
Stanford University
EE 264: Digital Signal Processing

Summer, 2018

Homework #05

Date assigned: July 28, 2018 Date due: August 5, 2018

Reading: This assignment covers primarily lecture 8 - July 30 (Problem 1-2) and lecture 9
- August 1 (Problem 3-6).
Homework submission: Please submit your solutions on Gradescope. Create a single .pdf
file containing all your analytical derivations, sketches, plots, and Matlab code (if any).

Problem 1: (25 points)

Consider the system of Example 5.8 of the textbook. Its system function is

H(z) = 0.05634
(1 + z

�1)(1� 1.0166z�1 + z
�2)

(1� 0.683z�1)(1� 1.4461z�1 + 0.7957z�2)
(1)

(a) Draw the signal flow graph of an implementation of the system as a cascade of a second-
order system with a first-order system. Mark the values of the coe�cients on the signal
flow graph.

(b) Draw a direct form II signal flow graph for implementing the system as a single third-
order flow graph.

(c) Plot the pole-zero diagram of H(z) for the unquantified coe�cients. You may use conv
to multiply out the numerator and denominator and obtain the coe�cients vectors a
and b. Then use zplane to plot the pole-zero diagram.

(d) Quantize the filter coe�cients with 6 bits to the right of the imagined binary point. Call
the Q6-quantized coe�cient vectors ah and bh. Then compare the pole-zero locations
using

plot(roots(b),‘ok’); plot(roots(a),‘xk’); hold on

plot(roots(bh),‘or’); plot(roots(ah),‘xr’);

Also plot the log magnitude of the frequency response of both the “unquantized” and
Q6-quantized coe�cients on the same graph. Hand in both plots. You should observe
that there is very little di↵erence between the quantized and unquantized systems.
What is your intuition about why this is so?

EE264: Homework #05 2

Problem 2: (25 points) (from the midterm of Spring-2014)
The following flow graphs represent equivalent di↵erence equations for implementing a

digital all-pass filter. We will compare these systems when implemented with 16-bit fixed-
point arithmetic. In the following diagrams, the signal values and constant multipliers are
all scaled as Q15 integers. The multiplications shown are quantized to 16 bits (15 bits plus
a sign bit) directly after the multiplication and before any additions are done. Answer the
questions below about the flow graphs.

x[n] y[n]
z
�1

�a

1

1

a

(A)

x[n] y[n]
z
�1

1

z
�1

a

�a 1

(B)

x[n] y[n]
a

z
�1

�1

1

z
�1

(C)

x[n] y[n]
z
�1

1

a

�a

1
(D)

(a) What is the system H(z) that describes all the above systems when the di↵erence
equations are implemented without quantization?

(b) Re-draw the signal plow graphs inserting noise sources to represent quantization of the
multiplications. Mark each of them with the symbol �2

15 denoting the average power
of the source. Give a formula for �2

15.

(c) Assuming that |a| < 1, and that the output of each system is represented as ŷ[n] =
y[n] + f [n], determine the power spectrum, �ff (ej!), of the noise component, f [n], for
each flow graph. Be sure to combine independent noise sources to simplify the analysis.

(d) For which system will the total noise power be the largest? Determine a closed-form
formula for the largest total noise power, �2

f
. Your equations should be a function of

�
2
15 and a only.

Hint: When calculating the total noise power, please avoid the frequency domain
integration.

EE264: Homework #05 3

Problem 3: Classic filters (25 points)

This question will help you familiarize yourself with designing classic filters such as But-
terworth, Chebyshev type I & II, and elliptic filter using Matlab.

(a) Design a Butterworth, a Chebyshev type I, a Chebyshev type II, and an elliptic lowpass
filter. All filters should have order 8 and 3-dB bandwidth of approximately 4 kHz for
a sampling rate of 1/T = 16 kHz. You’re free to set all other required parameters such
as passband ripple and stopband attenuation. On a single graph, plot the magnitude
response of all filters. On a di↵erent graph, plot the unwrapped phase response of all
filters.

Note: For this question you may use the Matlab functions butter, cheby1, cheby2,
and ellip.

(b) Use your filters to filter the speech signal speech dft.wav, available on Canvas. This
speech signal was recorded with sampling frequency of 22.05 kHz. Hence, before filter-
ing it with your filters, you need to use your knowledge on changing the sampling rate
by a non-integer factor to resample the signal to 16 kHz. Use the smallest upsampling
and downsampling integer factors possible.

Hint: Use the function decimate after upsampling, but remember that the lowpass
filter after interpolation must have gain equal to the upsampling factor L.

Note: 4 kHz is approximately the bandwidth of the telephone system. Hence, after
filtering, the output signals should have roughly the same quality of a conversation
over the phone. However, some of your filters may introduce enough magnitude/phase
distortion to worsen the sound quality.

(c) Denote as H16(z) any of your filters designed above for sampling rate of 1/T = 16 kHz.
Suppose you’d like to design a filter H32(z) that has the same characteristics (e.g.,
bandwidth of 4 kHz) of H16(z), but that can be used on signals sampled at a rate of
32 kHz. Give an expression for H32(z) as a function of H16(z).

Hint: revisit the notes on interchanging filtering and downsampling.

EE264: Homework #05 4

Problem 4: Notch filter for ECG signals (35 points)

Notch filters are stopband filters with characteristically narrow stopband. They are used
to remove specific frequency components from signals. In this problem, you will design digital
notch filters to remove 60 Hz interference from an electrocardiogram (ECG) signal. 60 Hz
is the frequency of alternating current (AC) in the electric power grid of most countries.
The 60-Hz interference appears in many applications, and in particular, in biological signal
recordings.

An analog notch filter is given by

H(s) =
s
2 + �

2

s2 + bs+ �2
. (2)

The magnitude plot of this filter is sketched in Figure 1

0 �

0

�3
b

⌦

20 log10(|H(j⌦)|) dB

Figure 1: Typical notch filter magnitude response

You will design a discrete-time version of this filter, and use it to filter an ECG signal
that has been corrupted by 60 Hz interference. An excerpt of that signal is show in Figure 2.
The rapid oscillations are due to 60 Hz interference.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

E
C
G

Figure 2: ECG corrupted by 60-Hz interference.

EE264: Homework #05 5

This ECG signal was sampled with sampling period T = 3 ms and it’s available on
Canvas. This file also contains a “clean” ECG signal, which you can use for comparison.
Use the Matlab script notch filter ecg template.m to load the recordings and write your
code to solve the following questions.

(a) Choose appropriate values of b and � that would make the notch filter given in (2)
suitable for this application. There is more than one right answer.

(b) Use the bilinear transformation with and without frequency pre-warping to obtain
discrete-time equivalents of the analog notch filter in (2). Specify what value of ⌦p you
used for frequency pre-warping.

(c) On the same graph, plot the magnitude response of the digital filters obtained by the
bilinear transformation. For easier comparison, the x-axis of your plot should be
!/(2⇡T) i.e., actual frequency in Hz. Discuss which filter (with or without frequency
pre-warping) is more suitable for this application. For the remainder of this problem,
you only need to consider the filter you think is best.

(d) For the filter you chose in part (c), plot the pole-zero diagram and discuss what char-
acteristics of the pole-zero diagram indicate that this filter works as a notch filter.

(e) Use the filter you designed in part (c) to filter the ECG signal corrupted by 60 Hz
interference. Plot the output of your filter and compare it with the clean ECG signal,
and with the corrupted ECG signal.

(f) Use either the Parks-McClellan algorithm (firpm) or the least-squares algorithm (firls)
to design a linear-phase FIR notch filter. Let the filter length be at most 53 (order
52).

Use the following figure to guide your design choices.

W (!) = 0

�!2�!2

�!1

!c

1

!

Hd(ej!)

Figure 3: Design specifications for FIR notch filter.

EE264: Homework #05 6

Specify !c, �!1, and �!2 that you chose in your design. Clearly, this application
would require �!1 and �!2 to be small as possible, but this will introduce too many
undesired oscillations in the passband.

Turn in the magnitude and phase plots of your design, as well as the ECG signal filtered
by your FIR filter. Note that your filter will introduce a delay of M/2, where M is
the filter order. Hence, to compare your result with the “clean” ECG you will need to
delay or advance one of the sequences.

Note: part (f) of this problem is solved on this 2004 paper using the Parks-McClellan
algorithm. The figure below shows their best result for an FIR filter of order 52. To
receive full credit for this question, you are not expected to do as well or close to
what they achieved (though you could). You’re expected, however, to make reasonable
design choices.

Figure 4: Result of notch filter FIR design using the Parks-McClellan algorithm. The filter
order was 52.

Problem 5: Hilbert transformer (25 points)

In Homework #4 you saw some applications of the Hilbert transform. In this problem,
we will focus on the Hibert transformer, which is an LTI system used to calculate the Hilbert
transform of time-domain signals. More specifically, the Hilbert transformer is used to phase-
shift signals by 90 degrees. Hence, the output of a Hilbert transformer to a cosine is a sine
of same frequency. This operation has applications in digital communication, radar systems,
and medical imaging.

As discussed in class, the Hilbert transform is defined by the convolution:

H{x(t)} =
1

⇡t
⇤ x(t) () HHT (j⌦) = �jsign(⌦) =

8
><

>:

�j, ⌦ > 0

0, ⌦ = 0

j, ⌦ < 0

(3)

EE264: Homework #05 7

We will approximate this by the following discrete-time frequency response

Hd(e
j!) = �jsign(!) =

8
><

>:

�j, 0 < ! ⇡

0, ! = 0

j, �⇡ < ! < 0

(4)

Note that this filter acts as an all-pass filter (except at ! = 0) with 90-degree phase shift.
Its impulse response is given by

hd[n] =

8
<

:

2

⇡

sin2(⇡n/2)

n
, n 6= 0

0, n = 0
(5)

The impulse response has odd symmetry about n = 0 i.e., hd[n] = �hd[�n]. Hence, we
can design linear-phase FIR systems to approximate hd[n].

For the questions below assume the filter order is M = 30 (i.e., 31 coe�cients).
Note: Since the FIR filters you will design are linear phase, their frequency response will
be approximately

H(ej!) ⇡ e
�j!M/2(�jsign(!)) =

8
><

>:

e
�j(!M/2+⇡/2)

, 0 < ! ⇡

0, ! = 0

e
�j(!M/2�⇡/2)

, �⇡ < ! < 0

(6)

Therefore, they’ll look like an all-pass except around ! = 0 and ! = ⇡, but they still
have the property of phase shifting the input signal by 90 degrees. However, due to causality
and the linear phase condition, the output signal will also be delayed by M/2 samples.

(a) Window method. Use the window method with the window of your choice to design
a linear phase FIR filter Hwin(z) that will approximate Hd(ej!). The impulse response
of the Hilbert transformer in discrete time is given in (5). Plot the magnitude and
phase response of your design.

(b) Parks-McClellan. Use the Parks-McClellan algorithm to design a linear phase FIR fil-
terHPM(z) that will approximateHd(ej!). In your design, assume that the weight function
is

W (!) =

8
><

>:

0, 0 ! < �!

1, �! ! ⇡ ��!

0, ⇡ ��! < ! ⇡

(7)

where �! = 0.1⇡. This means that your Hilbert transformer will only work between
0.1⇡ and 0.9⇡, since it will only have magnitude 1 in [0.1⇡, 0.9⇡], Naturally, you’d
like to make �! as small as possible, but that will introduce undesired ripples in the
passband. Feel free to try di↵erent values of �!.

Plot the magnitude and phase response of your design.

Matlab hints:

EE264: Homework #05 8

• When using the function firpm, note that Matlab expects the filter magnitude
|Hd(ej!)| (parameter a). However, |Hd(ej!)| = 1 over all frequencies, except zero.
To di↵erentiate that from an all-pass filter, you have to pass the extra parameter
‘hilbert’:

>> hpm = firpm(M, f, a, ‘hilbert’);

where f is the normalized frequency vector and a is the magnitude at frequencies
f. This way hpm will have odd symmetry.

• This question is already solved in the Matlab documentation of the function
firpm.

(c) Least-squares. Use the least-squares algorithm (firls) to design a linear phase FIR
filter Hls(z) that will approximate Hd(ej!). Use the same assumptions and hints of
part (b). Plot the magnitude and phase response of your design.

Problem 6: Linear equalization (25 points)

Figure 5 shows the block diagram of a digital communication system. In this system, a
sequence of bits x[n] is transmitted over a channel, which is a causal LTI system with z-
transform C(z). Since the channel is causal its output depends not only on the present bit,
but also on previous bits transmitted over the channel. Hence, the output of the channel is
the result of interference of many bits. This phenomenon is called inter-symbol interference

(ISI). In addition to ISI, after the channel, a white and zero-mean Gaussian noise r[n] with
average power �

2 = 0.001 is added to the signal. This models the noise from the receiver
circuitry.

The filter H(z) is an FIR linear equalizer, which should be designed to mitigate the
interference introduced by the channel.

C(z) + H(z)
x[n] y[n]

r[n] ⇠ N (0, �2)

Channel Linear equalizer

Figure 5: Diagram for linear equalization

For this problem, we will consider that the channel is the FIR filter given by

C(z) = 0.4032 + 0.3992z�1 + 0.1976z�2 (8)

When noise is not significant, the optimal linear equalizer is simply the inverse of the
channel:

H(z) = C
�1(z) =

1

0.4032 + 0.3992z�1 + 0.1976z�2
(9)

which is an IIR filter.
In the following questions you will design FIR filters to approximate H(z). In all cases,

assume that your FIR filter has order M = 8 (9 coe�cients).

EE264: Homework #05 9

(a) Window method. Design an FIR filter to approximateH(z) using the window method.
Since H(z) does not have discontinuities, you can use the rectangular window without
problem. On the same graph, plot the frequency response of your FIR filter and H(z).
On a di↵erent graph, plot the unwrapped phase response of your FIR filter and H(z).
Note that they are not linear phase.

Hint: use the Matlab function impz to obtain the impulse response of H(z).

(b) Test your linear equalizer using the function simple channel.m, available on Canvas.
This function takes one parameter h, which is the coe�cients of the FIR filter you
designed. The function returns the bit-error rate (BER) (number of wrongly detected
bits divided by total number of bits) of this system when the receiver equalizer has
coe�cients h. Hence, simple channel(1) returns the BER of the system without any
equalization. Report the BER with and without equalization. For the given noise
power, the BER of the equalized system should be close to 0.

(c) Non-linear phase least-squares algorithm. Now design an FIR filter using the least
squares algorithm to approximate H(z). Since H(z) has no discontinuities, you can as-
sume that the weight function isW (!) = 1 8 !. Moreover, since this filter should not be
linear phase, you cannot use Matlab’s firls function. Instead, use the least-squares al-
gorithm as described in class. You may use the script predicing bandlimited signals.m
as a starting point.

On the same graph, plot the frequency response of your FIR filter and H(z). On a
di↵erent graph, plot the unwrapped phase response of your FIR filter and H(z).

Note: the filter you designed in this part should be (ideally) identical to the filter you
designed in part (a), since the rectangular window minimizes the mean-square error
(lecture notes 9, slide 33)

(d) Estimate the noise power after the linear equalizer you designed.

Note: you should see that this value is much larger than �
2 = 0.001. This happens

because this equalizer tries to force ISI to zero at all costs, even if it enhances the
noise. This type of equalizer is called zero-forcing linear equalizer. A better choice of
equalizer is called the minimum mean-square linear equalizer, which tries to minimize
ISI without excessively enhancing the noise.

