
Stanford University

EE 264: Digital Signal Processing

Summer, 2018

Homework #03

Date assigned: July 13, 2018 Date due: July 20, 2018

Reading: Problems 2-5 need lecture notes 4, which will be finished in class on Monday,

July 16, 2018.

Homework submission: Please submit your solutions on Gradescope. Create a single .pdf

file containing all your analytical derivations, sketches, plots, and Matlab code (if any).

Problem 1: Poles and zeros of the deterministic autocorrelation function (30

points)

As discussed in class, the deterministic autocorrelation function of an LTI system with

impulse response h[n] is defined by

chh[n] = h[n] ⇤ h⇤
[�n]. (1)

For this problem, consider that h[n] is causal and that the pole-zero diagram of its z-

transform, H(z), is shown in Figure 1a.

(a) (8 points) Sketch the pole-zero diagram of the z-transform of the deterministic auto-

correlation function Chh(z) () chh[n]. Use the empty diagram of Figure 1b for your

sketch.

Hint: First write Chh(z) in terms of H(z) using the properties of the z-transform.

1 Re{z}

Im{z}

1 Re{z}

Im{z}

(a) (b)

Figure 1: Pole-zero diagram of (a) H(z) and (b) Chh(z).
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(b) (4 points) In part (a) you may have noticed that Chh(z) has poles outside the unit

circle. Does that mean that Chh(z) is unstable? Justify your answer.

Hint: h[n] is causal, but is chh[n] causal?

(c) (7 points) Suppose that a white noise signal x[n] with average power �
2
x = 1 is input

to the system h[n]. Sketch the PSD of the output noise y[n] = x[n] ⇤ h[n]. Since the

pole-zero diagram does not provide information about the gain, the first and last points

of the magnitude response are already included. Note that the magnitude in this plot

is in log scale.

Note: your sketch does not need to be perfect to receive full credit, but be sure to

indicate the most relevant points.
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Figure 2: Sketch of the PSD of the output of h[n] for a white noise input.

(d) (3 points) Give an expression for the average power of the output signal y[n]. Your

answer should depend on �
2
x and either chh[n] or H(e

j!
).
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(e) (8 points) Note from Figure 1a that H(z) is not minimum phase. Sketch the pole-zero

diagram of Hmin(z) and Hap(z) so that H(z) = Hmin(z)Hap(z), where Hmin(z) is a

minimum-phase system and Hap(z) is an all-pass system.
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Figure 3: Minimum-phase and all-pass decomposition of H(z).

Problem 2: (15 points)

Consider the generic discrete-time system discussed in class:

C-to-D
LTI

System D-to-C
x[n]

X(e
j!
)
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)

xc(t)
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)Sampling Reconstruction

Figure 4: Diagram for discrete-time processing of continuous-time signals.

Let’s assume that input signal xc(t) and the discrete-time LTI system h[n] have the

following frequency-domain representation:

We’ll consider two di↵erent scenarios. In the first, sampling is performed at the Nyquist

rate. That is, ⌦s = 200⇡. In the second scenario, we’ll assume that the signal is under-

sampled with ⌦s = 160⇡.

(a) For each scenario, sketch the Fourier transform of the discrete-time signal x[n].

(b) For each scenario, sketch the Fourier transform of the output signal after the discrete-

time LTI system.

(c) Suppose that for reconstruction, we use the ideal lowpass filter with cuto↵ frequency

⌦s/2. For each case, sketch the Fourier transform of the output continuous-time signal

yr(t).
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Figure 5: (a) Fourier transform of the input signal xc(t) and (b) frequency response of the

discrete-time system.

Problem 3: (15 points) (from mid-term exam, fall 2009)

A continuous-time random signal xc(t) has autocorrelation function �xcxc(⌧) and corre-

sponding power spectrum �xcxc(j⌦), which is shown in Figure 6.

�100⇡ 100⇡

A

�80⇡ 80⇡

Linear taper

⌦

�xcxc(j⌦)

Figure 6: PSD of the continuous-time random signal.

This signal is sampled with sampling period T to yield the discrete-time random signal

x[n] = xc(nT ).

(a) Determine the sampling period T so that the power spectrum of the discrete-time

sampled sequence is a constant, i.e., of the form

�xx(e
j!
) = �

2
x |!|  ⇡.

In other words, choose T so that the resulting sampled signal is a discrete-time white

noise signal.

(b) Determine the value of the average power �
2
x.

(c) Is the result of part (a) only possible because of the linear taper of the continuous-time

power spectrum? If not, can you think of a general condition such that a non-white

continuous-time spectrum will become a white spectrum after sampling?

Hint: Consider what conditions the autocorrelation function would have to meet.
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Problem 4: (15 points)

Consider the continuous-time representation of the process of sampling followed by re-

construction shown in Figure 7.

⇥ Hr(j⌦)

s(t) =

1X

n=�1
�(t� nT )

xc(t) xr(t)xs(t)

Figure 7: Representation of sampling and reconstruction.

Assume that the input signal is

xc(t) = 15 + 10 cos(600⇡t) + 5 cos(1500⇡t� ⇡/3) �1 < t < 1

The frequency response of the reconstruction filter is

Hr(j⌦) =

⇢
T |⌦|  ⇡/T

0 |⌦| > ⇡/T

(a) Determine the continuous-time Fourier transform Xc(j⌦) and plot it as a function of

⌦.

(b) Assume that fs = 1/T = 2000 samples/sec and plot the Fourier transform Xs(j⌦) as

a function of ⌦ for �2⇡/T  ⌦  2⇡/T . What is the output xr(t) in this case? (You

should be able to give an exact equation for xr(t).

(c) Is it possible to choose the sampling rate so that

xr(t) = A+B cos(⌦0t)

where A is a constant? If so, what is the required sampling rate fs = 1/T , and what

are the numerical values of A, B, and ⌦0?

Problem 5: (25 points)

Consider the two-channel microphone array depicted in Figure 8. The lowpass filtered

microphone array signals are modeled by the following equations:

xc1(t) = ↵1sc(t) + vc1(t) (2a)

xc2(t) = ↵2sc(t+ td) + vc2(t), (2b)

where sc(t) is the source component of the output of the lowpass filter of channel 1. (All

signals and noises are real signals). The time-delay di↵erence, td, between the two trans-

mission paths depends on the source location, the velocity of sound (denoted c), and the
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Figure 8: Two-channel microphone array.

microphone spacing, d. Because of the lowpass anti-aliasing filters (LPF blocks), the source

signal sc(t) and the noise signals vc1(t) and vc2(t) are assumed to be bandlimited random

signals whose power spectra have highest radian continuous-time frequency ⌦N . We also

assume that all signals are stationary with zero mean. The two filtered microphone output

signals are sampled with sampling rate 2⇡/T � 2⌦N to give the discrete-time signals

x1[n] = ↵1s[n] + v1[n] (3a)

x2[n] = ↵2sD[n] + v2[n], (3b)

where s[n] = sc(nT ) and sD[n] = sc(nT + td). When D = td/T is an integer, we may write

sD[n] = s[n+D].

(a) Depending on the source location, td may be either positive or negative. What is the

range of time di↵erence values td that we can have if the sound source is somewhere

(even just slightly) to the left of the dashed line through the microphones?

(b) Assuming that D is an integer, determine an expression for the cross-correlation func-

tion �x1x2 [m] = E{x1[n + m]x2[n]}. You may assume that the signal and noises are

statistically independent.

(c) Determine the cross-power spectrum �x1x2(e
j!
), which is the DTFT of �x1x2 [m].

(d) Where will the maximum value of �x1x2 [m] occur? How could this result be used in an

algorithm for estimating the time delay td?

(e) Assume that the sampled signal component s[n] is a white random signal with power

spectrum �ss(e
j!
) = �

2
s for all !. Using the result of (c) obtain an expression for the

cross-power spectrum, �x1x2(e
j!
), and use it to determine an expression for �x1x2 [m]

that is valid even when D = td/T is not an integer. Specialize your result for the case

when D is an integer, i.e., when td is an integer multiple of the sampling period T .


