Y (z) = X(z) + αY (z)z−NH2(z) =
Y (z)

X(z)
=

1

1− αz−N

From the problem statement, the first echo is delayed by 0.1 s. Since the sampling frequency is 8 kHz,

this corresponds to

N = Techofs = 0.1 · 8× 103 = 800 (5)

(b)

The code to generate these plots is included at the end of the solutions to this question.
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(a) Echo-generating system 1
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(b) Echo-generating system 2

Figure 3: Waveforms of the echoed signals generated by the echo-generating systems (a) 1 and (b) 2.

(c)

For each system, we just need to calculate its inverse:

G1(z) = H−11 (z) =
1

1 + αz−N
(system 1)

G2(z) = H−12 (z) = 1− αz−N (system 2)

System 1 is IIR, as it has poles different from zero. System 2 is FIR, as all its poles are at zero.

Note that while system 2 is always stable, system 1 is only stable if |α| < 1.
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(d)

We clearly see from the images below that perfect echo cancellation was achieved for both systems. System

1 could fail only if |α| ≥ 1, in which case, the system could become unstable.
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(a) Echo cancellation 1
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(b) Echo cancellation 2

Figure 4: Recovered waveforms after echoed cancellation of echoed signals produced by the echo-generating
systems (a) 1 and (b) 2.

Code for problem 2

1 %% Template for the echo cancelling problem

2 clear, clc, close all

3

4 fs = 8e3; % sampling frequency (Hz)

5 f = 400; % sinusoid frequency (Hz)

6 Tdur = 0.2; % pulse duration (s)

7 x = pulse(f,Tdur,fs); % Generates a pulse of frequency f, duration Tdur, and sampling frequency fs

8 x = [x zeros(1, 2*length(x))]; % zero pad for processing

9 n = 0:length(x)-1; % discrete-time vector

10 t = n/fs; % continuous-time vector

11

12 plot(t, x); % Plot signal

13 xlabel(’Time (s)’)

14 ylabel(’Amplitude’)

15 title(’Original pulse: 400-Hz sinusoid, 200-ms Hann window’)

16 sound(x, fs); % Play the sound

17

18 %% Your code goes here

19 alpha = 0.5;

20 Techo = 0.1;

21 N = Techo*fs;
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22

23 % Echo generation system 1

24 a1 = 1;

25 b1 = zeros(1, N+1); % b1 has N+1 coefficients

26 b1(1) = 1;

27 b1(N+1) = alpha;

28

29 y1 = filter(b1, a1, x);

30 figure

31 plot(t, y1); % Plot signal

32 xlabel(’Time (s)’, ’FontSize’, 12)

33 ylabel(’Amplitude’, ’FontSize’, 12)

34 saveas(gca, ’../figs/hw01q2_echoed1’, ’epsc’)

35 sound(y1, fs); % Play the sound

36

37 % Echo generation system 2

38 a2 = zeros(1, N+1); % a1 has N+1 coefficients

39 a2(1) = 1;

40 a2(N+1) = -alpha;

41 b2 = 1;

42

43 y2 = filter(b2, a2, x);

44 figure

45 plot(t, y2); % Plot signal

46 xlabel(’Time (s)’, ’FontSize’, 12)

47 ylabel(’Amplitude’, ’FontSize’, 12)

48 saveas(gca, ’../figs/hw01q2_echoed2’, ’epsc’)

49 sound(y2, fs); % Play the sound

50

51 %% Echo cancellation

52 % System 1

53 xrec1 = filter(a1, b1, y1); % We just need to switch the coefficients (a1, b1)

54 figure

55 plot(t, xrec1); % Plot signal

56 xlabel(’Time (s)’, ’FontSize’, 12)

57 ylabel(’Amplitude’, ’FontSize’, 12)

58 saveas(gca, ’../figs/hw01q2_echoed_rec1’, ’epsc’)

59 sound(xrec1, fs); % Play the sound

60

61 % System 2

62 xrec2 = filter(a2, b2, y2);

63 figure

64 plot(t, xrec2); % Plot signal

65 xlabel(’Time (s)’, ’FontSize’, 12)

66 ylabel(’Amplitude’, ’FontSize’, 12)
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67 saveas(gca, ’../figs/hw01q2_echoed_rec2’, ’epsc’)

68 sound(xrec1, fs); % Play the sound

Problem 3

(a)

Writing the transfer function of each system in a convenient form:

H1(ejω) = 1 + e−jω =⇒ |H1(ejω)|2 = 2(1 + cos(ω)) (6)

H2(ejω) =
1

1− 0.9e−jω
=⇒ |H2(ejω)|2 =

1

1.81− 1.8 cos(ω)
(7)

(8)

Note that while signal x[n] undergoes system h1[n] ∗h2[n] (the cascade of system 1 and system 2), signal

e[n] undergoes only system h2[n]. Therefore, by superposition,

Φyy(ejω) = Φxx(ejω)|H1(ejω)H2(ejω)|2 + Φee(e
jω)|H2(ejω)|2

= 40
1 + cos(ω)

1.81− 1.8 cos(ω)
+

10

1.81− 1.8 cos(ω)

=
50 + 40 cos(ω)

1.81− 1.8 cos(ω)
(9)

−π π

2,000

4,000

6,000

8,000

ω

Φyy(ejω)

(b)

By definition,

E(y2[n]) = φyy[0] = 452.6316 (10)
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Problem 4

Note: The input x[n] is a random signal with zero mean and autocorrelation φxx[m] = 20δ[m] in the as-

signment, but the solution solves for autocorrelation φxx[m] = 10δ[m].

(a)

From the diagram w[n] = x[n] ∗ h1[n]. Therefore,

φww[m] = φxx[m] ∗ ch1h1
[m] = φxx[m] ∗ h1[m] ∗ h∗1[−m] (11)

Φww(ejω) = Φxx(ejω) · |H1(ejω)|2

= 10 · |H1(ejω)|2 =

0, |ω| < ωc

10, ωc < |ω| < π
(12)

−π −ωc ωc π

10

ω

Φww(ejω)

(b)

By inspection, we can write the PSD of w as a constant minus the ideal lowpass filter from −ωc to ωc. The

inverse DTFT of a constant is an impulse at the origin, and the inverse DTFT of the ideal lowpass filter is

a sinc function.

φww[m] = 10δ[m]− 10
sinωcm

πm
(13)

(c)

E(w2[n]) = φww[0] = 10− 10
ωc
π

= 10(1− ωc
π

) (14)

(d)

For system 2 we have

h2[m] = δ[m− 5]←→ H2(ejω) = e−j5ω. (15)

Therefore,

Φyy(ejω) = Φww(ejω)|H2(ejω)|2 = Φww(ejω) (16)

Consequently, φyy[m] = φww[m].
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E(y2[n]) = φyy[0] = φww[0] = 10(1− ωc
π

) (17)

(e)

φwy[m] = E(w[n]y[n+m])

= E(w[n]w[n+m− 5]) (18)

= φww[m− 5]

=

10(1− ωc

π ), m = 5

−10 sinωc(m−5)
π(m−5) , m 6= 5

(19)

Problem 5

(a)

−1 1

0.5

x

px(x)

1

m

φxx[m] = δ[m]

−π π

1

ω

Φxx(ejω) = 1
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(b)

φyy[m] = E(y[m]y[n+m])

=
1

L2

L−1∑
k=0

L−1∑
l=0

E(x[n− k]y[n+m− l])

=
1

L2

L−1∑
k=0

L−1∑
l=0

φxx[m+ k − l]

=
1

L2

∑
0≤k≤L−1
0≤l≤L−1
l−k=m

1 =


L−|m|
L2 , |m| < L

0, otherwise
(20)

Note: The question in the assignment asks for a plot for L=5, but the concept remains the same and the

plot for L=4 is shown below.

For L = 4,

−4 −3 −2 −1 1 2 3 4

0.25

m

φyy[m]

(c)

For the mean of y[m]:

µy = E(y[m]) = E
(

1

L

L−1∑
k=0

x[m− k]

)

=
1

L

L−1∑
k=0

E(x[m− k]) = 0

For the average power of y[m]:

E(y2[m]) = φyy[0] =
1

L
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