
Stanford University
EE 264: Digital Signal Processing

Summer, 2018

Homework #04

Date assigned: July 20, 2018 Date due: July 27, 2018

Reading: This assignment covers primarily lectures 3 to 5, which corresponds to chapter 4
of the text book DTSP 3e.
Homework submission: Please submit your solutions on Gradescope. Create a single .pdf
file containing all your analytical derivations, sketches, plots, and Matlab code (if any).

Problem 1: (25 points) Same as problem 4.47 in DTSP3e.
Consider the following system for discrete-time processing of the continuous-time input

signal gc(t).

-

C-T
LTI

System
Haa(j⌦)

-

Ideal
C/D
Conv.

-

D-T
LTI

System
H1(ej!)

-

Ideal
D/C
Conv.

-

6 6

gc(t) yc(t)xc(t) x[n] y[n]

T T

Figure 1: System Block Diagram

The continuous-time input signal to the overall system is of the form gc(t) = fc(t) + ec(t)
where fc(t) is considered to be the “signal” component and ec(t) is considered to be an
“additive noise” component. The Fourier transforms of fc(t) and ec(t) are as follows:

- -

6 6
Fc(j⌦) Ec(j⌦)

A

B

⌦ ⌦�400⇡ 400⇡ �400⇡ 400⇡

Figure 2: “Typical” Fourier transforms of the input signal components.

Since the total input signal gc(t) does not have a bandlimited Fourier transform, a zero-
phase continuous-time anti-aliasing filter is used to combat aliasing distortion. Its frequency
response is:

EE264: Homework #04 2

-

6

H
H
H
H

H
H
H

H
H

�
�

�
�

�
�

�
�

�

Haa(j⌦) =

⇢
1� |⌦|/(800⇡) |⌦| < 800⇡
0 |⌦| > 800⇡

1

⌦�800⇡ 800⇡�400⇡ 400⇡

Figure 3: Anti-aliasing filter frequency response.

(a) If in Figure 1, the sampling rate is 2⇡/T = 1600⇡, and the discrete-time system has
frequency response

H1(e
j!) =

⇢
1 |!| < ⇡/2
0 ⇡/2 < |!| ⇡

sketch the Fourier transform of the continuous-time output signal for the input whose
Fourier transform is defined in Figure 2.

(b) If the sampling rate is 2⇡/T = 1600⇡, determine the magnitude and phase of H1(ej!)
(the frequency response of the discrete-time system) so that the output of the system in
Figure 1 is yc(t) = fc(t� 0.1). You may use any combination of equations or carefully
labeled plots to express your answer.

(c) It turns out that since we are only interested in obtaining fc(t) at the output, we can
use a lower sampling rate than 2⇡/T = 1600⇡ while still using the anti-aliasing filter
in Figure 3. Determine the minimum sampling rate that will avoid aliasing distortion
of Fc(j⌦) and determine the frequency response of the filter H1(ej!) that can be used
so that yc(t) = fc(t) at the output of the system in Figure 1.

(d) Now consider the following system, where 2⇡/T = 1600⇡, and the input signal is defined
in Figure 2 and the anti-aliasing filter is as shown in Figure 3.

-

C-T
LTI

System
Haa(j⌦)

-

Ideal
C/D
Conv.

- " 3 -

D-T LTI
System
H2(ej!)

-

6

gc(t) y[n]xc(t) x[n] v[n]

T

Figure 4: Filtering and interpolation system.

where

v[n] =

⇢
x[n/3] n = 0,±3,±6, . . .
0 otherwise

What should H2(ej!) be if it is desired that y[n] = fc(nT/3)?

EE264: Homework #04 3

Problem 2: (30 points)

Consider the following system for discrete-time processing of the continuous-time signal
xc(t).

C-to-D 3 H(ej!) 2 D-to-C

x[n] xe[n] ye[n] yd[n]xc(t) yc(t)

T1 T2

Assume that the input signal has a bandlimited continuous-time Fourier transform such
that Xc(j⌦) = 0 for |⌦| � 2⇡(2000).

(a) Note that the sampling periods T1 and T2 cannot be chosen independently if we wish to
maintain a consistent time scale between the input and output. Give the relationship
that is required between T2 and T1.

(b) Determine the maximum value of T2 (equivalently minimum sampling rate fs2 =
1/T2) so that aliasing cannot occur in sampling at the input or in the processing and
reconstruction of the output of the system. Also determine the corresponding value of
T1.

(c) For the values of T2 and T1 determined in part (b), Sketch the required frequency
response H(ej!) so that yc(t) = xc(t).

(d) For the values of T2 and T1 determined in part (b), determine the frequency response
H(ej!) so that yc(t) = 2xc(t� 4T1).

(e) For the values of T2 and T1 determined in part (b), determine the frequency response
H(ej!) so that the continuous-time Fourier transform of the output satisfies the con-
dition

Yc(j⌦) =

8
<

:

0 |⌦| 2⇡(500)
Xc(j⌦) 2⇡(500) < |⌦| < 2⇡(1500)
0 |⌦| � 2⇡(1500).

Plot your answer.

(f) For the value of T2 determined in part (b), determine (give an equation for) the frequency
response H(ej!) so that

yc(t) =
dxc(t)

dt
.

EE264: Homework #04 4

Problem 3: (15 points) (adapted from the midterm of 2014)

We are given a deterministic signal x[n]. We wish to compute the deterministic autocor-
relation function (ACF) of an interpolated signal xi[n] as in the following block diagram

L

Ideal

lowpass

H1(ej!)

Compute

ACF

xe[n] xi[n] �1[m]x[n]

where H1(ej!) is the ideal lowpass with gain L and cuto↵ frequency ±⇡/L. The box labeled
“Compute ACF” computes the deterministic autocorrelation function of its input:

�1[m] =
1X

n=�1
xi[m+ n]xi[n] (Assume that this inifite sum exists)

(a) An EE 264 student suggests that we can accomplish the same thing with the following
system:

x[n]
Compute

ACF
L

Ideal

lowpass

H2(ej!)

�2[m] �2e[m] �3[m]

Note that in this diagram the ACF �2[m] is treated as just another sequence that can
be upsampled and filtered. Specify the gain and cuto↵ frequency of the ideal lowpass
filter H2(ej!) that will accomplish the task of ensuring �3[m] = �1[m].

(b) Now another EE 264 student says that the following system also works.

x[n]
L

Compute

ACF

Ideal

lowpass

H3(ej!)

xe[n] �4[m] �5[m]

Is the second student right? i.e., is �5[m] = �1[m]? If not, why not? If so, how should
the gain and cuto↵ of H3(ej!) be set?

EE264: Homework #04 5

Problem 4: Quantization and quantization noise shaping (50 points)

In this problem, you will hear how quantization noise a↵ects speech signals and how we
can use noise shaping to minimize the e↵ects of coarse quantization.

On Canvas, download the Matlab scritpt quantization noise shaping template.m and
the audio file speech dft.wav. The script quantization noise shaping template.m loads
the speech signal from the file speech dft.wav, so you can use it in your simulations. The
speech in speech dft.wav is of someone saying the phrase “The discrete Fourier transform
of a real-valued signal is conjugate symmetric”.

Part 1: Implementing a quantizer

(a) Write a function quantizer with the following call:

[xq, e] = quantizer(x, B, range lims),

where x is the input signal to the quantizer, xq is the quantized signal, and e = x -
xq is the quantization error. B is the number of bits of resolution of the quantizer, and
range lims is a 1 ⇥ 2 vector that defines the range limits of the quantizer. In this
exercise, the speech signal varies from �1 to +1. Hence, range lims = [-1, 1]. Note
that the dynamic range of the quantizer is simply range lims(2) - range lims(1).

Hints:

• You can use the Matlab function quantiz to actually perform the quantization.
You’ll need to use B and range lims to calculate the partitions and codebook
used by quantiz.

• It’s up to you to choose whether your quantizer will be mid-tread or mid-rise.
Either one will work fine.

• To check your implementation, you can see whether the quantization error e is
approximately zero mean and whether its histogram resembles an uniform dis-
tributed signal.

(b) Use your function to quantize the speech signal assuming a resolution of B = 4 bits. Use
the function sound(xq, Fs) to play the quantized speech signal. In class we assumed
that the quantization noise is white, plot the empirical autocorrelation function of e[n].
What’s the quantization noise average power? Repeat your calculations for B = 10.

Hint: You may use the Matlab function xcorr(e, e, maxLag, ‘unbiased’) to ob-
tain the empirical autocorrelation function, and the function stem to plot it.

Part 2: Noise shaping without oversampling

To keep things simple, we will not implement the feedback loop (Figure 5a) necessary to
achieve quantization noise shaping. Instead, we will use superposition to treat signal and
quantization noise separately, as illustrated in Figure 5b. In this equivalent system, the
signal x[n] is unaltered, but the quantization noise is filtered by H(z). The quantization
noise e[n] will be the quantization noise you obtained by calling your function quantizer
on the input signal x[n].

As discussed in class, noise shaping can only work well when oversampling is su�ciently
high, otherwise the aliased noise will still fall in the signal band. In this first system, we
assume that there is no oversampling. The audio recording is done at 22.05 kHz, and we
assume that this corresponds to the Nyquist rate of that signal.

EE264: Homework #04 6

C-to-D + H(z) +

z
�1

+

�

+
+xc(t)

e[n]

x[n] xQ[n]

1
T = 22.05 kHz

(a) Block diagram of noise shaping in analog-to-digital converters, as discussed in lecture 5, slide
24.

H(z)

+
x[n] xQ[n]

e[n]

(b) Equivalent block obtained by applying superposition in diagram of Figure 5a. Signal is unaf-
fected, while quantization noise is filtered by H(z)

Figure 5: Block diagrams for noise shaping without oversampling.

(c) Implement system of Figure 5b to calculate the new quantized signal xQ[n] after noise
shaping. Assume that the quantizer had B = 4 bits of resolution, and that the noise
was shaped by H(z) = 1 � z

�1. Use the function sound(xq, Fs) to play the new
quantized signal.

Hint: To filter the quantization noise you may use the function filter(b, a, e).
The vector e is the vector you obtained using your function quantizer.

Part 3: Noise shaping with oversampling

Now we’ll assume that the speech signal was recorded using the analog-to-digital converter
illustrated in Figure 6a. Note that in this system, the signal is sampled by the C-to-D with
sampling frequency 22.05 ⇥ M kHz (M times greater than before). All the noise shaping
processing is performed at this new rate. Then, at the end, the signal is decimated by M ,
so that xQ[n] has the same rate of the previous system.

The equivalent system is shown in Figure 6b. Note that the signal component is unaf-
fected and it’s the same as before (i.e., the discrete-time speech signal at rate 22.05 kHz). As
for the quantization noise, we’ll use the same noise as before (the noise you obtained using
your quantizer function). However, before doing noise shaping we must upsample the noise
by M .

(d) Implement system of Figure 6b to calculate the new quantized signal xQ[n] after noise
shaping. Assume that we had the same conditions as before: B = 4 andH(z) = 1�z

�1.
Assume further that the oversampling factor is M = 3.

Hints:

• Use the Matlab function upsample(e, M) to implement upsampling.

EE264: Homework #04 7

C-to-D + H(z) +

z
�1

+

�

+
+xc(t)

e[n]

M
T = 22.05M kHz

Haa(z) M

xQ[n]

Decimator

(a) Block diagram of noise shaping in oversampled analog-to-digital converters.

M H(z) Haa(z) M

+
x[n]/M xQ[n]

e[n]

Decimator

(b) Equivalent block diagram of first-order noise shaping system with oversampling factor M .

Figure 6: Block diagrams for noise shaping with oversampling.

• For decimation, you may use the Matlab function decimate(e, M). This function
already includes the anti-aliasing pre-filtering Haa(z). By default, decimate(e,
M) uses as anti-aliasing filter the Chebyshev Type I IIR filter of order 8.

Note: In order to calculate the newly quantized signal after noise shaping, the input

path in Fig. 6b is multiplied by 1/M in order to account for the fact that in Fig. 6a the

signal is also decimated. Any solutions that do not correct the input signal by a 1/M

factor (dividing it by the oversampling factor) will not be acceptable.

(e) Calculate the quantization noise power after decimation. By how much was the power
reduced compared with the original quantization noise? Express this reduction in dB
and state how many extra bits of resolution would be needed to achieve the same
improvement.

