
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

M
ULTI-CO

RE CACH
E H

IERARCH
IES

BALASUBRAM
O

N
IAN

 • JO
UPPI • M

URALIM
AN

O
H

AR

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah
Norman Jouppi, HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian
Norman Jouppi
Naveen Muralimanohar

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

M
ULTI-CO

RE CACH
E H

IERARCH
IES

BALASUBRAM
O

N
IAN

 • JO
UPPI • M

URALIM
AN

O
H

AR

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah
Norman Jouppi, HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian
Norman Jouppi
Naveen Muralimanohar

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

M
ULTI-CO

RE CACH
E H

IERARCH
IES

BALASUBRAM
O

N
IAN

 • JO
UPPI • M

URALIM
AN

O
H

AR

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah
Norman Jouppi, HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian
Norman Jouppi
Naveen Muralimanohar

Multi-Core Cache Hierarchies

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

iii

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
free access
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Multi-Core Cache Hierarchies

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar

www.morganclaypool.com

ISBN: 9781598297539 paperback
ISBN: 9781598297546 ebook

DOI 10.2200/S00365ED1V01Y201105CAC017

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #17
Series Editor: Mark D. Hill, University of Wisconsin

Series ISSN
Synthesis Lectures on Computer Architecture
Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com

Multi-Core Cache Hierarchies

Rajeev Balasubramonian
University of Utah

Norman P. Jouppi
HP Labs

Naveen Muralimanohar
HP Labs

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #17

CM& cLaypoolMorgan publishers&

ABSTRACT
A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip accesses.
In addition, multi-core processors are expected to place ever higher bandwidth demands on the
memory system. All these issues make it important to avoid off-chip memory access by improving
the efficiency of the on-chip cache. Future multi-core processors will have many large cache banks
connected by a network and shared by many cores. Hence, many important problems must be solved:
cache resources must be allocated across many cores, data must be placed in cache banks that are near
the accessing core, and the most important data must be identified for retention. Finally, difficulties
in scaling existing technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations for
multi-core processors. It is an excellent starting point for early-stage graduate students, researchers,
practitioners who wish to understand the landscape of recent cache research. The book is suitable
as a reference for advanced computer architecture classes as well as for experienced researchers and
VLSI engineers.

KEYWORDS
computer architecture, multi-core processors, cache hierarchies, shared and private
caches, non-uniform cache access (NUCA), quality-of-service, cache partitions, re-
placement policies, memory prefetch, on-chip networks, memory cells.

To our highly supportive families and colleagues.

ix

Contents

Preface . xi

Acknowledgments . xv

1 Basic Elements of Large Cache Design .1

1.1 Shared Vs. Private Caches . 1
1.1.1 Shared LLC . 2
1.1.2 Private LLC . 4
1.1.3 Workload Analysis . 6

1.2 Centralized Vs. Distributed Shared Caches . 7

1.3 Non-Uniform Cache Access . 10

1.4 Inclusion . 13

2 Organizing Data in CMP Last Level Caches . 15

2.1 Data Management for a Large Shared NUCA Cache . 15
2.1.1 Placement/Migration/Search Policies for D-NUCA 16
2.1.2 Replication Policies in Shared Caches . 23
2.1.3 OS-based Page Placement . 25

2.2 Data Management for a Collection of Private Caches . 34

2.3 Discussion . 40

3 Policies Impacting Cache Hit Rates . 41

3.1 Cache Partitioning for Throughput and Quality-of-Service 41
3.1.1 Introduction . 41
3.1.2 Throughput . 43
3.1.3 QoS Policies . 52

3.2 Selecting a Highly Useful Population for a Large Shared Cache 56
3.2.1 Replacement/Insertion Policies . 56
3.2.2 Novel Organizations for Associativity . 64
3.2.3 Block-Level Optimizations . 66

3.3 Summary . 76

x

4 Interconnection Networks within Large Caches . 79

4.1 Basic Large Cache Design . 79
4.1.1 Cache Array Design . 79
4.1.2 Cache Interconnects . 80
4.1.3 Packet-Switched Routed Networks . 81

4.2 The Impact of Interconnect Design on NUCA and UCA Caches 89
4.2.1 NUCA Caches . 89
4.2.2 UCA Caches . 92

4.3 Innovative Network Architectures for Large Caches . 94

5 Technology . 101

5.1 Static-RAM Limitations . 101
5.2 Parameter Variation . 102

5.2.1 Modeling Methodology . 103
5.2.2 Mitigating the Effects of Process Variation . 103

5.3 Tolerating Hard and Soft Errors . 106
5.4 Leveraging 3D Stacking to Resolve SRAM Problems . 108
5.5 Emerging Technologies . 110

5.5.1 3T1D RAM . 111
5.5.2 Embedded DRAM . 113
5.5.3 Non-Volatile Memories . 113

6 Concluding Remarks . 117

Bibliography . 119

Authors’ Biographies . 137

Preface
The multi-core revolution is well under-way. The first few mainstream multi-core processors

appeared around 2005. Today, it is nearly impossible to buy a desktop or laptop that has just a single
core in it. The trend is obvious; the number of cores on a chip will likely double every two or three
years. Such processor chips will be widely used in the high-performance computing domain: in
supercomputers, servers, and high-end desktops. Just as the volume of low-end devices (for example,
smartphones) is expected to increase, the volume of high-end devices (servers in datacenters) is also
expected to increase. The latter trend is likely because users will increasingly rely on the “cloud” for
data storage and computation.

For many decades, one of the key determinants of overall system performance has been the
memory hierarchy. Access to off-chip memory consumes many cycles and many units of energy.The
more data that can be accommodated and found in the caches of a processor chip, the higher the
performance and energy efficiency.This continues to be true in the multi-core era. In fact, multi-core
processors are expected to place even higher pressure on the memory system: the number of pins on
a chip is expected to remain largely constant while the number of cores that must be fed with data
is expected to rise sharply. This makes it even more important to minimize off-chip accesses.

Memory hierarchy efficiency is a strong function of the access latencies of on-chip caches
and their hit rates. Future last-level caches (LLCs) are expected to occupy half the processor chip’s
die area and accommodate many mega-bytes of data. The LLC will likely be composed of many
banks scattered across the chip. Access to data will require navigation of long wires and traversal
through multiple routing elements. Each access will therefore require many tens of cycles of latency
and many nanojoules of energy, depending on the distance that must be traveled. Cache resources
will have to be allocated across threads and parts of the LLC may be private to a thread while other
parts may be shared by multiple threads.

As a result, caching techniques will undergo evolution in the coming years because of new
challenges imposed by multi-core platforms and workloads. Cache policies must now worry about
interference among threads as well as large and non-uniform latencies and energy for data transmis-
sion between cache banks and cores. On-chip non-local wires continue to scale poorly, increasing
the role of the interconnect during cache access. It is therefore imperative that we (i) devise caching
policies that reduce long-range communication and (ii) create low-overhead networks to better han-
dle long-range communication when it is required. Several new technology phenomena will also
require innovation within the caches. These include the emergence of parameter variation, hard and
soft error rates, leakage energy in caches, and thermal constraints from 3D stacking.

Consider the following examples of the game-changing impact of multi-core on caching
policies. After years of reliance on LRU-like policies for cache replacement, several papers have

xii PREFACE

emerged in recent years that have shown that alternative approaches are much more effective for
replacement in multi-core LLCs. Likewise, the past decade has seen many papers that consider
variations of private and shared LLCs, attempting to combine the best of both worlds. Hence, the
past and upcoming decades are exciting times for cache research. In retrospect, it should have been
obvious that multi-core processors would be imminent; many papers in the 1990s had pointed to this
trend. Yet, overall, the community was a little slow to embrace multi-core research. As a result, the
pace of multi-core research saw an acceleration only after the arrival of the first commercial multi-
core processors. Much work remains, especially for the memory hierarchies of future many-core
processors.

Book Organization

The goal of this book is to synthesize much of the recent cache research that has focused on
innovations for multi-core processors. For any researcher or practitioner that wishes to understand
the landscape of recent cache work, we hope that the book will be an ideal starting point. We
also expect early-stage graduate students to benefit from such a synthesis lecture. The book should
also serve as a good reference book for advanced computer architecture classes. We expect that the
material here will be accessible to both computer scientists and VLSI engineers. The book is not
intended as a substitute to reading relevant full papers and chasing down older references. The book
will hopefully improve one’s breadth and awareness of a multitude of caching topics, while making
research on a specific topic more efficient.

Given the vastness of the memory hierarchy topic, we had to set some parameters for what
would be worthy of inclusion in this book. We have primarily focused on recent work (2004 and
after) that has a strong connection with the use of multiple cores. We have focused our coverage
on papers that appear at one of the four primary venues for architecture research: ISCA, MICRO,
ASPLOS, and HPCA. However, the book has several discussions of papers that have appeared at
other venues and that have made a clear impact within the community. In spite of our best efforts,
we have surely left out a few papers that deserve mention; we can hopefully correct some of our
oversights in subsequent versions. We encourage readers to contact us to point out our omissions.

The area of multi-core caching has a strong overlap with several other areas within computer
architecture. We have explicitly left some of these areas out of this book because they have been
covered by other synthesis lectures:

• Off-chip memory systems [10]

• On-chip network designs [11]

• Core memory components (load-store-queue, L1 cache) [12]

• Cache coherence and consistency models [13]

PREFACE xiii

• Phase change memory [14]

• Power optimizations [15]

The discussions in the book have attempted to highlight the key ideas in papers. We have
attempted to convey the novelty and the qualitative contribution of each paper. We have typically
not summarized the quantitative improvements of each idea. We realize that the mention of specific
numbers from papers may be misleading as each paper employs different benchmarks and simulation
infrastructure parameters.

The second chapter provides background and a taxonomy for multi-core cache hierarchies.
The third chapter then examines policies that bridge the gap between shared LLCs and private
LLCs. The papers in Chapter 2 typically assume that the LLC is made up of a collection of banks,
with varying latencies to reach each bank. The considered policies attempt to place data in these
banks so that access latency is minimal and hit rates can be maximized. Chapter 3 also focuses
on hit rate optimization, but it does so for a single cache bank. Instead of moving data between
banks, the considered policies improve hit rates with better replacement policies, better organizations
for associativity, and block-level optimizations (prefetch, dead block prediction, compression, etc.).
That chapter also examines how a single cache bank can be partitioned among multiple threads
for high throughput and quality-of-service. Since access to an LLC often requires navigation of an
on-chip network, Chapter 4 describes on-chip network innovations that have a strong interaction
with caching policies. Chapter 5 describes how modern technology trends are likely to impact the
design of future caches. It covers modern technology phenomena such as 3D die-stacking, parameter
variation, rising error rates, and emerging non-volatile memories. Chapter 6 concludes with some
thoughts on avenues for future work.

Figure 1 uses the same classification as above and shows the number of papers that have
appeared in each cache topic in the past seven years at the top four architecture conferences. Note
that there can be multiple ways to classify the topic of a paper, and the data should be viewed as
being approximate. The data serves as an indicator of hot topics within multi-core caching. Activity
appears to be highest in technology phenomena, block prefetch, and shared caches.

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
May 2011

xiv PREFACE

0

5

10

15

20

25

N
U

M
BE

R
O

F
PA

PE
RS

2010
2009
2008
2007
2006
2005
2004

18

7

11 12

4

25

5 4

21

Figure 1: Number of papers in various cache topics in the last seven years at ISCA, MICRO, ASPLOS,
and HPCA.

Acknowledgments
We thank everyone that provided comments and feedback on early drafts of this synthesis

lecture, notably, Mark Hill, Aamer Jaleel, Gabriel Loh, Mike Morgan, and students in the Utah
Arch research group.

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
May 2011

1

C H A P T E R 1

Basic Elements of Large Cache
Design

This chapter presents a landscape of cache hierarchy implementations commonly employed in re-
search/development and identifies their key distinguishing features. These features include the fol-
lowing: shared vs. private, centralized vs. distributed, and uniform vs. non-uniform access. There is
little consensus in the community about what constitutes an optimal cache hierarchy implemen-
tation. Some levels of the cache hierarchy employ private and uniform access caches, while other
levels employ shared and non-uniform access. We will point out the pros and cons of selecting each
feature, and it is perfectly reasonable for a research effort to pick any combination of features for their
baseline implementation. Much of the focus of this book is on the design of the on-chip Last-Level
Cache (LLC). In the past, most on-chip cache hierarchies have been comprised of two levels (L1
and L2), but it is becoming increasingly common to incorporate three levels in the cache hierarchy
(L1, L2, and an L3 LLC). As we explain in this chapter and the next, future LLCs have a better
chance of optimizing miss rates, latency, and complexity if they are implemented as shared caches.
This chapter also discusses other basics that are required to understand modern cache innovations.

Before getting started, a couple of terminology clarifications are in order. In a cache hierarchy,
a cache level close to the processor is considered an “upper-level” cache, while a cache level close to
main memory is considered a “lower-level” cache. We will also interchangeably use the terms “cache
line” and “cache block”, both intended to represent the smallest unit of data handled during cache
fetch and replacement.

1.1 SHARED VS. PRIVATE CACHES

Most modern high-performance processors incorporate multiple levels of the cache hierarchy within
a single chip. In a multi-core processor, each core typically has its own private L1 data and L1
instruction caches. Considering that every core must access the L1 caches in nearly every cycle, it is
not typical to have a single L1 cache (either data or instruction cache) shared by multiple cores. A
miss in the L1 cache initiates a request to the L2 cache. For most of the discussion, we will assume
that the L2 is the LLC. But the same arguments will also apply to an L3 LLC in a 3-level hierarchy,
where the L1 and L2 are private to each core. We first compare the properties of shared and private
LLCs.

2 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

1.1.1 SHARED LLC
A single large L2 LLC may be shared by multiple cores on a chip. Since the requests originating
from a core are filtered by its L1 caches, it is possible for a single-ported L2 cache to support the
needs of many cores. One example organization is shown in Figure 1.1. In this design, eight cores

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Shared L2 Cache

L2 Cache
Controller

Shared Bus

Figure 1.1: Multi-core cache organization with a large shared L2 cache and private L1 caches per core.
A snooping-based cache coherence protocol is implemented with a bus connecting the L1s and L2.

share a single large L2 cache. When a core fails to find data in its L1 caches, it places the request
on a bus shared by all cores. The L2 cache controller picks requests off this bus and performs the
necessary look-up. In such a large shared L2 cache, there are no duplicate copies of a memory block,
but a given block may be cached in multiple different L1 caches. Coherence must be maintained
among the L1s and the L2. In the bus-based example in Figure 1.1, coherence is maintained with
a snooping-based protocol. Assume that the L1 caches employ a write-back policy. When a core
places a request on the bus, every other core sees this request and looks up its L1 cache to see if it has a
copy of the requested block. If a core has a copy of the block in modified state, i.e., this copy happens
to be the most up-to-date version and the only valid copy of the block, the core must respond by
placing the requested data on the bus. If no core has the block in modified state, the L2 cache must
provide the requested data. The L2 cache controller figures out that it must respond by examining
a set of control signals that indicate that the cores have completed their snoops and do not have the
block in modified state. If the requesting core is performing a write, copies of that block in other
L1 caches are invalidated during the snoop operation. Of course, there can be many variations of
this basic snooping-based protocol [16, 17]. If a write-through policy is employed for the L1 caches,
an L1 miss is always serviced by the L2. A write-through policy can result in significant bus traffic
and energy dissipation; this overhead is not worthwhile in the common case. Similarly, write-update
cache coherence protocols are also more traffic intensive and not in common use. However, some of

1.1. SHARED VS. PRIVATE CACHES 3

these design guidelines are worth re-visiting in the context of modern single-chip multi-cores with
relatively cheap interconnects.

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Shared L2 Cache and Directory State

L2 Cache
Controller

Scalable Non-broadcast Interconnect

Figure 1.2: Multi-core cache organization with a large shared L2 cache and private L1 caches per core.
A scalable network connects the L1 caches and L2 and a directory-based cache coherence protocol is
employed. Each block in the L2 cache maintains directory state to keep track of copies cached in L1.

The above example primarily illustrates the interface required before accessing a shared cache.
In essence, a mechanism is required to ensure coherence between the shared L2 and multiple private
L1s. If the number of cores sharing an L2 is relatively small (16 or fewer), a shared bus and a snooping-
based coherence protocol will likely work well. For larger-scale systems, a scalable interconnect and
a directory-based coherence protocol are typically employed. As shown in Figure 1.2, the cores and
the L2 cache are connected with some scalable network and broadcasting a request is no longer an
option. The core sends its request to the L2 cache and each L2 block is associated with a directory
that keeps track of whether other L1 caches have valid copies of that block. If necessary, other caches
are individually contacted to either invalidate data or obtain the latest copy of data.

There are many advantages to employing a shared cache. First, the available storage space
can be dynamically allocated among multiple cores, leading to better utilization of the overall cache
space. Second, if data is shared by multiple cores, only a single copy is maintained in L2, again
leading to better space utilization and better cache hit rates.Third, if data is shared by multiple cores
and subject to many coherence misses, the cache hierarchy must be navigated until the coherence
interface and shared cache is encountered. The sooner a shared cache is encountered, the sooner
coherence misses can be resolved.

4 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

The primary disadvantages of a shared cache are as follows. The working sets of different
cores may interfere with each other and impact each other’s miss rates, possibly leading to poorer
quality-of-service. As explained above, access to a shared L2 requires navigation of the coherence
interface: this may impose overheads if the cores are mostly dealing with data that is not shared by
multiple cores. Finally, many papers cite that a single large shared L2 cache may have a relatively
long access time on average. Also, a core may experience many contention cycles when attempting
to access a resource shared by multiple cores. However, we will subsequently (Section 2.1) show that
both of these disadvantages can be easily alleviated.

It must be noted that many of our examples assume that the L2 cache is inclusive, i.e., if
a data block is present in L1, it is necessarily also present in L2. In Section 1.4, we will discuss
considerations in selecting inclusive and non-inclusive implementations.

1.1.2 PRIVATE LLC
A popular alternative to the single shared LLC is a collection of private last-level caches. Assuming
a two-level hierarchy, a core is now associated with private L1 instruction and data caches and a
private unified (handling data and instructions) L2 cache. A miss in L1 triggers a look-up of the
core’s private L2 cache. Some of the advantages/disadvantages of such an organization are already
apparent.

The working sets of threads executing on different cores will not cause interference in each
other’s L2 cache. Each private L2 cache is relatively small (relative to a single L2 cache that must be
shared by multiple cores), allowing smaller access times on average for L2 hits. The private L2 cache
can be accessed without navigating the coherence interface and without competition for a shared
resource, leading to performance benefits for threads that primarily deal with non-shared data.

A primary disadvantage of private L2 caches is that a data block shared by multiple threads
will be replicated in each thread’s private L2 cache. This replication of data blocks leads to a lower
effective combined L2 cache capacity, relative to a shared L2 cache of similar total area. In other
words, four private 256 KB L2 caches will accommodate less than 1 MB worth of data because of
duplicate copies of a block, while a 1 MB shared L2 cache can indeed accommodate 1 MB worth
of data. Another disadvantage of a private L2 cache organization is the static allocation of L2 cache
space among cores. In the above example, each core is allocated a 256 KB private L2 cache even
though some cores may require more or less. In a 1 MB shared L2 cache, it is possible for one core
to usurp (say) 512 KB of the total space if it has a much larger working set size than threads on the
other cores.

By employing private L2 caches, the coherence interface is pushed down to a lower level
of the cache hierarchy. First, consider a small-scale multi-core machine that employs a bus-based
snooping coherence protocol. On an L2 miss, the request is broadcast on the bus. Other private L2
caches perform snoop operations and place their responses on the bus. If it is determined that none
of the other private L2 caches can respond, a controller forwards this request to the next level of
the hierarchy (either an L3 cache or main memory). When accessing shared data, such a private L2

1.1. SHARED VS. PRIVATE CACHES 5

organization imposes greater latency overheads than a model with private L1s and a shared L2. The
key differentiating overheads are the following: (i) the private L2 cache is looked up before placing
the request on the bus, (ii) snoops take longer as a larger set of tags must be searched, and (iii) it
takes longer to read data out of another large private L2 data array (than another small private L1
cache).

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Replicated Tags of all
 L2 and L1 Caches

Controller that
handles L2 misses

Scalable Non-broadcast Interconnect

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

Off-chip access

Figure 1.3: Multi-core cache organization where each core has a private L2 cache and coherence is
maintained among the private L2 caches with a directory-based protocol across a scalable non-broadcast
interconnect.

The coherence interface is even more complex if a directory-based protocol is employed
(shown in Figure 1.3). On an L2 miss, the request cannot be broadcast to all cores, but it is sent to a
directory. This directory may be centralized or distributed, but in either case, long on-chip distances
may have to be traversed. This directory must keep track of all blocks that are cached on chip and
it essentially replicates the tags of all the private L2 caches. A highly-associative search is required
to detect if the requested address is in any of the private L2 caches. If each of the four 256 KB
private L2 caches is 4-way set-associative, the directory look-up will require 16 tag comparisons to
determine the state of the block. L1 tags need not be replicated by preserving inclusion between the
L1s and L2. If a block is detected in another private L2 cache, messages are exchanged between the
directory and cores to move the latest copy of data to the requesting core’s private cache. On the
other hand, the shared L2 cache simply associates the directory with the unique copy of the block in

6 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

L2, thus eliminating the need to replicate L2 tags. In short, assuming inclusion, the use of a shared
on-chip LLC makes it easier to detect if a cached copy exists on the chip.

Table 1.1: A comparison of the advantages and disadvantages of pri-
vate and shared cache organizations.

Shared L2 Cache Private L2 Caches
No replication of shared blocks Replication of shared blocks

(higher effective capacity) (lower effective capacity)
Dynamic allocation of space Design-time allocation

among threads/cores of space among cores
(higher effective capacity) (lower effective capacity)
Quick traversal through Slower traversal through

coherence interface coherence interface
(low latency for shared data) (high latency for shared data)

No L2 tag replication for Directory implementation
directory implementation requires replicated L2 tags
(low area requirements) (high area requirements)

Higher interference No interference
between threads between threads

(negatively impacts QoS) (positively impacts QoS)
Longer wire traversals on Short wire traversals on

average to detect an L2 hit average to detect an L2 hit
(high average hit latency1) (low average hit latency)

High contention when accessing No contention when
shared resource (bus and L2) accessing L2 cache

(high hit latency for private data) (low hit latency for private data)

The differences between private and shared L2 cache organizations are summarized in Ta-
ble 1.1. It is also worth noting that future processors may employ combinations of private and shared
caches. For example (Figure 1.4), in a 16-core processor, each cluster of four cores may share an
L2 cache, and there are four such L2 caches that are each private to their cluster of four cores.
Snooping-based coherence is first maintained among the four L1 data caches and L2 cache in one
cluster; snooping-based coherence is again maintained among the four private L2 caches.

1.1.3 WORKLOAD ANALYSIS
Some recent papers have focused on analyzing the impact of baseline shared and private LLCs
on various multi-threaded workloads. The work of Jaleel et al. [18] characterizes the behavior of
bioinformatics workloads. They show that more than half the cache blocks are shared, and a vast
majority of LLC accesses are to these shared blocks. Given this behavior, a shared LLC is a clear

1.2. CENTRALIZED VS. DISTRIBUTED SHARED CACHES 7

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Private L2 cache shared by cores 0-3

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Private L2 cache shared by cores 4-7

Core 8

L1
D$

L1
I$

Core 9

L1
D$

L1
I$

Core 10

L1
D$

L1
I$

Core 11

L1
D$

L1
I$

Private L2 cache shared by cores 8-11

Core 12

L1
D$

L1
I$

Core 13

L1
D$

L1
I$

Core 14

L1
D$

L1
I$

Core 15

L1
D$

L1
I$

Private L2 cache shared by cores 12-15

Snooping-based Coherence among private L2s

Figure 1.4: 16-core machine where each cluster of four cores has a private L2 cache that is shared by its
four cores. There are two hierarchical coherence interfaces here: one among the L1 data caches and L2
cache within a cluster and one among the four private L2 caches.

winner over an LLC that is composed of many private LLCs. Bienia et al. [19] show a workload
analysis of the SPLASH-2 and PARSEC benchmark suites, including cache miss rates and the extent
of data sharing among threads. Many other cache papers also report workload characterizations in
their analysis, most notably, the work of Beckmann et al. [20] and Hardavellas et al. [3].

1.2 CENTRALIZED VS. DISTRIBUTED SHARED CACHES
This section primarily discusses different implementations for a shared last level cache. At the end
of the section, we explain how some of these principles also apply to a collection of private caches.

We have already considered two shared L2 cache organizations in Figures 1.1 and 1.2. In
both of these examples, the L2 cache and its controller are represented as a single centralized entity.
When an L1 miss is generated, the centralized L2 cache controller receives this request either from
the bus (Figure 1.1) or from a link on the scalable network (Figure 1.2). It then proceeds to locate
the corresponding block within the L2 cache structure. If the L2 cache is large (as is usually the
case), it is itself partitioned into numerous banks, and some sort of interconnection network must be
navigated to access data within one of the banks (more details on this in later sections). Thus, some
form of network fabric may have to be navigated to simply reach the centralized L2 cache controller
and yet another fabric is navigated to reach the appropriate bank within the L2 cache. Depending

8 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

CPU15

D I

Directory

CPU 0
 D I

CPU 1
 D I

CPU 2
 D I

CPU 3

D I

CPU 4

D I

CPU 5
 D I

CPU 6
 D I

CPU 7
 D I

CPU14

D I
CPU13

D I
CPU12

D I
CPU11

D I
CPU10

D I
CPU 9

D I
CPU 8

D I

CPU15
D I

CPU 0
 D I

CPU 1
 D I

CPU 2
 D I

CPU 3

D I

CPU 4

D I

CPU 5
 D I

CPU 6
 D I

CPU 7
 D I

CPU14

D I
CPU13

D I
CPU12

D I
CPU11

D I
CPU10

D I
CPU 9

D I
CPU 8

D I

Figure 1.5: Shared L2 cache with a centralized layout (the L2 cache occupies a contiguous area in the
middle of the chip and is surrounded by cores). An on-chip network is required to connect the many
cache banks to each other and the cores. In all these cases, the functionality of the cache controller is
replicated in each of the banks to avoid having to go through a central entity.

on the types of fabrics employed, it may be possible to merge the two. In such a scenario, a single
fabric is navigated to directly send the request from a core to the L2 bank that stores the block. The
L2 bank will now need some logic to take care of the necessary coherence operations; in other words,
the functionality of the L2 cache controller is replicated in each of the banks to eliminate having to
go through a single centralized L2 cache controller.

Some example physical layouts of such centralized shared L2 caches are shown in Figure 1.5.
Each of these layouts has been employed in research evaluations (for example, [2, 7, 21, 22]). Even
though the cache is banked and the controller functionality is distributed across the banks, we
will refer to these designs as Centralized because the LLC occupies a contiguous area on the chip.
Such centralized cache structures attempt to provide a central pool of data that may be quickly
and efficiently accessed by cores surrounding it. By keeping the cache banks in close proximity to
each other, movement of data between banks (if required) is simplified. The interconnects required
between L2 cache banks and the next level of the hierarchy (say, the on-chip memory controller) are
simplified by aggregating all the cache banks together.The L2 cache also ends up being a centralized
structure if it is implemented on a separate die that is part of a 3D-stacked chip (assuming a single
die-to-die bus that communicates requests and responses between CPUs and a single L2 cache
controller).

An obvious extension to this model is the distributed shared L2 cache. Even though the L2
cache is logically a shared resource, it may be physically distributed on chip, such that one bank
of the L2 may be placed in close proximity to each core. The core, its L1 caches, and one bank
(or slice) of the L2 cache together constitute one tile. A single on-chip network is used to connect
all the tiles. When a core has an L1 miss, its request is routed via the on-chip network to the tile
that is expected to have the block in its L2 bank. Such a tiled and distributed cache organization
is desireable because it allows manufacturers to design a single tile and instantiate as many tiles as
allowed by the area budget. It therefore lends itself better to scalable design/verification cost, easy

1.2. CENTRALIZED VS. DISTRIBUTED SHARED CACHES 9

Core 0

L1

D$

L1

I$

 L2 $

Core 1

L1

D$

L1

I$

 L2 $

Core 2

L1

D$

L1

I$

 L2 $

Core 3

L1

D$

L1

I$

 L2 $

Core 4

L1

D$

L1

I$

 L2 $

Core 5

L1

D$

L1

I$

 L2 $

Core 6

L1

D$

L1

I$

 L2 $

Core 7

L1

D$

L1

I$

 L2 $

Memory Controller for off-chip access

A single tile composed

of a core, L1 caches, and

a bank (slice) of the

shared L2 cache

I$

L2 $

The cache controller

forwards address requests

 to the appropriate L2 bank

and handles coherence

operations

Bottom die

with cores

and L1 caches

Core 0

L1

D$

L1

I$

L2 $

Core 1

L1

D$

L1

I$

L2 $

Core 2

L1

D$

L1

I$

L2 $

Core 3

L1

D$

L1

I$

L2 $

Memory controller for off-chip access

$ $ $ $

Top die with

L2 cache banks

Each core has

low-latency access

to one L2 bank

Figure 1.6: A shared L2 cache with a physically distributed layout. One bank (or “slice”) of L2 cache is
associated with each core. A “tile” is composed of a core, its L1 caches, and its associated L2 bank. The
figure on the right physically separates the L2 banks onto a separate die in a 3D stack, but it retains the
same logical organization as the figure on the left.

manufacture of families of processors with varying numbers of tiles, and simple upgrades to new
technology generations. Such distributed shared caches have also been implemented in recent Tilera
multi-core processors. Two examples of such a physical layout are shown in Figure 1.6. We will also
subsequently see how architectural mechanisms for data placement can take advantage of such a
physical organization. The primary disadvantage of this organization is the higher cost in moving
data/requests between L2 cache banks and the next level of the memory hierarchy.

While a centralized L2 cache structure may be a reasonable design choice for a processor
with a medium number of cores, it may prove inefficient for a many-core processor. Thermal and
interconnect (scalability and wire-length) limitations may prevent many cores from surrounding a
single large centralized L2 cache. It is therefore highly likely that many-core processors will employ
a distributed L2 cache where every core at least has very quick access to one bank of the shared L2
cache. Distributing the L2 cache also has favorable implications for power density and thermals.

Our definitions of Centralized and Distributed caches are only meant to serve as an informal
guideline when reasoning about the properties of caches. A centralized cache is defined as a cache
that occupies a contiguous area on the chip. A distributed cache is defined as a cache where each
bank is tightly coupled to a core or collection of cores. In Figure 1.6(a), if the layout of cores 4-7 was
a mirror image of the cores 0-3, the cache would be classified as both centralized and distributed,
which is admittedly odd.

When implementing a private L2 cache organization, it makes little sense to place the core’s
private L2 cache anywhere but in close proximity to the core. Hence, a private L2 cache organization
has a physical layout that closely resembles that of the distributed shared L2 cache just described.
In other words, for both organizations, a tile includes a bank of L2 cache; it is the logical policies
for placing and managing data within the many L2 banks that determines if the L2 cache space is
shared or private.

10 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

Figure 1.7: An example H-tree network for a uniform cache access (UCA) architecture with 16 arrays.

For the private L2 cache organization, if a core has a miss in its private L2 cache, the request
must be forwarded to the coherence interface. If we assume directory-based coherence, the request is
forwarded to the directory structure that could itself be centralized or distributed.The considerations
in implementing a centralized/distributed on-chip directory are very similar to those in implementing
a centralized/distributed shared L2 cache. The on-chip network is therefore employed primarily to
deal with coherence operations and accesses to the next level of the hierarchy. The on-chip network
for the distributed shared L2 cache is also heavily employed for servicing L2 hits.

1.3 NON-UNIFORM CACHE ACCESS

In most processors until very recently, a cache structure is designed to have a uniform access time
regardless of the block being accessed. In other words, the delay for the cache access is set to be
the worst-case delay for any block. Such Uniform Cache Access (UCA) architectures certainly simplify
any associated instruction scheduling logic, especially if the core pipeline must be aware of cache
hit latency. However, as caches become larger and get fragmented into numerous banks, there is a
clear inefficiency in requiring that every cache access incur the delay penalty of accessing the furthest
bank. Simple innovations to the network fabric can allow a cache to support non-uniform access
times; in fact, many of the banked cache organizations that we have discussed so far in this chapter
are examples of Non-Uniform Cache Access (NUCA) architectures.

A UCA banked cache design often adopts an H-tree topology for the interconnect fabric
connecting the banks to the cache controller. With an H-tree topology (example shown in Fig-
ure 1.7), every bank is equidistant from the cache controller, thus enabling uniform access times
to every bank. In their seminal paper [1], Kim et al. describe the innovations required to support

1.3. NON-UNIFORM CACHE ACCESS 11

a NUCA architecture and quantify its performance benefits. Firstly, variable access times for the
L2 are acceptable as the core pipeline does not schedule instructions based on expected L2 access
time. Secondly, instead of adopting an H-tree topology, a grid topology is employed to connect
banks to the cache controller. The latency for a bank is a function of its size and the number of
network hops required to route the request/data between the bank and the cache controller. It is
worth noting that messages on this grid network can have a somewhat irregular pattern, requiring
complex mechanisms at every hop to support routing and flow control. These mechanisms were not
required in the H-tree network, where requests simply radiated away from the cache controller in a
pipelined fashion. The complexity in the network is the single biggest price being paid by a NUCA
architecture to provide low-latency access to a fraction of cached data. It can be argued that most
future architectures will anyway require complex on-chip networks to handle somewhat arbitrary
messaging between the numerous cores and cache banks. Especially in tiled architectures such as
the ones shown in Figure 1.6, it is inevitable that the different cache banks incur variable access
latencies as a function of network distance.

In the next chapter,we will discuss innovations to NUCA architectures that attempt to cleverly
place data in an “optimal” cache bank. These innovations further drive home the point that traffic
patterns are somewhat arbitrary and require complex routing/flow control mechanisms. In Chapter 4,
we describe on-chip network innovations that are applicable to specific forms of NUCA designs. In
the rest of this section, we describe the basic NUCA designs put forth by Kim et al. in their paper [1].

L1 I L1 D Core

Cache controller

L2 cache
banks

connected
with an
on-chip
network

Figure 1.8: A NUCA L2 cache connected to a single core [1].

12 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

Physical Design
Kim et al. [1] consider a large L2 cache that has a single cache controller feeding one processor

core (see Figure 1.8). In terms of physical layout, they consider two implementations. The first
employs a dedicated channel between each of the many cache banks and the cache controller. While
private channels can provide low contention and low routing overheads for each access, the high
metal area requirements of these private channels are prohibitive. Such a design would also not
easily scale to multiple cache controllers or cores. The second layout employs a packet-switched
on-chip network with a grid topology. This ensures a tolerable metal area requirement while still
providing high bandwidth and relatively low contention. Multiple cache controllers (cores) can be
easily supported by linking them to routers on the periphery of the grid (or any router for that
matter). While Kim et al. [1] advocate the use of “lightweight” routers that support 1-cycle hops, it
is not yet clear if such routers can be designed while efficiently supporting the flow control needs
of the cache network (more on routers in Chapter 4). If such lightweight routers exist, Kim et al.
correctly point out that a highly-banked cache structure is desireable: it reduces access time within
a bank, reduces contention at banks and routers, supports higher overall bandwidth, and provides
finer-grain control of cache resources.
Logical Policies

Logical policies for data management must address the following three issues: (1) Mapping:
the possible locations for a data block, (2) Search: the mechanisms required to locate a data block,
and (3) Movement: the mechanisms required to change a block’s location.

The simplest mapping policy distributes the sets of the cache across banks while co-locating
all ways of a set in one bank. As a result, the block address and its corresponding cache index bits
are enough to locate the unique bank that houses that set. The request is routed to that bank, tag
comparison is performed for all ways in that set, and the appropriate data block is returned to the
cache controller. Since the mapping of a data block to a bank is unique, such an architecture is known
as Static-NUCA or S-NUCA.This design does not support movement of a block between banks and
does not require mechanisms to search for a block.

An alternative mapping policy distributes ways and sets across banks.The W ways of a set can
be distributed across W different banks. Policies must be defined to determine where a block is placed
upon fetch. Similarly, policies are required to move data blocks between ways in order to minimize
average access times. Because a block is allowed to move between banks, such an architecture is
referred to as Dynamic-NUCA or D-NUCA. Finally, a search mechanism is required to quickly
locate a block that may be in one of W different banks. Kim et al. consider several policies for each
of these and the salient ones are described here.

The search of a block can happen in an incremental manner, i.e., the closest or most likely bank
is first looked up, and if the block is not found there, the next likely bank is looked up. Alternatively,
a multicast search operation can be carried out where the request is sent to all candidate banks,
and they are searched simultaneously. The second approach will yield higher performance (unless
it introduces an inordinate amount of network contention) but also higher power. Combinations

1.4. INCLUSION 13

of the two are possible where, for example, multicast happens over the most likely banks, followed
by an incremental search over the remaining banks. Kim et al. propose a Smart Search mechanism
where a partial tag (six bits) for each block is stored at the cache controller. A look-up of this partial
tag structure helps identify a small subset of banks that likely have the requested data and only those
banks must now be searched. While such an approach is very effective for a single-core design where
all block replacements happen via the cache controller, this design does not scale as well to multi-core
designs where partial tags must be redundantly maintained at potentially many cache controllers.
The next chapter discusses alternative solutions proposed by Chishti et al. [23, 24]. To date, efficient
search in a D-NUCA cache remains an open problem.

To allow frequently accessed blocks to migrate to banks closer to the cache controller, Kim et
al. employ a Generational Promotion mechanism (and also consider several alternatives). On a cache
miss, the fetched block is placed in a way in the furthest bank. Upon every subsequent hit, the block
swaps locations with the block that resides in the adjacent bank (way) and edges closer to the cache
controller.
Summary

Kim et al. show that NUCA caches are a clear winner over similar sized UCA caches and
multi-level hierarchies (although, note that an N-way D-NUCA cache is similar in behavior to a
non-inclusive N-level cache hierarchy). D-NUCA policies offer a performance benefit in the 10%
range over S-NUCA and this benefit grows to 17% if a smart search mechanism is incorporated.
This argues for the use of “clever” data placement, but the feasibility of D-NUCA mechanisms
is somewhat questionable. Data movement is inherently complex; consider the example where a
block is being searched for while it is in the process of migrating and the mechanisms that must be
incorporated to handle such corner cases.The feasibility of smart search, especially in the multi-core
domain, is a major challenge. While the performance of D-NUCA is attractive and has sparked
much research, recent work shows that it may be possible to design cache architectures that combine
the hardware simplicity of S-NUCA and the high performance of D-NUCA. Chapter 2 will discuss
several of these related bodies of work.

1.4 INCLUSION

For much of the discussions in this book, we will assume inclusive cache hierarchies because they
are easier to reason about. However, many research evaluations and commercial processors employ
non-inclusive hierarchies as well. It is worth understanding the implications of this important design
choice. Unfortunately, research papers (including those by the authors of this book) often neglect to
mention assumptions on inclusion. Section 3.2.1 discusses a recent paper [25] that evaluates a few
considerations in defining the inclusion policy.

If the L1-L2 hierarchy is inclusive, it means that every block in L1 has a back-up copy in
L2. The following policy ensures inclusion: when a block is evicted from L2, its copy in the L1
cache is also evicted. If a single L2 cache is shared by multiple L1 caches, the copies in all L1s are
evicted. This is an operation very similar to L1 block invalidations in a cache coherence protocol.

14 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

The primary advantage of an inclusive hierarchy in a multi-core is the ease in locating a data block
upon an L1 miss – either a copy of the block will be found in L2, or the L2 will point to a modified
version of the block in some L1, or an L2 miss will indicate that the request can be directly sent to
the next level of the hierarchy.The L2 cache is also a central point when handling coherence requests
from lower levels of the hierarchy (L3 or off-chip). The disadvantage of an inclusive hierarchy is the
wasted space because most L1 blocks have redundant copies in L2.

Some L1-L2 hierarchies are designed to be exclusive (a data block will be found in either an
L1 cache or the L2 cache, but not in both) or non-inclusive (there is no guarantee that an L1 block
has a back-up copy in L2). Data block search is more complex in this setting: on an L1 miss, other
L1 caches and the L2 will have to be looked up. If a snooping-based coherence protocol is employed
between the L1s and L2, this is not a major overhead as a broadcast and search happens over all L1s
on every L1 miss. This search of L1s must be done even when handling coherence requests from
lower levels of the hierarchy. However, just as with snooping-based protocols, the search operation
does not scale well as the number of L1 caches is increased. The advantage, of course, is the higher
overall cache capacity because there is little (or no) duplication of blocks.

Another basic implementation choice is the use of write-through or write-back policies.Either
is trivially compatible with an inclusive L1-L2 hierarchy, with write-through policies yielding higher
performance if supported by sufficiently high interconnect bandwidth and power budget. A write-
through policy ensures that shared blocks can be quickly found in the L2 cache without having to
look in the L1 cache of another core. A writeback cache is typically appropriate for a non-inclusive
hierarchy.

15

C H A P T E R 2

Organizing Data in CMP Last
Level Caches

Multi-cores will likely accommodate many mega-bytes of data in their last-level on-chip cache. As
was discussed in Chapter 1, the last-level cache (LLC) can be logically shared by many cores and be
either physically distributed or physically contiguous on chip. Alternatively, each core can maintain
a private LLC. We will next examine several architectural innovations that attempt to cleverly place
data blocks within the LLC to optimize metrics such as miss rates, access times, quality-of-service,
and throughput.This chapter primarily focuses on cache architectures that have non-uniform access
for different cache banks and techniques that attempt to minimize access times for blocks (we
consider both shared and private LLCs in this chapter). The next chapter focuses on data placement
techniques that are oblivious or agnostic to the non-uniform nature of cache accesses.

2.1 DATA MANAGEMENT FOR A LARGE SHARED NUCA
CACHE

We begin by examining an LLC that is shared by all on-chip cores. It is expected that such a large
multi-megabyte cache will offer non-uniform latencies to banks, regardless of whether the LLC
cache is physically contiguous or physically distributed across the chip. Most innovations will apply
to either physical layout, and in the subsequent discussions, we make note of where this is not true.

In Section 1.3, we have already discussed the basics of a NUCA implementation [1], where
banks are connected with an on-chip network and cache access latencies are determined by network
distances and contention for each request. We also discussed the basic mechanisms required for data
mapping, movement, and search. Note that the work by Kim et al. [1] dealt exclusively with a NUCA
design for a single-core processor. The papers discussed in this section attempt to develop solutions
for data management in a NUCA cache that support multiple cores. We first discuss a few papers
that are characterized by their use of complex search mechanisms but that allow great flexibility in
terms of data placement and migration. We then discuss some limited work on LLC data replication.
We finally end with a discussion of papers that influence data placement with schemes that do not
require complex searches.

16 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

2.1.1 PLACEMENT/MIGRATION/SEARCH POLICIES FOR D-NUCA
The work of Kim et al. [1] introduced two major forms of NUCA caches: static (S) and dynamic (D)
NUCA. Since D-NUCA was expected to perform better, much of the early NUCA work focused
on D-NUCA and allowed blocks to migrate within the LLC. This sub-section focuses almost
exclusively on such D-NUCA designs. However, all of this work had to suffer from the overheads
of a fairly complex search mechanism, a problem that to date does not have a compelling solution.

Beckmann and Wood, MICRO’04

Beckmann and Wood [2] proposed the first detailed multi-core NUCA architecture. They
assume a layout (shown in Figure 2.1) where the shared NUCA cache resides in the middle of the
chip and is surrounded by eight cores. The shift to multi-core motivates the following basic changes
to the NUCA architecture of Kim et al.: 1. Requests are injected into the NUCA network from
eight distributed locations on chip (this results in a much less regular traffic pattern). 2. The cache
is broken into even more banks (as many as 256 banks) to support higher bandwidth requirements
(later studies [7] have shown that such excessive banking is not required). 3. The on-chip network
overheads are alleviated by assuming a larger link width and by connecting each router to four banks.

 CPU 2
L1D L1I

 CPU 3
L1D L1I

 CPU
 4

L1D
L1I

 CPU
 5

L1D
L1I

 CPU 6
L1D L1I

 CPU 7
L1D L1I

 C

PU
 0

L1

D
L1

I

 C
PU

 1

L1
D

L1
I

Figure 2.1: A NUCA L2 cache in an 8-core processor [2].

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 17

A major contribution of this work is the classification of banks into regions and architectural
policies to allow a block to migrate to a region that minimizes overall access times. As shown in
Figures 1.5a and 2.1, the 256 cache banks are organized as 16 tetris-shaped regions or bankclusters.
The cache is organized as 16-way set-associative and each region accommodates one way for all sets.
Thus, a given block may reside in any one of the 16 regions, depending on the way it gets placed in.
Eight of the 16 regions are classified as local because of their physical proximity to the corresponding
eight cores (these are the lightly shaded regions in the figure). Ideally, a core must cache its private
data in its local region. Four center regions (dark shade) are expected to cache data that is shared by
multiple cores. Four inter regions are expected to cache data that is shared by two neighboring cores.

The rules for block placement (initial allocation) and movement are simple. Initial placement
is somewhat random (based on the block’s tag bits). From here, a block is allowed to gradually
migrate to different regions based on the cores that access it. Over time, as cores “pull” the block
closer to their local regions, the block eventually settles at the “center-of-gravity” of all its requests.
The following migration rules allow a block to move without having to maintain state with each
block. “Other-local” refers to the local bank of a core other than the requesting core.

other-local => other-inter => other-center => my-center => my-inter => my-local

Beckmann and Wood correctly identify that the most significant problem with the above
architecture is the difficulty in locating a block. In a dynamic-NUCA policy that distributes ways
across banks, the way (bank) that contains the data is not known beforehand. Beckmann and Wood
employ a multicast search policy where the block address is first multicast to the six banks most
likely to contain the requested block (the local, inter, and four center regions). If all six banks return
a miss, then the request is multicast to the remaining 10 banks. While this search mechanism is
reasonably fast, it imposes significant network and bank load. Performing the search sequentially
across all 16 banks is likely too time-consuming. Kim et al. [1] employed a partial tag structure that
allowed a single core to quickly determine the bank at a modest overhead. Extending that solution
to a multi-core platform would incur much higher storage overhead and network overhead to keep
all partial tag structures coherent after every migration. None of the above search mechanisms
(including other innovations discussed at the end of this section) appear acceptable in the modern
power- and wire-constrained world. Further, any search mechanism must also be cognizant of the
fact that a block may be in transit between banks, else a miss may be signaled even though the block
does exist in cache. This requires a mechanism to detect an inconsistency (for example, the directory
believes that a cached copy exists, but the search failed to detect it) and then re-execute search after
all outstanding migrations have finished.Thus, the lack of a robust search mechanism clearly appears
to be the Achilles heel of any multi-core dynamic-NUCA policy that distributes ways across banks.
To estimate the impact of search, Beckmann and Wood also evaluate an idealized perfect search
mechanism that magically sends the request to the correct bank.

Their results can be best summarized as follows. Compared to a static-NUCA policy that
requires no search but does not strive for data proximity, the dynamic-NUCA policy with the
multicast search offers almost no overall benefit. This is because the benefits of block migration

18 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

(proximity of data) are offset by the overheads of an expensive search mechanism. An idealized
perfect search is required to extract a few percentage points of improvement. Even with idealized
search, improvements are hard to come by because many shared blocks tend to reside in central banks
and cannot be accessed with very low latencies1. Beckmann and Wood show that prefetching data
into L1 with stream buffers is perhaps a more practical way to minimize the performance impact
of long access times in a large shared NUCA cache (although, note that prefetch will exacerbate
the network power problem). Transmission lines are also considered in that paper and discussed in
Section 4.3. A major message of Beckmann and Wood’s paper is the limited performance potential
and inordinate complexity of dynamic-NUCA, an innovation that had largely positive attributes in
a single-core setting.

Huh et al., ICS’05

In a paper that appeared shortly after Beckmann and Wood’s, Huh et al. [22] validate many of
the above observations. Huh et al. evaluate a 16-core chip multiprocessor with a large banked NUCA
cache in the middle of the chip (see Figure 1.5b). They confirm that an S-NUCA policy leads to
long access times on average. If ways are distributed across banks and blocks are allowed to migrate
between banks with a D-NUCA policy, there is a minor performance improvement. They consider
both 1- and 2-dimensional block movement where 1-D movement prevents a block from moving
out of its designated column. The lack of substantial performance improvement from D-NUCA is
primarily attributed to the complexity entailed when searching for a block.To avoid having to access
numerous banks, Huh et al. implement a distributed set of replicated partial tags. At the top/bottom
of every column of banks, partial tags for every block in that column are stored. A look-up into this
storage reveals if one or more banks in that column can possibly have the requested block. These
additional look-ups of partial tags and banks (nearly 50% more than the S-NUCA case) negate half
the benefit afforded by D-NUCA’s data proximity. They also result in increased power and bank
access rates.The various tag stores will have to be updated with on-chip messages every time a block
is replaced/migrated. Huh et al. evaluate L1 prefetching and show that it is an effective technique
to hide L2 access times with and without D-NUCA.

The paper also formulates a cache implementation that can operate at multiple points in the
shared-private spectrum. Sharing Degree (SD) is defined as the number of processors that share a
portion of cache. At one end of the spectrum is a cache shared by all processors (an SD of 16 in
Figure 1.5b), and at the other end is a cache partitioned into 16 fragments, each fragment serving
as a private cache for a core (an SD of 1 in Figure 1.5b). When the cache is completely shared
(SD=16), coherence must only be maintained between the cores’ private L1s, and directory state is
maintained along with each L2 block. When the cache has sharing degree less than 16, coherence
must also be maintained among the multiple L2 fragments. A directory is maintained in the middle
of the chip and must be looked up after every miss in an L2 fragment. Huh et al. show that different

1 In Section 4.3, we describe the novel Nahalal layout of Guz et al. [6] that reduces latency for shared blocks in a similar D-NUCA
architecture.

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 19

applications yield optimal performance with different sharing degrees and argue for a dynamic
scheme that selects the value of SD on a per-application basis and even on a per-block basis. The
logic for such reconfiguration is expected to be non-trivial, especially since per-block reconfiguration
may require complex indexing mechanisms.

The rationale for variable sharing degree has its roots in the inherent trade-offs between
shared and private caches, explained previously in Table 1.1. As sharing degree is increased, the
cache offers better hit rates, but S-NUCA’s somewhat random placement of blocks within the shared
cache leads to increased cache access times. The work by Huh et al. thus puts forth a reasonable
approach to balance the pros and cons of not only shared/private caches, but also S-NUCA/D-
NUCA. By employing S-NUCA and a tunable sharing degree, they eliminate complex search, allow
for manageable access times, and allow manageable hit rates. The primary overhead is the indexing
logic that must be reconfigured and the centralized L2 directory capable of maintaining coherence
among 16 L2 fragments. Huh et al. believe that a simple S-NUCA design with a fixed sharing degree
of 2 or 4 provides the best combination of performance and low complexity. As we will see later in
this chapter, page coloring is an alternative approach to form shared/private regions that eliminates
the need for hardware-based L2 coherence, but it relies on software OS support.

Liu et al., HPCA’04

The work of Liu et al. [26] was among the first in the area of shared LLC for multi-cores.
Their work did not consider a NUCA cache, but the look-up mechanism introduces non-uniformity
in access latency. The LLC is split into multiple banks, all connected to a bus shared by all the cores
(similar to Barroso et al.’s Piranha processor [21]). In essence, each bank contains some ways for
every set in the LLC. When a core initiates an L2 access, the ways in a subset of banks is first looked
up (phase 1). If data is not found here, the ways in the remaining banks are looked up (phase 2).
This is similar to the multicast search first introduced by Kim et al. [1]. To allow for the varying
needs of each core, Liu et al. allow each core i to look up a certain collection of Wi ways in phase 1.
The OS determines this collection of Wi ways for each core by setting up a hardware table. Liu et
al. also observe that such an organization (similar to the designs later introduced by Beckmann et
al. [2] and Huh et al. [22]) provides a hybrid between a shared and private cache because, (i) similar
to a private cache, each core can have its data localized to a few banks, and (ii) similar to a shared
cache, hit rates are high as data is not replicated and LLC space can be non-uniformly allocated to
cores based on need.

Dybdahl, HPCA’07

Another hybrid shared/private LLC was proposed by Dybdahl and Stenstrom [27]. They
assume an LLC that is shared and distributed (similar to Figure 1.6).The ways of a set are distributed
across the many slices, so it is a D-NUCA implementation and subject to D-NUCA problems
(complex search and migration). Their key innovation is the reservation of some ways in each slice
as being private to the local core.The other ways are deemed shared. For any access, the private ways

20 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

of the core are first looked up, followed by all other ways (similar to the policy of Liu et al. [26]). On
every access, the requested block is brought into that core’s private ways within the LLC. If a block
must be evicted from the private way, it is spilled into one of the many shared ways (not necessarily
to a way in that slice). Each core is allocated a certain number of pre-specified ways in the cache (this
is heeded when a block from the shared ways must be evicted). This designation of ways as being
private and shared results in a replacement policy different than that employed in prior D-NUCA
designs. Private ways are also allocated per core based on various run-time statistics. These statistics
include the number of hits to the LRU way within the core’s private quota (to estimate the increased
miss rate if the core was assigned one less way) and the number of hits in shadow tags that track the
last evicted block from each private domain (to estimate the increased hit rate if the core was assigned
one more way). Such statistics have also been employed by other papers and will be discussed in
more detail in Chapter 3.

By introducing a miss-rate-aware allocation of ways to cores, Dybdahl and Stenstrom prevent
the shared cache from letting LRU dictate the partition of ways among cores. The way allocations
are applied uniformly to all sets and therefore represent a relatively coarse-grain partition.

NuRAPID and CMP-NuRAPID, Chishti et al., MICRO’03 and ISCA’05

While D-NUCA is gradually being acknowledged as “too complex to implement”, some early
work by Chishti et al. [24] considered an alternative that was higher-performing and potentially less
complex in a single-core setting. Their paper in MICRO’03 focused only on a NUCA architecture
for a single processing core, while their ISCA’05 paper considers multiple cores.

Two key contributions were made in the first paper: (i) Instead of co-locating tags and data
blocks, Chishti et al. propose implementing the entire tag array as a centralized structure near the
processing core/cache controller. The cache access begins with a tag look-up and the request is then
directly sent to the NUCA bank that has the data. Such a design eliminates the need to search for
a block by progressively looking up multiple banks. However, every block movement will require
that the centralized cache controller be informed so that tags can be updated. The overhead of tag
storage and tag update will increase dramatically in a multi-core setting. (ii) Chishti et al. propose
decoupling tag and data block placement. A block is now allowed to reside in any row in any cache
bank and the tag storage (organized in a conventional manner) carries a pointer to the data block’s
exact location. As blocks are accessed, they may move to a bank that is closer to the cache controller,
swapping places with any block that may not have been recently touched. Since a swap can now
happen between any two blocks, the block movement policy allows the closest banks to accommodate
the “globally hottest” (most frequently and recently touched) blocks, and not just the hottest blocks
in each set. Note that conventional D-NUCA would restrict each set to only place a small subset
of ways close to the CPU, whereas Chishti et al.’s NuRAPID policy (Non-Uniform access with
Replacement And Placement usIng Distance associativity) allows all the ways of a hot set to be
placed in a nearby bank. Such flexibility can allow NuRAPID to out-perform D-NUCA, especially
if applications non-uniformly stress their sets. It can also reduce inter-bank traffic, especially if

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 21

banks are sufficiently large. The overhead in providing such flexibility is that data blocks need to
store reverse pointers that identify their entry in the tag array, so that the corresponding tag can
be updated when a swap happens. We may also have to independently track LRU among the rows
of a large data bank, although the paper claims that random selection of blocks during a swap is
adequate.

Thus, the paper puts forth an interesting organization that decouples tags and data blocks,
and allows for more flexible movement of data blocks. Such a decoupled organization was also
adopted by more recent proposals to reduce conflicts and improve hit rates ([28, 29], discussed in
Chapter 3). It does not suffer from a complex search problem because, similar to Kim et al.’s partial
tag storage [1], the entire tags are first examined at the cache controller before sending the request
to a unique bank. However, the flexibility entails increased implementation complexity and block
look-up in a multi-core setting continues to be problematic.

In a follow-on paper, Chishti et al. extend their scheme to handle multiple cores [23]. Just as
in the NuRAPID [24] design, the CMP-NuRAPID [23] design also decouples data and tag arrays.
The data array is a shared resource; any core can place its data in any row of the data array; the
data array is organized as multiple banks with non-uniform access times. Those are the similarities
with the NUCA shared caches described so far in this section. The rest of the design represents an
organization with private L2 caches. Each core maintains a private tag array, with entries capable of
pointing to any row of the shared data array. Keeping the tag arrays coherent is tricky: Chishti et al.
assume that the tag arrays are kept coherent upon misses/movements/replacements by broadcasting
changes to all tag arrays. Tag arrays must be sufficiently large to allow substantial coverage of the
shared data array and allow for significant sharing of data blocks. For a 4-core processor, the tag
arrays combined required twice as many entries as the shared data arrays. This limits the scalability
of the approach. The proposed design overcomes three disadvantages of a private L2 organization:
(i) If multiple cores read the same data block, data copies are created in each private cache, leading
to lower overall capacity. (ii) If multiple cores read/write the same block and have copies in their
respective private L2 caches, there are frequent L2 coherence misses, invalidations, and duplicate
copies. (iii) L2 cache capacity is statically partitioned among cores.

Chishti et al. address problems (i) and (ii) by maintaining a single copy of a shared block
in the shared L2 and having multiple tag arrays point to this block. Problem (iii) is addressed by
maintaining large tag arrays that allow a core to map blocks to more than its fair share of L2 space
(limited only by the size of the per-core tag array). Data blocks maintain a single reverse pointer to a
tag entry – hence, any block movement requires a broadcast so all tag arrays can update their forward
pointers. In addition, controlled replication of read-only blocks is allowed.The management of these
read-only blocks is similar to their management in a private cache organization: each tag array can
point to a copy of the block in a nearby data bank, and a write requires a bus broadcast to invalidate
other cached copies and upgrade the block’s state from Shared to Modified. Replication of blocks
in a shared cache is discussed in more detail in Section 2.1.2.

22 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

The CMP-NuRAPID design is therefore an interesting hybrid between private and shared L2
caches. It has much of the performance potential of a shared cache, plus it allows selective replication
of read-only blocks (allowing it to out-perform traditional shared NUCA caches). But it also entails
much of the complexity associated with private L2 caches, especially that involving tag maintenance
and coherence. In that sense, CMP-NuRAPID inherits the primary disadvantage of D-NUCA: if
blocks are allowed to move arbitrarily and have no fixed home in the data array, effort has to be
expended to either search for this block when an access is desired (D-NUCA), or effort has to be
expended so every core has accurate pointers to the block (CMP-NuRAPID).

Innovations for D-NUCA Block Search

We have already mentioned the several problems involved in locating a block in a D-NUCA
cache. The original NUCA paper by Kim et al. [1] proposed the use of partial tags at the core
to locate the block with modest storage overheads. Extending this solution to a multi-core setting
is problematic because every core must now replicate the partial tags and every block movement
triggers a broadcast to update these partial tags. Huh et al. [22] adopt a layout and block placement
policy that makes search more manageable. Cores constitute the top and bottom rows of a grid
network, and a block is restricted to be in its statically assigned column. Requests from cores are
routed horizontally to the top or bottom of the column where they consult the partial tags for banks
in that column and then route the request to the appropriate set of banks. Chishti et al. [23, 24]
assume that the tag array (for most of the L2 cache) is located with each cache controller. The tag
look-up precisely identifies the bank that caches the data block and minimizes bank activity. But this
presents the same problems as with replicated partial tags: high storage requirements and broadcasts
to update tags on every block movement.

Ricci et al. [30] use a prediction based method to narrow down block search without incurring
high storage or network overheads. They rely on a Bloom filter [31] at each core to compactly
represent the possible location of a block in each bank. While this reduces storage overhead by
nearly a factor of 10, compared to a partial tag structure, it introduces a non-trivial number of false
positives. Further, Ricci et al. update each Bloom filter only when that core accesses a block, i.e., all
Bloom filters are not updated on a block fetch or movement. While this reduces on-chip network
traffic, it introduces false negatives because the filters occasionally fail to detect the presence of a
block in a bank. Thus, this Bloom filter based mechanism yields a prediction for possible location
of a block, and mis-predictions are not uncommon. On an L2 access, the banks indicated by the
Bloom filters are first searched; if the block is not located, all other banks must be looked up before
signaling a miss.

In spite of these innovations, the search mechanism continues to represent a challenge for D-
NUCA. The quest for effective D-NUCA search mechanisms appears to have lost some steam. Not
only is the complexity of D-NUCA migration and search difficult to overcome, but there appear
to be other solutions on the horizon (page coloring applied to S-NUCA) that combine the best

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 23

properties of S-NUCA and D-NUCA as well as the best properties of shared and private caches.
This approach is discussed shortly in Section 2.1.3.

2.1.2 REPLICATION POLICIES IN SHARED CACHES
In a system with private L2 caches, each L2 cache is allowed to keep a read-only copy of a block,
thus allowing low-latency access to the block. In a system with a shared L2 cache, the single L2 can
only maintain one copy of each block.This copy may not be in close proximity to cores accessing the
block, leading to long access latencies. This is especially true in early S-NUCA designs where block
placement is determined by block address bits and the assigned bank can be somewhat random.This
problem can be mitigated by allowing the single shared L2 cache to maintain multiple copies of a
block, such that each core can find a copy of the block at relatively close proximity. Such replication
of cache blocks would then require a mechanism to keep the replicas coherent.

Victim Replication, Zhang and Asanovic, ISCA’05

Zhang and Asanovic propose a simple and clever mechanism to implement block replication
without incurring much overhead for coherence among replicas in the L2 cache.As a design platform,
they assume a shared L2 cache that is physically distributed on chip, similar to the tiled layout
discussed previously in Figure 1.6. An S-NUCA design is adopted, so each block maps to a unique
tile/bank (referred to as the home bank). Replication is effected as follows: when a block is evicted
by a core’s private L1, it is placed in the local L2 bank, even though it is not the home bank for that
block.This new L2 copy of the block is referred to as a replica, and we refer to the corresponding core
as the replicating core for that block. Luckily, since the block was recently cached in the replicating
core’s L1, the directory (maintained along with the copy of the block in the home bank) still lists the
replicating core in the list of sharers. So, a subsequent write to the block (by any core) will trigger an
invalidation message to the replicating core/tile. On receipt of an invalidation, a core must look for
that block in its L1 and its local L2 slice and invalidate any copy it finds. This is a very clean way to
maintain coherence among L2 replicas, by falling back upon already existing state for L1 coherence
and requiring an extra L2 bank look-up on every invalidation. The rest of the coherence protocol
remains unchanged.

When a core has a miss in its private L1, it looks up its local slice of L2 (to find a potential
replica) before forwarding the request to that block’s home bank. Thus, an additional L2 look-up is
incurred in this design if a local replica does not exist; conversely, if a local replica is found, there is
no additional L2 bank look-up and there is also a saving in on-chip network traffic. If a replica is
found in the local L2 slice, it is brought into L1 and removed from the local L2 slice.

The design is referred to as Victim Replication because replication is invoked for blocks being
evicted out of L1. Not every evicted block is replicated in the local L2 slice. There is of course no
replication if the local L2 slice happens to be the block’s home bank. There is also no replication
if the local L2 slice has no spare room, i.e., the replica can only be created in a location currently
occupied by an invalid line, an existing replica, or a home block with no sharers.

24 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

Cache indexing is impacted by the Victim Replication scheme.Typically, the most significant
bits of the index represent the bank number. When looking for replicas in the local bank, the bank
number must be ignored while indexing (since it points to the home bank) and must instead be
included as part of the tag to correctly signal a hit on the block. This results in a minor growth in
the tag array.

Thus, Victim Replication attempts to combine the favorable properties of shared and private
caches. By allowing a large fraction of accesses to be serviced by replicas in the local L2 slice, L2
access time is similar to that of a small private L2. The design continues to enjoy the low miss rate
advantages of a shared cache because replicas are only created if there is “spare room”. In principle,
the design is not dis-similar to having a separate victim cache for each L1. While traditional victim
caches are small and fixed, in the proposed design, victim blocks can occupy a large region in the
local L2 slice and are careful to not evict other useful L2 blocks. Note that Victim Replication only
applies to S-NUCA designs where each core has a designated local L2 slice. It may be employed
with a few modifications in D-NUCA designs as long as replicas are not allowed to migrate (to
preserve the accuracy of the directory). The value of Victim Replication is somewhat reduced in an
S-NUCA design that employs smart page coloring (discussed in Section 2.1.3).

ASR, Beckmann et al., MICRO’06 and CMP-NuRAPID, Chishti et al., ISCA’05

There has been little follow-on work to the notion of replication within a shared cache. This
may attest to the fact that the Victim Replication idea leaves little room for improvement in terms
of performance and implementation complexity. We briefly discuss two related bodies of work here.

Beckmann et al. [20] propose a dynamic probabilistic system to select the appropriate level
of replication. Increased replication leads to lower average access times for L2 hits, but it also lower
effective capacity. A block is replicated with a probability N in the local L2 slice (either shared or
private) when it is evicted out of L1. The probability N is either increased or decreased periodically
based on a cost-benefit estimation. Various structures are introduced to approximately estimate the
change in local hit rates and memory accesses assuming a lower or higher probability level N . More
details are discussed in Section 2.2. However, these schemes are more applicable to private cache
organizations. The Victim Replication policy already has an implicit cost-benefit analysis encoded
within it: the replica is created only at the expense of a block deemed dispensable. We could augment
the policy to probabilistically allow a replica to replace an “indispensable” block, but there might be
little room for improvement (this gap has not been quantified to date).

The second related body of work that allows replication in a shared cache is the previously
described work of Chishti et al. [23]. Recall that they employ an unusual design with private per-core
tags and a shared data array. Chishti et al. employ replication when an L2 data block is read multiple
times by a remote core. When a block is replicated, the design very much resembles a private cache
organization. Each core’s private tag array points to a nearby copy of the data block. Since the tag
array stores the block in Shared state, a write to that block is preceded by an invalidation operation
on the bus to get rid of other shared copies.The reason this discussion finds itself in the shared-cache

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 25

section of this book is because they allow multiple tag arrays to point to a single shared block in
the data array (to not only simplify producer-consumer sharing but also boost capacity by avoiding
replication at times).

SP-NUCA and ESP-NUCA, Merino et al., HPCA 2010

The SP-NUCA architecture of Merino et al. [32, 33] introduces separate indexing functions
into a shared cache for each core. This allows them to design a hybrid Shared-Private NUCA (SP-
NUCA) architecture. In their implementation, the last level cache is organized as a shared S-NUCA.
A block is first assumed to be a private block and only the local bank is looked up (the bank number
bits of the address are not used for indexing and are stored as part of the tag). If the block is not
found in the local bank, it is assumed to be shared and regular S-NUCA indexing is employed
(the bank number bits of the address are used to send the request to the appropriate bank). If the
block remains unfound, the private banks of every other core are looked up before sending the
request to memory. During its L2 lifetime, a block is initially classified as “private” and then may
transition to a different bank in “shared” state if it is touched by another core. While SP-NUCA
is efficient at localizing private data, it requires multiple bank look-ups to locate shared data. If the
workload is entirely multi-programmed, SP-NUCA degenerates to behavior similar to a private
cache organization (higher miss rates). In addition to the limited space for private data, SP-NUCA
also suffers from longer latencies for shared blocks. Merino et al. [33] introduce the ESP-NUCA
architecture to alleviate these concerns. Some shared blocks are allowed to be replicated. In addition,
ways of a bank can be dynamically allocated across private, shared, and replicas. Techniques similar
to dynamic set sampling (discussed later in Section 3.1.1) are used to identify the best partition.

2.1.3 OS-BASED PAGE PLACEMENT
A shared L2 cache with an S-NUCA policy has several desireable features: it minimizes L2 cache
miss rates and allows for simple block look-up. Most early work in the area pointed to a major
short-coming in such a design: blocks are statically placed in banks based on the block’s physical
address; assuming that block physical addresses are somewhat random, blocks tend to get scattered
uniformly across the many banks. As a result, on average, a request is serviced by a bank that is
half-way across the chip. This motivated the several bodies of work on D-NUCA that allow a block
to reside in any one bank and attempt to bring relevant blocks to closer banks. This also motivated
several studies on private cache organizations because a small private cache has a lower hit time than
the average hit time of a large shared S-NUCA cache.

However, unlike the assumption in early work, block physical addresses need not be ran-
dom. The use of OS-based page coloring [34] can control block physical addresses and hence their
placement in banks. These principles have been known for several years and even been employed to
improve locality in cc-NUMA multiprocessor systems in the 1990s [35, 36, 37, 38, 39, 40].This idea
remained untapped within the NUCA space until a paper by Cho and Jin in MICRO 2006 [41].
In the last few years, it is becoming increasingly clear that this approach perhaps combines the best

26 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

of S-NUCA and D-NUCA, the best of shared and private caches, and balances performance and
implementation complexity.

Cho and Jin, MICRO’06

We begin the discussion by examining how data blocks get mapped to banks in an S-NUCA
cache. Figure 2.2 shows a 32-bit physical address and the bits used to index into a 16 MB 8-way L2
cache partitioned into 16 banks. This example can be easily extended to depict the larger physical
addresses that are typical in modern systems. If we assume a 64-byte cache line size, the last (least
significant) six bits (offset) are used to select individual bytes within a cache line. The cache has 32K
sets, each set containing 8 ways. Fifteen bits are required for the set index. In an S-NUCA cache,

00000000000 000000000000000 000000

Block offset Set Index Tag

Bank number with
Set-interleaving

Bank number with
Page-to-Bank

00000 0000

Page offset Physical page number

CACHE
VIEW

OS
VIEW

Figure 2.2: The interaction of physical address bits with cache placement and page mapping.

sets are distributed across banks, but an entire set (all 8 ways) resides in a single bank. Hence, a
subset of the set index is used to identify the bank that contains the block. Early studies assumed
that the least significant bits of the set index are used as the bank number. We will refer to this as
set-interleaved mapping. This causes consecutive sets to be placed in different banks and tends to
uniformly distribute program working sets across all banks. This helps distribute load across banks
and reduces contention and capacity pressure at each bank. Unfortunately, this means that requests
from a core are just as likely to be serviced by the most distant bank as they are to be serviced by the
nearest bank.

Alternatively, if the most significant bits of the set index are used as the bank number, several
consecutive sets will be placed in the same bank. We will refer to this as page-to-bank mapping
because an entire OS page can potentially be placed in a single bank. Because programs exhibit
spatial locality, a series of requests to the same page will be serviced by the same bank, leading to
high contention and uneven capacity pressures.

Now consider the operating system’s view of the block’s physical address (also shown in
Figure 2.2). If we assume that the OS page size is 16 KB, the least significant 14 bits of the address

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 27

represent the page offset, and the remaining bits represent the physical page number. When the OS
assigns a program’s virtual page to a physical page, it ends up determining a subset of the set index
bits for all cache lines within that page. If we employ set-interleaved mapping, the page number bits
(for the example in Figure 2.2) do not intersect with the bank number bits; as a result, the assignment
of a virtual page to a physical page does not determine a unique bank that the page gets mapped
to. The page gets distributed across all banks. If we employ page-to-bank mapping, the bank number
bits are a subset of the page number bits. Thus, by assigning a virtual page to a physical page, the OS
also determines the cache bank that the entire page gets mapped to, hence the term page-to-bank
mapping. Such a mapping presents the option to leverage the OS to optimize data placement in a
shared cache, instead of the hardware-intensive and complex D-NUCA policies. Adopting standard
terminology, the bank number bits, that represent a subset of the page number bits, can be referred
to as the page color. If there are 16 banks (and hence, 16 colors), the OS organizes its free pages
into 16 lists based on color. When a new page is requested, the OS first determines the optimal
bank for that page and then selects a free page from the appropriate color list. By coloring the page
appropriately, the OS ensures that the entire page is cached in the optimal bank.

To recap, we are employing a large shared cache with an S-NUCA policy and an indexing
mechanism that maps an entire OS page into one bank. It is expected that future shared caches will
be distributed on chip, with one or more banks co-located with each core (Figure 1.6). Such a layout,
combined with the appropriate page coloring policy can also mimic a private cache organization for
many workloads. If we assume that threads running on different cores access mostly private data,
i.e., the sets of pages touched by the cores are largely disjoint, then the OS can color pages so they
are placed in the local banks of the accessing core. Each L2 bank can therefore be made to serve as a
private cache for its corresponding core. In fact, such a design can out-perform an organization with
traditional private L2 caches (Figure 1.3) because on an L2 miss, the request can be directly sent to
the next level of the hierarchy without having to check the contents of other private L2 caches. This
design does deviate from a private cache organization when handling a shared page. A shared page
will have a unique instance in the shared L2 cache and will reside in exactly one bank. Therefore,
unlike the private cache set-up, the block cannot be placed in the local bank of each core that accesses
the block. This can be detrimental for performance if the blocks are primarily read-only.

As mentioned above, an obvious OS page coloring policy, that has also been used for cc-
NUMA multiprocessors [36, 38, 39, 40], is first-touch color assignment. In this policy, a page is
assigned a color that places it in the cache bank nearest to the core that first touches that page. It
is based on the premise that most subsequent accesses to that page will also be from the same core.
This is certainly a valid premise for a workload that primarily consists of single-thread programs. It
is also a valid premise for multi-threaded applications where a majority of the working set happens
to be private to each thread.

Let us first consider a workload that consists of single-thread programs. If we assume that
every block is only touched by one core, then the first-touch color assignment allows every L2 access
to be serviced by the local bank, leading to low L2 access times. But, correspondingly, each core

28 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

only enjoys a fraction of the total shared L2 capacity since all of its data is steered towards a single
bank. This behavior strongly resembles that of a private cache organization. In order to out-perform
the private cache organization, the page coloring policy must be augmented so each core can have
ownership of a larger fraction of the shared L2 if required, without incurring long L2 latencies.

Cho and Jin [41] propose page-spreading policies that augment a baseline first-touch page
coloring policy. When a cache bank experiences high “pressure”, subsequent page requests from
that core are assigned colors that map the pages to neighboring banks. This allows a core to have
more than its fair share of L2 cache space, which is the fundamental reason behind a shared cache’s
superior hit rates. Since the policies are attempting to localize a core’s working set in the adjacent
and neighboring banks, L2 access times will continue to be relatively short. Cho and Jin propose the
use of Bloom filter based counters to track the number of unique pages accessed recently by a core;
the counter value serves as the metric for cache pressure. Awasthi et al. [42] formalize and evaluate
Cho and Jin’s page-spreading approach. In essence, every page request is mapped to a bank that
minimizes a mathematical function that estimates cache pressure and the distance between the bank
and requesting core. As a result, cache hit rates approach that of a baseline set-interleaved shared
cache, and most L2 requests are serviced by the adjacent or nearby banks. Such a design is expected
to out-perform a private cache organization on practically all workloads comprised of single-thread
programs (a few caveats mentioned subsequently).

In a multi-threaded workload, each page should ideally be placed in a bank that represents the
center-of-gravity of all requests to that page.The first-touch policy (with or without page-spreading)
may end up placing a shared page in a sub-optimal bank.This can be remedied by migrating the page
over time, and this approach is discussed shortly. Without such dynamic migration, the behavior
for shared pages is likely to be very similar to that in the baseline set-interleaved shared L2 cache.
The first-touch policies will continue to provide low access times for the many private pages in such
workloads.

In summary, the use of an S-NUCA shared cache combined with OS page coloring policies is
perhaps a compelling design point when considering performance and implementation complexity.
It provides most of the benefit of D-NUCA policies without much complexity overhead; it therefore
represents a favorable design point between the original set-interleaved S-NUCA and D-NUCA.
In addition, the proposed OS-based approach on an S-NUCA shared cache provides the biggest
advantage of private caches over shared caches: quick access to private data blocks. The page-
spreading policies also allow the cache to meet the high hit-rate potential of baseline set-interleaved
shared caches. Note, however, that a private cache organization can out-perform the proposed OS-
based approach when handling some multi-threaded applications: in the former, a shared block may
frequently be found in the local private cache, while in the latter, the shared block will have a single
(possibly distant) residence.

In follow-on work, Jin and Cho [43] employ compiler hints to guide the OS in selecting
a near-optimal page color. At compile time, the program is executed with a test input and access
counts per page per core are collected. Pages are clustered into groups, and the access pattern for

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 29

the group is matched against a handful of well-known access patterns. Based on the access pattern,
a hint is included in the binary to guide the OS to map each page to a tile that is expected to be
the dominant accessor of that page. It is not clear if the compiler hints provide significantly more
information than that provided by first touch. Some pages are marked as being shared equally by
all cores, and such pages are scattered across all tiles by modifying the cache indexing function for
that page. Jin and Cho also make an initial case for replication of shared pages, although coherence
issues for these replicated pages are not considered.

A paper by Marty and Hill [44] mentions that coherence overheads in a multi-core chip can
be high if remote directories must be contacted on every L1 cache miss. This is especially wasteful
when cores are allocated across virtual machines (VMs) and valid data is likely to be found in a
nearby tile. Marty and Hill solve the problem with a two-level coherence protocol where a first-level
protocol stores a directory within the cores used by a VM. A miss in this directory invokes the more
expensive second-level protocol. This is an alternative approach to solving the locality problem in
an S-NUCA cache. However, the use of page coloring, as suggested by Cho and Jin [41], would
largely solve the locality problem with little hardware support and not require a two-level hierarchical
coherence protocol. In other words, if first-touch page coloring was employed, most pages would
be cached in tiles that belong to the VM; the overheads of accessing the LLC bank and enforcing
directory-based coherence would therefore not be very high.

Page coloring was also employed by Madan et al. [9] to reduce communication overheads in
a 3D reconfigurable S-NUCA cache. This work is described in more detail in Section 5.4.

Awasthi et al. and Chaudhuri, HPCA’09

Cho and Jin’s first-touch page coloring policy combined with page-spreading is very effective
at balancing the latency and capacity needs of private pages. It is not very effective at finding an
optimal home bank for shared pages. It is also not effective if threads migrate and leave their working
sets behind in their original banks. Depending on how a program moves through different phases,
it is also possible that a thread may cache relatively inactive pages in its local bank and “spread”
more active pages to neighboring banks, resulting in a sub-optimal mapping of data to banks. Other
dynamic conditions (such as programs finishing or starting) may also cause fluctuations in cache
bank usage, rendering previous page mapping decisions as sub-optimal. In order to deal with the
above weaknesses, we may need dynamic policies that track cache usage and affect page migrations
if the “optimal” home bank of a page is different than the one that was estimated on first-touch.
This migratory approach would start to resemble the already discussed D-NUCA policies. In order
to make this happen, a page must be copied in DRAM from its current physical address to a new
physical address that has the appropriate optimal color. In addition, all traces of the old physical
page must be wiped out of the old cache bank and out of the TLBs of all cores.

Awasthi et al. [42] show that migrations are helpful as first-touch decisions tend to become
sub-optimal over time, especially for multi-threaded applications with many shared pages. In order
to avoid the expensive copy of pages in DRAM, they propose a mechanism that introduces another

30 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

level of indirection on chip. Consider a page that is initially placed in physical address A and is
mapped to some bank X. In order to move the page to a different bank Y , the on-chip TLBs are
updated to refer to this page by a new physical address A′. But the page continues to reside in the
same physical address A in DRAM; it just has a new name on chip (L1 and L2). If a block is not
found in L2 and has to go off-chip to memory, a request for the original physical address A is issued
to DRAM. When a page is renamed from A to A′ on chip, the shadow address region is used for
A′ to ensure that the new name is not already being used by another page. The shadow address
region represents addressable portions of memory that do not actually exist in DRAM; for example,
in a 32-bit system with 2 GB DRAM, the address range 2-4 GB is the shadow address space. A′ is
selected such that it has the appropriate new page color, and the original page color is also encoded
into A′. This makes it easy to re-construct A from A′, an operation required when there is an L2
miss and the request must be issued to DRAM. The primary overhead of this on-chip renaming
mechanism is a relatively large on-chip structure, called the Translation Table. It keeps track of every
page migration (A → A′) and is analogous to a large on-chip second-level TLB. Note that every
page migration continues to require a flush of the original page’s contents from cache and from
TLBs.

In addition to this low-cost migration scheme, Awasthi et al. introduce OS policies that
periodically examine hardware counters and effect migrations. Based on cache usage and hit rates,
banks (page colors) are classified as Acceptors (need more cache space) and Donors (can spare some
cache space to other programs). A program that needs more cache space is allowed to map its new
pages to a donor color; an overly pressured acceptor color is allowed to move some of its pages to
a donor color. Donor colors are chosen by computing a function that considers cache usage and
distance between core and banks.

In concurrent work at the same conference, Chaudhuri makes a similar argument [45] with
the PageNUCA design. He too shows that page migrations within the L2 are very beneficial for both
multi-threaded and multi-programmed workloads. To migrate a page within L2, the OS-assigned
address (P) is converted into a different address (P ′) with the appropriate page color. Since shadow
addresses are not used, it is possible that another virtual page may be mapped to P ′; this page must
be swapped into the address P . Since the L1 cache and main memory continue to use the old
mappings, tables are required at cores (dL1Map and iL1Map) and at the L2 (forward and inverse
L2Maps) to perform translations back and forth between P and P ′. Two techniques are proposed
to identify pages that need migration: (i) a hardware-based technique that dynamically tracks access
patterns with a page access counter table (PACT), and (ii) a manual code instrumentation process
that designates page affinity to cores at the start of the program. When a page is identified for
migration, the L2 is locked up while blocks are explicitly copied between the source and destination
banks, and various map tables are updated (this is unlike the technique of Awasthi et al. where the
original page blocks are invalidated and the new bank is populated on-demand as blocks in the new
page are touched). Overall, a fair bit of complexity is introduced to determine the pages that require
migration and to keep the various tables updated on a migration. Chaudhuri makes the claim that

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 31

page granularity is appropriate for migration (compared to D-NUCA’s block granularity) because
(i) a page migration essentially performs prefetched migration for several blocks in that page, (ii) a
bulk transfer is more efficient because it can be efficiently pipelined across a scalable interconnect,
and (iii) overhead in all book-keeping tables is reduced.

In the real world, it is highly likely that such migratory schemes will be required to adapt to
continuously changing workloads and operating conditions.These migratory schemes are an attempt
to take the previously proposed Cho and Jin approach (S-NUCA with first-touch page coloring)
even closer to D-NUCA. Migration does involve some overheads, and it is not clear if these will
ever be tolerable. The papers by Awasthi et al. and Chaudhuri attempt to alleviate one of these
overheads (DRAM copy) but end up introducing different non-trivial overheads (Translation Table,
L1/L2Maps, etc.). Hence, the quest for an elegant migratory scheme continues.

Reactive NUCA (R-NUCA), Hardavellas et al., ISCA’09

In recent work, Hardavellas et al. [3] put forth a novel NUCA architecture that relies on OS
management of pages in a large shared L2 cache and does not require complex search mechanisms.
While this resembles the same objective of Cho and Jin, Hardavellas et al. adopt a different approach
that is centered around classifying the nature of a page and handling each class of pages differently.
Each core is also allowed its own indexing functions, enabling each core to have a different view of
the shared L2 cache – this allows a private page to migrate between banks without requiring page
copy in DRAM or complex hardware structures. In addition to efficiently handling both shared and
private pages, it facilitates replication at various granularities. While there is no explicit focus on
migration and cache capacity allocation among competing threads, their approach can be extended
to handle those problems. It therefore represents one of the best design points today. The above
properties will be clarified in the subsequent discussion.

The first observation the authors make is that pages can typically be classified into three
categories.

(i) Shared instruction pages: These pages are typically accessed by all threads in a multi-threaded
application in read-only mode. Such pages can be replicated in each L2 cache bank without requiring
a coherence mechanism within the shared L2. To prevent high cache pressure from replication, a
page is replicated once in a cluster of I banks, where I can be potentially determined at run-time (I
is assumed to be 4 in the paper [3]).

(ii) Private data pages: These pages are private to each thread and must only be placed in the
local bank. To handle capacity allocation of space among heterogeneous threads, the policy can be
modified to allow private pages to be placed in one of P local/nearby banks (the exact indexing
mechanism will be described shortly), where P can be determined at run-time for each thread (P is
set to 1 in the paper for all threads).

(iii) Shared data pages: For server workloads, data pages are typically shared by all threads and
exhibit reads and writes. Each block must therefore be instantiated in a single bank (to avoid need
for coherence), and pages can be equally distributed across S banks (to minimize miss rates and

32 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

hotspots and because it is difficult to estimate an optimal bank for each page). S is set to 16 (the
number of cores) in the paper.

Before we consider how blocks are placed in the cache, let us first describe the process for
classifying pages into the three categories above. The process is entirely OS-based and requires
book-keeping in the page tables and TLBs. On first-touch, a page is marked as either being an
instruction page or a private data page, depending on whether it originated from the L1 instruction
or data cache. If a core has a data TLB miss and the OS recognizes that the page is marked as “data
private” elsewhere, it re-classifies the page as being “data shared” and flushes the page out of the
other core’s TLB and L2 cache bank.

Next, consider data placement in banks. As an example, assume that banks are organized as
clusters of size n. Assume that each cluster is disjoint. Once a page is assigned to a cluster, it is placed
in one of the n banks depending on the page address bits. All cores within that cluster recognize a
uniform numbering scheme for the banks in that cluster, so given an address, any of the cores can
easily figure out the bank that stores the page. To maximize proximity of data to the requesting core
and to balance load across clusters, Hardavellas et al. use a clever rotational interleaving mechanism.
Each core is assumed to be part of a cluster with the core at its center (thus ensuring that the core’s
data is placed in its immediate vicinity). Clearly, clusters are now overlapping (unless the cluster size
is 1). Each bank is given a number between 0 and n − 1 (referred to as the rotational ID), such that
each cluster ends up having banks with unique rotational IDs (an example is shown for n = 4 in
Figure 2.3). Since a bank now belongs to four different clusters, its load is roughly the average load

00 01 10 11

10 11 00 01

00 01 10 11

10 11 00 01

Figure 2.3: An R-NUCA cache with a rotational ID numbering system for n = 4 and two example
clusters (in red and blue) [3].

in those four clusters (thus leading to better load distribution across banks). Since each bank has a
fixed rotational id, all cores again recognize a uniform numbering scheme for the banks, and page
requests can be easily directed to the appropriate bank.

As mentioned above, logical clusters of three different sizes are adopted – shared data pages
assume that banks are organized as clusters of size 16, instruction pages assume clusters of size 4,
and private data pages assume clusters of size 1. So if a core issues a request for a private data page,

2.1. DATA MANAGEMENT FOR A LARGE SHARED NUCA CACHE 33

it knows that the page is placed in the local cluster; since this is a cluster of size 1, the request is
sent to the local bank. If a core issues a request for an instruction page, it knows that the page is
placed in one of the banks in its local cluster of size 4; two bits of the page address designate this
bank (this is the bank’s rotational ID) and the request is sent there. Note that other cores that have
this bank in their cluster will also access this instruction page in the same way (all these cores refer
to the bank by the same rotational ID); so this page is essentially shared by 4 cores. This page may
also be present in 3 other banks (in a 16-core processor), thus leading to controlled replication. The
cluster size designates the degree of replication (and sharing) for instruction pages. If a core issues
a request for a shared data page, it knows that the page is in one of the banks that form a cluster of
size 16; four bits of the page address are used to identify this bank and send the request there. The
same process is used by all the cores that have the bank in their cluster. Note that each core is aware
of the class that a page belongs to (the page class is stored in the TLB) and can easily index into
the L2 cache banks in the appropriate way. When a page is re-classified from being “data private”
to “data shared”, the page will index differently into the cache because of the change in cluster size.
Hence, the old contents of the page must be flushed from a single cache bank and reinstated in the
new bank (the DRAM physical address remains the same, so no DRAM copy is required).

The R-NUCA architecture has simple indexing, allows controlled replication, and appropri-
ately handles private and shared pages.The additional burden placed on the OS is the book-keeping
in the page tables and TLB to track the page classification; no OS-based page coloring is required be-
cause it is the page classification and the corresponding cluster size that determines where the page is
placed. No auxiliary hardware structures are introduced because there is no explicit migration (apart
from the compulsory movement of a page from being “data private” to “data shared”). Once a page
is designated as “data shared”, migration is deemed as unworthy because shared pages are observed
to be roughly equally shared by all (16) cores. While the authors do not evaluate heterogeneous
cache capacity allocation across cores, this may be possible by allowing each core to have varying
values of P , instead of the default size of 1. However, every time P is changed, all private pages will
have to be flushed and migrated to their new locations. Since DRAM physical addresses are never
changed, again, no DRAM copies are required. In spite of the overheads to dynamically estimate
P and implement the migration, the design does not suffer from the other migration overheads
(various tables for translation) present in the work of Awasthi et al. [42] and Chaudhuri [45].

Lin et al., HPCA’08 and SC’09

In a recent study, Lin et al. [46] evaluate the impact of page coloring on shared cache man-
agement in a real system with dual-core Xeons. This study serves to validate prior simulation-based
studies and reveals a few new observations as well. Since the Xeons do not offer non-uniform cache
access, page coloring is not being used to improve data proximity, but to simply enforce shared cache
partitioning between two competing cores/programs. A static policy is evaluated where working set
sizes are known beforehand, and a dynamic policy is also considered where run-time measurements
every epoch guide incremental allocations of page colors to cores. Performance improvements aver-

34 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

age in the neighborhood of 10%. The dynamic policy requires page migrations in DRAM when a
page is re-assigned to a different color. Lin et al. note that this can be a problem and implement a lazy
page migration mechanism that limits the performance degradation from page migration to only
2% on average. These overheads may be higher if there are frequent migrations or if there are more
cores and greater demands on the memory system. They also note that a program’s performance
sometimes improves when part of its cache allocation is given to the co-scheduled program. This
is because the overall lower L2 miss rate allows the first program to benefit from shorter memory
queuing delays.

Lin et al. [47] follow up their HPCA’08 work with a solution that takes advantage of small
hardware structures and OS-controlled policies. A large shared UCA L2 cache is assumed, and
the cache is partitioned into C colors. A physical page maps entirely to one of these colors. To
dynamically control capacity allocation across threads, a page’s color can be changed on the fly; the
physical address of the page is not changed, just the index bits used to look up the L2 cache. The L2
is preceded by a Region Mapping Table that stores the new cache color for each page. Clearly, this
can result in a large table; hence, colors are re-assigned at the coarser granularity of a region (about
16 MB in [47]). The table need not be looked up on every access because the new color can also be
stored in the TLB.Thus, the Region Mapping Table is very similar in spirit to the Translation Table of
Awasthi et al. [42], but it has manageable complexity because data is re-mapped at a much coarser
granularity. The overall approach of using another level of indirection and combining hardware help
with software policies is also similar to that of Awasthi et al. [42] and Chaudhuri [45]. Again, the
movement of pages does not require copies in DRAM, but it does require cache flushes and TLB
shootdowns. The primary advancement in this work is the use of coarse granularity re-mapping
of data to cache colors to achieve a solution with good speedup and very low complexity. The re-
mapping facilities must be combined with a good hardware profiling unit and software policies to
compute optimal assignment of regions to colors. The profiling unit employed by Lin et al. uses
shadow tags to estimate miss rates as a function of associativity (shadow tags are discussed in more
detail in Section 3.1.2).

2.2 DATA MANAGEMENT FOR A COLLECTION OF PRIVATE
CACHES

Having discussed innovations for a shared LLC, we now turn our attention to organizations where
the LLC (L2 or L3) is composed of banks that are logically and physically private to each core. Recall
from the discussion in Section 1.1 that private caches help keep the most popular data for a core at
the nearest cache bank, but they usually offer poor hit rates because of data replication and the static
allocation of cache space per core. A miss in a private LLC also typically requires a look-up of other
on-chip private caches before the request can be sent off-chip. Most innovations for a private LLC
attempt to improve its negative feature (the low hit rates) while preserving its positive attribute (low
average latency on a hit). However, one of the negative features (the complex structures required

2.2. DATA MANAGEMENT FOR A COLLECTION OF PRIVATE CACHES 35

for coherence among private caches) continues to persist in most proposed innovations for a private
LLC.

Cooperative Caching, Chang and Sohi, ISCA’06 and Speight et al., ISCA’05

A private cache organization tends to have lower hit rates because each core is statically
allocated a fixed size private cache and because of replication of data blocks. Chang and Sohi [48]
attempt to relax the first constraint by allowing a cache bank to house a block evicted by another
cache bank.The second constraint is alleviated by modifying the replacement policy to favor evicting
replicated blocks. Their baseline implementation assumes a directory-based protocol for coherence
among private L2s. On an L2 cache miss, a central directory is contacted before forwarding the
request off-chip. This directory essentially replicates the L1 and L2 tags for all on-chip cache
structures (similar to the description in Section 1.1) and can identify the existence of a dirty copy
of the requested block on chip. Chang and Sohi propose three modifications for an on-chip private
LLC.

(i) Cache-to-cache sharing: The first modification is well-known but typically not adopted in
traditional multi-chip multiprocessors. On a cache miss, the coherence protocol can allow a sibling
cache to respond with data if that is faster than servicing the request from the next level of the
hierarchy. This was often not true in traditional multi-processors where off-chip and network access
was required for the sibling cache and the next level. But in modern multi-cores, access to a sibling
cache on the same chip via on-chip networks is much faster than off-chip access to the next level of
the hierarchy. Hence, Chang and Sohi advocate the use of cache-to-cache sharing, with the directory
being responsible for identifying the sibling cache that can respond and forwarding the request to
it.

(ii) Evicting replicated blocks: The second modification is to the private cache replacement
policy. When a block is being evicted, the replacement policy first attempts to evict a block that
may have replicas elsewhere on chip, thus attempting to reduce the degree of block replication in
the private caches. This is not done for every eviction but probabilistically for N% of all evictions,
where N can be determined per workload. In order to effect this change, each cache must have
information about whether its blocks are replicas or singlets. It is the directory’s responsibility to
gather this information and propagate it to caches every time the status of a block changes. Clearly,
this entails non-trivial on-chip traffic, especially since caches can no longer silently evict blocks.

(iii) Spilling of evicted blocks: If a singlet block must be evicted from a private cache, further
attempts are made to retain it on-chip. With a given probability M , the block is handed over to a
sibling private cache. The sibling cache accommodates the block (hopefully evicting a replica in the
process) and marks it as LRU. This buys the block some time to hopefully be accessed by some core
and prolong its on-chip lifetime. Bits are maintained along with the block to limit the number of
times such a block can be spilled to a sibling (Chang and Sohi employ one-chance forwarding in
their evaluation). As always, the directory must be informed of any block movement.

36 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

The three modifications are together referred to as Cooperative Caching. It can yield improve-
ments over unoptimized shared and private baselines of the time, and this improvement is often a
strong function of N and M . Unfortunately, as discussed above, the accompanying overhead for the
directory is non-trivial.

The Cooperative Caching framework of Chang and Sohi was preceded by work by Speight
et al. [49] that also proposed a form of co-operation among private on-chip caches. It included
spilling and cache-to-cache sharing aspects. Speight et al. assume a baseline processor with private
L2 caches and a shared off-chip L3 that serves as a victim cache.This platform has various subtleties
in the coherence protocol that we will not cover here. Relevant to this discussion is the fact that
coherence among L2s and L3 is maintained with a broadcast-based snooping protocol. Since access
to other private on-chip L2s is faster than access to either L3 or memory, cache-to-cache sharing is
encouraged.

When a block (either clean or dirty) is evicted from a private L2, a writeback is propagated
on the shared bus so that the block can eventually be written into the off-chip victim L3. Another
L2 is allowed to host this block so that the off-chip access can be avoided. Speight et al. refer to
this process as snarfing by the other (host) L2s (often referred to as spilling in this book). Snarfing
is allowed if the host L2 has room to spare, i.e., if the new block only replaces lines that are either
invalid or shared. In addition, this is allowed only if the block has previously exhibited potential for
reuse. This is estimated by maintaining a table per L2 cache that tracks all recent lines evicted by
L2s and if they have been reused again. Both of these events are observed by snooping on the bus.
When such a line is evicted again, a bit is set during broadcast that allows other L2 caches to snarf
this block. If multiple L2 caches volunteer to serve as hosts, only one is designated as the host. The
coherence protocol has a central entity on the bus that collects snoop responses and decides which
cache gets to host the evicted line.

The schemes of Speight et al. [49] and Chang and Sohi [48] are similar in spirit. Implemen-
tation differences are primarily borne out of the use of snooping in the former case and a directory
in the latter. In order to trigger spilling, Chang and Sohi make an effort to identify singlets (even
using this information in the replacement policy), while Speight et al. use tables to predict reuse
potential.

ASR, Beckmann et al., MICRO’06

The Cooperative Caching mechanism of Chang and Sohi uses run-time parameters N and
M to dictate the level of replica eviction and singlet spilling. But they do not consider the run-
time estimation of optimal N or M . Beckmann et al. [20] introduce run-time schemes to select
the appropriate replication level and these schemes can be applied to any of the already proposed
replication mechanisms (Victim Replication, CMP-NuRAPID, Cooperative Caching). In many
caching innovations, we must answer questions such as these: when a block is evicted from L1, we
must choose to either keep it in the local L2 bank or not (victim replication); or alternatively, when
evicting a block from L2, we must choose to either evict an LRU singlet or a non-LRU replica

2.2. DATA MANAGEMENT FOR A COLLECTION OF PRIVATE CACHES 37

(cooperative caching). Beckmann et al. introduce Selective Probabilistic Replication (SPR) that favors
replica creation if a pseudo-random number generator is less than a value R. They augment this
simple probabilistic scheme with a mechanism to determine the optimal value of R, referred to as
Adaptive Selective Replication (ASR).The key contribution of the paper is the design of structures that
help estimate the local hit rates and memory accesses if R were increased or decreased. Regardless
of whether we consider increasing or decreasing R, there is an associated cost and benefit, and the
following four mechanisms aid this estimation:

• Benefit of increased replication: A shadow tag structure keeps track of the contents of the
cache assuming a higher replication level, thus estimating the additional replica hits that this
would lead to.

• Cost of increased replication: Hits to LRU blocks in cache are tracked to determine the new
misses that might be created by increasing the replication level.

• Benefit of decreased replication: Another structure keeps track of recently evicted blocks to
estimate if high replication is evicting potentially useful blocks.

• Cost of decreased replication: The cache keeps track of hits to replicas that may not have been
created at a lower replication level, thus estimating the cost of moving to a lower replication
level.

The above estimates help determine if R must be increased or decreased to find the optimal balance
between higher local hits and higher effective capacity.

Distributed and Elastic Cooperative Caching, Herrero et al., PACT’08 and ISCA’10

An important drawback of the Cooperative Caching scheme of Chang and Sohi [48] is the
need for a complicated centralized directory that may be accessed multiple times on every LLC
miss.This centralized directory replicates the tags of every on-chip L1 and L2; it is updated on most
block movements; it is responsible for identifying singlets/replicates and identifying opportunities
for cache cooperation. When looking for a block, a large number of tags must be searched because
the block may reside in any of the ways of the many L1 and L2 caches.

The Distributed Cooperative Caching (DCC) scheme of Herrero et al. [50] attempts to
alleviate some of these implementation complexities. First, they propose the use of a conventional
set-associative global tag array to keep track of all on-chip blocks. This tag array can have low
associativity and a large number of sets and has little resemblance to the replicated tags maintained
in Chang and Sohi’s Cooperative Caching. This global tag array is expected to track the sharing
status of every on-chip block (one bit per private LLC for each tag). Because of the low associativity
of this tag array, it is possible that some block’s tag may have to be evicted out of this tag array
even though it may still exist in some on-chip cache – to prevent such an inconsistency, the block
is evicted from all on-chip caches. The hope is that this event can be made relatively infrequent by
having many sets in the tag array. This eviction policy is the result of enforcing LRU on the global

38 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

tag array shared by all cores and can therefore yield better hit rates than the locally made eviction
decisions in Cooperative Caching. The new organization is much more energy-efficient because a
limited number of tags must be looked up on each access.

Herrero et al. also propose that this tag array be banked and distributed on chip with an
interleaving that places successive sets in neighboring banks. This distributes load on the network
and removes the centralized bottleneck found in Cooperative Caching.

Note that the proposed solution does not alleviate all of the implementation inefficiencies
of Cooperative Caching. Several messages must be exchanged on every block eviction (even clean
block evictions) to update the tag arrays and to modify singlet/replicate status.

Herrero et al. augment their design with a mechanism to allocate a cache bank across private
and shared blocks [51]. Each cache bank tracks the number of hits in the LRU block among private
ways and the hits in the LRU block among shared ways. At periodic intervals, each cache bank
informs other cores about the number of ways that have been allocated to shared ways. When blocks
are evicted, if keeping the block around is expected to have high utility, it is spilled to one of the
globally shared ways in round-robin order.

Dynamic Spill-Receive, Qureshi, HPCA’09

In recent work, Qureshi puts forth an elegant design that builds on the Cooperative Caching
framework. Apart from the ASR policy [20], most Cooperative Caching policies, proposed so far,
[48, 49, 50] do not estimate the cost/benefit of spilling an evicted line to a neighboring cache. More
notably, the neighboring receiver cache does not even have an option and must accept the block
that is forced upon it. The ASR policy of Beckmann et al. [20] tries to estimate this cost/benefit
and set the probability thresholds to encourage or discourage spilling. Qureshi proposes a solution
that simplifies the cost/benefit estimation and that is cognizant of a cache’s ability to receive blocks
evicted by others.

In Qureshi’s Dynamic Spill-Receive (DSR) design [52], each private cache is designated as
either a Spiller or Receiver (but not both). The probability thresholds are eliminated. The only coop-
eration allowed is the spilling of blocks from Spiller caches to Receiver caches. The Spiller/Receiver
designation is done in a manner that maximizes on-chip hit rates. Each private cache indepen-
dently designates itself as Spiller or Receiver with an estimation based on a technique called Set-
Dueling [53] (explained further in Section 3.1.1). Each cache always allows spilling for a few of
its sets (for example, 32 out of 1024 sets) and always allows receiving for a few of its sets; these
groups are referred to as the “always-spill” and “always-receive” groups. A single counter per cache
keeps track of which group of sets yields more misses and dynamically selects the better policy (spill
or receive) for all other sets in the cache. Note that this counter also tracks misses in these sets in
all other caches (easily computable by paying attention to the bus in a snooping-based protocol).
As a result, a cache’s Spiller/Receiver status is also a function of the other applications that it is
co-scheduled with. Each private cache uses different dueling sets to decide on its Spiller/Receiver
designation.

2.2. DATA MANAGEMENT FOR A COLLECTION OF PRIVATE CACHES 39

The above process is very low overhead, only requiring a single counter per cache. The one-
chance forwarding scheme of Chang and Sohi requires a bit per block to denote if the one chance
has been used or not. That bit is no longer required as a Receiver cache is not allowed to spill,
and a block will almost always be spilled only once. A Receiver cache may become a Spiller cache
over time, allowing a block to be spilled multiple times. Statistics collected on the dueling sets can
estimate if an application is suffering because of its Receiver status and enforce QoS by switching
to Spiller status if necessary.

CloudCache and StimulusCache, Lee et al., HPCA’11 and HPCA’10

Lee et al. [54] assume a processor where the LLC is composed of private caches.They propose
the CloudCache design where the boundary of each private cache is not fixed at design time. A core
could potentially use ways from a number of cache banks to form its private cache. Depending on
the distance of these ways from the core, a priority chain is formed, also doubling up as the priority
list used for replacement decisions. As blocks are accessed and garner a higher priority, blocks are
shuffled among banks to reflect the priority order. Thus, the ways allocated to a core, potentially
spread across multiple banks, essentially form a D-NUCA organization. Block search is done by
broadcasting a request to all ways that are allocated to a core. Broadcasts are disabled if another
core is accessing the same block via the directory. Each core maintains tags for an additional 32
ways for a few sample sets. This allows the core to determine the utility of receiving more ways. At
regular intervals, this information is collected by a centralized agent and ways are re-allocated among
cores. Much of the StimulusCache design [55] is subsumed by the CloudCache design [54]. The
StimulusCache design was motivated by the observation that cores are much more likely to emerge
from the manufacturing process with faults than cache banks. The design attempts to allocate the
“excess” cache banks belonging to faulty cores to other functional cores. In addition to suffering
from the usual complexity of a private LLC (finding an LLC block via a directory), these designs
also suffer from the added complexity imposed by D-NUCA (block search and block migration).
As described earlier, the work of Cho and Jin [41], Awasthi et al. [42], and Chaudhuri [45] attempt
to similarly allocate cache space among competing cores in the context of a shared LLC.

MorphCache, Srikantaiah et al., HPCA’11

Similar to the CloudCache, the MorphCache design [56] also starts with a private cache
organization and allows reconfiguration to form larger caches. Depending on an analysis of working
set requirements, private L2 or L3 cache slices are either merged to form a larger shared cache slice
or previously merged slices are split into smaller private slices. Thus, each cache slice (either L2 or
L3) may either be a private cache or it may be a part of a larger cache that is shared by 2-16 cores. If
L2 cache slices are merged, the corresponding L3 cache slices are also merged. Merging is triggered
when there is imbalance in the utilization of adjacent slices or if highly-utilized slices are dealing
with the same shared data. A merged cache slice has a higher UCA latency. As discussed next, an

40 2. ORGANIZING DATA IN CMP LAST LEVEL CACHES

optimized shared cache baseline will often offer the nice features provided by many of the individual
options in a reconfigurable private cache design.

2.3 DISCUSSION
We compared the properties of generic shared and private caches in Table 1.1. Most recent papers
on private cache organizations continue to cite the disadvantages of generic shared caches while
advocating the private cache organization. Such arguments are often mis-leading because they
turn a blind eye to the several innovations in recent years that have largely alleviated the primary
disadvantages of a shared cache.For example, several papers mention that shared caches are inefficient
because they incur high access latencies on average and because there is higher load on the network
used to access the shared cache.These arguments apply to earlier shared cache designs that employed
set-interleaved mapping or that implemented a physically contiguous shared cache. They no longer
apply to recently proposed designs. Even a simple design that employs a distributed tiled shared
S-NUCA cache, page-to-bank mapping, and first-touch OS page coloring goes a long way towards
ensuring that most LLC requests do not leave the local tile.

Similarly, papers on shared caches often highlight a private cache’s poor hit rate while not
giving due credit to Cooperative Caching techniques. Also, the benefit of easy data look-up in a
shared LLC is only possible if the LLC is inclusive.

That said, a private cache organization likely has a steeper hill to climb in terms of overcoming
its pitfalls. A major pitfall is the complexity involved in locating a line that may be resident in other
private caches. Private caches have been used in commercial implementations with few cores; the
use of a broadcast bus facilitates finding data. However, this approach does not scale well as the
number of cores increases. An on-chip directory would be required and is not easy to maintain.
The key difference is this: in a shared S-NUCA cache, we know exactly where to find a block; in a
private cache organization, we need to “search” for the block because it could be anywhere. Private
caches will of course continue to be common in modern multi-cores; they will be most effective
if they are eventually backed up by an on-chip shared inclusive last-level cache that can handle
coherence among the private caches. Cooperation will likely not be required for such private caches
because evicted lines will anyway be found in the shared LLC. We therefore believe that innovations
for shared caches, of the kind discussed in Section 2.1 and the next chapter, will likely have more
long-term impact.

41

C H A P T E R 3

Policies Impacting Cache Hit
Rates

The previous chapter focused on policies that blurred the line between shared and private caches,
and that attempted to bring data closer to requesting cores. Most of the papers discussed in this
chapter are oblivious/agnostic to the non-uniform nature of cache access latencies. Therefore, much
of the discussion here will focus on hit rates. For the most part, this chapter will assume a shared
LLC and examine various policies for block insertion, replacement, and fetch. What distinguishes
this work from the vast literature on caching from prior decades is the emphasis on multi-thread
or multi-program working sets. Part of the work can be broadly classified as “cache partitioning” and
the metrics of interest are usually cache hit rates and quality-of-service (QoS). While Chapter 2
discusses some papers [20, 22, 26, 27, 41, 42, 46, 47, 52] that partially fall under the cache partitioning
umbrella, that chapter was more focused on a collection of non-uniform latency banks (either private
or shared) and on data placement policies to improve proximity. We will continue to mention some
of these previously discussed papers to clarify their contribution to the cache partitioning literature.

3.1 CACHE PARTITIONING FOR THROUGHPUT AND
QUALITY-OF-SERVICE

3.1.1 INTRODUCTION

The Baseline Platform

Most papers on cache partitioning attempt to split the ways of a set-associative monolithic
shared cache among multiple competing threads or programs. This is a reasonable model for small-
scale multi-cores. As discussed earlier, a large-scale multi-core will likely be tiled, and a shared LLC
will likely be distributed, say, one cache bank per core. When a shared cache is distributed, we can
either distribute the sets, or the ways, or both. If ways are distributed, a given cache line could reside
in one of a number of banks and block search mechanisms will be required. This is the complex D-
NUCA model.As argued in Chapter 2,a more scalable model employs an S-NUCA architecture with
OS-based page coloring to improve data proximity. S-NUCA employs set-partitioning, and all ways
of a set are typically contained in a single bank. Cache partitioning can be accomplished by allocating
sets to cores with miss-rate aware page coloring [41, 42]. This was discussed in Section 2.1.3 and
will also be briefly summarized at the end of this section. With such a model, a given bank typically

42 3. POLICIES IMPACTING CACHE HIT RATES

houses part of a large working set for an application or a small working set for one application and
the spilled working sets for a few other large applications. No one has yet studied way-partitioning
(or set-partitioning) for the latter situation and its interaction with the page coloring policy. It is
not clear if the expected benefit will be high. Even if we assumed that complex D-NUCA was the
way of the future, way-partitioning would have to be aware of the non-uniform latencies to different
ways, and most cache partitioning papers do not consider this ([57] being the only exception).

Therefore, most of the work in this section has applicability in small-scale systems where a
shared monolithic LLC is employed or in a large-scale system where each tiled bank of the LLC
is shared by multiple cores. In both cases, we expect a small number of cores to compete for the
available cache space.

Policies within the Cache Replacement Policy

Capacity in the cache is typically adjusted during cache replacement. Traditionally, the LRU
block replacement method is used in most caches. This requires the maintenance of a recency stack
for each set to indicate the ordering of the last access to each block in that set. The replacement
process involves the following three primary policies:

1. Victim Selection: Traditionally, this has been the LRU block in the recency stack for that set.

2. Block Insertion: When a new block is inserted, it is traditionally inserted as the MRU block in
the recency stack.

3. Block Promotion: When a block is touched, it is moved to the MRU position in the recency
stack.

Most cache partitioning papers attempt to deviate from the baseline LRU policy by altering one or
more of the above three policies.

Optimization Strategies

It is also worth noting that cache partitioning can have multiple reasonable performance tar-
gets.Hsu et al. [58] show that the optimal partition varies significantly depending on the metric being
optimized. They identify three major types of performance targets: (i) Communist, that ensures that
each application achieves a similar level of performance or performance degradation; (ii) Utilitarian,
that tries to maximize overall throughput by assigning resources to threads that can best utilize the
additional cache space; and (iii) Capitalist, that refers to an unregulated competition for resources,
similar to the baseline LRU policy. Hsu et al. show that Capitalist policies can lead to partitions that
are highly sub-optimal in terms of overall throughput and fairness. They also show a good general
correlation between the other two performance targets, i.e., with a few exceptions, a policy that
optimizes fairness also provides adequate overall throughput (and vice versa). The outlier exceptions
make it necessary to identify the performance target when designing a cache partitioning policy.
Section 3.1.2 primarily focuses on Utilitarian policies, while Section 3.1.3 focuses on Communist
policies.

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 43

Clever cache management obviously has little to offer if application working sets fit comfort-
ably in cache. These policies are important when the total working set exceeds the available cache
space. In such a scenario, the policies have to decide what blocks get to stay in cache and what blocks
are evicted. Prior work has always assumed LRU for cache replacement, which is a Capitalist policy.
Behavior with LRU is governed by the rate at which applications issue data requests; if an appli-
cation accesses lots of data, it is allocated lots of cache space. But this additional cache space need
not necessarily help reduce the cache miss rate for this demanding application. Instead, it may hurt
other co-scheduled applications that may be robbed of the little cache space they need to enjoy high
hit rates. This is the main insight behind the recent policies that advocate a shift from Capitalist to
Utilitarian or Communist policies: that space be allocated based on the expected benefit or impact,
and not simply based on activity levels.

Dynamic Set Sampling

This chapter introduces several innovative policies for cache management. Rarely does a single
policy emerge as a clear winner on every benchmark program. These policies also usually work best
if their parameters are optimized for each program. A common feature in many papers is the use of
a mechanism referred to as dynamic set sampling or set dueling monitors (SDMs) to help each program
identify optimal policies and parameters. This was a technique introduced by Qureshi et al. [53, 59].
In a large cache with several sets, a few sets can be used to monitor the behavior of a given policy or
parameter. For example, if the cache has 4096 sets, 16 sets can be hardwired to use policy-A, and 16
sets can be hardwired to use policy-B. Miss counters can track the number of misses in these 16-set
groups and decide if policy-A is better than policy-B. The better policy can then be applied to the
other 4064 sets of the cache. Thus, less than 1% of the cache space is used for experimentation; even
if some policy in this “experimental lab” is highly sub-optimal, extra misses incurred here should be
in the noise. The main benefit of course is that an optimal policy can be selected for each program at
run time. When dealing with multi-core workloads, the number of possible options can sometimes
grow dramatically, and this may require the use of many more set samples.

3.1.2 THROUGHPUT
We start by describing the few bodies of work (UCP, TADIP, PIPP, AGGRESSORpr − V T)
that are currently considered the state-of-the-art in throughput-based cache partitioning. We then
briefly describe some of the prior work that provided initial insight in this area. UCP performs
explicit partitioning by allocating cache ways to applications based on the marginal utility provided
by each way. TADIP and PIPP build on recent work that claim that insertion policy innovations
are more effective at constructing an optimal cache population. They therefore strive for implicit
cache partitions by offering each thread different insertion options, a concept that will be shortly
expanded upon. While these schemes are explicit or implicit forms of way partitioning, some papers
have also looked at explicit set partitioning, an approach that in some cases is readily implementable
in modern hardware with page coloring [46].

44 3. POLICIES IMPACTING CACHE HIT RATES

UCP, Qureshi and Patt, MICRO’06

Cache partitioning across competing threads is done by the LRU replacement algorithm,
by default. Qureshi and Patt [60] make the observation that LRU is oblivious of the marginal
utility that more cache space can provide to a given thread. Their Utility-based Cache Partitioning
(UCP) mechanism estimates the marginal utility of each way to each thread and selects a partition
that minimizes cache miss rates. The key contribution is the design of a low-overhead monitoring
mechanism (UMON) that efficiently computes the necessary marginal utilities.

Each core has a UMON unit that stores tags for the L2 cache and manages these tags as if
the L2 cache is only being accessed by this core. These “shadow” tags are managed with an LRU
replacement policy. If a request hits in (say) the 7th most-recently used way of the shadow tags, the
request would have been a hit only if the cache partitioning policy allocated at least seven ways to
this core. A counter tracking the marginal utility of the 7th way is incremented. One such counter is
maintained for each way for each UMON unit. Every epoch (say, 5 million cycles), these counters
are examined, a way partition is selected to minimize overall miss rates, and the counters are reset (or
halved to retain some history). In order for the replacement policy to enforce a way partition within
a set, each block must have a few-bit tag to indicate its “owner” core. A block is selected for eviction
in a manner that enforces the per-core way quotas. It is fair to say that UCP primarily alters the
victim selection policy: once a victim core is selected, the baseline LRU victim selection, insertion,
and promotion policies are applied within the ways assigned to that core.

Note that the selected way partition applies to the entire cache, and way partition decisions
are not made for each individual set. The shadow tag overhead can be reduced with sampling; for
example, the monitoring can be done for every 32nd set. This brings down the storage overhead
of the UMON unit to only a few kilo-bytes. But each core needs a UMON unit, so the overhead
scales up linearly with the number of cores. Storage overhead can be further reduced by maintaining
partial tags.

While the way-partitioning decision is trivial for two competing cores, the number of pos-
sibilities that must be considered increase exponentially as more cores compete. As clarified earlier,
perhaps this is not a major concern as a monolithic cache unit will likely only be shared by a few
cores. Qureshi and Patt also suggest heuristics for quick decision-making [60]. They start with a
standard greedy algorithm and refine it so the algorithm not only examines marginal utilities for the
next way, but it is aware of upcoming (in the algorithm) big jumps in marginal utilities.The decision
making process is also complicated if accesses are made to both shared and private data blocks, but
this is not considered in [60].

Some of the initial insight for marginal utility based cache partitioning was provided by the
work of Suh et al. [61] (discussed shortly). Other work, described in the previous chapter, have also
allocated ways to each core [26, 27] and used run-time metrics to estimate the marginal utility of
additional ways [27]. A couple of recent papers have pointed out that small improvements can be
made to UCP if the optimization function focused on maximizing core IPC instead of minimizing
overall MPKI [62, 63].

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 45

TADIP, Jaleel et al., PACT’08

Caches typically employ LRU replacement policies with the incoming block occupying the
MRU position in the access recency stack.To reduce confusion,we refer to the baseline block insertion
policy as MRU Insertion Policy (MIP). In a paper in ISCA’07, Qureshi et al. [53] hypothesize that
such a policy is incompetent at retaining relevant blocks for many workloads (workloads that are
streaming or have very large working set sizes). For such applications, it is more effective to mark
the incoming block as LRU instead of MRU. This is referred to as the LRU Insertion Policy (LIP).
Thus, the insertion policy is being changed, but the victim selection and block promotion policies
are the same as the baseline LRU mechanism. A refinement on this policy is Bimodal Insertion Policy
(BIP) that with a small probability places a block in the MRU position. For a given application, the
optimal insertion policy (BIP or MIP) is selected with a Set Dueling Monitor (SDM) that employs
each policy on a few sets and determines the best performing one (see Section 3.1.1).This is referred
to as the Dynamic Insertion Policy (DIP) and is discussed in more detail in Section 3.2.1. Figure 3.1
pictorially represents many of the recent insertion policies.

Highest priority Priority stack of blocks in a set Lowest priority

MIP: MRU insertion policy (traditional approach)

LIP: LRU insertion policy

BIP: Bimodal insertion policy
Few insertions at head, most at tail

DIP: Selects the best

RRIP: Probabilistic insertion near tail

TADIP: Selects the best

 for each thread

UCP: Partitions ways across threads

 based on marginal utility

PIPP: Inserts each thread at different

 positions + probabilistic promotion
AGGRESSOR-VT:
Victimizes the aggressor
thread with a high probability

Figure 3.1: Depiction of various insertion, promotion, and victim selection policies.

Jaleel et al. [64] first show that the use of DIP within a shared cache is effective. In this case,
either BIP or MIP is used for all applications sharing the cache. The authors then propose Thread
Aware DIP (TADIP) that makes a choice of BIP or MIP for each individual thread. By selecting
the appropriate insertion policy for each thread, the lifetime of each cache line is influenced and,
accordingly, a cache partition is achieved. The notion of marginal utility (as in the UCP paper)

46 3. POLICIES IMPACTING CACHE HIT RATES

is somewhat encoded within TADIP because it determines the threads that do not benefit from
keeping a block around. These threads are forced to occupy fewer ways by inserting their blocks in
the LRU position. But TADIP is more effective than UCP because even applications with large
working sets get to keep part of their working set (the part with highest locality) in cache because
of BIP’s probabilistic occasional insertion into the MRU position.

Unlike UCP, TADIP does not require shadow tags to estimate the optimal cache partition.
TADIP requires that we estimate the optimal insertion policy (BIP or MIP) for each thread. This
is again done with SDMs with two different strategies. The first strategy, referred to as TADIP-
Isolated, attempts to figure out the optimal policy for each thread while assuming that the other
threads employ MIP. One SDM is used to monitor behavior for sets that use MIP for all threads.
N other SDMs are used, where each SDM uses BIP for one thread and MIP for all others (N
is the number of cores or threads). A second strategy, TADIP-Feedback, attempts to figure out the
optimal policy for each thread while being aware of the policy selected by the other threads. A total
of 2N SDMs are used, where each thread uses two SDMs. One of these two SDMs uses BIP for the
“owner” thread and the other uses MIP; for all other threads, both SDMs use the current optimal
policy as selected by other SDMs. The total extra storage overhead of these policies is quite small.
But it is important to ensure that the sets forming the SDMs are a small fraction of the total sets in
cache, i.e., only a moderate number of cores can be supported.

PIPP, Xie and Loh, ISCA’09

The TADIP approach uses a variable insertion policy to achieve a pseudo-partition of the
cache; pseudo, because there is no strict specification or enforcement of a partition. In their ISCA’09
paper [65], Xie and Loh introduce a modification to the insertion policy. Further, they suggest an
alternative promotion policy.The combination is referred to as Promotion/Insertion Pseudo Partitioning
(PIPP). TADIP impacts the insertion policy; PIPP impacts the insertion and promotion policy;
neither impacts the victim selection policy. Note that these baseline policies refer to the position of a
block in the recency stack. With new policies in place, the stack is not necessarily ordered by access
recency. Therefore, the victim selection process is evicting a block at the tail end of what used to
traditionally be the recency stack; this block is not necessarily LRU. Hence, it is more appropriate
to refer to the stack as a priority stack than as a recency stack.

Instead of inserting a block at either MRU (high-priority) or LRU (low-priority) positions
(as is done by TADIP), PIPP allows insertion at an arbitrary position in the stack. If an application
is deemed to benefit from higher capacity and is granted a large cache partition, all of its blocks are
inserted in a higher-priority position in the stack. The determination of this position is done by the
OS, possibly with input from a UMON circuit that estimates marginal utility curves for each core.

Instead of immediately moving a block to a high-priority position upon touch, PIPP allows
the block to move up the stack by a single position with a specified probability.

It is easy to see that there may be scenarios favoring TADIP or PIPP. If a block is only
touched twice in quick succession, TADIP will promote the block to the high-priority position

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 47

and unnecessarily prolong the block’s cache lifetime. On the other hand, if a block is only touched
once, TADIP is quicker in evicting the block. To better deal with the latter scenario, Xie and Loh
use more aggressive policies when streaming or thrashing workloads are detected – blocks for such
workloads are inserted at low-priority positions and have lower probabilities for promotion. By
using the probabilistic BIP policy, TADIP can retain a portion of a thrashing workload, while PIPP
uniformly inserts every block of an application in the selected position. Overall, the results of Xie
and Loh show that PIPP is superior to TADIP and UCP.

In addition to the PIPP policy, Xie and Loh propose a novel monitoring circuit, referred to
as an In-Cache Estimation Monitor (ICEmon). Similar to set dueling, a few sets are designated to
monitor behavior for each core. For those sets, traditional LRU is used to manage the blocks of their
assigned core. Blocks from cores other than the assigned core are only allowed to occupy low-priority
positions in the stack. Counters keep track of the marginal utility afforded to the assigned core by
each additional cache way. These estimations are noisy once the low-priority ways are considered,
but this noise is not relevant. Such a monitor does away with the need for sampled shadow tags in
each core.

AGGRESSORpr − V T , Liu and Yeung, PACT’09

Recent work by Liu and Yeung [66] keeps the insertion and promotion policies intact (same
as baseline LRU) but, similar to UCP, focuses on the victim selection policy (which was untouched
by TADIP and PIPP). They first make the observation that an aggressor cache-thrashing thread
is selected for victimization 80% of the time by an oracle replacement policy that looks into the
future to minimize miss rates. This leads to their proposed replacement policy: (i) if an aggressor
thread happens to be the LRU block in the set, it is victimized; (ii) if not, the aggressor thread’s
LRU block is victimized with a 99% probability. This strongly biases the replacement policy to evict
the aggressor thread’s blocks. They also make the observation that for many threads and workloads,
overall throughput (in terms of weighted IPC) is maximized when the aggressor thread uses a
victimization probability of either 99% or 50%.

Therefore, at run-time, the following procedure is adopted (referred to as AGGRESSORpr −
V T). Similar to the algorithm in [67], measurements are taken every epoch to detect a phase change
and a phase change triggers an exploration mode to identify the policy to be used by each thread.
Each thread is considered sequentially and executes with other threads for an epoch each as a
non-aggressor and as an aggressor with victimization probabilities of 50% and 99%. Of the many
combinations considered, the one with highest throughput is employed until the next phase change
is detected.

Interestingly, for their workloads, the authors show little room for improvement over a baseline
LRU policy. IPC and miss rate improvements over baseline LRU are only around 5-6% even with the
oracle replacement policy. Within this small space, the authors show that the AGGRESSORpr −
V T policy is clearly better than UCP. While the mechanisms are different, this policy strives for the

48 3. POLICIES IMPACTING CACHE HIT RATES

same behavior as TADIP and PIPP – all three try to limit the space occupied by thrashing workloads
by either inserting them in low-priority positions or favoring them for victim selection.

Suh et al., Journal of Supercomputing, 2004

A part of the basic UCP framework, including the marginal utility approach and the mech-
anisms for cache partitioning, were initially proposed by Suh et al. [61]. The major contribution of
UCP was the low-overhead estimation of marginal utility for each core with sampled shadow tags.
Suh et al. estimated marginal utility with counters per way and even counters per group of sets.
LRU information was also maintained to track recency of access among sets. By combining these
counters, it is possible to estimate the marginal utilities of additional cache space at finer granularities
than an entire way. The OS takes this into account and specifies partition sizes for each process;
this is considered when making replacement decisions. Each cache block tag must now store the id
of its owner thread, and there are counters to track the number of blocks in the cache per thread.
While UCP’s shadow tags are not required here, the marginal utility estimation either requires that
an application execute in isolation or risk a spurious estimation because of interference from other
applications. Dropsho et al. [68] also employed counters per way to estimate miss rate curves for
their Accounting Cache. This was done to reduce energy by disabling ways, not to partition the cache.

Yeh and Reinman, CASES 2005

Yeh and Reinman proposed an adaptive shared cache partitioning scheme [57] that had some
features that were later also incorporated into other partitioning schemes.For example, they proposed
the use of shadow tags to quickly estimate an application’s miss rate curve at run-time, a feature also
seen in follow-up work [60]. An epoch-based scheme is used to allocate ways to applications every
epoch, with a greedy algorithm that maximizes throughput, while ensuring that no application is
significantly worse than if it had its own private cache bank. Unlike most work in this area, Yeh and
Reinman consider a D-NUCA cache and assign ways to cores keeping proximity in mind. Like all
D-NUCA schemes, the design suffers from the complexity of search and migration.

Rafique et al., PACT’06

Rafique et al. [69] propose hardware mechanisms and OS policies to allocate shared cache
capacity across competing threads (the shared cache has uniform access times). Similar to the work
of Suh et al. [61], there are mechanisms to enforce per-process quotas in terms of ways or overall
cache space. The latter quota is a little more fair in its capacity allocation but may do a poor job
of handling some hot sets. The OS employs various policies to determine quotas and sets these by
writing to special hardware registers. The OS policies can either employ a static allocation or can
monitor performance counters and try to equalize miss rates per thread or match per-thread IPCs
to per-thread priorities.

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 49

MTP, Chang and Sohi, ICS’07

Chang and Sohi [70] make the observation that for many workloads, a slight increase in
allocated capacity is far more beneficial than the degradation caused by a decrease in allocated
capacity. For these workloads, it is therefore better to implement an unfair partition at any time,
where one application receives most cache resources and other applications receive a small fraction
of resources. The other applications attempt to recoup some of their lost performance in later
epochs when each receives most of the cache space. Chang and Sohi point out that cycling through
these biased partitions is better for throughput and QoS than using the same partition throughout
execution. The mechanism is referred to as Multiple Time-Sharing Partitions (MTP). The authors
also combine MTP with their Cooperative Caching scheme [48] so that the better of the two policies
is used every epoch, depending on the workload.

Adaptive SET PINNING, Srikantaiah et al., ASPLOS’08

The work of Srikantaiah et al. [71] is not quite intended as a cache partitioning mechanism,
but it does serve to allocate LLC space among competing cores. It is primarily designed to improve
overall cache hit rates by reducing cache interference. It does so by allocating sets among cores
(unlike most other papers that directly or indirectly allocate ways among cores).

The paper first introduces the notion of intra- and inter-processor misses. This specifies if
a block was evicted by the same processor (intra) that accesses it next or by a different processor
(inter). This is clearly an approximate classification. It is a sampling of who happens to push a block
off the edge of the LRU stack. But it does not encode the events that push the block to the brink of
eviction.

The paper argues that a few hot cache blocks are responsible for most inter-processor misses,
and it is best to segregate these blocks in a cache region that is private to the accessing core. Each
core therefore maintains a Processor Owned Private (POP) cache that is considered part of the L2
level of the hierarchy but has a size similar to typical L1 caches. In addition, every set in the L2 is
assigned to the first core that touches it. This achieves some level of cache partitioning based on first
access to a set. If a core brings in a block that indexes to a set belonging to another core, it is forced
to place the block in its own POP cache. Similarly, when looking up a block, not only must we look
up the set that the block indexes to, we must also look up all the POP caches. The entire L2 cache
is thus free of intra-set interference.

The mechanism is referred to as Set Pinning.To prevent sub-optimal cache partitions because
of what may have transpired during the first touches to sets, processors are forced to relinquish their
ownership of sets during run-time. Each set maintains a counter that keep tracks of whether the set
is yielding more misses for non-owner cores than hits. If that is the case, the owner core gives up
ownership for that set. This is referred to as Adaptive Set Pinning.

Set-partitioning can also be achieved with alternative schemes such as page coloring, and it
has been employed within NUCA caches [41, 42] and UCA caches [72]. This is discussed at the
end of this section.

50 3. POLICIES IMPACTING CACHE HIT RATES

ACCESS, Jiang et al., HPCA 2011

In a recent HPCA’11 paper, Jiang et al. [73] argue that future multi-cores will likely employ a
collection of heterogeneous private LLCs, where each LLC may itself be shared by multiple cores.
Given the diversity of workloads on future multi-cores, the use of different sized LLCs prevents
over-provisioning and improves performance per watt. Jiang et al. describe the hardware and OS
support required to compute a mapping of threads to resources that optimizes throughput on such
an architecture.

Each private LLC maintains shadow tags for each core that shares the LLC and each LLC
associativity found in the system. Set sampling is used to greatly reduce the size of these shadow
tags. This structure allows the OS to estimate the miss rate if each thread executed by itself on each
LLC. This information is gathered at the start of each program phase. In order to compute the
miss rate of a given schedule, the OS performs various calculations. It first estimates an equation
for the miss rate curve, based on the few data points it has collected from the shadow tags. It then
estimates a cache allocation per core based on the relative miss rates of the threads sharing that private
LLC in the schedule being considered. The above two estimations are used to compute the overall
miss rate for that schedule. Since the number of possible schedules can be very high, performance
estimations are only made when tasks enter/exit or when a thread enters a new program phase.
When this happens, the OS considers a few incremental schedules that vary based on how the new
thread is accommodated. Ultimately, the architecture shows how the overall LLC cache space can
be partitioned across many cores in a manner that is close to optimal.

Software Techniques for Better Cache Sharing

Most cache partitioning work has assumed the existence of specialized hardware to estimate
the optimal partition. For example, the UCP work of Qureshi and Patt [60] assumes shadow tags to
estimate the miss rate curve (MRC) of a program as a function of allocated cache size (associativity).
More recent work, such as TADIP [64], does not require estimation of MRCs, but it assumes extra
hardware for set dueling monitors (SDMs). As a result, while these ideas are great candidates for
upcoming processors, much of this work cannot be supported in existing processors.

While the hardware-based techniques have assumed a pre-specified workload that shares a
cache, it should also be possible for the OS to construct run-time workloads or program schedules
that can minimize (but can likely not eliminate) inter-thread interference. For example, Chandra
et al. [74] describe two heuristic models and one analytical model that can predict the degree of
interference if provided with the stack distance profile of each thread as input. Assuming that such
information is available, the OS can first make sure that co-scheduled threads are as minimally
disruptive to each other as possible; the hardware-based policies described previously would then
be exercised to further reduce the disruption. We next describe two recent OS-based techniques
that can be implemented in modern processors to improve sharing behavior in caches and possibly
complement other hardware-based techniques.

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 51

Tam et al. [75] show how MRCs can be estimated at acceptable cost in modern processors,
thus enabling the OS to implement UCP-like schemes. On the Power5 processor, Tam et al. record
the address of each L1 data cache miss in a register and raise an exception. The invoked system
call then records the register value in a trace log in memory. The key is that hardware performance
monitoring units are being leveraged and costly binary instrumentation is avoided. But because
of the frequent exceptions, this process also incurs non-trivial overheads, causing a 4X application
slowdown. However, the process must only be invoked at the start of the program or the start
of each program phase. An adequate trace can be recorded in a few hundred milli-seconds. A
standard stack distance algorithm can then be employed to analyze the trace and estimate the MRC
(again consuming a few hundred milli-seconds). Since the trace contains L1 data cache misses, it is
independent of other threads that may be scheduled on the other cores. Tam et al. use the MRCs
generated at run-time to implement a page coloring policy [41] that partitions sets among cores
to minimize overall miss rate. Some of the same authors also go on to use page coloring based
techniques to isolate problematic pages to a small region of the LLC.This work is described in more
detail in Section 3.2.1.

Zhuravlev et al. [76] focus on practical OS scheduling mechanisms to improve cache sharing.
They focus on a processor model that has multiple shared caches and attempt to assign applications to
cores such that overall cache interference is minimized.Their proposed approach will likely also apply
to other processor models that have a single shared cache. They make the observation that a simple
examination of miss rates of applications is enough to achieve a good classification of applications.
They make the case that more complex approaches with stack distance profiles are not required.
The miss rates for each application can be sampled at run-time and even the noise introduced by
other co-scheduled applications at the time of sampling does not result in poor scheduling decisions.
Once these approximated miss rates are gathered, applications are sorted based on miss rates, and
applications are assigned to cores such that the overall miss rates of each shared cache are roughly
equalized. This is referred to as the Distributed Intensity Online (DIO) mechanism.

Set Partitioning Schemes

While the last chapter focused on bridging the gap between shared and private caches and
reducing latency in a NUCA cache, many of those papers were also partitioning the LLC across
many cores, either implicitly or explicitly. For example, Qureshi’s Dynamic Spill-Receive design [52]
designated private LLCs as spillers and receivers, thus implicitly partitioning the LLC into unequal
ever-changing quotas. Beckmann et al. [20] made that partition slightly more explicit by introducing
hardware cost/benefit measures and varying the probabilities for replica creation.

Of the work described in the previous chapter, the ones that represent the most explicit form
of cache partitioning are those of Cho and Jin [41], Lin et al. [46, 47], and Awasthi et al. [42]. All
of these studies, and even that of Tam et al. [75], assume a shared LLC and partition sets among
cores. The partition is effected with page coloring: forcing each core to allocate data in pages that
map to sets assigned to that core. This puts a greater onus on the software; Lin et al. [46] and

52 3. POLICIES IMPACTING CACHE HIT RATES

Tam et al. [75] even show that such set-based cache partitioning is realizable in modern hardware.
In contrast, the explicit and implicit way partitioning mechanisms discussed in this section require
additional hardware support. When considering a NUCA cache, way partitioning is compatible
with a D-NUCA design, while set partitioning is compatible with the simpler S-NUCA design. As
described in the previous chapter, set partitioning can be made more explicit by introducing cost
functions to determine the preferred color for every page [42], and partitions can be dynamically
altered by migrating pages at a significant hardware cost [42, 45].

3.1.3 QOS POLICIES
The previous sub-section focused on Utilitarian policies to maximize overall throughput. As de-
scribed by Hsu et al. [58], other reasonable performance goals exist, such as the Communist policies
that attempt to equalize performance or performance degradation for all co-scheduled threads.
Similarly, policies can combine throughput and fairness, for example, Yeh and Reinman’s attempt
to maximize throughput while capping the degradation of each thread [57]. A variation of the
Communist policy is an Elitist [77] policy that places different priorities or different performance
degradation constraints on each application.The above policies are required if the system is expected
to provide certain guarantees to each running application, as might be the case in datacenters or other
platforms that “rent out” computing power to clients. This sub-section describes the mechanisms
and recent innovations that help provide such quality-of-service (QoS) guarantees.

Iyer et al., SIGMETRICS 2007, ICS 2004

Most prior work on QoS has attempted to schedule CPU time for applications in order to
meet performance constraints. In a multi-core CPU, many applications are executing simultaneously
and sharing resources such as the LLC and memory bandwidth. Iyer et al. [77] show that policies
to allocate cache space and memory bandwidth can be very helpful in tuning the performance of
individual applications and allowing each application to meet its performance constraints.The paper
lays out the basic framework for a best-effort QoS-aware platform. If guarantees stronger than best-
effort must be provided, then the system must have the capability of activating more servers when
the currently active servers cannot meet all performance guarantees.

For starters, a minimum performance constraint must be specified for every application (the
performance constraint for a high-priority application is also frequently referred to as the target).
Multiple metrics can measure the efficacy of the QoS policy, but application execution time or
throughput are the metrics that are typically employed. The QoS policy can be either static, where
resource quotas for each application are specified beforehand, or dynamic, where performance con-
straints are specified beforehand and the hardware/OS is in charge of monitoring behavior and
adjusting resource quotas at run-time. Resource quotas influence the shared LLC space allocated to
each application as well as the memory bandwidth available to each application. Memory bandwidth
allocation is an essential part of the QoS system to prevent priority inversion, i.e., a low-priority ap-

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 53

plication with a small cache quota could experience several cache misses and negatively impact the
memory bus availability for the high-priority application.

Iyer et al.’s QoS-aware memory architecture has three layers. The first is priority classification
that requires administrators to specify priorities and constraints. The OS is responsible for propa-
gating this information to hardware QoS registers on every application context-switch. The second
layer is priority assignment, which requires the conversion of OS specified constraints to actual re-
source quotas based on performance monitoring. The quotas are saved in a hardware QoS resource
table. Each cache access issued by the CPU is accordingly tagged as high or low priority before it
is sent to the LLC. The third layer is priority enforcement and requires counters to track memory
system and cache space usage. The cache quota enforcement requires a replacement policy that is
aware of the usage of each application. The enforcement of memory bandwidth allocation requires
that a high-priority application be allowed to issue N memory requests (if present in the memory
controller queue) before relinquishing the memory bus for other lower-priority requests.

In prior work, Iyer [78] focused on the problem of priority enforcement and suggested dif-
ferent mechanisms for the LLC. The first mechanism involves way partitioning, either reserving
specific ways for an application (referred to as static) or imposing a cap on the number of ways
that an application can occupy (referred to as dynamic). The second mechanism attemtps to control
cache space per application by probabilistically choosing to either cache a fetched line or not. The
third mechanism implements different cache structures (fully-associative or direct-mapped caches,
stream buffers, victim caches, etc.) and maps them to applications based on need and priority. In-
dividual cache lines are also allowed to mark themselves, so they are always cached or immediately
self-invalidated, based on priority. In their follow-on work, Iyer et al. have focused on a priority
enforcement scheme that is based on tracking overall cache space usage of each application.

In more follow-on work,Varadarajan et al. [79] advocate organizing the cache into many small
(8-32 KB) direct-mapped banks called molecules. This enables fine-grain cache resource allocation
for QoS. The cache is partitioned across multiple cores at the granularity of molecules. This allows
high flexibility and low power; although, the paper ignores the interconnect overhead in accessing
many small banks (an aspect considered later in detail by Muralimanohar et al. [7]). The molecular
cache approach allows full flexibility in organizing molecules to form a core’s cache, i.e., some sets
could have more molecules (and hence higher associativity) than other sets. For many applications,
such high flexibility is likely not worth the implementation cost.

Guo et al., MICRO 2007

Iyer et al.’s SIGMETRICS’07 paper was followed by a MICRO’07 study [80] that afforded
more flexibility to the QoS manager. The authors first argue for the following guidelines. QoS
requirements are better specified in terms of easily quantifiable resources, such that it should be easy
to verify the availability of the requested resources. In other words, a QoS target specification in
terms of IPC or miss rate makes the QoS manager’s job harder, but a QoS target specification in
terms of cache capacity is easy to handle. If a server does not have the requested resources for a

54 3. POLICIES IMPACTING CACHE HIT RATES

task, it is stalled (or it must be assigned to an idle server). Guo et al. also argue that tasks should
be classified in different ways: it should be possible for users to specify that their tasks can afford
some performance degradation (referred to as the Elastic execution mode), perhaps incurring a lower
service fee in return.

Having the above flexibility makes it easier to maximize the overall throughput on a given
server. If every application made strict resource requests, resource fragmentation can happen. For
example, a server may have some spare resources that never get used because each new task demands
more resources than what is available on the server. Each task may also be utilizing fewer resources
than what is specified in the strict request. Tasks that use the Elastic execution mode may be able to
relinquish some of their resources to help accommodate more tasks on the server and boost through-
put. This can be implemented in two ways. A new (otherwise inadmissible) task can downgrade to
the Elastic execution mode and try to make do with whatever resources happen to be available on
the server. Alternatively, resources can be stolen from other tasks on the server without violating the
specified guarantees. Resource stealing would require mechanisms such as sampled shadow tags [60]
to detect any violations.

In another follow-up paper, Zhao et al. [81] articulate the cache book-keeping structures
(CacheScouts) that would be required in future processors. In essence, it is important to understand
how much cache space is occupied by a process, and how processes interfere in the cache (either
constructively or destructively). This helps the QoS manager, helps the OS make smart scheduling
decisions,helps programmers tune applications,and helps service providers charge clients for resource
usage. In order to compute the above metrics, process ID tags must be associated with each cache
line. Overheads can be reduced primarily by sampling only a few sets. Counter arrays are required
to estimate interference by observing the process IDs of incoming and evicted blocks.

SHARP, Srikantaiah et al., MICRO 2009

Srikantaiah et al. [82] bring a more formal control theoretic approach to the basic framework
of Guo et al. [80].Mathematical formulations are used to express IPC as a function of cache miss rate,
allowing IPC to be specified as a performance target (unlike the recommendation of Guo et al.).The
framework also minimizes oscillations in the allocation of cache ways to applications. If the required
ways are more or less than the available ways, ways are re-allocated to either maximize throughput or
preserve assigned priorities. While the control theory framework can guarantee maximal throughput
when the required ways are less than the available ways, only best-effort QoS can be provided if the
required ways exceed the available ways.

Srikantaiah et al., Supercomputing 2009

While multi-core QoS papers have focused on cache and memory bandwidth partitioning in
tandem (for example, [77]), the work of Srikantaiah et al. [83] was the first to consider cache and
processor partitioning. If the multi-core workload consists of multiple multi-threaded applications,
throughput is a strong function of the number of cores assigned to each application as well as the

3.1. CACHE PARTITIONING FOR THROUGHPUT AND QUALITY-OF-SERVICE 55

shared cache resources assigned to each application. There is a vast search space of processor and
cache partitions that must be considered. Srikantaiah et al. prune the search space by dynamically
constructing regression-based models that express IPC as a function of processor count and cache
resources.This is used to iteratively predict optimal partitions, and the partitions are adjusted as more
configurations are sampled and the regression models are refined. The partitions can be selected to
either optimize throughput or provide QoS guarantees.

Virtual Private Caches, Nesbit et al., ISCA 2007

Nesbit et al. [84] focus on mechanisms required for the QoS-aware partitioning of bandwidth
into the shared cache. The mechanisms are similar to those used in networking. The shared cache
maintains a buffer of pending requests per thread. If a thread has been allocated half the bandwidth
share and a shared cache access takes 20 cycles, it is expected that the request will take 40 cycles. A
per-thread register is set to indicate that the thread cannot issue its next request until the 40 cycles
have elapsed. When the next request from that thread shows up (before the 40th cycle), its expected
completion time is set to 80 cycles. If the next request shows up after the 40th cycle, the expected
completion time is set to 40 cycles after the request arrival time.Thus, the expected completion time
for each thread’s next request is computed, and the scheduling order is based on earliest estimated
completion time. The above policy gracefully allocates any excess spare bandwidth to threads that
have minimally utilized cache bandwidth to that point. It also of course ensures that a thread is
provided roughly its promised share of cache bandwidth. Within a thread’s buffer, re-orderings are
permitted, e.g., reads may be prioritized over writes. Higher-level OS/feedback mechanisms are
required to estimate the cache bandwidth share that is appropriate for each thread. Without such
a QoS-aware scheduling policy, it is easy for a cache-intensive application to starve other threads
with a baseline FIFO scheduling policy.

Kim et al., PACT 2004

In early work, Kim et al. [85] studied the problem of fair cache partitioning, a close cousin
of the QoS problem. In fair cache partitioning, an attempt is made to uniformly degrade all co-
scheduled applications, where degradation is measured relative to each application’s performance
when executing in isolation. Kim et al. specify a number of reasonable target metrics based on cache
misses to estimate “performance”. They introduce static way-partitioning policies that require prior
knowledge of each application’s stack distance profile. They also introduce a dynamic epoch-based
scheme that iteratively identifies the most and least impacted applications and allocates a way from
the least to most impacted application (in an effort to equalize the negative impact on all co-scheduled
applications). If this re-allocation does not change performance much, it is cancelled after the next
epoch. Kim et al. show that optimizing for fairness often results in overall throughput improvements,
while the reverse is not true, i.e., a policy that focuses on throughput optimization can often lead to
unfairness.

56 3. POLICIES IMPACTING CACHE HIT RATES

3.2 SELECTING A HIGHLY USEFUL POPULATION FOR A
LARGE SHARED CACHE

This section focuses on policies that decide what to bring in to the cache, what to keep, and what
to evict. These are attempts to maximize cache efficiency by doing more with less. We begin by
discussing replacement/insertion policies that decide what data to keep when an application suffers
from many capacity misses. We then discuss optimizations for associativity, largely targeted at con-
flict misses. Finally, we look at block-level optimizations that include compression, prefetch, and
elimination of dead/useless blocks.

3.2.1 REPLACEMENT/INSERTION POLICIES
While replacement policies have been well-studied in the past [86, 87, 88, 89], the emergence of
large shared LLCs has led to a flurry of recent observations and innovations in this area. It has been
generally believed that some variation of the LRU policy is best at retaining relevant blocks in the
cache. However, accesses to multiple data structures from multiple applications, each filtered by the
L1 caches, are multiplexed into the LLC. Depending on the nature of these accesses, the use of
LRU can be highly sub-optimal, and this is the premise behind much of the recent work covered in
this sub-section.

LRU assumes that a recent touch to a block is the best indicator of its use in the near
future. However, several blocks do not fit this description. Some access patterns are best described
as scans [90], where a large number of blocks are touched once and are re-referenced again in the
distant future. This happens, for example, when sequentially reading the contents of a large array.
A thrashing access pattern [90] involves a collection of blocks that do exhibit re-use, but the re-use
distance exceeds the size of the cache. Both access patterns and their mixtures would behave very
poorly with LRU. Further, when using a non-inclusive hierarchy, blocks with high temporal locality
may remain in L1 or L2 and the LLC version of the block is typically only touched once. For all of
these access patterns, it is important to identify blocks that have very long resue distances and not
retain them in the LLC. A common theme in some of the work, described shortly, is this notion that
a block must “prove its worth” before it is retained. This is often done by modifying the insertion
policy. Another common theme is the prioritization of blocks based on frequency of use. Yet another
body of work is based on the observation that half the blocks in cache at any time have already
serviced their last use and need to somehow be identified as dead blocks. Some of this dead block
prediction work is covered in Section 3.2.3.2.

LIN, Qureshi et al., ISCA 2006

In an ISCA’06 paper, Qureshi et al. [59] argue that the replacement policy should not just take
recency into account, but also the “cost” of fetching a block from memory. This cost is determined
by examining the memory-level parallelism (MLP) at the time of a miss. In essence, a cache miss that
happens in isolation has a high cost, while a cache miss that happens at the same time as other cache

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 57

misses has a low cost. This notion is similar to the notion of cache block criticality that has been
explored previously [91, 92], but Qureshi et al. use new metrics that explicitly focus on MLP. There
is also prior work on integrating cost and recency in the replacement policy [88], although that work
has focused on varying cost because of NUMA.

Qureshi et al. first introduce counters per entry in the MSHR that are incremented every
cycle based on the number of active entries in the MSHR. Once a miss is serviced, the MSHR
entry counter provides an estimate of the cost incurred in servicing that miss, referred to as mlp-cost.
It is assumed that the next miss for that block will incur similar mlp-cost, and, accordingly, the
block is deemed more or less precious. This estimate is stored in the tag entry for that block. The
implementation thus has the nice property that the mlp-cost of the block is estimated when the block
is fetched and a separate predictor is not required. The replacement policy uses a linear combination
of the block’s recency and its mlp-cost, and it evicts the block with the lowest such combination.
Hence, the policy is referred to as Linear (LIN). However, the policy sometimes performs worse
than LRU, especially if the mlp-cost is not consistent across successive misses for a block. Qureshi et
al. therefore employ a tournament-style predictor that dynamically decides whether to use LRU or
LIN. A sample of sets determines the cost of misses when using LRU for that sample, and another
sample of sets determines the cost of misses when using LIN for that sample. The better policy
is used for the rest of the cache. This initial incarnation of Set-Dueling is referred to as Sampling
Based Adaptive Replacement (SBAR).

While the mlp-cost approach has merit and relatively low implementation cost, it has received
relatively little attention in recent years. We believe that it may be worthwhile to examine the
interaction of the mlp-cost metric with other more recent replacement policies.

Adaptive Caches, Subramanian et al., MICRO 2006

Subramanian et al. [93] generalize Qureshi et al.’s idea of adaptively selecting the better of
two replacement policies. In their work, they focus on selecting the better of LRU and LFU on a
per-set basis. This is done by having separate auxiliary tag structures that track hypothetical cache
contents with either replacement policy. A bit vector per set also tracks recent history on which
policy may have yielded a hit while the other may have yielded a miss. The use of such a sliding bit
vector provides some theoretical bounds on performance that may not be possible with saturating
counter based implementations. On every eviction, the better replacement policy for that set is used
to determine the block that must be evicted. Because we may frequently switch between policies for
a set, the main tag storage for the cache may not resemble either of the auxiliary tag storages. The
overhead for the auxiliary tags may be reduced by using partial tags or by doing set sampling, without
a significant impact on performance. The use of set sampling would require that a uniform policy
be applied for all sets in the cache; although, this too seemed to have little effect on performance for
the studied workloads.

58 3. POLICIES IMPACTING CACHE HIT RATES

DIP, Qureshi et al., ISCA 2007

We described the DIP technique of Qureshi et al. [53] in Section 3.1.2 and re-visit that dis-
cussion here. Since the baseline block insertion policy in any large shared cached places an incoming
block into the MRU position of the access recency stack, we refer to it as the MRU Insertion Policy
(MIP). In many workloads, it is better to insert a block into the LRU position (LRU Insertion Policy,
LIP). This gives a block a brief stint within the cache and is an appropriate approach when dealing
with streaming blocks. If the block is touched again before its eviction, it is moved to the MRU
position and stays in the cache for a longer time. In a Bimodal Insertion Policy (BIP), most blocks are
placed in the LRU position, and with a small probability, an incoming block may be placed in the
MRU position. This is effective at retaining a relatively “hot” portion of a large working set within
the cache.

Ultimately, Qureshi et al. advocate a Dynamic Insertion Policy (DIP) that employs either BIP
or MIP for most of the cache. This decision is made by using the BIP policy on a few sets and the
MIP policy on a few other sets and using the better policy on all other sets. Such use of set samples
to pick among competing policies is referred to as a Set Dueling Monitor (see Section 3.1.1). Only
32 or 64 sets need to be used for these samples and misses in these sets increment or decrement a
single saturating counter. Thus, apart from the logic used to adaptively manage the recency stack
and keep track of the sets that constitute the SDM, there is almost no additional storage overhead.
The work of Qureshi et al. therefore offers new insight to a well-studied problem and an approach
that is a significant advancement without being overly complex.

Reuse Distance Prediction, Keramidas et al., ICCD 2007

A replacement policy can approximate Belady’s OPT replacement algorithm [86] if it evicts
a block that is touched furthest in the future. Keramidas et al. [94] attempt to make high confidence
reuse distance predictions for blocks. The replacement policy uses a combination of LRU and reuse
distance information. Among blocks that have reuse distance predictions, they select the block that
is accessed furthest in the future. Among blocks with no reuse distance predictions, they select the
block that was accessed furthest in the past (the LRU block). The block that is furthest away in
either its next predicted access or its previous access is selected for eviction. Keramidas et al. use
an instruction-PC based predictor for reuse distance. When a block is fetched into the L2, the
corresponding instruction’s PC is used to index into CAM and RAM structures that may yield
a high confidence reuse distance prediction for the block. Multiple prediction structures must be
navigated when updating and looking up the predictor.

Shepherd Cache, Rajan and Govindarajan, MICRO 2007

In their MICRO 2007 paper, Rajan and Govindarajan [95] make an interesting observation.
They show that a cache with half the associativity, but an optimal replacement policy (Belady’s
OPT [86]) can out-perform a baseline LRU-based cache. Based on that observation, they devise a

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 59

cache organization where the cache is organized as two logical partitions (way partitions), and one
of the partitions is used to collect information that allows us to emulate OPT on the other partition.

One of the partitions is referred to as a Shepherd Cache (SC) and uses a FIFO replacement
policy. In most experiments, the Shepherd Cache has 4 ways and the Main Cache (MC) has 12 ways.
On every cache miss, the incoming block, A, is placed in the SC. It remains in the SC through the
next three cache misses in that set; at which point, the block A is at the head of the FIFO queue
for the SC. On the next cache miss, we must determine if the block A should be evicted or if it
should be retained at the expense of a block in the MC. We are attempting to manage the MC with
a replacement policy that is OPT-like. In some sense, the decision of who to evict from the MC
when A is brought in should have been made many cycles ago, but it has been deferred until this
point. By deferring the decision, we have been able to examine what happens beyond the fetch of
A; this look into the “future” allows us to make an OPT-like replacement policy within the MC.
At this point, either A or a block from the MC is evicted. This block is chosen by examining the
accesses that happened since the fetch of A; we either pick the block that was accessed last since the
fetch of A (exactly matching the replacement decision that OPT would have made for the MC), or
in case of multiple candidates, fall back on an LRU policy. The organization requires a few complex
structures to keep track of accesses since A was fetched and how those accesses impact the selection
of replacement candidates.

An alternative view to this policy is this: every incoming block is forced to stick around for
at least four other evictions; at that point, we make a decision to either keep the block or not, based
on recent behavior. The Shepherd Cache organization may therefore be somewhat analogous to a
PIPP-like policy [65] (Section 3.1.2) where a block is inserted four places away from the tail of the
priority list.

Extra-Lightweight Shepherd Cache, Zebchuk et al., ICCD 2008

Zebchuk et al. [96] attempted a practical implementation of the Shepherd Cache philosophy.
As in the original Shepherd Cache design [95], incoming blocks are placed in a few FIFO ways
designated as the Shepherd Cache (SC). Instead of tracking the orders of next accesses to blocks [95],
Zebchuk et al. simply track if blocks in the SC have been touched or not. When a block A graduates
to the head of the SC FIFO and if it has not been touched, it is evicted. If the block A has been
touched, then the LRU block in the main cache is evicted, and A is inserted in the LRU position of
the main cache.This implementation has low complexity and makes the design appear more like the
alternative perspective mentioned in the previous paragraph. Zebchuk et al. also reduce complexity
by considering practical baseline replacement policies that approximate LRU. They point out that
practical implementations of pseudo LRU [97] can yield miss rates that are 9% higher than true
LRU.

60 3. POLICIES IMPACTING CACHE HIT RATES

RRIP, Jaleel et al., ISCA 2010

In an ISCA 2010 paper, Jaleel et al. [90] present a replacement policy that has low complexity
and that combines the insight from a large body of prior work. We first describe their observations
and some of this prior insight before delving into their proposed design.

For almost any replacement policy, the blocks in a set of the LLC are organized as a priority
list. The assumption is that a high priority block is likely to be re-referenced sooner than a low
priority block. Hence, when we place a block within the priority list, we are essentially making an
implicit Re-Reference Interval Prediction (RRIP). In LRU, we assume that an incoming block or a
recently accessed block has a near-immediate or very short re-reference interval. Another baseline
policy used in modern processors because of its simplicity is Not Recently Used (NRU). In this policy,
a single bit is associated with each block. Upon every touch, the bit is set to 0 to indicate recent
use. If a block must be evicted, we simply pick the first encountered block that has its bit set to 1.
If all blocks have their bit set to 0, all bits are set to 1. Because only a single bit is used to indicate
recency, it is difficult to discriminate between the priorities of the many blocks in the set. A primary
contribution of Jaleel et al. is the use of multiple bits per block to track priorities at a finer granularity
and the mechanisms to initialize and update these priorities on subsequent accesses.

The RRIP policy of Jaleel et al. [90] is most similar to NRU, but it tracks information at a
finer granularity. Every block has an M-bit counter associated with it (the design defaults to NRU
for M = 1). The counter value is an implicit measure of the re-reference interval prediction: a low
value implies that we expect the block to be re-referenced in the near future, and a high value
implies that we expect the block to be touched in the distant future. In the Static-RRIP (SRRIP)
policy, an incoming block’s counter is initialized to 2M − 2, one less than the counter’s maximum
value of 2M − 1. A block is selected for eviction only if it’s counter value is 2M − 1. If no such
block exists, the counters for all blocks in that set are incremented until a counter saturates and
a block can be evicted. When a block is touched, its counter can be decremented by one (this is
the RRIP-Frequency Priority policy and closely resembles LFU [98]) or directly set to zero (the
RRIP-Hit Priority policy that is closer to LRU). The authors show that the latter performs better
because a single re-reference shows that the block is not part of a scan (streaming access with no
immediate reuse) and should be retained. In addition to the just described Static RRIP, the authors
also introduce Bimodal RRIP, where an incoming block’s counter is initialized to either 2M − 1 or
(with a low probability) 2M − 2. Further, SDMs can be used to dynamically select the better of
Static and Bimodal RRIP, thus yielding the Dynamic RRIP (DRRIP) policy.

The primary complexity introduced by RRIP is the maintenance of M-bit counters for every
block in the cache. Corresponding operations for look-up, comparison, increment, and decrement
are required. This complexity is higher than that required for NRU and slightly lower than that
required for a dynamic policy that selects between LRU and LFU. The SRRIP policy requires less
hardware than LRU, but it outperforms LRU.

In essence, RRIP out-performs DIP because incoming blocks are being given more time to
determine their re-use potential. While DIP places most incoming blocks at the tail of the priority

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 61

list, RRIP places most incoming blocks at an intermediate position in the list by initializing the
block’s counter to a non-maximum value. This bears similarity with the philosophy of the Shepherd
Cache [95]. The RRIP policy can also be viewed as a generalization of NRU, combined with an
intermediate insertion policy. As Xie and Loh [65] point out, there are unlimited possibilities in
terms of how blocks can be inserted and promoted on the priority list and to some extent, the work
of Jaleel et al. tries to capture the best traits of many successful prior policies (DIP, LFU, NRU,
Shepherd Cache). The two main types of access patterns that create problems are scans and thrashes.
Scans are single accesses to a stream of data with no re-reference in the near future. Thrashes are
accesses to large portions of data with a large enough re-use distance that blocks are evicted before
their re-use. These access patterns are especially problematic when they interleave with other access
patterns that do exhibit temporal locality. The family of replacement policies (DIP, PIPP, RRIP,
etc.) that insert blocks close to the tail of the priority list are primarily targeting tolerance to scans
and thrashes, with subtle variations in the extent of tolerance.

Pseudo-LIFO, Chaudhuri, MICRO 2009

In his MICRO 2009 paper, Chaudhuri [99] introduces the novel concept of a fill stack. A
fill stack keeps track of all blocks in a set in the order in which they arrived. A given block will
initially reside at the top of the stack and gradually descend down until it is evicted from the cache
(perhaps before it reaches the bottom of the stack). Given this somewhat predictable traversal of a
block through the fill stack, Chaudhuri makes the argument that a block’s position in the fill stack
can be used to estimate its liveness. Chaudhuri shows that most cache hits are serviced by blocks at
the top of the fill stack. In other words, blocks even at the top of the fill stack have likely served their
utility and should be prioritized for victimization. This motivates a family of replacement policies
that leverage fill stack information and that believe in the priority of last-in-first-out (LIFO). Even
when most hits are not localized to the top of stack, it is easy to identify “knees in the hit curve” –
positions in the fill stack beyond which there is a sharp drop in blocks that yield hits.

Before the fill stack information can be used, the application is first executed with traditional
LRU at the start of every phase and information is gathered on how fill stack positions yield hits on
average. This information is gathered every epoch and is also used to detect phase changes. Three
“knees” in this hit curve are identified – fill stack positions beyond which there is a drop-off in blocks
that yield hits. Three policies are considered, one for each knee. In each policy, a block is victimized
if (i) it has not yet served a hit in its current fill stack position and (ii) it is closest to the top of the
fill stack while being above the knee position. A set dueling mechanism is used to select the best
of these three policies and LRU. The primary overhead of this probabilistic escape LIFO (peLIFO)
policy is that each block must now track its current fill stack position (must be updated on every
eviction), and the fill stack position that yielded its last hit (so that the hit curve can be estimated).

Chaudhuri also suggests two alternative policies. One uses a dead block predictor and uses
the fill stack to break ties if there are multiple candidate dead blocks. The second is based on the
premise that if (say) 75% of hits are yielded beyond fill stack position X and 25% of hits are yielded

62 3. POLICIES IMPACTING CACHE HIT RATES

beyond fill stack position Y, then 50% of blocks should be evicted between positions X and Y. Based
on these estimated probabilities, a block in a given fill stack position is selected for victimization.

Unlike DIP and RRIP that only hasten the eviction of a block that is touched exactly once,
Chaudhuri’s peLIFO policies can also hasten the eviction of blocks that are touched multiple times. In
that sense, they are most closely related to prior work on dead block prediction but incur significantly
lower overhead.The notion of dead block prediction has been exploited for various cache replacement
policies [100, 101, 102] and is discussed next in Section 3.2.3.2. In Chaudhuri’s design, the notion
of a fill stack is also used to exploit distant temporal locality. Additional hits are caused by the blocks
that descend to the bottom of the fill stack, are retained in a region of the LLC that can be viewed
as a “victim cache”, and are able to yield hits in the distant future.

Scavenger, Basu et al., MICRO 2007

Chaudhuri’s MICRO’09 paper on peLIFO [99] identifies the existence of long-term reuse.
The peLIFO policies probabilistically retain some blocks that might be temporally dead, and these
blocks later yield additional hits. However, peLIFO does not explicitly try to retain blocks that are
likely to yield hits in the distant future. Some prior work by Basu et al. [103] attempts to do just
that.

Basu et al. partition their LLC into two large regions – the regular L2 and a victim file (VF).
When a block is evicted from L2, it is not indiscriminately placed in the VF, unlike a traditional
victim cache [104]. The block is placed in the VF only if it is likely to yield hits in the future. A
counting Bloom filter is used to estimate the number of misses for this block, and this metric is used
to determine future reuse and the block’s priority for retention in the VF. A min-heap is used to
efficiently track the lowest-priority block in the VF; another block is retained in the VF only if it
has a higher priority than this lowest-priority block. The large VF is organized as a direct-mapped
hash table with a doubly-linked list to maintain all blocks that map to the same hash. While these
innovations help reduce the complexity of maintaining a large victim file, there is little precedence in
terms of commercial processors implementing pointer-based hardware data structures. There may
well be more room for improvement in defining a complexity-effective technique to retain blocks
with distant reuse.

NUcache, Manikantan et al., HPCA 2011

Manikantan et al. [105] propose a novel method to identify useful data that should be retained
in the cache to yield hits in the distant future. First, they identify the PCs that yield the most
cache misses. These PCs are referred to as delinquent PCs. The ways of the LLC are partitioned as
MainWays and DeliWays. All incoming blocks are placed in the MainWays that are managed with an
LRU replacement policy. A block evicted from the MainWays is retained in the DeliWays if it was
brought in by a set of chosen delinquent PC. The DeliWays follow a FIFO replacement policy. The
selection of “chosen delinquent PCs” is best explained with an example. If a delinquent PC was the
only one allowed to use 4 DeliWays and accounted for 50% of all misses, a block would be inserted

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 63

into the DeliWays at every other miss. The block would be evicted out of the DeliWays by the time
the set experiences 8 misses. Hence, a block’s next-use distance can tell us if keeping the block around
in the DeliWays could have been useful or not. The next-use distance for a block is defined as the
number of misses experienced by that set between the eviction of the block and its next use. If the
histogram of next-use distances for blocks brought in by a delinquent PC is known, we can estimate
the benefit of adding the delinquent PC to the chosen set. The cost of adding this delinquent PC is
that it pushes other blocks sooner out of the DeliWays. These calculations are non-trivial, and the
chosen set is constructed greedily by incrementally selecting the delinquent PC with highest benefit.

The most delinquent PCs are identified by keeping track of the number of misses yielded
by recent PCs. Incoming blocks are kept in another table, and the global miss count is recorded in
the table when that block is evicted. When the block is touched again, we compute the next-use
distance. This updates the next-use histogram for the corresponding delinquent PC.

Pollute Buffer, Soares et al., MICRO 2008

Soares et al. [106] propose a software-based page coloring scheme to improve hit rates. They
argue that it is best to isolate pages with high miss rates to a small region of the LLC. Such pages
are deemed to be polluters because retaining them in cache does not lead to many hits for their
cache blocks, and they, in turn, evict other useful blocks. The authors therefore designate 1/16th of
the LLC as a pollute buffer, and OS page coloring steers polluter pages to be mapped to sets in the
pollute buffer. This serves as a form of intra-application cache partitioning for higher hit rates.

Soares et al. use hardware performance counters and a Linux kernel module to track various
L2 hit/miss statistics for each virtual page at run-time. After initial profiling at the start of program
phases, the most cache-unfriendly pages (the ones with highest L2 miss rates) gradually undergo
page migration. An exploration phase copies different numbers of pages until an optimal assignment
of pages to the pollute buffer is identified.

Managing Inclusion, Jaleel et al., MICRO 2010

The trade-offs between inclusive and non-inclusive caches are well-known. Inclusive caches
simplify cache coherence because tag look-ups must only be performed at the larger inclusive cache.
However, inclusive caches waste space (especially when the inclusive cache is not much bigger than
the previous levels of the hierarchy) and result in “inclusion victims”. Inclusion victims are blocks
that have high temporal locality and are present in L1 caches; because the L1s filter out these
accesses, these blocks drift to the LRU position in L2, are evicted, and are also removed from L1 to
preserve inclusion. While these problems and corresponding solutions have been known for decades,
Jaleel et al.’s recent study [25] again focuses a spotlight on this problem in the modern multi-core
context. This is especially important because nearly every recent paper on LLC replacement policies
has focused on a non-inclusive hierarchy and has largely ignored the role of inclusion victims in
inclusive hierarchies. Future papers also need to clearly specify how inclusion is managed in their
simulator; many recent papers do not even specify if the L1-L2 hierarchy is inclusive or not.

64 3. POLICIES IMPACTING CACHE HIT RATES

Jaleel et al. show that while the difference between inclusion and non-inclusion is not signifi-
cant for single-thread workloads, it is significant for multi-core processors and workloads. They also
show that the difference between inclusion and non-inclusion can be attributed more to inclusion
victims than the difference in effective cache hierarchy capacity. If the LLC is eight times larger
than the previous level of the hierarchy, non-inclusion does not improve performance by much; the
difference is more stark when the LLC is only four times larger or less. This matches the design
choices in recent Intel (inclusive) [107] and AMD processors (non-inclusive) [108]. When inclusion
does suffer a performance penalty, that penalty can be eliminated with a replacement policy that
checks with the L1 before L2 eviction (assuming an L1-L2 inclusive hierarchy). In an inclusive
hierarchy, when a block is evicted from L2, the L2 anyway sends messages to L1 to evict the block
from L1s. If the block is found in L1, instead of evicting the block, the L1 responds with a NACK
that forces the L2 to find another victim. This process can typically be hidden behind the latency to
fetch the incoming block from memory.

3.2.2 NOVEL ORGANIZATIONS FOR ASSOCIATIVITY
The papers discussed in this sub-section make the observation that some sets are more pressured
than others and hence vulnerable to more conflict misses. They make an attempt to equalize load
across sets with hardware-based schemes.

Before delving into these papers, we describe a few other alternatives that are worth con-
sidering. The problem of load imbalance among sets may be alleviated with previously proposed
hardware/software techniques. For example, page coloring policies can reduce the non-uniformity
in accesses to sets, thus obviating the need for more complex hardware. Such an approach was pro-
posed by Sherwood et al. [72] to reduce misses in large caches. When sets are determined to be
hot, a recently touched page is re-assigned from those sets to a different color. The TLB tracks this
on-chip re-naming of a virtual page. Indexing functions have also been proposed to balance activity
across sets [109, 110]. Ultimately, the easiest way to reduce conflict misses is to increase associativity.
Since LLCs typically employ serial tag and data access, higher associativity only impacts the energy
for tag access.

V-Way Cache, Qureshi et al., ISCA 2005

In Section 2.1, we had discussed the NuRAPID organization of Chishti et al. [24]. The
NuRAPID design was attempting to yield low access latencies in a NUCA cache by affording
flexible data placement in cache banks.To make this happen, the data and tag stores were decoupled,
i.e., a tag entry was allowed to point to any data block in any bank, instead of to a fixed entry in the
data store. Managing such a cache requires forward and reverse pointers in the tag and data stores
to match the tag and data for a block. A similar inspiration was used by Qureshi et al. [28] in their
ISCA’05 paper to improve hit rates in an LLC.

In conventional caches, a block maps to a unique set, and the fixed collection of data-store
entries reserved for that set. Qureshi et al. argue that flexibility in LLC data placement is good for

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 65

two reasons: (i) it helps deal with an imbalance in load among cache sets, and (ii) it allows the use
of novel replacement policies that are cognizant of data usage beyond a single set. The flexibility is
provided with the following organization.

The tag-store is allowed to accommodate more entries than the data-store. It is similar in
organization to a conventional tag-store in that it has a fixed number of sets and ways; an important
distinction is that each tag-store entry maintains a forward pointer to indicate the data-store entry
corresponding to that tag. If the tag-store has twice as many entries as the data-store, half the
tag entries will be invalid. In some sense, the tags are over-provisioned, allowing a given set to
accommodate twice as many entries as its fair share.This helps absorb some variation in load per set.
The data-store is simply a collection of cache blocks with no direct fixed correspondence to tag-store
entries. Every data-store entry must maintain a reverse pointer to its corresponding tag-store entry.

When a block is brought in, if no free tag entry exists for that set, LRU is used to evict one of
the tag entries in that set. The incoming block is placed in the data store entry corresponding to the
tag just evicted. When a block is brought in, if a free tag entry exists for that set (this is true most
of the time because of the over-provisioning in the tag store), we must next identify a data block to
replace from the data store. Because of the existence of forward and reverse pointers, the incoming
block can replace any block in the data store. The replacement policy need not just examine access
recency within that set, it can evict any block in the cache that is likely to have already served its
use. This global replacement policy is implemented as follows. Every data store entry has a 2-bit
saturating counter that is incremented on every access. The replacement engine scans through these
counters looking for a zero counter value; the first encountered block with a zero counter value is
evicted. During this scan, every examined counter value is decremented. When handling the next
replacement, the scan starts where it previously left off.

This new organization leads to better replacement decisions and handles load imbalance
among sets. The primary penalties are a larger tag store, the maintenance of forward and reverse
pointers, and the logic and saturating counters used by the replacement engine.

Set Balancing Cache, Rolan et al., MICRO 2009

Rolan et al. [111] make the argument that sets in a large cache experience non-uniform activity
and pressure. When this happens, sets that experience high pressure are associated with sets that
experience low pressure. Pressure is measured with saturating counters associated with each set that
are incremented/decremented on misses/hits. The associations can be static (sets are associated if
they only differ in the most significant bit of their indices) or dynamic (a set with high pressure is
associated with a set with least pressure). When sets are associated, the block evicted from the high-
pressure set is placed as the MRU block in the associated set. When such associations are employed,
block look-up must be performed sequentially in both associated sets. Such a set-balancing policy
dynamically offers higher associativity for a few sets. Prior work in the area has focused on direct-
mapped baseline caches, such as the Balanced Cache work of Zhang [112]. Recently, Khan et al. [102]

66 3. POLICIES IMPACTING CACHE HIT RATES

extend the Set Balancing Cache by including the notion of dead block prediction (discussed in more
detail in Section 3.2.3.2).

STEM, Zhan et al., MICRO 2010

The Set Balancing Cache just described was also extended in another recent paper by Zhan
et al. [113]. First, they introduce a more accurate (but more costly) measure to determine if sets will
benefit from being associated. Each set in the tag array is augmented with partial (hashed) tags of
recently evicted blocks. Saturating counters keep track of hits in these victim tags and determine
if the set should spill or receive blocks. The saturating counters are also checked on every miss to
confirm that the receiving set is not being overwhelmed. Second, the Set Balancing idea is combined
with replacement policy innovations. The main tags and the victim tags use different replacement
policies (either LRU or BIP [53]), and the better policy is used for each set.

The ZCache, Sanchez and Kozyrakis, MICRO 2010

Sanchez and Kozyrakis decouple the notion of “ways” and “associativity” in their ZCache
design [29]. Ways represent the number of tags that must be searched when looking for a block.They
refer to associativity as the number of blocks that could be evicted to make room for an incoming
block. The ZCache keeps the number of ways small, but it has a large associativity. However, a
significant downside is that blocks have to be copied and re-arranged on most cache misses.

The ZCache builds on Seznec’s skewed-associative cache design [109]. In a skewed-associative
design,each way of the cache uses a different indexing (hashing) function.This leads to fewer conflicts
than a traditional set-associative design. If the cache has four ways, a block A can reside in four fixed
locations; when block A is brought into cache, it replaces a block in one of those four locations.
The ZCache extends this replacement policy. The blocks in those four locations can potentially
reside in other locations that do not conflict with block A. So, for example, block A could take the
place of block B and B could be moved to one of its other three possible locations. Similarly, the
blocks in those three locations could also be moved elsewhere. In other words, if we allow blocks to
be re-located to one of their alternative locations, a tree of replacement possibilities opens up. By
examining this tree up to a certain depth, we can find a replacement candidate that is most suitable.
Sanchez and Kozyrakis use coarse-grained timestamps on blocks to select the LRU block among
several candidates.The incoming block then causes a series of copies within the cache until the LRU
block is finally evicted. While the replacement process is not on any latency-critical path, it makes
the ZCache more expensive in terms of hit and miss energy than a baseline with the same number
of ways. Overall, energy can be reduced if the better replacement decisions can significantly reduce
the number of off-chip accesses.

3.2.3 BLOCK-LEVEL OPTIMIZATIONS
This section discusses papers that attempt to optimize the quality of blocks brought into the cache.
This is roughly organized as: (i) papers dealing with block prefetch, (ii) papers dealing with dead

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 67

block prediction, and (iii) papers identifying useless words or performing compression. These topics
also relate strongly with the topic of cache replacement policies.

Prefetching has been actively studied for at least three decades, with significant contributions
made by Chen and Baer [114], Jouppi [104], and Smith [115]. Prefetching can be applied to most
levels of the hierarchy; it is most effective when prefetching blocks into the LLC since off-chip
latencies can often not be tolerated with out-of-order execution. The switch to multi-core has not
been a major game-changer for the prefetching arena although some papers have reported a drop in
prefetch effectiveness in multi-cores [116], and some work [117] has considered the co-ordination
of multiple prefetchers on a multi-core. Prefetching papers continue to battle the classic problems of
accuracy, timeliness, pollution, and memory access contention. Prefetching is a vast enough area that
we can’t do justice to all recent work in this book – we will shortly discuss a sample that represents
the state-of-the-art.

The prefetching concept has also been connected with the concept of dead block prediction.
Dead block prediction was first introduced by Lai et al. [118] (and was also considered by Wood et
al. [119]). In that work, they show that the end of a block’s utility can be predicted by constructing a
trace of all instructions that access that block. Once a block is considered dead, that acts as a trigger to
evict the block and prefetch a useful block in its place. Hu et al. [120] also use dead block prediction
as a trigger for prefetch, but instead of constructing traces, they use a period of inactivity to deem a
block dead. Both of these works are focused on the L1 cache. In this sub-section, we describe more
recent advancements in this arena that have focused on dead block prediction for the L2 cache. Dead
block prediction has been used for prefetching [101, 118, 120, 121], cache bypassing [100, 101],
cache replacement policies [100, 101, 102], and for energy reduction [122, 123, 124].

Finally, this section also discusses papers that have examined the utility of words within a
cache block and have attempted optimizations to either reduce energy or increase effective cache
capacity. Effective cache capacity is also increased with orthogonal optimizations that compress a
cache block.

3.2.3.1 Prefetch
Prefetching is an actively studied area and is often orthogonal to the organization of the cache
hierarchy itself. Basic prefetch designs that continue to be heavily used today include Jouppi’s stream
buffer [104], Hu and Martonosi’s Tag Correlated Prefetcher [125], and Nesbit et al.’s Global History
Buffer [126].This section covers just a representative sampling of recent work in the area. Interested
readers are encouraged to see other recent papers on the topic [127, 128, 129]. It is also worthwhile
to study the methodology and taxonomy introduced by Srinivasan et al. [130] to analyze the various
effects of each prefetch operation.

Discontinuity Instruction Prefetcher, Spracklen et al., HPCA 2005

Most prefetching work has focused on data blocks. We present the work of Spracklen et
al. [131] as a state-of-the-art example of an instruction prefetcher. That paper also provides a good

68 3. POLICIES IMPACTING CACHE HIT RATES

summary of prior art in instruction prefetching, organized as sequential (stream-like), history-based
(predictors), and execution-based (runahead-like) prefetching.

Spracklen et al. show that prior instruction prefetching approaches are not very effective
for commercial workloads (databases, web servers) as they have large instruction working set sizes
with many direct and indirect branches and function calls (accounting for 60% of all instruction
cache misses). They argue that a low complexity predictor can be built if they focused on simply
identifying discontinuities in instruction fetch, i.e., fetches to non-contiguous cache lines. Every
time this is observed, the discontinuity and the address of the fetched line are recorded in a predictor
(if there is room). When fetching a cache line, the predictor is examined and if there is a hit, the
predicted next line is fetched. The discontinuity predictor is employed in tandem with a sequential
next-N-line predictor, so the sequential prefetches trigger look-ups of the discontinuity predictor,
and when a non-contiguous line is prefetched, we continue to fetch sequential lines from the new
target address. The predictor is direct-mapped; each entry only tracks last-time history. Each entry
also has a 2-bit saturating counter; the counter is incremented on a useful prefetch and decremented if
another discontinuity wants to use the same entry. Replacement can only happen when the saturating
counter is zero.

Spracklen et al. observe that instruction prefetching is not as effective for the L2 because of
useful data blocks that get evicted. Hence, prefetched instruction blocks are only placed in L1; they
are placed in L2 only if they were useful before their eviction from L1. Every generated prefetch
must also check cache tags before sending the request to the next level; this creates contention
for cache tags and a large prefetch queue. Prefetches are therefore filtered before placement in the
queue. Prefetches are dropped if the address matches a recent demand request.This and other simple
optimizations allow 90% of all prefetch queue requests to eventually be sent to the next level.

Temporal Memory Streaming, Wenisch et al., ISCA 2005

Wenisch et al. [132] design a prefetching mechanism that is especially well-suited to multi-
processor systems. They observe that consumers of shared data typically access the same sequence
of addresses as previous consumers, referred to as temporal address correlation. Such a sequence of
potentially arbitrary addresses is referred to as a stream (not to be confused with Jouppi’s Stream
Buffer [104] that refers to a sequence of contiguous addresses). Since these accesses to streams repeat
frequently, the phenomenon is referred to as temporal stream locality. Hence, when a node i in a
multiprocessor system has a miss, it checks to see if another node j recently had the same miss. It
then prefetches the same sequence of addresses that j had subsequent misses on.

The implementation works as follows. Each node tracks its miss sequence in a large circular
buffer that is stored in memory. When node j has a miss on block A, the address of A is recorded in
the circular buffer at address X. Node j sends the address X to the directory, so it can be recorded as
part of A’s directory state.The directory can record multiple such pointers to streams. When another
node i has a miss on block A, it contacts the directory and gets the latest value of A. It also receives
information from the directory that a potential stream can be found by node j at address X. Node i

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 69

sends a stream request to node j , and node j returns the stream to i. Node i can eventually receive
multiple possible streams that originate at address A. Node i then issues prefetches along these
streams while they agree. Prefetched data is placed in a prefetch buffer. Upon disagreement, node
i waits to see its own demand misses to resolve which stream is correct and then continues along
that stream. When the stream is half consumed, node j is contacted again to receive the next entries
in the stream. While there is a clear cost associated with storing streams in the circular buffer in
memory, accesses to the streams are usually not on the critical path. More messages are introduced in
the network as well. However, the benefits of prefetching can be substantial, especially in commercial
applications. The notion of a stream is not restrictive: it is capable of handling sequential, irregular,
and pointer-chasing data structures. In follow-up work, Wenisch et al. [133] add extensions to make
the implementation more practical.

Ferdman et al. [134] also apply the concept ofTemporal Streaming to the L1 instruction cache.
Similar to Temporal data streaming, sequences of instruction cache misses are logged in memory
(that gets cached in L2). The L2 tag for a block stores a pointer to the block’s occurrence in the L2.
This initiates a prefetch of subsequent blocks into the L1 instruction cache.

Spatial Memory Streaming, Somogyi et al., ISCA 2006

In their ISCA 2006 paper, Somogyi et al. [135] introduce the notion of a spatially correlated
stream. In many applications, accesses within a region can be sparse, un-strided, but repeatable (and
hence predictable). A bit vector can keep track of the cache blocks that are typically touched within
a region. When a similar traversal over a region begins again, the bit vector guides the prefetch of
the stream.

When a region (say, an operating system page) is touched, hardware structures keep track of
the blocks touched within that region. The resulting bit vector constitutes the stream. The trigger
(or starting point) for the stream is recorded as the PC of the first access to that region and the offset
of the first block touched in that region. A stream for a region is ended when the cache evicts a block
belonging to that region. The trigger and the bit vector are recorded in a predictor. On subsequent
first misses to regions, the predictor is looked up; on a hit, the predicted bit vector is used to prefetch
blocks in that region. This even allows us to accurately prefetch blocks from a region that may not
have been previously touched, as long as the same PC performed a similar traversal on a different
region.

Spatio-Temporal Memory Streaming (STeMS), Somogyi et al., ISCA 2009

Spatial memory streaming and temporal memory streaming target different groups of misses
(with some overlap). The former can only identify misses to blocks within a single region (OS
page). The latter can only make predictions for previously visited streams. Somogyi et al. [136]
build a unified prefetching mechanism that can handle both types of access patterns. The temporal
component of the predictor simply tracks the first access to each region and corresponding PC in
its stream. These entries in the stream form the triggers that index into the spatial component of

70 3. POLICIES IMPACTING CACHE HIT RATES

the predictor that predicts all the blocks that will be accessed within that region. This produces a
flurry of blocks that must be fetched in the near future. So as to not overwhelm the memory system,
prefetches to this large collection of blocks must be issued in an appropriate order. This requires
that the temporal stream also record the number of misses between each entry; it also requires that
the spatial predictor not just track a bit vector of accesses to that region, but the exact sequence of
misses and the gap between consecutive misses to that region. With all this information, the exact
expected sequence of misses can be reconstructed and timely prefetches issued.

Feedback Directed Prefetching, Srinath et al., HPCA 2007

Srinath et al. [137] introduce hardware mechanisms to estimate the accuracy, timeliness, and
pollution effects of prefetches and use this information to throttle prefetch aggressiveness and dictate
the management of prefetched blocks. They start with a baseline stream prefetcher that is modeled
after that of the IBM Power4 processor [138].The prefetcher is capable of handling multiple streams,
and prefetch is initiated for a stream after detecting at least three misses in close proximity.The stream
prefetcher attempts to stay P blocks ahead of a start address. Every time an item in the stream is
touched, the start address is advanced by N blocks. P is referred to as the prefetch distance, and N is
referred to as the prefetch degree. These two levers dictate how aggressive the prefetcher is. Srinath
et al. employ five different levels of aggression by tuning the values of P and N .

Every interval, hardware metrics are examined to determine the prefetch accuracy, timeliness,
and pollution. Accuracy is determined by storing a bit with every prefetched block to track its use.
Timeliness is determined by seeing if prefetched blocks are accessed while they are still resident in the
MSHR. Pollution is determined by keeping track of block addresses recently evicted by prefetches
in a Bloom filter-style structure. Based on these metrics in the past interval and (to a limited extent)
previous intervals, the prefetch aggression level is either incremented, decremented, or kept the same.
The pollution metric is also used to modify the cache insertion policy.The prefetched block is placed
in one of three locations in the latter half of the LRU priority stack based on the extent of pollution
caused by prefetches.These schemes are effective and incur minor storage and complexity overheads.

A similar idea was also previously considered by Hur and Lin [139]. They too adjust the
aggressiveness of a stream prefetcher, but this is based on hardware that estimates the typical lengths
of streams and estimates if the current memory access is likely to be part of a longer stream or not.
The strength of this technique lies in its ability to first issue and then curtail prefetches even for
very short streams. The authors go on to improve the prefetch effectiveness by, among other things,
biasing the stream detector to identify short streams [140].

Ebrahimi et al. [117] further leverage the notion of throttling of prefetchers based on dy-
namic feedback information. They first design a novel software-hardware co-operative prefetching
mechanim for linked data structures. This is then combined with a stream prefetcher and run-time
accuracy/coverage metrics are used to throttle whichever prefetcher is less effective. Competition
for resources can not only happen with the use of multiple types of prefetchers, but also with
prefetch streams for multiple cores of a processor. Ebrahimi et al. [141] again use dyanmic pol-

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 71

lution/accuracy/bandwidth metrics to throttle prefetches for specific cores in an attempt to boost
overall processor throughput.

3.2.3.2 Dead Blocks

IATAC, Abella et al., ACM TACO 2005

Abella et al. [123] attempt energy reduction in the L2 by turning off (gated-VDD) cache
lines that are predicted to be dead. A dead block prediction is made by considering a combination
of time and block access counts. They first show that the average time between hits to a block is
consistently less than the time between the last access and the block eviction. They also show that
these times vary as a function of the number of times a block is accessed during its L2 residence.
These observations motivate the following heuristic, Inter Access Time per Access Count (IATAC), for
dead block prediction and cache block turn-off. Every block keeps track of the number of accesses
that have been made to it. Given this access count, a prediction is made for average time between hits.
The prediction is based on global metrics for the entire cache and more heavily weighs the behavior
of recently touched lines. Once the predicted time for the block elapses, the block is considered dead
and is disabled. More than half the cache is disabled at any time with this policy, and there is a slight
drop in performance because of additional misses created by premature block disabling.

Access Count Predictors, Kharbutli and Solihin, IEEE TOC 2008

Kharbutli and Solihin [100] build two dead block predictors that are based on counting
accesses to cache blocks in the L2. Every block in L2 has an event counter that keeps track of
accesses during the block’s current residence in L2 and a threshold that conservatively represents the
block’s behavior during prior residences. When the event counter exceeds the threshold, the block
is considered dead. It is then prioritized over other blocks by the cache replacement policy. The
threshold estimation is also used to determine if the block is never accessed during its residence;
in that case, the block is simply not cached in L2 on its next fetch if the L2 is pressured for space
(referred to as cache bypassing in many prior works). The event counter can take two forms. The
Live-time Predictor (LvP) tracks the number of accesses to a block during its L2 resisdence. The
Access Interval Predictor (AIP) tracks the number of accesses to the block’s set between two successive
accesses to the block. Past behavior for a block is stored in a table between the L2 and the next level
of the hierarchy. This table is indexed with the PC of the instruction that causes the cache miss and
the address of the missing block.The table entry stores the maximum event counter value previously
seen by that entry and serves as the threshold prediction when a block is brought into L2.

Cache Bursts, Liu et al., MICRO 2008

Liu et al. [101] make the observation that counting individual references to a block can lead
to inaccurate predictions, especially for irregular data access patterns. Hence, accesses are counted
at the granularity of Cache Bursts. One cache burst is a series of references to a block during its

72 3. POLICIES IMPACTING CACHE HIT RATES

continuous residence as the MRU block of a set. For example, during its L2 residence, a block may
visit the MRU position of a set three times, servicing a number of accesses on each visit. After
the last visit, the block moves from MRU to LRU position and is finally evicted. On the block’s
next L2 residence, when the block leaves the MRU position for the third time, it is predicted to be
dead. Prior dead block predictors have also used the PCs of instructions accessing a block to form a
trace [118]; now, the trace is formed with the PCs of instructions that cause the block to move into
the MRU position. Liu et al. show that this new granularity for block access leads to higher accuracy
and coverage for dead block prediction at the L1 and L2. The predictor is again placed between
L2 and the next level of the hierarchy [100]. They also show that the moment that a block leaves
the MRU position for the last time is also a good time to issue a prefetch that can replace the dead
block. In addition to the prefetch trigger, the dead block prediction is also used to implement cache
bypassing and prioritization in the cache replacement policy. The results of Liu et al. show that less
than a third of the L2 cache contains useful blocks; this shows the vast room for improvement in
L2 caching policies in general.

Virtual Victim Cache, Khan et al., PACT 2010

In recent work,Khan et al. [102] also show a similar room for L2 cache efficiency improvement.
They show that a cache block is dead for 59% of its L2 residence time. Hence, the entire pool of
predicted dead blocks in L2 is considered as a virtual victim cache that can house non-dead blocks that
are evicted from the L2. Dead block prediction is done with Lai et al.’s trace-based predictor [118]
with a few variations to reduce interference. To keep the implementation simple, only two sets are
“partnered”. When a block is evicted from one set, it is placed in its partner set.The partner set evicts
a dead block or its LRU way. The evicted block is placed in either the MRU or LRU way of the
partner set, depending on the outcome of a set-dueling implementation (see Section 3.1.1). Blocks
are also prevented from ping-ponging between their home and partner sets. When looking for a
block, the home set and the partner set are sequentially searched. The overall design is most similar
to Rolan et al.’s Set Balancing cache [111], except that dead block prediction is used instead of
identifying high and low pressure sets. The concept also has similarities to the Shepherd Cache [95]
that also uses half the LLC as a victim file.

Sampling Dead Block Prediction, Khan et al., MICRO 2010

In a recent MICRO 2010 paper, Khan et al. [142] propose enhancements to the basic dead
block predictor. Similar to prior work, the predictions are used for cache replacement and bypassing.
They show that trace-based dead block predictions are not as accurate for an LLC in a 3-level
hierarchy because of the filtering effect of the first two levels. Instead, high accuracy can be achieved
by simply tracking the PC of the last instruction that touches the block during its LLC residence.
The predictor complexity is reduced by keeping track of all prediction metadata in a separate tag
array that maintains partial tags for a fraction of all LLC sets. This sampler structure is used to train
a collection of saturating counters (the real predictor) that keep track of PCs that tend to generate

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 73

last touches to blocks. In other words, access patterns for a few sets are used to identify the PCs
that generate last touches for the entire LLC. When such a PC touches a block in the LLC, a bit
associated with the block is set to indicate that it is dead. In fact, if the replacement policy often
selects dead blocks for eviction, metadata for LRU can be eliminated from the LLC (although, it
may be used within the smaller sampler structure).Thus, overall, the LLC design is greatly simplified
and most complexity is localized to a small sampler structure.

3.2.3.3 Compression and Useless Words
On a cache miss, entire blocks are brought into the cache under the assumption that spatial locality
exists in the access stream. However, in many workloads, only a fraction of the words (words are
usually up to eight bytes wide) in a block are accessed and the rest are never touched. By only fetching
the useful words in a cache block, (i) we can increase the effective useful capacity of the cache and
(ii) reduce the bandwidth needs between the cache and the next level of the hierarchy. Similarly,
compression of blocks is an orthogonal technique that can also be employed to achieve the same
two benefits. There was some early work [143, 144, 145, 146, 147, 148] that examined prediction
techniques to only fetch useful blocks, targeted primarily at L1 caches. Likewise, compression has
been extensively studied for memory systems (for example, [149, 150, 151]) and for some L1 cache
designs [152, 153]. We next describe recent work that applies these concepts to L2 caches.

Distill Cache, Qureshi et al., HPCA 2007

Qureshi et al. [154] devise a technique that, unlike prior work, improves performance without
relying on predictors and without requiring selective fetch of blocks from the next level. On a cache
miss, the entire block is fetched and placed in L2. During the cache’s residence in L2, the utility
of individual words in the block is learned. Once the block drifts close to the LRU position, they
conclude that the words touched, so far, are useful and the rest are useless. The useful words are kept
in cache while the useless words are evicted. This helps improve the effective capacity of the cache
and boosts hit rate.

The L2 is now organized into two banks – a line-organized cache (LOC) and a word-organized
cache (WOC). The LOC resembles a traditional L2 cache; although, it has fewer ways. When a data
block is evicted from the LOC, its useful words are moved to the WOC. The WOC has many
ways, each way containing a single word; it therefore has high tag storage overhead. For workloads
that exhibit a high degree of spatial locality, the authors introduce a scheme based on set-dueling
monitors (see Section 3.1.1) to revert back to a traditional cache organization. The transfer from
LOC to WOC only happens for half the lines evicted by L2 – those with a low percentage of useful
words.The authors also attempt an optimization that performs compression on words in the WOC.

While the technique improves miss rates and performance, the implementation entails a fair
bit of complexity; therefore, there is likely more research required to realize the potential from
identifying useless words. The primary storage and energy overhead is introduced by the tag storage
for the WOC. Since only the L1 caches see accesses to individual words, the L1 caches must track

74 3. POLICIES IMPACTING CACHE HIT RATES

the utility of each word and merge that information into the L2 copy of the block. Additional bits are
required in L1 and L2 to track word utility, and non-trivial interactions are introduced between the
L2 and many L1s (especially if the L1-L2 hierarchy is non-inclusive). Copies are required between
LOC and WOC and certain alignment constraints must be respected. Hits in the WOC result in
partial blocks within the L1, requiring the use of a sectored L1 cache [146]. Reverting back to a
traditional organization also requires extra tag storage.

Adaptive Cache Compression, Alameldeen and Wood, ISCA 2004

Data block compression introduces a fundamental capacity/latency trade-off: compressed
blocks increase capacity, but they incur a higher read latency because they must be decompressed.To
strike a balance in this trade-off, Alameldeen and Wood [155] first avoid compression in latency-
critical L1 caches (similar to the approach of Lee et al. [156]). In the L2 cache, compression is
employed for an incoming block only if the entire cache appears to be benefiting from compression.
To estimate this benefit, on every L2 access, a saturating counter is incremented by the L2 miss
penalty if compression can elide a miss and decremented by the decompression latency if the access
would have been a hit even without compression. The L2 cache is organized so that up to eight
tags can be stored and up to four uncompressed data blocks can be stored. If some data blocks are
compressed, the set can accommodate up to eight data blocks. The information in the tag storage
(tags for eight blocks and the compressibility of each block) allows us to compute the conditions
that increment/decrement the saturating counter.

This technique can thus improve hit rates for applications with large working sets without
increasing hit times for applications that do not need high L2 capacity. However, some implementa-
tion complexities must also be considered.The larger tag storage increases the L2 area by roughly 7%.
A compression and decompression pipeline is required and Alameldeen and Wood show that this
can be done in under five cycles. The compression algorithm identifies seven different compressible
data classes and attaches a 3-bit prefix to every word in a block. Removing or replacing a line in
L2 can be somewhat complex because all data elements in a set are required to be contiguous and
sometimes multiple entries may have to be evicted.

Indirect Index Cache with Compression (IIC-C), Hallnor and Reinhardt, HPCA 2005

In their HPCA 2005 paper, Hallnor and Reinhardt [157] first make the argument that com-
pression should be employed at the LLC, memory bus, and in memory. This leads to improvements
at each level and reduces the compression and de-compression overhead when going between each
level. Second, they build on the insight of Lee et al. [156] to limit compression to the L3 and op-
timize higher cache levels for low latency. Third, they extend their own prior Indirect Index Cache
(IIC) design [158] to gracefully handle compressed blocks.

The IIC places a block’s tag in one of a few possible locations. The tag carries a pointer to
the block’s location in the data array. Thus, the data array is fully-associative at the cost of a more
expensive tag array. When compression is introduced (the IIC-C design), a block is scattered across

3.2. SELECTING A HIGHLY USEFUL POPULATION FOR A LARGE SHARED CACHE 75

four sub-blocks; all four sub-blocks are used for an uncompressed line and 0, 1, or 2 sub-blocks
are used for compressed blocks. The tag must now store a pointer to each sub-block. Thus, the
tag storage becomes even more expensive (it is also required to have twice the entries as the data
array). This overhead can be as high as 25% for a 64 byte block, hence, the techniques are only
effective for larger sized blocks and sub-blocks. However, the flexibility in data placement removes
the replacement complexity introduced by Alameldeen and Wood’s design [155].

To further reduce the latency cost of decompression in the L3,Hallnor and Reinhardt augment
IIC’s generational replacement policy. The data array is organized as prioritized FIFO pools. On a
miss, a block must leave its pool; depending on whether it was accessed, it moves to a pool with higher
or lower priority. When a block in L3 is touched, it is decompressed. The decompressed version is
placed back in the L3. If there are no misses in the pool, the block remains there in uncompressed
form, and its accesses can be serviced quickly. If the pool suffers from many misses, the uncompressed
block will eventually move to a different pool; at that point, it is compressed again.Thus, applications
with small working sets will not suffer much from decompression latency, while applications with
large working sets will frequently compress their blocks to create space. This achieves a similar goal
to Alameldeen and Wood’s adaptive cache compression in a completely different manner, but it does
require many block copies and compression/decompression cycles.

Compression and Prefetching, Alameldeen and Wood, HPCA 2007

Some of the topics in this section can have synergistic interactions. We earlier mentioned
Qureshi et al.’s evaluation of a combined compression and useful-word technique [154]. We next
describe Alameldeen and Wood’s evaluation of a combined compression and prefetching tech-
nique [116]. In essence, the two techniques are complementary, and the speedup with both tech-
niques is greater than the product of the speedups with each individual technique. This is because
prefetching suffers from bandwidth pressure and cache pollution, both of which are alleviated by
compression; likewise, the latency cost of decompression can be hidden by prefetches into the L1. A
key contribution of Alameldeen and Wood is an adaptive prefetch scheme that throttles prefetches
based on the cost/benefit of prefetched blocks.The benefit is estimated by tracking use of prefetched
blocks. The cost is estimated by leveraging the existence of extra tags in sets that have not been fully
compressed (the cache organization is based on their prior work described earlier [155]).These extra
tags keep track of recently evicted blocks; this helps track instances where prefetched blocks evict
other useful blocks. The above events are tracked with a saturating counter that disables prefetching
when it saturates in one direction.This is especially important in multi-core chips where prefetching
is shown to be not as effective.

CHOP, Jiang et al., HPCA 2010

We end this section with a technique that is closest in spirit to being a block-level optimization.
In essence, this technique employs very large blocks and chooses to cache a block only if the elements
of the block exhibit a high degree of spatial and temporal locality. Jiang et al. [159] consider the use

76 3. POLICIES IMPACTING CACHE HIT RATES

of a large LLC that is organized with embedded DRAM, possibly as a 3D stack. If data is organized
in this large LLC at the granularity of typical cache blocks (up to 128 bytes), the overhead for tags
would be extremely high. Instead, if data is organized at the granularity of OS pages, many blocks
within the page would not be used and memory bandwidth would be wasted. Jiang et al. therefore
advocate that the large LLC be used to store data at page granularity and filter mechanisms be
designed that only fetch pages that are predicted to be “hot”. Hot pages are defined as the most
accessed pages that together account for 80% of all accesses and, for the chosen workloads, happen
to represent 25% of all pages. A filter cache is an on-chip structure that monitors off-chip accesses
to pages that are not yet part of the LLC. By default, a page is not allocated in the off-chip LLC
on first touch. Over time, if a page in the filter cache is deemed hot, it is then allocated in the LLC.
When a page is evicted from the LLC (based on an LFU replacement policy), it is reinstated in the
filter cache with some initial counter value. When a page is evicted out of the filter cache, its counter
values can be saved in main memory so that its level of activity need not be later re-computed from
scratch. Jiang et al. also employ an adaptive policy that occasionally disables the use of the filtering
mechanism if memory bandwidth utilization is low.

3.3 SUMMARY

This chapter first examined different techniques for cache partitioning to maximize throughput and
provide QoS. Utility-based way partitioning has been frequently employed and can be implemented
with relatively low overhead. Miss rate curves can be constructed with sampled shadow tags that
incur overheads of the order of a few kilo-bytes. But ultimately, LLC replacement policies and
partitioning appear to be headed in the direction of creative insertion mechanisms. Inserting a block
near the end of the priority list for a set (RRIP) is a low-overhead method to retain a block only after
it has proved to be useful. Likewise, the insertion point can also be used to prioritize one application
over another and achieve implicit cache partitions (PIPP). Insertion point mechanisms need very
minor logic and storage because they can evaluate competing policies with a few set samples and
counters. In addition to computing an optimal cache partition for a workload, the operating system
must also try to create a schedule that allows complementary applications to simultaneously share a
cache. Some recent papers have used miss rate curves to construct such schedules (ACCESS, DIO).
QoS mechanisms similarly need miss rate curves and various run-time statistics to compute resource
allocations and monitor if QoS guarantees are not being met.The difference in the many QoS papers
is primarily in the resource (cache, bandwidth, ways, molecules, etc.) that is allocated and how that
impacts program IPC.

For replacement policies, novel insertion mechanisms appear to be the way of the future
because of their simplicity. While some studies have attempted creative replacement policies that
approximate Belady’s OPT algorithm, they inevitably incur higher overheads in terms of storage and
logic complexity. Similarly, many of the policies that boost associativity incur non-trivial complexity.
They may have to fight an uphill battle for commercial adoption, especially since software schemes
(page coloring or scheduling) can help balance load across sets.

3.3. SUMMARY 77

Most commercial processors dominantly use stride or stream based prefetchers. Some re-
cent works have proposed policies that examine behavior to control the parameters of stride-based
prefetch engines. These policies appear simple enough to be adopted commercially. There has also
been extensive research on prefetching for streams (data blocks with no apparent pattern in their
addresses). While these techniques are effective, they frequently require that the streams be stored
in memory, a feature that may encounter scalability challenges. Dead block predictors have made
significant advancements, but they have been primarily useful when prioritizing blocks for eviction.
The sampling dead block predictor of Khan et al. may be simple enough that it could compete with
other insertion-based replacement policies. Some block-level optimizations (compression, filtering)
lead to variable-sized blocks. Cache organizations that support variable-sized blocks entail signifi-
cant complexity for tag and data placement. Eventually, the recent research in caching policies will
also have potential at lower levels of the hierarchy, with CHOP being an example of a policy that is
applied to an off-chip DRAM cache.

79

C H A P T E R 4

Interconnection Networks
within Large Caches

Storage cells within an SRAM cache have undergone relatively minor changes over the decades.
The SRAM storage cell continues to be the traditional 6-transistor design, although novel variation-
tolerant alternatives are being considered for the future (see Section 5.5).

On the other hand, the interconnects used to connect cache sub-arrays have been the focus
of several innovations. It has been well-known for over a decade that on-chip wires do not scale as
well as transistor logic when process technologies are shrunk [160]. This is especially true for global
long-distance wires. Since cache footprints have not changed much over the years (caches continue
to occupy approximately 50% of the chip area), wire lengths within caches are relatively unchanged,
but they represent a bigger bottleneck, both in terms of delay and energy (quantified shortly). This
chapter describes several strategies to alleviate the wiring bottleneck in large cache hierarchies.

4.1 BASIC LARGE CACHE DESIGN

4.1.1 CACHE ARRAY DESIGN
A simple cache consists of a set of SRAM cells organized as multiple two-dimensional arrays to store
data and tags. Figure 4.1 shows the organization of a cache with a single data and tag array. Each
memory cell is equipped with access transistors that facilitate read or write operations, and the access
transistors are controlled through horizontal wiring called wordlines. A centralized decoder takes
the address request and identifies the appropriate wordline in the data and the tag array. To reduce
the area overhead of the decoder and wiring complexity, a single wordline is shared by an entire
row of cells. For every access, the decoder decodes the input address and activates the appropriate
wordline matching the address. The contents of an entire row of cells are placed on bitlines, which
are written to the cells for a write operation or delivered to the output for a read operation. Although
the data placed on the bitlines can be used to directly drive logic for small arrays, because of large
bitline capacitance, the access latency of such a design can be very high even for moderately sized
arrays. To reduce access time, sense amplifiers are employed to detect a small variation in bitline
signal and amplify them to the logic swing. The sense amplifiers also limit the voltage swing in
bitlines and hence their energy consumption.

The energy and delay to read or write an SRAM cell itself is very small; it takes only a
fraction of a CPU cycle to read an SRAM cell and dynamic energy consumption in SRAM cells

80 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

is insignificant. The cache access latency is primarily dominated by the wire delay associated with
decoder, wordline, bitline, and output bus. Similarly, the number of bitlines activated during a read
or write and the length of the output bus determines the dynamic power of a cache.

Input address

D
ec

od
er

Wordline

Bitlines

T
ag

 a
rr

ay

D
at

a
ar

ra
y

Column muxes
Sense Amps

Comparators

Output driver

Valid output?

Mux drivers

Data output

Output driver

Figure 4.1: Logical organization of a cache.

4.1.2 CACHE INTERCONNECTS
The monolithic model shown in Figure 4.1 does not scale with the array size. Due to low-swing
signaling employed in bitlines and silicon area overhead associated with repeaters, wordlines, and
bitlines cannot be repeated at regular intervals, causing their delay to increase quadratically with the
size of the array. Also, the throughput of a RAM is a function of wordline and bitline delay, and the
bandwidth of a single array deteriorates quickly as the array size grows.To reduce this quadratic delay
impact, a large array is typically divided into multiple sub-arrays. Many sub-arrays constitute a single
bank. All the sub-arrays within a bank share the input address signals and the input/output data
signals. A large cache bank is almost never multi-ported. A bank may deal with multiple requests
at a time if pipelining is employed. A large L2 or L3 cache is typically partitioned into banks, with
each bank operating independently. Each bank can simultaneously receive/service a single request
in the same cycle.

4.1. BASIC LARGE CACHE DESIGN 81

An interconnect system is required within a bank to connect sub-arrays. A more complicated
interconnect system is also required to connect banks, cores, and other components. The intra-bank
system is typically an H-tree network (as shown earlier in Figure 1.7). An H-tree network offers
uniform delay to each sub-array, greatly simplifying the necessary scheduling logic. In Section 4.2.2,
we discuss the role of the H-tree network and potential optimizations. Most of this chapter will
focus on the more problematic inter-bank network.

In relatively small-scale multi-cores, the inter-bank network is composed of a crossbar switch.
For example, the Piranha chip (circa 2000) has eight cores and a 1 MB L2 cache organized into
eight independent banks [21]. An intra-chip switch (ICS), which is essentially a cross-bar, is used to
connect the cache banks to the cores. A cache request must therefore travel a few long wires and go
through arbitration for the output port, possible buffering if the request is not immediately granted,
and crossbar logic to reach the cache bank. The same is true for Sun’s Niagara processor, where a
crossbar is used to connect eight cores to four banks of a 3 MB L2 cache [161]. Kumar et al. [162]
provide a description and analysis of the interconnects that may be required to connect a medium
number of cores and cache banks.

As the number of cores and cache banks scales up, the complexity of the crossbar and necessary
wiring can increase dramatically. It is also inefficient to travel half-way across the chip to reach a
centralized crossbar. It is generally assumed that tens of cores and cache banks will have to be
connected with scalable networks that do not incorporate centralized shared components. In fact,
future large caches will be distributed on chip and techniques such as page coloring will ensure that
data for a thread will likely be resident in nearby cache banks. Therefore, there must be a way for
nearby components to communicate without having to go through centralized structures. Scalable
networks can take many forms, but the predominant one adopted in recent literature is the packet-
switched routed network [163, 164]. Such a network incorporates many routers, independent links
connect routers and components to routers, and packets are sent via multiple routers from source to
destination.These networks are more scalable because multiple packets are simultaneously in transit
over different links, the centralized functionality of a crossbar is now distributed across several routers,
and if cores tend to access data in nearby cache banks, short distances are traveled on average.

4.1.3 PACKET-SWITCHED ROUTED NETWORKS
We’ll next provide a short primer on the design of packet-switched routed networks. The interested
reader is encouraged to check out the Synthesis Lecture on On-Chip Networks [11] for more details.

Topology The most fundamental attribute of any on-chip network is its topology that describes
the edges required to connect all the routers and components. Common on-chip topologies, in order
of increasing number of edges (and hence performance and cost) include the 1-D array, ring, 2-D
array or mesh, torus, flattened butterfly, and hypercube. The mesh is by far the most commonly used
topology, where components and routers are laid out in a 2-D array and each router is connected
to the adjacent component and the four North, South, East, West neighboring routers. Except for

82 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

the routers on the periphery of the network, each router has a degree of five, i.e., each router has five
input and five output ports.

Routing Algorithm The routing algorithm is typically classified as either Oblivious or Adaptive.
An oblivious routing algorithm uses paths that are only a function of the source and destination
and not of events or load in the network. A prominent subset of oblivious routing algorithms is
the set of Deterministic routing algorithms. Deterministic routing employs a unique pre-determined
route for every source-destination pair. A common example of deterministic routing is dimension-
order routing where a message is first routed along the first topology dimension until it reaches
the same co-ordinate in that dimension as the destination; the message is then routed along the
second dimension, and so on. For example, in a 2-D array, if the source is denoted as (3,5) and the
destination as (7,9), the message is first routed along the X dimension until it reaches (7,5), and it
then travels along the Y dimension until it reaches (7,9). On the other hand, adaptive routing may
employ pre-determined paths as a guideline, but a message may deviate from this path in an attempt
to avoid congested routers. A subset of adaptive routing algorithms is the set of Minimal routing
algorithms. Minimal routing allows the path to be determined dynamically based on load, but it
ensures that every hop is in a direction that brings the message closer to its destination.

Buffer, Crossbar, Channel Every router has a crossbar switch that allows data on any input port to
be transferred to any output port. If multiple incoming messages wish to go on the same output port,
an arbitration unit must grant the output port to one of the messages. The granting of the output
port is equivalent to the granting of the link (also frequently referred to as channel) connected to
that output port. The losing message is then buffered at its input port. Each input port has a set of
buffers. There are two primary physical resources that every message must compete for and acquire
in order to make forward progress: one is the physical channel for its next hop and the other is a
free buffer entry at the input port of the next router it is visiting. For example, if a message is going
from router A to router B and then router C, it must compete to acquire the channel connecting
A and B, and it must also confirm that there is a free buffer entry at B’s corresponding input port
to accommodate this message in case the message is not immediately able to hop to C (because of
contention from other messages that may be simultaneously arriving on B’s other input ports). The
term flow control refers to the policy used to reserve resources (buffers and channels) for a message
as it propagates through the network.

Packets Before we discuss flow control options, let us first describe the various granularities that
a message can be partitioned into. A message is partitioned into multiple packets. Each packet has
a header that allows the receiving node to re-construct the original message, even if the packets
are received out of order. Since a packet is a self-sufficient unit, each packet can be independently
routed on the network and different packets of a message may follow different paths. This can lead
to better load distribution in a network with an adaptive routing algorithm. In an on-chip network,
messages are typically short, rarely exceeding the size of a cache line. Messages are therefore rarely
broken into smaller packets, and the two terms are synonymous. Common packet classes include:

4.1. BASIC LARGE CACHE DESIGN 83

data (64 B cache line), request (4 or 8 B address), control (coherence messages that may be a few
bits or up to 10 B if they include the address).

Flits Packets are further partitioned into flits. A flit is typically the same size as the width of the
channel and therefore represents the smallest granularity of resource allocation. If the channel is 64
bits wide, and a 64 byte (cache line) packet is being transmitted, the packet is organized into eight
flits that are transmitted on the channel over eight cycles. Flits do not carry additional headers. The
flits of a packet can not be separated, else the receiver will not know how to re-construct the packet.
All flits of a packet therefore follow the same path and are transmitted in exactly sequential order.
The head flit carries header information for the packet, and this is used by the router to decide the
output port for the packet. Once this decision has been made, all subsequent flits of the packet are
sent to the same output port until the tail flit is encountered. With such an architecture, packets
can be made as large as possible (to reduce header overhead), but resources can be allocated at the
finer granularity of a flit, thereby improving overall network resource utilization. To appreciate this,
consider the following analogy: the volume of a bucket is better utilized if we attempt to fill it with
sand instead of rocks, i.e., an entity has a better chance at propagating itself through the network
if it demands fewer resources. It is worth pointing out that while a channel may be 64 bits wide, it
will have additional wires (as much as 20% more wires) for control and ECC signals. Packet headers
may also include checksums or ECC codes. Occasionally, if the physical channel width is less than
a flit, a single flit may be transmitted across a channel in multiple cycles; the transmission per cycle
is referred to as a phit.

Flow Control Flow control policies differ in the granularities at which buffers and channels are
allocated. These policies are first categorized as either bufferless or buffered.

Bufferless Flow Control Bufferless flow control is potentially power-efficient because it does away
with buffers in the network. Studies have attributed about a third of total on-chip network power
dissipation to router buffers [165, 166, 167, 168]. In what is referred to as “hot-potato” or “deflection”
routing, an incoming flit is sent to another free output port if the desired output port is busy. If the
number of input ports matches the number of output ports, it should always be possible to forward
all incoming flits to some free output port.This increases the number of hops and latency required for
an average message but simplifies the router. Such designs are being strongly considered for modern
energy-constrained multi-cores [169]. A circuit-switched network is another example of bufferless
flow control. When a message must be sent, a short probe message is first sent on the network.
This probe finds a path all the way to the destination, reserving all the channels that it passes
through. An acknowledgment is sent back to the sending node. The actual message is then sent
to the destination, and there is no need for buffering at intermediate routers because all required
channels (output ports) have already been reserved. The tail flit of the message de-allocates the
channels when it goes through. There is a clear latency overhead with this flow control mechanism
because of the round-trip delay of the initial probe message. This overhead can be amortized over
large message transfers, but as we’ve pointed out, messages tend to be short in on-chip traffic. While

84 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

this technique does not require buffering for the message, it does require some limited buffering for
the probe message as it waits for desired channels to be vacated.

Buffered Flow Control Buffered flow control can happen at a coarse granularity with packet-buffer
flow control, where channels and buffers are allocated per packet. When a packet wants to move
from router A to adjacent router B, it must ensure that B’s input port has enough free buffer space
to accommodate the entire packet. The channel from A to B is then reserved for the packet. Over
the next many cycles, the entire packet is transmitted from A to B without interference from any
other packet. Two common examples of this flow control are Store-and-forward and Cut-through. In
the former, the entire packet must be received by B before the header flit can begin its transfer to
the next router C. In cut-through, the header flit can continue its traversal to C before waiting for
the entire packet to be received by B. Cut-through often leads to lower latency, but it can be more
resource-intensive because an in-transit packet is scattered across multiple routers and packet-sized
buffers are reserved at each router. Wormhole flow control improves upon the storage inefficiency in
cut-through by allocating buffers on a per-flit basis. This is a form of flit-buffer flow control, but
channels continue to be reserved on a per-packet basis, i.e., once a packet begins its traversal over a
channel, no other packet can occupy the channel until the first packet’s tail flit has been transmitted.
With wormhole flow control, a packet may be stalled with its various flits scattered across multiple
adjacent routers. When a packet is stalled in this manner, it prevents the involved channels from
being used by other packets that may be able to more easily make forward progress. This brings us
to the last form of buffered flow control, Virtual channel flow control, that also allocates the channel
on a per-flit basis.

Virtual Channel Flow Control In virtual channel flow control, it is assumed that multiple packets
can simultaneously be in transit over a link or physical channel.We mentioned earlier that flits do not
have headers and the flits of a packet must be transmitted sequentially over a channel. For multiple
packets to share a physical channel, each flit must carry a few-bit header that identifies the in-transit
packet that it belongs to. When a router receives a flit, the few-bit header is used to steer the flit
towards its appropriate packet. Therefore, it is as if multiple virtual channels exist between the two
routers and each packet is being transmitted on its own virtual channel and being received by its own
set of buffers at the other end. In reality, there may be only one physical channel and one set of shared
buffers, but the virtual resources are being multiplexed on to the physical resources. If we assume
four virtual channels (VCs), there can be four packets in-transit over a physical channel. Each cycle,
a flit belonging to one of the four packets (identified by the 2-bit header) can be transmitted over the
physical channel. This time-division multiplexing of multiple virtual channels on a single physical
channel allows other packets to make forward progress while some packets may be stalled. At the
input port of each router, there needs to be state for each of the four packets. This state must keep
track of the output port and virtual channel that has been selected for the next hop of the head flit
of each packet; subsequent flits of that packet are directly forwarded to that output port and virtual
channel.

4.1. BASIC LARGE CACHE DESIGN 85

The virtual channel flow control mechanism is considered the gold-standard for on-chip
networks. It not only yields the highest performance, virtual channels are also used for deadlock
avoidance (discussed shortly). For such an architecture, various resources must be acquired before a
packet can be forwarded to the next router.

VC Allocation First, the head flit must acquire a free virtual channel on the link that needs to be
traversed. The VC state resides at the input port of the receiving router. The sending router realizes
that a VC is available as soon as it sends a tail flit on that VC. Even if the previous packet that used
the VC is buffered at the receiving router, the next packet can begin transmission on the same VC;
the flits of the next packet simply get buffered behind the earlier packet and will be dealt with after
the first packet has been forwarded on. The remaining body flits of the packet need not compete to
acquire a virtual channel.

Buffer Management Second, each flit must make sure that a free buffer entry exists in the next
router before it can hop across.This is usually determined with one of two methods. In a credit-based
scheme, every time a flit is forwarded on by a router, a signal is sent to the preceding (upstream)
router to inform it that a buffer entry has been freed. A router is therefore aware of the number
of free buffers at all adjacent (downstream) routers, with a slight time delay. In an On/Off scheme,
the downstream router sends a signal to the upstream router when its buffers are close to being full.
The upstream router stops sending flits until the downstream router de-activates the signal. The
thresholds for activating and de-activating the signals are a function of the link delay between the
two routers. The latter scheme reduces upstream signaling and counters but wastes a little more
buffer space.

Physical Channel Allocation Third, each flit must compete for the physical channel. If we assume
that each physical channel has four virtual channels associated with it, up to four flits may be ready
for traversal in a cycle, but only one can be transmitted on the physical channel. This is a local
decision made at that router.

If we take the example of a 5x5 router (5 input and 5 output ports) with four virtual channels
per physical channel, there may be as many as 16 incoming packets (on 4 incoming ports and 4 VCs
on each port) that wish to all go on the same output port. The head flits of these 16 packets will
compete for the four available VCs on the desired output port. Assuming that free buffers exist in
the downstream router, flits from the four winning packets will compete for the physical channel in
every cycle.

Basic Router Pipeline This leads us to the design of a typical router pipeline.There are four essential
stages:

• Routing Computation (RC): When a head flit is encountered, its headers are examined to
determine the final destination. The routing algorithm is invoked to determine the output
port that this packet should be forwarded to. An adaptive algorithm will take various load
metrics into account when making this decision. State is maintained for each VC on each

86 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

input port and the output port is recorded here. Subsequent body flits of that packet need not
go through the RC stage; they simply adopt the output port computed by the head flit.

• VC Allocation (VA): Once the output port has been determined, the header flit must acquire
a free VC at the selected output port. If a VC is not immediately granted, the head flit must
continue to compete every cycle until a VC is allocated. The assigned output port VC is also
recorded in the state being maintained for the packet at its input port VC. Again, subsequent
body flits skip this stage and adopt the VC acquired by the head flit.

• Switch Allocation (SA): All flits go through this stage. At the heart of every router is a crossbar
that allows a flit on any input port to be sent to any output port. A packet’s leading flit must
compete with other packets for access to the output port (physical channel). The SA stage
assigns the available output ports to a sub-set of competing flits.

• Switch Traversal (ST):The flits that are assigned output ports begin their traversal in this stage.
The flits are read out of their input port buffers and traverse through the crossbar. This stage
is followed by multiple traversal stages on the link itself. For example, if the link has a 3-cycle
delay, it is typically pipelined into 3 latched stages.

An example pipeline and packet traversal through the pipeline is shown in Figure 4.2(a). We
mentioned that a flit must acquire VC, physical channel, and buffers before a hop – while the VA
and SA stages allocate the VC and physical channel, there is no separate stage to allocate the buffer.
A quick check of credits or on/off state is done as part of the SA stage.

Speculative Router Pipelines The router just described has a 4-stage or 4-cycle pipeline. The delay
through a router can be reduced with speculative techniques [163, 170]. Example speculative router
pipelines are also shown in Figure 4.2. In the first example (b), the VA and SA stages are done in
parallel. A flit must assume that it will succeed in acquiring a VC in the VA stage, and it speculatively
competes for an output port in the SA stage. The speculation fails only if the flit is a head flit and
the VCs are heavily contested. In low-load conditions, such speculation will often be successful and
reduce delay through the router. In high-load conditions, speculation may fail, at which point the
pipeline is traversed sequentially. The only penalty is that the output port may have been allocated
to a flit that did not acquire a VC and hence the output port remains idle for a cycle. In high-load
conditions, the bottleneck for a message is the queuing delay in buffers and not the router pipeline
delay. It is therefore fortunate that speculation is helpful in low-load conditions where router pipeline
delay is indeed the bottleneck.

In the second speculative router example in Figure 4.2(c), the VA, SA, and ST stages can
happen in parallel. Flits are directly jumping to the output port, assuming that they will successfully
acquire the VC and the output port.This speculation again has high accuracy in low-load conditions.
The final example (d) implements a 1-cycle pipeline where all 4 stages are traversed in parallel.While
it may be possible to predict the output port selected by the RC stage, this will likely be a low-accuracy
prediction. Therefore, we assume that when a flit arrives at a router, it is accompanied by a few bits

4.1. BASIC LARGE CACHE DESIGN 87

RC VA SA ST

SA ST

SA ST

Head flit

Body flit

Tail flit

(a) Conventional 4-stage router pipeline

RC VA

SA

ST

SA ST

SA ST

(b) 3-stage speculative
router pipeline

RC VA

SA

ST

SA

ST SA

ST

(c) 2-stage speculative
router pipeline

VA

SA

ST

RC’

SA

ST SA

ST

(d) 1-stage speculative
router pipeline

Routing computation
for the next router

Figure 4.2: Examples of conventional and speculative router pipelines.

that specify the optimal output port for that flit. In other words, the route comes pre-computed.
Since the output port and downstream router are known, the RC stage now tries to estimate the
output port that should be used by the downstream router. This pre-computed route for the next
router is shipped along with the flit to the downstream router. Truly speaking, the router operations
are pipelined into 2 sequential cycles but distributed across two routers. This is also referred to as
look-ahead routing. Assuming that speculation succeeds, the delay at a given router is only a single
cycle. We are not aware of commercial routers that employ such a high degree of speculation. It is
clear that speculative routers may consume more energy and entail higher complexity.

Deadlock Avoidance Network routing and flow control algorithms must also incorporate deadlock
avoidance features. Deadlocks are created when there is a cycle of resource dependences. Consider
a flit that is attempting to hop from router A to router B. The flit is currently holding a buffer entry
in router A’s input port and it is attempting to acquire a free buffer in router B’s input port. The
release of buffer resources in router A is contingent on the release of buffer resources in router B –
this is a resource dependence. As shown in Figure 4.3(a), four packets attempting a turn can end
up in a resource deadlock. Deadlocks are best understood by the four-turn model (Figure 4.3(b)).
An unrestricted adaptive routing algorithm can lead to deadlocks because all four possible turns

88 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

Packets of message 1

Packets of message 2

Packets of message 3

Packets of message 4

5x5 router
Output ports

Input ports

(a) Deadlock example: 4 messages waiting for each other as they turn

West-First North-Last Negative-First Can allow
deadlocks

Fully Adaptive

(b) The turn model to reason about deadlock possibilities for each routing algorithm

Router A
Router B

Figure 4.3: Example of deadlock and the 4-turn model.

(in a clock-wise and anti-clockwise loop) are possible, potentially leading to the deadlock shown
in Figure 4.3(a). A dimension-order routing algorithm is deadlock-free because it only allows two
of the four turns required for a cycle. Virtual channels can also be used for deadlock avoidance.
Assume that each VC has a set of buffers associated with it and the buffers are numbered. A packet
is allowed to make arbitrary turns as long as it acquires VC buffers in numerically ascending order.
This guarantees that a cycle of resource dependences will not happen. When it is clear that higher
numbered VC buffers may not be available, the packet resorts to a deadlock-free routing algorithm
such as dimension-order routing.

Router Bottlenecks The reason for delving into router design in such great detail is that on-chip
networks are an integral part of access to a large cache. As can be seen by the discussion so far,
scalable networks may need routers with complex functionality. While we have focused much of our
discussion on a virtual channel router, even simpler routers require similar functionality. Studies have
attributed a significant fraction (10-36% [165, 168, 171]) of total chip power to on-chip networks.
Therefore, router and network access cannot be abstracted away while considering performance and
energy optimizations for large caches.

4.2. THE IMPACT OF INTERCONNECT DESIGN ON NUCA AND UCA CACHES 89

A router itself has several key components. While energy breakdowns in the literature vary, it
is fair to say that the link, buffers, and crossbar contribute substantial portions to a bulk of network
energy. The energy and area complexity of a crossbar grows quite significantly with the number of
ports and flit width. Buffer energy also grows with the number of ports, VCs, and network load.
Arbiters and routing logic consume non-trivial area but do not contribute much to overall energy.

Router Optimizations Several attempts are being made to address each of these bottlenecks. Many
recent router optimizations target crossbar and buffer energy [167, 169, 172, 173]. Link energy is
also being reduced with low-swing wiring [174]. Router traversal can be entirely bypassed with
the use of express channels. Physical express channels [175] are long-distance links that connect
regions of a chip. Packets traveling long distances can hop on physical express channels for the
most part and skip traversal through many intermediate routers. The downside is that some routers
are more complex because they must accommodate both express and regular channels. The virtual
express channel architecture [176] uses a regular topology, but some virtual channels are reserved
for long-distance communication. A packet on such a virtual express channel can bypass the entire
router pipeline of intermediate nodes. Concentration is another technique that reduces network
size and average required hops, but it increases router degree and complexity [177]. The design
of an energy-efficient high-performance network and router remains an open problem. This is an
actively researched area and not the primary focus of this book.The optimizations listed above are all
examples of network optimizations that are somewhat oblivious of the cache architecture, i.e., they
will apply to any network and almost any traffic pattern. We will restrict our subsequent discussion
of network innovations to those ideas that are strongly related to the organization of the cache
hierarchy.

4.2 THE IMPACT OF INTERCONNECT DESIGN ON NUCA
AND UCA CACHES

4.2.1 NUCA CACHES
It has been known for a while that monolithic large caches will suffer from long delays and high
energy. It is inevitable that large caches will be partitioned into smaller banks, possibly distributed
on chip, and connected with a scalable network. Many of the early evaluations of such NUCA
architectures made simplifying assumptions for the on-chip scalable network. It was assumed that
each network hop consumed a single cycle and network energy was rarely a consideration. This led
to early NUCA designs where the cache was partitioned into 64-256 banks, and many network hops
were required to reach relatively small 64 KB cache banks. In the past five years or so, there has been
much greater awareness of the complexities within a router and its delay and energy overheads.While
it may be desirable to partition a cache into several banks to improve delay and energy within cache
components, this comes at the cost of increased network delay and energy. This was quantified by
Muralimanohar et al. [4, 7, 178] by constructing a combined cache and network model. They show
with a comprehensive design space exploration that an optimal large cache organization is achieved

90 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

when the cache is partitioned into only a few banks. While more energy and delay is dissipated
within a cache bank, much less energy and delay is dissipated within the on-chip network.

This is an important guideline in setting up baseline parameters for any large cache study.
The design space exploration is modeled within the popular publicly distributed CACTI cache
modeling tool [4]. It also provides a breakdown of the energy/delay dissipated within network and
cache components, allowing researchers to make Amdahl’s Law estimations of the overall benefit of
their optimization to a component.

Most of the analysis of Muralimanohar et al. focuses on a physically contiguous large cache.
This is representative of the layouts of Beckmann and Wood [2] and Huh et al. [22] where the
cache is placed in the center of the chip and surrounded by cores. This may also be representative of
a cache hierarchy where a large L2 cache is distributed on chip, and it is further backed by a large
physically contiguous L3 cache on either the same die or on a 3D stacked die. Note that the layout
of a distributed cache is not generic enough to incorporate reasonably in a model. The CACTI 6.0
model therefore focuses on a physically contiguous large cache but provides the tools necessary to
manually model the properties of a distributed cache.

CACTI 6.0 models the usual elements within a cache bank, as described earlier in Sec-
tion 4.1.1. In addition, it models the routers and wires of the on-chip network.Different types of wires
are considered. Traditional RC-based wires with varying width/spacing and repeater size/spacing
are considered. Each wire type provides a different trade-off point in terms of delay, energy, and
area (bandwidth for a fixed metal area budget). Low-swing differential wires [179] are also modeled;
these wires provide much lower energy while incurring delay and area penalties. The router model
is based on Orion [166] and primarily quantifies energy for buffers and crossbar. The router delay
model is an input parameter as the number of router pipeline stages is a function of the clock speed
and degree of speculation.The design space exploration is carried out by iterating over all reasonable
partitions of the cache into banks. It is assumed that each bank is associated with a router. For
each such partition, the average network and cache delay is estimated per access. The network delay
includes router contention, which is empirically estimated for a number of benchmarks and included
in the CACTI model.The design space exploration also sweeps through all interconnect options and
various VC/buffer router organizations for each partition of the cache. Ultimately, CACTI provides
the cache organization that optimizes some user-defined metric.

Figure 4.4 best illustrates the trade-offs considered by the design space exploration. For a fixed
size cache, as the number of banks is increased, the bank size reduces and so does the delay within
the bank. At the same time, the network size grows and while the overall cache area and wire lengths
do not change dramatically, router delays start to play a prominent role. Further, as more links are
added in the network, contention reduces. The net result is an overall delay curve that is minimized
when the large 32 MB cache is partitioned into eight 4 MB banks. This results in a network size
much smaller than that assumed in most prior work on NUCA caches. A similar trade-off curve
also exists for overall cache energy.

4.2. THE IMPACT OF INTERCONNECT DESIGN ON NUCA AND UCA CACHES 91

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

La
te

nc
y

(c
yc

le
s)

No. of Banks

Total No. of Cycles

Network Latency

Bank access latency

Network contention Cycles

Figure 4.4: Cache access latency as the number of banks is increased [4].

To provide insight into the contributions of various components to delay and energy, we show
pie-chart breakdowns for a NUCA hit in Figure 4.5 and Figure 4.6. The results are generated by
CACTI 6.5 for a 128 MB L2-cache at 32 nm technology for a 16 core processor.The optimal number
of banks for this configuration is found to be 32 banks organized as an 8 × 4 grid. Figure 4.5 shows
key components that contribute to NUCA hit latency. There are some interesting observations that
can be made from the figure. First, router latency is almost the same as bank access latency in an
optimal configuration. Second, contention in the network contributes significantly to the access
time. Interestingly, it goes down dramatically (by more than 75%) as accesses to banks are pipelined
(not shown in the figure). This shows that having a pipelined bank or multiple sub-banks within a
NUCA bank are interesting design points worth exploring. Finally, even with this high contention,
the optimal number of banks is only 32. Figure 4.6 shows the energy breakdown. Since each bank
is 4 MB, the bank access energy dominates the total energy. Note that not all accesses will have a
similar breakdown; if an access is a miss or if a request is for directory information, only the tag-array
gets activated, and its access energy is much smaller. In these cases, energy in router components will
dominate. If the workloads are mostly single threaded, it is more beneficial to reduce bank energy. On
the other hand, for multi-threaded workloads with many coherence transactions, routers and links
are good targets for energy optimization. This shows that depending upon the type of workloads
being executed, smart voltage or frequency scaling can be done.

92 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

Bank
Link
Router
Contention

Figure 4.5: Latency breakdown of a NUCA access.

Buffer
Crossbar
Links
bank

Figure 4.6: Energy breakdown of a NUCA hit.

4.2.2 UCA CACHES
Based on the discussion above, it is clear that a large NUCA cache will be decomposed into one
or two handful multi-megabyte banks, not into tens of small banks. This is required to amortize
the overheads of bulky routers. A tiled architecture will likely be common where each tile will
accommodate a large L2 cache bank (either a private cache or a slice of a large shared cache).
Therefore, regardless of whether future processors adopt private/shared caches, or UCA/NUCA
architectures, or tiled/contiguous L2 caches, it is evident that several large cache banks will be found
on chip. The optimization of such a large cache bank is therefore important. We expect such a bank
to have a capacity of a few mega-bytes and offer uniform cache access.

Figure 4.7 shows a pie chart breakdown of where delay and energy is dissipated for various
sizes of UCA cache banks, as modeled by CACTI at 32 nm technology. The contribution of the
H-tree network to cache bank power clearly stands out as a bottleneck in large cache banks. An

4.2. THE IMPACT OF INTERCONNECT DESIGN ON NUCA AND UCA CACHES 93

H-tree network is used to connect the many sub-arrays of a cache bank to its input/output ports. A
balanced H-tree provides uniform pipelined access without complex switching circuits or scheduling
logic. In small cache banks, bitline energy tends to dominate. As the cache bank grows in size, the
contribution of the H-tree network begins to dominate. This is primarily because bitlines employ
low-swing differential signaling, while the H-tree network uses global RC-based full-swing wiring.

H treeH tree
Decoder
Wordline
Bitline mux & associated drivers
Sense amp mux & associated driversSense amp mux & associated drivers
Bitlines
Sense amplifier energy
Sub array output driver

Figure 4.7: Energy breakdown of a UCA access.

The above observations make the argument that low-swing differential signaling [174, 179]
also be employed to connect cache sub-arrays. Reducing the voltage swing on global wires can cause a
linear reduction in energy. A separate smaller voltage source can lead to quadratic energy reductions.
In essence, depending on the length of the wire, low-swing wiring can reduce energy by nearly
an order of magnitude. Low-swing wires do not need repeaters, but they do require receiver and
transmitter circuits at their end-points. As a result, they cannot be easily pipelined. They also incur
longer delay penalties when traveling long distances.

A recent paper by Udipi et al. [180] considers the use of low-swing wiring within a cache bank
to connect the many sub-arrays. While dramatic energy reductions are possible, there can also be
appreciable performance degradation. Hence, the key is to employ a judicious amount of low-swing
wiring to balance the performance penalty and energy saving. The paper puts forth four reasonable
options: (i) implementing the H-tree as an unpipelined set of low-swing wires, (ii) implementing the
H-tree as a pipelined set of low-swing wires, (iii) implementing multiple parallel sets of low-swing
wires, and (iv) augmenting a baseline global-wire H-tree with a low-swing trunk to access two rows of
sub-arrays.These different designs fall on different points of the energy-performance trade-off curve.
Udipi et al. argue that the last design represents a sweet-spot, especially if architectural mechanisms
are used to increase the likelihood of fetching data from sub-arrays with low-swing links. However,
these mechanisms involve non-trivial complexity as popular or recently-touched blocks must be
migrated to the sub-arrays with low-swing links. Similar to the S-NUCA vs. D-NUCA discussion,
there might be alternative less-complex ways to exploit non-uniform power access in cache sub-

94 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

arrays, but this remains future work. The study does highlight the need to seriously consider the
judicious use of some low-swing wiring within a cache bank to target the interconnect bottleneck.

4.3 INNOVATIVE NETWORK ARCHITECTURES FOR
LARGE CACHES

It is common for most architecture studies to assume basic mesh topologies when connecting many
cores and cache banks. Some studies also employ concentration, express channels, or a flattened
butterfly topology. In this section, we will focus on network innovations that are closely tied to their
interactions with the cache hierarchy.

Transmission Line Caches, Beckmann and Wood, MICRO’03

A transmission line is a wiring technology that works differently than traditional RC-based
wires. In a transmission line, delay is determined by the time taken to propagate and detect a
voltage wavefront on the wire. This delay is determined by the LC time constant and velocity of the
wavefront, which is a function of the speed of light in the dielectric surrounding the interconnect.
A transmission line is therefore capable of very low latencies. However, there are several associated
overheads. The wire must have very high width, thickness, horizontal and vertical spacing, high
signal frequency, reference planes above and below the metal layer, and shielding power and ground
lines adjacent to each transmission line. In addition, transmitter and receiver circuits are required at
each end (but there is no need for repeaters). Because of these high costs, transmission lines have only
been sparsely used in various chips [181, 182, 183, 184, 185]. Their popularity has not grown in the
last half-decade, partially because low latencies can be provided in the RC realm with fat wires, and
partially because there has been a stronger focus on low-energy interconnects than on low-latency
interconnects. That said, they remain an interesting design point worth keeping an eye on. Because
of the area/cost overhead, they can likely be exploited only in scenarios where low bandwidth is
acceptable.

Beckmann and Wood formulate a large cache architecture, assuming that transmission lines
are the interconnect of choice [186]. The L2 cache is partitioned into large banks and placed on
the chip periphery. The banks are connected to a central L2 cache controller via transmission line
links. These links must be narrow because of the high area overheads of transmission lines. A couple
of optimizations are employed to deal with this bandwidth problem. Only part of the address is
sent to a bank and a 6-bit partial tag comparison is done at the bank. On a load, the rest of the tag
must be returned to the cache controller for full tag comparison. Since the entire address must be
exchanged between the banks and controller, there is no saved bandwidth in case of a load. In case
of an L1 writeback (store), if a partial tag comparison succeeds, the value is directly written into the
L2 – the inclusive nature of the L1-L2 hierarchy guarantees that a partial tag hit corresponds to a
full tag hit. The partial tag strategy therefore reduces the bandwidth requirement on L1 writebacks.
The second optimization distributes a single cache line across multiple banks. While this increases
the overall bandwidth requirement (the address must be sent to multiple banks), narrower links

4.3. INNOVATIVE NETWORK ARCHITECTURES FOR LARGE CACHES 95

can be employed for each bank as the bank only provides part of the cache line. This is not dis-
similar to modern DDRx DRAM data mapping where the limited DRAM chip pin bandwidth is
alleviated by distributing a cache line across multiple DRAM chips. The resulting L2 cache yields
high performance thanks to the clear low latency advantage of transmission lines.

Halo Network, Jin et al., HPCA’07

Jin et al. [5] show that a network specifically targeted at D-NUCA traffic can be much simpler
than a generic mesh-based network. It is assumed that a single core is accessing a large D-NUCA
cache.The cache is organized as a 2D array of banks and a given block maps to a unique column, but
can reside in any of the banks in that column, i.e., the ways of a set are distributed across all the banks
in a column. Placement in the ways of a set is based on the LRU algorithm. So the MRU block is
placed in the way and bank that is closest to the core, and the LRU block is placed in the way and
bank that is furthest. Assuming that the core is placed above the cache (as shown in Figure 4.8(a)),
a cache request is first sent in the X dimension until it reaches the correct column. The request then
propagates downward until the block is located in one of the ways (banks). As the request propagates
downward, it is accompanied by the block that was resident in the previous bank (way) – this allows
the blocks to be placed in banks in LRU order while the cache is being searched. When a block is
located in a bank or in the next level of the hierarchy, it is placed in the closest way. When a block
is located, it is propagated up the column (in the Y dimension) until it reaches the top-most bank
and then propagated in the X dimension until it reaches the core.

(a) NUCA cache with a simplified network (b) The Halo network

Figure 4.8: The Halo network [5].

Given this routing of requests and responses, Jin et al. observe that the network is deadlock-
free. A full-fledged mesh network is not required as horizontal communication only happens in the

96 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

top row – all other rows need not have horizontal links. This greatly simplifies the design of each
router. The organization is further optimized by re-organizing the banks so they surround the core
(Figure 4.8(b)). Requests and responses radiate away or towards the center. Bank sizes can now be
heterogeneous, with the smallest banks closest to the core. While the figure shows diagonal links,
layouts are possible with zig-zagging XY links as well.

While the design does not extend easily to a multi-core layout and is specially tuned to D-
NUCA traffic, it is a thought-provoking idea for cache organizations that may exhibit very specific
traffic patterns.

Nahalal, Guz et al., SPAA’08

Guz et al. [6] make the observation that the handling of shared data in a D-NUCA cache is
highly sub-optimal. Shared blocks tend to gravitate towards a center-of-gravity where they are not
very close to any of the cores [2, 22].They attempt to solve this problem with a novel layout/topology,
that is inspired by urban planning concepts used in the design of a cooperative village Nahalal. While
the paper is not specifically about the design of the on-chip network, it shows that clever layout and
placement of cores and cache banks can play a strong role in reducing on-chip distances and network
traffic.

Bank 0

Ba
nk

3

Bank 5

Bank 2

Bank
4

Bank 7

Bank 1

Shared Bank

Bank 6

CPU 1

CPU 6

CPU 0

CPU 3

CPU 5

CPU 2

CPU 4

CPU 7

Figure 4.9: The Nahalal architecture [6].

4.3. INNOVATIVE NETWORK ARCHITECTURES FOR LARGE CACHES 97

In the proposed organization (shown in Figure 4.9), some cache banks are placed in the center
of the chip, they are surrounded by a ring of cores, and another set of cache banks forms an outer
ring. The cache banks together form a shared L2 cache, ways are distributed among banks, and
blocks can move between ways (banks) with D-NUCA policies. The central banks are meant to
store blocks that are shared; the outer banks are meant to store blocks that are private to the nearest
core. Blocks are initially placed in the requesting core’s outer (private) banks; if a block is accessed
by other cores (detectable with a counter or by examining the directory protocol’s sharing vector),
it is migrated to the central shared banks. Thus, each core is likely to find data in either the shared
central banks or the adjacent private banks – this is also the order in which banks are looked up
when searching for data. Instead of a parallel look-up in the shared and private banks, a predictor
is used to prioritize look-up in one of the two regions. Given the layout of cores and private/shared
banks, a large majority of cache look-ups are serviced by traveling relatively short distances. While
Guz et al. focus on a D-NUCA architecture, it should be possible to apply these concepts to other
S-NUCA or tiled architectures as well.

Hybrid Network, Muralimanohar and Balasubramonian, ISCA’07

As described earlier, wires can be implemented in many ways. Low-latency wires can be
designed by having large width and spacing (fat wires) or with transmission line technology, but
both of these approaches trade off bandwidth because fewer wires can be accommodated in a fixed
metal area budget. Muralimanohar and Balasubramonian [7] make the observation that in a large
cache network, requests and responses place different demands on the network. Responses require
cache line transfers and are in need of high bandwidth.Requests,on the other hand,only consist of the
address and possibly even a partial address.They therefore recommend the use of different networks
for requests and responses. Responses employ a traditional mesh-based topology with minimum-
width wires for high bandwidth. Requests employ low-latency fat wires. Since fat wires can cover
relatively long distances in a cycle, a mesh topology may be overkill as it frequently introduces router
pipeline delay in data transmission. Therefore, a bus-based broadcast network is advocated for the
request network. To improve scalability, a bus is implemented for each row of cache banks and the
buses are connected with a regular routed network (Figure 4.10). This work shows that wire-aware
design of the cache network and heterogeneity can lead to performance and power improvements.

A similar argument is also made by Manevich et al. [187] in their Bus Enhanced NoC
(BENoC) architecture where a multi-stage NoC is augmented with a simplified bus that is more
efficient at specific operations, such as searching for a block in a D-NUCA architecture.

Network Innovations for Efficient Directory-based Coherence

Cheng et al. [188] make the observation that different messages in a coherence protocol make
different demands of the network. Data messages require high bandwidth, while most other control
messages are short and require low latency. In coherence transactions that require multiple messages,
each with a potentially different hop count, some messages are not on the critical path – such non-

98 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

L2
Controller

Core

Shared bus

Router

Shared bus

Shared bus

Figure 4.10: The hybrid network for a NUCA architecture [7].

critical messages can be transferred on links that are optimized for energy and not latency. Cheng
et al. design a network where each link is made up of different wire types. Each message is mapped
to wires that best match its needs in terms of latency, bandwidth, and energy.

Bolotin et al. [189] also make the observation that short control messages in a coherence
protocol merit higher priority than long data messages. They also design a broadcast invalidation
mechanism that relies on routers to create copies of the invalidation message and quickly spread
it to all nodes. This technique can also be used to speed up block search in a D-NUCA cache.
Alternatively, given a set of sharers, a virtual ring can be constructed and the invalidation message
can be sequentially sent to all the sharers until a single final acknowledgment message is returned to
the directory.

Eisley et al. [190] propose a mechanism that adds intelligence within routers to speed up
coherence transactions. In a typical directory-based cache coherence protocol, the directory must
be contacted before a cache miss can be serviced. The directory, in turn, may have to contact other
nodes before the requestor is finally granted access. Even as the initial request is making its way
to the directory, it may pass other nodes that have enough information to service the request, but
conventional protocols do not leverage this information in any way. Eisley et al. build a distributed
directory by constructing virtual trees; all sharers of a block and its directory home node are made to
form a tree.The edges of the tree are stored in a table at each involved router. If a request hits a router

4.3. INNOVATIVE NETWORK ARCHITECTURES FOR LARGE CACHES 99

that happens to be part of the block’s virtual tree, the necessary coherence operations are initiated
without having to contact the directory. If the request is a read, a nearby sharer provides data and the
requestor is added to the virtual tree. If the request is a write, invalidations are sent along the virtual
tree and the tree is de-constructed. Thus, the integration of virtual trees within network routers
allows intermediate routers to intercept and respond to coherence requests. If the table is full and
a tree entry must be evicted, part of the tree will also have to be de-constructed. In addition to the
table introduced in each router, the in-network coherence mechanism also entails additional cache
look-ups at nodes that are part of the block’s virtual tree but do not have a cached copy of the block.
Eisley et al. [191] also apply the same philosophy of in-network intelligence to guide placement of
an evicted block in a nearby bank that has room (as in Cooperative Caching [48]).

Network Innovations for Efficient Snooping-based Coherence

It is generally assumed that snooping-based coherence will not scale to large numbers of cores.
However, a snooping-based protocol has some desireable features: (i) no directory storage overhead,
(ii) no need for indirection via a directory when responding to requests, and (iii) a protocol that
is simpler and easier to verify. In order to meaningfully exploit these positive features, some of the
negative features of the snooping-based protocol will have to be overcome, viz. a centralized ordering
point and the need to send every message to every node.

Agarwal et al. [192] attempt to alleviate the first overhead in an HPCA’09 paper. They
assume a packet-switched mesh (or any other scalable topology) unordered network and implement
a broadcast-based snooping protocol on top of it. Each injected message is assigned a unique ID,
and routers are responsible for ensuring that a node receives messages in the correct numerical order.
In a MICRO’09 paper, the same authors tackle the second problem [193]. They implement filters
within the network that track the presence of an address (or address range) in various parts of the
network. Accordingly, the broadcast of the address is stifled in those parts of the network that don’t
need to see it.

Udipi et al. [8] employ a similar approach but with a focus on bus-based networks. Two
additional observations motivate their design: (i) buses are preferable over routed networks because
they do away with expensive routers, and (ii) given plentiful metal area budgets in future processors,
scalability can be achieved by implementing multiple buses. The on-chip network is composed of a
2-level hierarchy of buses (Figure 4.11). A core first broadcasts its request on its local bus. A Bloom
filter associated with the local bus determines if the address has been accessed beyond the local bus
and if the broadcast needs to be propagated. For applications with locality, many broadcasts will
not be seen beyond the local bus. If a broadcast must be propagated, arbitration for a central bus is
first done, and the broadcast then happens on the central bus and on other local buses immediately
after. Additional filters at the other local buses may stifle the broadcast on other local buses. The
initial local bus broadcast is not deemed complete until the central bus broadcast (if necessary) is
complete – the central bus broadcast acts as a serialization point to preserve coherence and sequential
consistency. Single-entry buffers are required at each local bus to accommodate a request that is

100 4. INTERCONNECTION NETWORKS WITHIN LARGE CACHES

Segment

Core

BusBus

Filter

Figure 4.11: A hierarchical bus design with broadcast filters [8].

awaiting arbitration for the central bus. Multiple parallel bus hierarchies can be employed, where
each hierarchy deals with a different address range. The energy efficiency of the proposed design,
relative to a baseline packet-switched mesh network, is a function of the ratio of link to router energy
in the baseline. The proposed design is especially compelling when energy-efficient low-swing links
are employed.

Some prior work by Das et al. [194] also argues for the use of hierarchy within on-chip net-
works to exploit application locality (especially when page coloring is used for smart data placement
in an S-NUCA cache). Buses are used for local communication and a packet-switched mesh topol-
ogy is used to connect the many buses. The use of a local bus helps eliminate router navigation for
nearby communication. The use of a directory protocol and the mesh topology at the second level
of the hierarchy ensure that messages travel beyond the local bus only if remote sharers exist.

Summary

There are clearly many aspects of the on-chip network that can be improved, such as wiring,
topology, router design, etc. Most of the discussed papers can be roughly categorized as follows:

• Better wiring: transmission lines [186], fat wires [7, 188], low-swing wires [8].

• Better topologies: Halo [5], Nahalal [6], hybrid/hierarchical topologies [7, 8, 187, 194].

• More/less router functionality: optimizing for coherence operations [189, 190, 191, 192, 193,
194].

Note that each of these innovations has a specific connection to the design of the cache
hierarchy or coherence protocol. There is of course another large body of work that attempts to
improve the efficiency of generic on-chip networks [11].

101

C H A P T E R 5

Technology
Chapters 2 and 3 largely focused on logical policies for data selection and placement. Chapter 4
examined the physical design of caches, with a special emphasis on the network; this is an example
of how technology trends have significantly impacted the cache hierarchy. Technology continues to
improve, presenting new opportunities and challenges for cache design. It is therefore important
to understand some of the emerging technology phenomena that may impact cache design. It is
also important to understand new emerging memory technologies because the off-chip memory
hierarchy may grow deeper and well-known on-chip caching principles will have to be adapted for
other levels of the memory hierarchy. On-chip cache policies will also have to be improved to work
around the problems posed by off-chip memories.

This chapter begins with a discussion on basic SRAM cells. The basic cache SRAM cell
has undergone little change for a few decades. However, advancements in process technology are
creating significant challenges and opportunities for cache designers. We provide an overview of
these technology advancements and the corresponding cache innovations that have emerged. We
end with a discussion of emerging memory technologies.

5.1 STATIC-RAM LIMITATIONS

For more than two decades, static-RAM (SRAM) technology has been an ideal choice for on-chip
storage.This is not only because of its superior latency and scalability properties, it is also because the
same CMOS transistors used in logic components can also be used in SRAM caches. An SRAM cell
is a simple bistable latch that operates at the same voltage as other components in a processor. Hence,
it does not require a separate voltage plane or charge pumps commonly used for other memory types.
Since the cross-coupled inverters in a latch can automatically correct for any charge leakage in the
value stored, the device can hold its value without periodic refreshing, as required in dynamic-RAM
(DRAM) memories. By design, it outputs a differential signal, which is easier to detect and more
reliable. These characteristics made SRAM the best choice for on-chip storage for many years.

However, as we move to the multicore era, SRAM faces two critical challenges. First, dimin-
ishing feature sizes make it increasingly difficult to control transistor dimensions precisely, which
increases the leakage power and delay variation in transistors. Further, SRAM is also vulnerable
to radiation induced soft-errors, which can lead to random bit flips. High energy particles such
as neutrons and alpha particles from space can strike memory cells, disturb their charge balance,
and can flip the bit stored in them. With large transistors, the probability of a bit-flip is low and
simple error correcting codes (ECC) are sufficient to identify and recover from a few failed bits.

102 5. TECHNOLOGY

However, soft errors are expected to grow exponentially as transistors get smaller [195]. As a result,
more complex and expensive error correcting schemes are required to guarantee correct operation
of future SRAM caches. Second, future caches are limited by the high area requirement of SRAM.
An SRAM cell is made of six transistors and occupies 20 times more area than a DRAM cell with
a simple capacitor and an access transistor. As processors get faster compared to main memory, it is
necessary to reduce cache miss rates by having larger caches. The high area cost of an SRAM cell is,
therefore, a serious concern in multi-core processors as large caches reduce the real estate for cores
for a given die size. This tight area requirement also makes it difficult to adopt alternate SRAM
implementations, which trade off area to improve reliability, especially for large caches. For instance,
an eight transistor SRAM design separates read and write port within a cell to improve static noise
margin [196]. An SRAM cell with ten transistors further increases noise margin by using the extra
transistors to provide a strong negative feedback against bit flips [197]. However, their application
will mostly be limited to small scratch ram or L1 caches.

Long term solutions to these problems can either try to modify the microarchitecture of caches
to make them more robust to failures, or leverage emerging manufacturing techniques (such as 3D
stacking) to improve density and resiliency in caches. Efforts are also underway to find new storage
technologies suitable for future processors with hundreds of cores.This chapter describes techniques
that have been considered for each of these SRAM challenges.

5.2 PARAMETER VARIATION

When fabricating transistors with nanometer dimensions, the ability to accurately reproduce finer
lithographic patterns on die reduces. Photolithography is a critical step in the fabrication process, in
which circuit patterns are transfered to the silicon die.While Moore’s law continues to scale transistor
sizes, the wavelength of light used during the photolithography process has difficulty scaling beyond
193 nm.The use of 193 nm wavelength light to produce sub-wavelength patterns (< 90 nm) leads to
imperfections in transistor/wire dimensions and threshold voltage (Vt). More specifically, Leff , the
effective gate length of a transistor, which has the smallest dimension, is impacted most. Another
cause of process variation is the inability to precisely control the doping concentration of active
regions in transistors. This again changes the threshold voltage (Vt) of transistors.

These variations severely impact transistor/wire delay and leakage power. Equation 5.1 shows
the relationship between gate length, Vt , and delay. As transistor delay is a function of both Vt and
Leff , and changes non-linearly with Vt , the effect is more pronounced in transistors than wires.The
leakage power varies exponentially with Vt as shown in equation 5.2. Borkar et al. [198] showed that
process variation can degrade operating frequency of a processor by more than 30% and increase
leakage power by 20X.

trdelay ∝ VddLeff

μ(Vdd − Vt)α
(5.1)

5.2. PARAMETER VARIATION 103

Pleakage ∝ VddT 2e
−qV
t /kT (5.2)

A simple method to control leakage and delay of transistors is to modify the substrate voltage to
offset Vth changes, referred to as body-biasing. However, body biasing incurs a large area overhead.
As variation is highly unpredictable, it is difficult to provision enough biasing circuits at a fine
granularity to accurately fix all affected cells and circuits. Hence, architectural solutions are necessary
to mitigate process variation without significantly compromising cost or performance. Existing cache
microarchitectural solutions for this problem fall in two different categories: isolating inferior cache
lines to avoid or limit their usage, or tolerating the extra delay in affected cells.

The effect of process variation, usually, is more pronounced in caches than other logic com-
ponents in a processor. Due to large die area dedicated for caches, their leakage contribution to the
total power is already high. This gets significantly worse because of variation. Furthermore, caches
have many critical paths with shallow logic depths, making them more susceptible to the delay vari-
ation [199]. As all bits in a word are accessed in parallel, variation in accessing a single bit will slow
down the entire read or write operation.

Before describing techniques to tolerate variation, we will briefly look at the methodology
typically adopted to model process variation in caches.

5.2.1 MODELING METHODOLOGY
In the past, variation was a concern only between different dies in a wafer. The operating frequency
and power characteristics of dies varies across a wafer with some dies having better latency or energy
properties than others. However, beyond 90 nm, variation within a die has emerged as a major
problem. As a result, even within a single processor, some components are significantly slower or
consume more power than others.

Before studying architectural techniques to alleviate the effect of slow components, it is nec-
essary to get an estimation of the deviation in power/latency between components and calculate
what percentage of a processor is affected. Process variation can be both random and correlated. To
evaluate them, the following five parameters should be considered: transistor gate length, threshold
voltage, metal width, metal thickness, and dielectric thickness between layers. For every process
generation, ITRS [200] projects targeted values for each parameter. These values are then adjusted
based on the variation distribution, variation percentage, and distance or range factor. Depending
upon the variation distribution, the variation percentage can be used to model random variation,
and the range factor helps model the correlation of variation between nearby components.

5.2.2 MITIGATING THE EFFECTS OF PROCESS VARIATION
As discussed earlier, the two major side-effects of process variation are the increase in device and
interconnect delay and increase in leakage power. Since the access latency of a cache bank is often
determined by the slowest component, a few slow transistors and wires can have non-trivial impact
on the access time.

104 5. TECHNOLOGY

Although all SRAM caches are affected by variation, their impact on the processor’s power
and performance depends on the cache’s position in the hierarchy. Small high-level caches such as
L1-data and L1-instruction have a higher impact on performance than power, while large low-level
caches mostly contribute to high leakage power. We next discuss architectural techniques proposed
to tolerate variation in both high- and low-level caches.

Yield Aware Caches: Ozdemir et al., MICRO 2006

Ozdemir et al. were among the first to study variation in L1 caches, and they explored microar-
chitectural solutions to mitigate its effect [201]. Through detailed SPICE simulations, Ozdemir et
al. show that inferior transistors and wires in a 16 KB cache can degrade the cache access latency
by as much as 3X and increase the leakage power by 8X. These poor characteristics can ultimately
affect the overall manufacturing yield as microprocessors, even when operational, get tossed away if
they fail to meet latency and power constraints.

Ozdemir et al. proposed three schemes to improve the processor yield: Yield Aware Power
Down (YAPD), Horizontal-YAPD, and Variable Latency Cache Architecture (VLCA). In all three
schemes, the affected components in a cache are first isolated at way or array granularity. Later, based
on how severely these components are affected, they are either turned off permanently to achieve
the best possible access time and leakage or operated at a low frequency. YAPD and H-YAPD trade
off cache capacity to retain fast access latency by turning off ways while VLCA retains the capacity
by modifying the out-of-order core architecture to tolerate the poorly performing ways.

YAPD is a simple solution and functions similarly to Albonesi’s Selective Cache Ways [202].
If the overall power consumption of a cache or its access latency exceeds a pre-determined threshold,
the way with the highest leakage power or the slowest critical path is turned off.The primary problem
with this scheme, however, is the granularity at which the optimization is performed. Since a bitline
is shared by multiple sets, turning off affected cells, their associated bitlines, precharge circuitry, and
sense-amplifiers requires reducing the effective number of ways in many sets; in small caches, all
sets will get affected. Also, multiple ways in a set are typically placed close to each other, and their
variations are strongly correlated. Hence, the likelihood of two ways in a set performing poorly is
very high; in which case, this technique can significantly reduce the effective cache size.

A simple extension to YAPD, called H-YAPD, addresses these problems by turning off hor-
izontal rows in a sub-array instead of a full column. Since a row of cells corresponds to a single set,
implementing H-YAPD in a traditional cache will turn off an entire set. To avoid this, cache blocks
are organized such that each row in an array is made to store ways from multiple sets. In this way,
even if an entire row gets turned-off, the capacity impact on a single set is reduced.

Unlike the above two proposals, VLCA retains poorly performing cache ways and supports
non-uniform access to different ways based on their variation factor. The characteristics of VLCA
are very similar to NUCA architectures discussed in Section 1.3. However, the novelty of this work
lies in extending the variable latency design to L1 caches. For instance, a typical out-of-order core
dispatches instructions even before their operands are ready such that the operands get forwarded

5.2. PARAMETER VARIATION 105

directly to the execution unit just in time for the execution phase. To support a variable latency load,
its dependent instructions dispatched without operands need to be delayed until the load value is
ready. VLCA adds load-bypass buffers to all functional units, which allow instructions to wait in
the functional unit until a delayed load arrives. While VLCA does not compromise cache capacity,
supporting variable latency loads in an out-of-order core has a non-trivial impact on complexity and
performance.

Ozdemir et al. also attempt a combination of VLCA and H-YAPD to maximize yield. How-
ever, their results show a significant improvement in yield is possible with the simple YAPD design.
Yield losses can be reduced by as much as 68% with YAPD, and the most complex hybrid design
with both VLCA and H-YAPD improves this to 81%.

Way Prioritization, Meng and Joseph, ISLPED 2006

Meng and Joseph proposed way prioritization to tolerate variation in large lower level caches
such as L2 or L3. Unlike L1, access latencies of L2 or L3 are less of an issue. However, leakage is
a critical problem due to their large size. Similar to YAPD discussed earlier, way prioritization also
relies on selective cache ways proposed by Albonesi [202] to turn off slow and leaky cells. However,
instead of turning off inferior cache ways permanently, they dynamically change the cache size based
on workload requirements. For instance, if a program achieves significant benefit from a large cache,
then the leaky ways are employed, provided the decrease in overall processor energy is significant
enough to compensate for the overhead of leaky cells. This is done by maintaining a priority register
for each bank that tracks the leakage power for each way. At runtime, depending upon the workload
requirement, ways are turned on/off so that the overall energy delay product of the processor is
optimal.

Substitute Cache, Das et al., MICRO 2008

The techniques,discussed so far, require modification to the cache microarchitecture to tolerate
variation and increase the complexity of the design. Das et al. [203] show that for small caches, it is
easier to guarantee uniform fast access time through redundancy. It is a common practice to equip
storage arrays with redundant rows and columns of memory cells so that in the event of a hard error,
the affected row/column is remapped to a redundant row/column. However, this technique is not
feasible when addressing variation since the number of affected cells is much greater than the total
redundant rows or columns. As a few failed bits will trigger remapping an entire row or column, it
is wasteful to increase redundancy to fix all affected bits.

To address this, Das et al. propose adding a separate structure called Substitute Cache (SC).
Unlike proposals discussed earlier, the main data array of the cache is left untouched. However, each
cache way is augmented with a fully associative cache with a few data entries and their corresponding
indices. The data entry is smaller than a cache line (64 b), and the index corresponds to the subset of
the address to identify the word. After the manufacturing process, a Built-In-Self-Test is performed
to identify critical words whose access time exceeds the targeted delay.The indices of these words are

106 5. TECHNOLOGY

stored in a non-volatile region and populated in the SC at boot-up. Every time the cache is accessed,
its SC is also searched. If there is a hit in the SC, data from the SC is selected over the main data
array. Since a substitute cache is much smaller than the main data array, its access time is guaranteed
to be smaller than the data array.

While the SC is effective in dealing with delay variation, it doesn’t address the second major
impact of variation, namely leakage power. Further, SC continues to rely on the original tag array
to determine hit or miss status, meaning variation in tag array can still break the delay threshold.
For instance, while accessing small caches like L1, both tag and data arrays are accessed in parallel.
Depending upon the outcome of the tag access, the output from the data array is either sent out or
dropped. Hence, the net access time of the cache is determined by either tag or data array (depending
upon which one is greater). For most caches, the data array access time dominates due to its large
size. In some cases, especially for small set-associative caches, tag-array access time can be greater.
In such cases, it is necessary to further extend SC to include full tags so that high latency tags can
also be accessed from SC.

5.3 TOLERATING HARD AND SOFT ERRORS

In addition to variation, failures due to soft errors (due to particle strike) and hard errors (due to Vth

degradation, electron migration, etc.) are becoming more prominent in future technologies. Since
any MOS transistor is vulnerable to these errors, they will likely exist irrespective of the storage
technology or advancements in the fabrication process. For instance, DRAM and its variants are
also susceptible to radiation induced soft errors. Further, a significant real estate of a cache will
continue to use CMOS logic for peripheral circuits, which can fail due to both hard and soft errors.
This section describes generic techniques aimed at improving the robustness of a cache irrespective
of the source of errors or storage technology employed.

The most popular fault tolerant technique for memories is the use of Error Correcting Codes
(ECC) to detect and correct errors. ECC adds redundancy to data bits, and its complexity can
vary significantly depending upon the error coverage. It is common practice to employ single error
correction, double error detection (SECDED) for every 64 bit word. This requires 8 bits to store
an error correcting code - a storage overhead of 12.5%. However, as we try to detect/correct more
errors, either the storage overhead or the complexity of the recovery process goes up significantly.The
BCH code by Bose and Ray-Chaudhuri [204] can correct up to six errors and detect seven. While
its storage overhead is similar to SECDEC, the recovery process is extremely complex. Employing
stronger ECC such as 8 bit correction and 9 bit detection (OECNED) incurs a storage overhead of
more than 89% - a premium not feasible for area constrained on-chip caches.

A general problem with ECC is that irrespective of how the error rate of a cache changes
over time, a constant storage overhead has to be paid upfront at design time to tolerate the worst
case failure rate. However, the probability of multi-bit failure is extremely rare, and designing for
the worst case scenario is both wasteful and inefficient. The following work by Kim et al. [205] and

5.3. TOLERATING HARD AND SOFT ERRORS 107

Yoon and Erez [206] leverage the fact that a majority of reads or writes are error free and propose
techniques that decouple error detection and correction to tolerate more failures at a low cost.

Two-Dimensional Error Coding, Kim et al., MICRO 2007

In a traditional array organization, ECC codes are stored along with a cache line in the
same row. A read to a cache line will also read the associated ECC, and similarly when updating
a cache line, both data and ECC get updated. Kim et al. [205] argue that this single row (or one
dimensional) ECC gets significantly more expensive as the coverage goes up. Instead, they propose
a two-dimensional coding scheme using simple parity. The key is to have parity for every few bits
in both rows as well as columns. Unlike ECC, parity can only detect errors. However, when a row
parity detects an error, all the columns containing the affected cells are checked with column parity
to identify the failed cell. The failed bit can be corrected by simply inverting it. This technique is
also efficient in handling multi-bit errors. While it is expensive to recover from a failure (since to
correct a failed bit, the entire column has to be read, which requires reading every row and picking
the appropriate bit), during error free operation, the delay overhead for reads is almost zero. But,
since every bit in the cache is tied to both horizontal and vertical parity, a write has to update both
vertical and horizontal parity. In traditional 1-D protection, both ECC and data get updated at the
same time. However, in a 2-D scheme, since a write updates only one bit in each column, updating
a column parity requires reading the old contents to calculate the new column parity. Hence, every
write has to be preceded by a read to find the new parity. In spite of these complexities, it is a
promising step towards building more robust caches.

Yoon et al., ISCA 2009

Yoon et al. [206] propose decoupling the data and the parity information to reduce the storage
overhead of complex codes. Their motivation is also based on the fact that errors are extremely rare
when compared to the number of fault free operations. Hence, instead of paying a large storage
overhead in on-chip caches for high overhead codes, they propose mapping ECC codes of cache
lines directly to the main memory. They explore a two-tier protection scheme, where every cache
line is protected by parity or other low overhead code implemented similar to a traditional cache. In
addition, a region in DRAM is allocated to store ECC. Whenever tier-1 protection throws an error,
ECC is explicitly read from the memory to correct the errors. In this way, it is not necessary to store
all ECC information on chip. Since the code size is not limited by on-chip storage, depending upon
the type of error rate, more complex codes can be used for tier-2. Hence, the approach scales better
to meet rising error rates. However, writes continue to be problematic as updates may be required
for multiple tiers.

108 5. TECHNOLOGY

5.4 LEVERAGING 3D STACKING TO RESOLVE SRAM
PROBLEMS

Many recent technological advances have been made in the area of 3D die-stacking. Many archi-
tectural innovations have been proposed to leverage this technology [207] to address the high area
overhead of SRAM. It is becoming evident that multiple dies in a 3D stack will most likely be used
for cache or memory storage, potentially with disparate technologies [9, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217]. In this sub-section, we touch upon a sampling of the 3D literature that is
most closely tied to caching policies and network design.

Li et al., ISCA 2006

Li et al. [209] were among the first to articulate the detailed design of the network and cache
in a multi-core chip (their work was preceded by a few other related efforts [208, 210, 212, 218]).
Instead of implementing the network with a 3D array of routers, Li et al. propose the use of 2D
meshes on each die. These planar networks are then linked with inter-die connections that are
implemented as buses. Since inter-die distances are very short and a stack is expected to consist of
fewer than 10 dies, a bus broadcast is expected to be fast. It is clearly overkill to require that routers
be navigated during the inter-die transmission. These buses (or 3D pillars) are implemented with
inter-die vias that are expected to support reasonably high bandwidths in future technologies. While
most routers in a planar mesh are 5x5 routers, some routers must also support traversal to/from the
pillar and are implemented as 6x6 routers. Cores are scattered across all dies such that no two cores
are stacked in the same vertical plane. This helps reduce thermal emergencies. Thermal emergencies
can be further reduced if all cores are placed on the die closest to the heat sink. Cache banks are
also scattered across all dies and a D-NUCA architecture is assumed. Cache blocks are not migrated
between dies because inter-die latencies are not problematic. Li et al. draw the conclusion that the
performance benefit of a 3D topology is better than the benefit of block migration in a 2D NUCA
architecture. In other words, the performance boost in moving from 2D S-NUCA to 2D D-NUCA
is less than the performance boost in moving from 2D S-NUCA to 3D S-NUCA. Performance is
also shown to be sensitive to the number of vertical pillars in the network.

Madan et al., HPCA 2009

In more recent work, Madan et al. [9] consider a heterogeneous stack of dies. A bottom
die (closest to the heat sink) implements all the cores and L1 caches. A second die implements
large SRAM cache banks. A third die implements large DRAM cache banks. Each cache bank
has a similar area as a single tile (core plus L1 caches) on the bottom die. An on-chip network is
implemented on the second (SRAM) die; there are no horizontal links between tiles/banks on the
bottom and top dies. Each tile is assumed to have an inter-die via pillar that connects the core to the
SRAM and DRAM cache banks directly above. The SRAM cache is implemented as an S-NUCA
L2 cache. When a tile experiences an L1 cache miss, the request is sent to the SRAM bank directly
above on the inter-die vias. From here, the request is sent via the on-chip network to the unique bank

5.4. LEVERAGING 3D STACKING TO RESOLVE SRAM PROBLEMS 109

that caches that address. Madan et al. implement an oracular page coloring scheme, similar to that
of S-NUCA page coloring schemes discussed in Section 2.1.3, that places all private pages in the
SRAM bank directly above the requesting tile. Shared pages are placed in the central SRAM banks.
Such a policy ensures that a single vertical hop is often enough to service an L2 request. Traffic
on the horizontal on-chip network is limited to requests for shared data, and this traffic tends to
radiate in/out of the chip center. As shown in Figure 5.1, a tree topology is an excellent fit for such

Die containing 16 cores

Die containing 16
SRAM sectors

Die containing 16
DRAM sectors

Inter-die via pillar
to send request from

core to L2 SRAM
(not shown: one

pillar for each core)

Inter-die via pillar
to access portion
of L2 in DRAM

(not shown: one
pillar per sector)

On-chip tree network
implemented on the

SRAM die to connect
the 16 sectors

5x5 router
links

Figure 5.1: A 3D reconfigurable cache with SRAM and DRAM dies and a tree network on the SRAM
die [9].

a traffic pattern and helps reduce router complexity in the network. Finally, Madan et al. make the
observation that the page coloring policy leads to imbalance in pressure in cache banks and propose
a reconfiguration policy. If an SRAM cache bank is pressured, the DRAM bank above is activated to
selectively grow the size (associativity) of the L2 cache bank. Part of the SRAM cache bank is now
used to implement tags for data stored in the DRAM bank. Thus, there are many options worth
considering while organizing a cache hierarchy across multiple (possibly heterogeneous) dies in a
3D stack.

110 5. TECHNOLOGY

5.5 EMERGING TECHNOLOGIES

Although 3D can boost cache capacity, it does not truly increase the bit density in a silicon die. 3D
is also limited by the cost of silicon, power and temperature budget of the chip, and TSV bandwidth.
Finally, even with 3D processors, the extra real estate provided is best utilized by balancing cores
and caches than completely allocating them for caches. When the cost of additional manufacturing
steps required for 3D is weighed in, alternate memory technologies such as DRAM or non-volatile
memories (NVM) that are often discounted for caches due to the fabrication complexity can appear
compelling. The exponential scaling that can be achieved through a better storage technology likely
has higher potential in the long term.

The quest to find a suitable storage technology for multi-cores has gained significant attention
in the past few years.This is partly because of the challenges associated with SRAM, and also because
other established technologies such as NAND/NOR FLASH have difficulty scaling beyond current
process technologies. Though FLASH is primarily used in lower levels of the memory hierarchy,
while finding a scalable alternative to FLASH, researchers are attempting to devise a universal
memory that can be employed across multiple layers of the memory hierarchy.

When exploring alternatives to SRAM, the following important factors should be considered
to minimize performance loss, power increase, or other deleterious effects of the transition.

Area
A cell with the smallest dimension will require an area of 4F 2 where, F is the feature size. Here,
the area occupied by a cell is literally the area underneath the intersection of two minimum sized
wires. In comparison, an SRAM cell has an area of 120F 2. With the advent of multi-level cells, it
is further possible to increase the density (or reduce effective area/bit below 4F 2) by storing more
than one bit in a single cell. While finding a new technology with cell area close to 4F 2 or smaller
can be challenging, it is not difficult to find alternatives that are much smaller than SRAM. Almost
all dominant storage technologies are denser compared to SRAM. The challenge lies in organizing
them efficiently to get the maximum benefit out of them.

Access Time
Short access times are essential for caches. Though processor bandwidth is not scaling well, off-chip
wires can operate close to the processor frequency [219]. Hence, it is critical to keep the cache access
latency much faster than the main memory to justify its presence. An SRAM cell has the best delay
characteristics compared to any other storage technology and has uniform read and write latencies.
There is also no need for periodic refreshing. But, due to its relatively large size, the wire delay in an
SRAM array dominates its access time. Hence, when building caches with alternate technologies,
it is necessary to leverage their area advantage to keep the access time low.

The difference between read and write latencies is another major concern in many emerging
technologies. For instance, in phase change memory (PCM) and magnetoresistive-RAM (MRAM)
– two leading alternatives for SRAM – writes take an order of magnitude more time than reads.This
extra delay may not be a problem in uniprocessors where writes are often considered non-critical.

5.5. EMERGING TECHNOLOGIES 111

But in multi-cores, the impact of writes on shared data and memory model implementations makes
writes more critical. Further, it is necessary to ensure that long writes do not block critical reads.

Other technologies based on DRAM can also block reads due to periodic refreshing required
to retain the value. Refresh overhead is typically low, but careful scheduling of refresh operations is
necessary to avoid performance penalties.

Endurance
The number of writes to a cache over its lifetime is several orders of magnitude higher than memory
or storage disks, and SRAM has the best endurance properties. For instance, an SRAM cell can
function even after 1017 writes while most NVM cells will fail before 108 writes. Hence, when
adopting NVM with limited endurance for caches, special mechanisms are necessary to keep the
cells alive longer. This either requires tuning cells to increase endurance (at the cost of other critical
parameters such as energy, delay, density, etc.) or modify the architecture of caches to reduce writes
to NVM.

Byte Addressability
The access granularity of a cache is much smaller than the main memory or solid-state storage
disks. Hence, technologies that require block accesses such as NAND FLASH can take a big hit in
performance when directly employed for on-chip caches. Reading a bulk of data and selecting a few
words from it is inefficient and requires high energy.

Candidate Technologies
A few promising technologies pursued for future systems include Spin Transfer Torque Magnetoresis-
tive Random Access Memory (STT-MRAM), Memristor, and Phase-Change Memory (PCM). Each
of them is accompanied with different trade-offs and has to cross significant hurdles to augment
or replace SRAM. As a near term goal, another established technology - DRAM and its variants
such as embedded DRAM (eDRAM) and Three Transistor DRAM (3T1D) are being considered for
on-chip caches. In fact, eDRAM has already proven commercially viable and is being used in Power
7 processors from IBM [220]. This section presents the landscape of storage technologies for caches
and the existing body of work related to them.

5.5.1 3T1D RAM
Besides SRAM, the most widely used and understood technology is DRAM. A DRAM cell con-
sists of a simple capacitor and an access transistor to charge or discharge the capacitor. Due to its
minimalistic design, it is significantly denser compared to SRAM. However, the slow charging and
discharging operations limits its application to a low level in the memory hierarchy. Latency critical
L1 requires a much faster alternative. To address this problem 3-transistor 1-diode (3T1D) cell was
proposed, a technology similar to other capacitive memories. It relies on varying charge content
of a cell to store logical 1 or 0 [221]. Since the area overhead of 3T1D is relatively higher than
other emerging alternatives, it is primarily targeted for L1 caches. There are three key advantages
of 3T1D. First, by design, the number of leakage paths in 3T1D is lower compared to SRAM

112 5. TECHNOLOGY

even when process variation is taken into account. Second, instead of a capacitor directly charging
or discharging a long bitline, the judicious use of diode as a voltage controlled capacitor to drive
a pull-down transistor, which in turn drives the bitline, results in access speed similar to SRAM.
Finally, though 3T1D cells require periodic refreshing, unlike DRAM, the reads are not destructive.

In general, the refresh overhead of 3T1D cells have negligible impact on performance. How-
ever, Liang et al. [222] show that under severe process variation, some cells require more frequent
refreshing than others, and adopting the worst case refresh period for the entire cache can sig-
nificantly degrade performance and increase refresh power. To address this problem, they propose
line-level refresh policies along with novel replacement policies specific to 3T1D caches. The key
idea is to augment each line with a hardware counter to track retention times so that lines with high
refresh overhead can be served separately. Similarly, while storing a new cache line, the retention of
various ways are also considered to find the optimal replacement block.

The paper then studies three different refresh policies with varying complexities. In the simple
scheme, a line is either evicted or invalidated as soon as its retention time falls below a certain
threshold. As an improvement to this, in a second scheme, refreshing is done but limited to those
lines whose refresh interval is below the threshold value. Hence, only cells affected by process
variation get refreshed; the remaining lines are evicted when it is time for refresh. The third scheme
aggressively refreshes all lines based on their retention value. Interestingly, their study showed that
lifetime of a majority of cache lines in L1 is much smaller than the typical refresh interval. Coupled
with 3T1D’s support for non-destructive reads makes it a promising alternative for SRAM in L1
caches. The second scheme (partial refresh) achieved even better performance consuming lesser
power; although, the performance difference between different policies is less than 2% even with
severe process variation.

Another factor that can impact refresh overhead is the replacement policy. Typical L1 or L2
caches adopt LRU policy to evict a cache line. However, LRU is not well suited for caches with
some blocks that have poor retention time, and some that are completely dead (blocks with retention
time less than a certain threshold). For instance, a dead block will get invalidated soon after storing
a new block and will likely show up as the least recently used block more frequently. To address this
issue, the paper studied different replacement policies. In their most simple scheme, traditional LRU
policy is extended to avoid using dead blocks while placing a new cache line. Second, in addition
to avoiding dead blocks, a new line is always placed in a slot with maximum retention time. The
replaced block is moved to the next slot within the set with the longest retention, and the process is
repeated until the block with least retention time is evicted.The third scheme is similar to the second
except that the most recently used block is always placed in the best slot. A detailed performance
study of these techniques show that avoiding dead blocks is critical to maximize performance and
reduce misses. Adopting more sophisticated replacement schemes is beneficial only under severe
process variation.

5.5. EMERGING TECHNOLOGIES 113

5.5.2 EMBEDDED DRAM
Embedded DRAM (or eDRAM) is a technology from IBM specifically targeted to address the
density problem of SRAM without compromising speed. It is similar to DRAM but implemented
using high speed logic-based technology instead of the traditional DRAM process. When the
overhead of peripheral circuits are taken into account, a 30 MB eDRAM cache, when optimized for
speed, requires less than one-third the area of an equally sized SRAM. It also has superior leakage
characteristics, consuming only one-fifth of the leakage of an SRAM cache. IBM Power 7 is the
first processor to make use of this technology to build a massive 30 MB NUCA L3-cache to feed
its eight out-of-order cores [220].

The problem with any DRAM based technology is its refresh overhead, especially when
process variation is taken into account.The use of high performance transistors (transistors with low
Vt but high leakage) in eDRAM exacerbates this problem and reduces its refresh interval by three
orders of magnitude compared to DRAM. Due to large size of eDRAM caches, micro-managing
refresh at a line granularity as discussed earlier is not feasible. To address this problem, Wilkerson
et al. [223] propose using ECC to reduce refresh overhead. Ideally, when a line is written, all the
cells in the line should retain their values just until the next refresh cycle. However, due to process
variation, some cells will lose their value much earlier. Instead of refreshing the entire line based on
the worst case retention time, and avoiding failures, Wilkerson et al. propose employing powerful
error correcting codes to tolerate failed cells. Although, majority of failed lines can be corrected with
simple SECDED, it cannot guarantee fault free operation for all the lines in a cache. Depending
upon how aggressively we refresh cache lines, multi-bit errors can be non-trivial. Further, an error
unrecognized or uncorrectable by SECDED will either crash the application or can lead to silent
data corruption. Hence, a more powerful BCH code is employed, which can correct up to five errors
and detect six errors. The primary drawback of BCH is its high decoding complexity to correct
multi-bit errors. To avoid long latency penalty, the paper proposes splitting the detection process
into two steps, quick-ECC, and Hi-ECC (or high latency ECC). All the lines with zero or one
failed bits are corrected quickly by quick-ECC, and Hi-ECC is limited to those lines with multiple
failures. Also, cache lines that are prone to multiple failures are disabled to further reduce latency
penalty. With these optimizations, they achieve a 93% reduction in refresh power compared to a
typical eDRAM implementation.

5.5.3 NON-VOLATILE MEMORIES
Most emerging technologies are non-volatile and are not charge based. Instead, they rely on varying
resistance or magnetic properties of a cell to store values. Hence, there is no problem of leakage
current as in DRAM or SRAM. Table 5.1 shows a few promising memory technologies, their
latency, power, area, and endurance characteristics. It can be noticed that most of them have poor
endurance property compared to SRAM or DRAM and their variants. Also, the overhead of write,
both in terms of delay and power is significantly higher compare to reads. Techniques to extend
lifetime, hide write delay, and reduce write power are active areas of research. Here, we briefly

114 5. TECHNOLOGY

mention a couple of recent efforts to employ potential disruptive technologies for on-chip caches.
Interested readers are referred to Qureshi et al.’s synthesis lecture on phase change memory for more
recent work in the area [14].

Table 5.1: Memory Technology Comparison
Parameters SRAM DRAM eDRAM NAND FLASH PCM MRAM

Cell size 120F 2 6 − 8F 2 16F 2 4 − 6F 2 4 − 16F 2 16 − 40F 2

Read time very fast fast faster slow slower fast
than DRAM than DRAM

Write time very fast fast faster much slower very slow slow
than DRAM than PCM

Endurance > 1016 > 1016 > 1016 105 108 105

Non-Volatile no no no yes yes yes
Write power very low low low very high high high

3D Stacked MRAM, Sun et al., HPCA 2009

One of the key challenges in embracing a new technology is the cost of integrating it into
the existing manufacturing process. Magnetoresistive-RAM (MRAM) stores values by changing
the magnetic field in each cell. The technology requires special magnetic plates and fabrication
steps different from the conventional CMOS process. To address this, Sun et al. [215] explore a
3D stacked design in which MRAM is stacked on top of a traditional CMOS processor. It also
shows that MRAM’s high write latency and write energy preclude it from being a clear winner for
high level caches such as L2, especially for memory intensive applications.The paper proposes using
a large write buffer and special scheduling policies that prioritize reads over writes to overcome
the delay problem. To reduce the number of writes to MRAM (and hence power), they propose a
hybrid cache for L2 consisting of both SRAM and MRAM banks. Cache lines that get frequently
written are either placed in the SRAM bank or migrated to the SRAM bank. Their analysis shows
promising results for a single threaded workload. However, as discussed earlier, this solution can
also result in performance loss in CMPs where even writes are often on the critical path. Further,
it may be possible to achieve the effect of the hybrid cache by having a small L2 SRAM cache and
restricting MRAM for a lower level L3 cache. The next paper by Wu et al. [214] presents a detailed
design space exploration on hybrid caches clarifying some of these options.

Hybrid Cache, Wu et al., ISCA 2009

Wu et al. [214] show how different technologies fare against each other in a hybrid cache archi-
tecture.They perform a detailed power and performance study of three different cache architectures,
and for each, they consider caches built with SRAM, MRAM, PCM, and eDRAM.

Their first architecture (LHCA) models a traditional cache hierarchy with three levels: a
private L1 made out of SRAM, a private L2, also made out of SRAM, and a shared L3, which can

5.5. EMERGING TECHNOLOGIES 115

be any of the above storage technologies. The L3 cache is sized such that the effective area is the
same for all the configurations they evaluate.

Their second architecture (RHCA) models a hybrid L2 cache, in which both L2 and L3 in
the original design are combined into a single multi-banked cache. Each bank still retains its cell
type making the cache hybrid. Since SRAM banks are always faster, it is beneficial to maximize
the number of requests served by them. Hence, the paper proposes a migration policy to move the
frequently used blocks from slower banks to SRAM banks.Their policy is most similar to D-NUCA
but differs in when to swap blocks between banks. Their mapping scheme is similar to D-NUCA
where each set is distributed across multiple banks (called bank set) to facilitate swapping. To search
for a block, a request is sent to all the banks in the bank set.The criticality of cache lines in slow banks
is determined by tracking the number of accesses to each cache line. This is done by maintaining a
hardware saturating counter for every cache line. In fast SRAM banks, instead of a counter, a sticky
bit is maintained for each cache line that gets set whenever a cache line is accessed. A block in a slow
bank is ready to move as soon as the most significant bit in the saturating counter is set. However,
swapping is allowed only if the corresponding block in the fast bank has its sticky bit set to zero.
Otherwise, instead of swapping, sticky bit is reset to zero. This alleviates the problem of two hot
blocks getting swapped frequently between a slow and a fast bank.

The third architecture leverages 3D-stacking to dramatically increase the size. In the CMP
architecture discussed above, a new die specifically designed for caches is stacked on top of the
processor. Since stacked caches are typically targeted for a lower level, fast access time is not a critical
factor, but high density can help reduce miss rate. PCM, with its relatively low area requirement, is
employed as the last level cache in all their 3D configurations. Similar to the first two architectures
discussed, a 3D stacked design with various combinations of LHCA and RCHA are considered.
This includes two RHCA combinations: (1) a hybrid L2 cache consisting of SRAM and eDRAM,
and a stacked PCM for L3, and (2) a hybrid L2 cache consisting of SRAM, eDRAM, and PCM.

Here are some of the key take away points of their study. In an LHCA design, having a large
L2 SRAM cache before an L3 MRAM cache is effective in filtering a significant number of writes
to MRAM. In spite of MRAM’s poor write power characteristics, an LHCA design with MRAM
ended up with the best power value. With respect to performance, having an eDRAM L3 cache is
more beneficial compared to MRAM, although the performance difference between them is very
small. Between RHCA and the best performing LHCA, RHCA achieves better performance, but
the difference is less than 2%. In 3D designs, a combination of an RHCA L2 (made of SRAM and
eDRAM) and a PCM L3 achieves the best performance. Again, the performance of 3D LHCA is
very close. In all likelihood, a complicated searching procedure and the bookkeeping required for
RHCA is hard to justify compared to a much simpler LHCA design.

Summary

Cache architectures for emerging technologies continue to be an active area of research with
large room for improvement. For instance, most upcoming technologies are non-volatile, but all

116 5. TECHNOLOGY

existing proposals are oblivious to this. Many reliability techniques that previously required operating
system or BIOS support can be performed completely in hardware within a processor since the data
is persistent. Further, varying the characteristics of emerging NVMs to make them suitable for
CMP caches as well as main memories is an interesting research direction. Although many previous
studies have explored the benefit of stacking memory on processor [224], the effect of emerging
technologies on such designs remains unresolved.

117

C H A P T E R 6

Concluding Remarks
Even after decades of cache research, it is amazing that researchers continue to make significant
advancements. The past decade has seen major innovations: the notion of non-uniform cache ac-
cess, organizations that blur the boundary between shared and private, closer integration of cache
and network, creative policies for insertion, replacement, and partitioning. There continues to be a
need for better policies. There is a wide gap between state-of-the-art cache management and the
performance of optimal cache management schemes (for example, Belady’s OPT algorithm [86]).
Nearly half the cache blocks in a large cache will never be accessed before eviction. The oracular bar
is therefore set very high, and we’ll continue to take small steps towards it. The key challenge is to
achieve these small steps with techniques that are energy-efficient and not overly complex.

In the coming decade, we will not only continue to see improvements in on-chip caching, we
will see many of these caching techniques being applied to new levels of the memory hierarchy. As
process technologies continue to improve, we will see new artifacts within the memory hierarchy:
new cells, new problems, 3D stacking, off-chip hierarchies with DRAM and NVM, non-uniform
off-chip interconnect delays, and non-uniform queuing delays to go off-chip, to name a few. This
highlights the importance of understanding emerging technology phenomena and the reason for
including a chapter on technology issues in this book. We expect to see significant effort in the
area of data management within the off-chip hierarchy. While the off-chip hierarchy has remained
relatively simple in the past, future hierarchies will likely consist of combinations of different tech-
nologies: some NVM technology (PCM, STT-RAM) that provides high capacity and possibly
some SRAM/DRAM-like technology that provides low-latency access. Given that DDRx electri-
cal memory buses will only support one or two access points (DIMMs), some form of buffered
off-chip network (for example, better incarnations of FB-DIMM) will be required to support the
high memory capacity needs of large-scale multi-core multi-socket systems. The off-chip hierarchy
will therefore start to resemble the networked L1-L2 hierarchies that are the focus of this book.
They will also be constrained by the nuances of these new technologies, such as, the limited write
endurance of PCM, the existence of row buffers or the significant costs of queuing delays. Access
to these off-chip memories is expected to contribute greatly to overall system latency and energy.
Many of the logical caching policies covered in this book will have to be adapted for off-chip data
management efforts.

It may even be possible to devise co-ordinated mechanisms for on-chip caching and off-chip
access that reduce overall system latency and energy. One recent paper tries to optimize memory
row buffer hit rates by looking in the on-chip cache for blocks that are dead and that can be eagerly
evicted [225]. Another recent paper tries to identify hot ranks in the memory system and modifies

118 6. CONCLUDING REMARKS

the on-chip cache replacement policy to de-prioritize eviction of blocks destined for hot ranks [226].
We therefore expect this area of co-ordinated caching and memory access mechanisms to receive
much attention in the coming years.

There is clearly no shortage of interesting future work possibilities in the areas of on- and
off-chip caching for large-scale multi-core systems.

119

Bibliography

[1] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-Uniform Cache Structure for Wire-
Dominated On-Chip Caches. In Proceedings of ASPLOS, 2002.
DOI: 10.1145/605397.605420 10, 11, 12, 15, 16, 17, 19, 21, 22

[2] B.M. Beckmann and D.A. Wood. Managing Wire Delay in Large Chip-Multiprocessor
Caches. In Proceedings of MICRO-37, December 2004. DOI: 10.1109/MICRO.2004.21 8,
16, 19, 90, 96

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-Optimal
Block Placement And Replication In Distributed Caches. In Proceedings of ISCA, 2009.
DOI: 10.1145/1555754.1555779 7, 31, 32

[4] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA Organizations
and Wiring Alternatives for Large Caches with CACTI 6.0. In Proceedings of MICRO, 2007.
DOI: 10.1109/MICRO.2007.33 89, 90, 91

[5] Y. Jin, E. J. Kim, and K. H. Yum. A Domain-Specific On-Chip Network Design for Large
Scale Cache Systems. In Proceedings of HPCA, 2007. DOI: 10.1109/HPCA.2007.346209
95, 100

[6] Z. Guz, I. Keidar, A. Kolodny, and U. Weiser. Utilizing Shared Data in Chip Multiprocessors
with the Nahalal Architecture. In Proceedings of SPAA, June 2008.
DOI: 10.1145/1378533.1378535 18, 96, 100

[7] N. Muralimanohar and R. Balasubramonian. Interconnect Design Considerations for Large
NUCA Caches. In Proceedings of ISCA, 2007. DOI: 10.1145/1250662.1250708 8, 16, 53,
89, 97, 98, 100

[8] A. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards Scalable, Energy-Efficient,
Bus-Based On-Chip Networks. In Proceedings of HPCA, 2010.
DOI: 10.1109/HPCA.2010.5416639 99, 100

[9] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian, R. Iyer, S. Makineni,
and D. Newell. Optimizing Communication and Capacity in a 3D Stacked Reconfigurable
Cache Hierarchy. In Proceedings of HPCA, 2009. DOI: 10.1109/HPCA.2009.4798261 29,
108, 109

http://dx.doi.org/10.1145/605397.605420
http://dx.doi.org/10.1109/MICRO.2004.21
http://dx.doi.org/10.1145/1555754.1555779
http://dx.doi.org/10.1109/MICRO.2007.33
http://dx.doi.org/10.1109/HPCA.2007.346209
http://dx.doi.org/10.1145/1378533.1378535
http://dx.doi.org/10.1145/1250662.1250708
http://dx.doi.org/10.1109/HPCA.2010.5416639
http://dx.doi.org/10.1109/HPCA.2009.4798261

120 BIBLIOGRAPHY

[10] B. Jacob. The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake it. Morgan
& Claypool Synthesis Lectures on Computer Architecture, 2009.
DOI: 10.2200/S00201ED1V01Y200907CAC007 xii

[11] N. Jerger and L. Peh. On-Chip Networks. Morgan & Claypool Synthesis Lectures on Com-
puter Architecture, 2009. DOI: 10.2200/S00209ED1V01Y200907CAC008 xii, 81, 100

[12] A. Gonzalez, F. Latorre, and G. Magklis. Processor Microarchitecture: An Implementation
Perspective. Morgan & Claypool Synthesis Lectures on Computer Architecture, 2010.
DOI: 10.2200/S00309ED1V01Y201011CAC012 xii

[13] D. Sorin, M. Hill, and D. Wood. A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool Synthesis Lectures on Computer Architecture, 2011.
DOI: 10.2200/S00346ED1V01Y201104CAC016 xii

[14] M.Qureshi,S.Gurumurthi, and B.Rajendran. Phase Change Memory: From Devices to Systems.
Morgan & Claypool Synthesis Lectures on Computer Architecture, 2011. xiii, 114

[15] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-Efficiency. Morgan
& Claypool Synthesis Lectures on Computer Architecture, 2008.
DOI: 10.2200/S00119ED1V01Y200805CAC004 xiii

[16] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers, 1999. 2

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Elsevier,
4th edition, 2007. 2

[18] A. Jaleel, M. Mattina, and B. Jacob. Last Level Cache (LLC) Performance of Data Mining
Workloads on a CMP – A Case Study of Parallel Bioinformatics Workloads. In Proceedings
of HPCA, 2006. DOI: 10.1109/HPCA.2006.1598115 6

[19] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative Comparison of
Two Multithreaded Benchmark Suites on Chip-Multiprocessors. In Proceedings of IISWC,
2008. DOI: 10.1109/IISWC.2008.4636090 7

[20] B. Beckmann, M. Marty, and D. Wood. ASR: Adaptive Selective Replication for CMP
Caches. In Proceedings of MICRO, 2006. DOI: 10.1109/MICRO.2006.10 7, 24, 36, 38, 41,
51

[21] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,
R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on Single-Chip Multipro-
cessing. In Proceedings of ISCA-27, pages 282–293, June 2000. DOI: 10.1145/342001.339696
8, 19, 81

http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007
http://dx.doi.org/10.2200/S00209ED1V01Y200907CAC008
http://dx.doi.org/10.2200/S00309ED1V01Y201011CAC012
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
http://dx.doi.org/10.2200/S00119ED1V01Y200805CAC004
http://dx.doi.org/10.1109/HPCA.2006.1598115
http://dx.doi.org/10.1109/IISWC.2008.4636090
http://dx.doi.org/10.1109/MICRO.2006.10
http://dx.doi.org/10.1145/342001.339696

BIBLIOGRAPHY 121

[22] J.Huh,C.Kim,H.Shafi,L.Zhang,D.Burger, and S.Keckler. A NUCA Substrate for Flexible
CMP Cache Sharing. In Proceedings of ICS-19, June 2005. DOI: 10.1109/TPDS.2007.1091
8, 18, 19, 22, 41, 90, 96

[23] Z. Chishti, M. Powell, and T.N. Vijaykumar. Optimizing Replication, Communication, and
Capacity Allocation in CMPs. In Proceedings of ISCA-32, June 2005.
DOI: 10.1145/1080695.1070001 13, 21, 22, 24

[24] Z. Chishti, M. Powell, and T.N. Vijaykumar. Distance Associativity for High-Performance
Energy-Efficient Non-Uniform Cache Architectures. In Proceedings of MICRO-36, Decem-
ber 2003. DOI: 10.1109/MICRO.2003.1253183 13, 20, 21, 22, 64

[25] A. Jaleel, E. Borch, M. Bhandaru, S. Steely, and J. Emer. Achieving Non-Inclusive Cache
Performance with Inclusive Caches – Temporal Locality Aware (TLA) Cache Management
Policies. In Proceedings of MICRO, 2010. DOI: 10.1109/MICRO.2010.52 13, 63

[26] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last Line of Defense before
Hitting the Memory Wall for CMPs. In Proceedings of HPCA, February 2004.
DOI: 10.1109/HPCA.2004.10017 19, 20, 41, 44

[27] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private NUCA Cache Partitioning
Scheme for Chip Multiprocessors. In Proceedings of HPCA, 2007.
DOI: 10.1109/HPCA.2007.346180 19, 41, 44

[28] M. Qureshi, D. Thompson, and Y. Patt. The V-Way Cache: Demand Based Associativity via
Global Replacement. In Proceedings of ISCA, 2005. DOI: 10.1145/1080695.1070015 21, 64

[29] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and Associativity. In Proceed-
ings of MICRO, 2010. DOI: 10.1109/MICRO.2010.20 21, 66

[30] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian. Leveraging Bloom Filters for
Smart Search Within NUCA Caches. In Proceedings of the 7th Workshop on Complexity-
Effective Design, held in conjunction with ISCA-33, June 2006. 22

[31] Burton Bloom. Space/time trade-offs in hash coding with allowable errors, July 1970.
DOI: 10.1145/362686.362692 22

[32] J. Merino, V. Puente, P. Prieto, and J. Gregorio. SP-NUCA: A Cost Effective Dynamic
Non-Uniform Cache Architecture. Computer Architecture News, 2008.
DOI: 10.1145/1399972.1399973 25

[33] J. Merino, V. Puente, and J. Gregorio. ESP-NUCA: A Low-Cost Adaptive Non-Uniform
Cache Architecture. In Proceedings of HPCA, 2010. DOI: 10.1109/HPCA.2010.5416641 25

http://dx.doi.org/10.1109/TPDS.2007.1091
http://dx.doi.org/10.1145/1080695.1070001
http://dx.doi.org/10.1109/MICRO.2003.1253183
http://dx.doi.org/10.1109/MICRO.2010.52
http://dx.doi.org/10.1109/HPCA.2004.10017
http://dx.doi.org/10.1109/HPCA.2007.346180
http://dx.doi.org/10.1145/1080695.1070015
http://dx.doi.org/10.1109/MICRO.2010.20
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/1399972.1399973
http://dx.doi.org/10.1109/HPCA.2010.5416641

122 BIBLIOGRAPHY

[34] R. E. Kessler and Mark D. Hill. Page Placement Algorithms for Large Real-Indexed Caches.
ACM Trans. Comput. Syst., 10(4), 1992. DOI: 10.1145/138873.138876 25

[35] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and Page
Migration for Multiprocessor Compute Servers. In Proceedings of ASPLOS, 1994.
DOI: 10.1145/381792.195485 25

[36] J. Corbalan, X. Martorell, and J. Labarta. Page Migration with Dynamic Space-Sharing
Scheduling Policies: The case of SGI 02000. International Journal of Parallel Programming,
32(4), 2004. DOI: 10.1023/B:IJPP.0000035815.13969.ec 25, 27

[37] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for im-
proving data locality on CC-NUMA compute servers. SIGPLAN Not., 31(9), 1996.
DOI: 10.1145/248209.237205 25

[38] R.P. LaRowe, J.T. Wilkes, and C.S. Ellis. Exploiting Operating System Support for Dynamic
Page Placement on a NUMA Shared Memory Multiprocessor. In Proceedings of PPOPP,1991.
DOI: 10.1145/109626.109639 25, 27

[39] R.P. LaRowe and C.S. Ellis. Experimental Comparison of Memory Management Policies
for NUMA Multiprocessors. Technical report, 1990. DOI: 10.1145/118544.118546 25, 27

[40] R.P. LaRowe and C.S. Ellis. Page Placement policies for NUMA multiprocessors. J. Parallel
Distrib. Comput., 11(2), 1991. DOI: 10.1016/0743-7315(91)90117-R 25, 27

[41] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches through OS-Level Page Allo-
cation. In Proceedings of MICRO, 2006.
DOI: 10.1109/MICRO.2006.31 25, 28, 29, 39, 41, 49, 51

[42] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic Hardware-Assisted
Software-Controlled Page Placement to Manage Capacity Allocation and Sharing within
Large Caches. In Proceedings of HPCA, 2009. 28, 29, 33, 34, 39, 41, 49, 51, 52

[43] L. Jin and S. Cho. SOS: A Software-Oriented Distributed Shared Cache Management
Approach for Chip Multiprocessors. In Proceedings of PACT, 2009.
DOI: 10.1109/PACT.2009.14 28

[44] M. Marty and M. Hill. Virtual Hierarchies to Support Server Consolidation. In Proceedings
of ISCA, 2007. DOI: 10.1145/1250662.1250670 29

[45] M. Chaudhuri. PageNUCA: Selected Policies For Page-Grain Locality Management In
Large Shared Chip-Multiprocessor Caches. In Proceedings of HPCA, 2009.
DOI: 10.1109/HPCA.2009.4798258 30, 33, 34, 39, 52

http://dx.doi.org/10.1145/138873.138876
http://dx.doi.org/10.1145/381792.195485
http://dx.doi.org/10.1023/B:IJPP.0000035815.13969.ec
http://dx.doi.org/10.1145/248209.237205
http://dx.doi.org/10.1145/109626.109639
http://dx.doi.org/10.1145/118544.118546
http://dx.doi.org/10.1016/0743-7315(91)90117-R
http://dx.doi.org/10.1109/MICRO.2006.31
http://dx.doi.org/10.1109/PACT.2009.14
http://dx.doi.org/10.1145/1250662.1250670
http://dx.doi.org/10.1109/HPCA.2009.4798258

BIBLIOGRAPHY 123

[46] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining Insights into
Multicore Cache Partitioning: Bridging the Gap between Simulation and Real Systems. In
Proceedings of HPCA, 2008. DOI: 10.1109/HPCA.2008.4658653 33, 41, 43, 51

[47] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Enabling Software Man-
agement for Multicore Caches with a Lightweight Hardware Support. In Proceedings of
Supercomputing, 2009. DOI: 10.1145/1654059.1654074 34, 41, 51

[48] J. Chang and G. Sohi. Co-Operative Caching for Chip Multiprocessors. In Proceedings of
ISCA, 2006. DOI: 10.1145/1150019.1136509 35, 36, 37, 38, 49, 99

[49] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive Mechanisms and Policies for
Managing Cache Hierarchies in Chip Multiprocessors. In Proceedings of ISCA, 2005.
DOI: 10.1109/ISCA.2005.8 36, 38

[50] E. Herrero, J. Gonzalez, and R. Canal. Distributed Cooperative Caching. In Proceedings of
PACT, 2008. DOI: 10.1145/1454115.1454136 37, 38

[51] E. Herrero, J. Gonzalez, and R. Canal. Elastic Cooperative Caching: An Autonomous Dy-
namically Adaptive Memory Hierarchy for Chip Multiprocessors. In Proceedings of ISCA,
2010. DOI: 10.1145/1816038.1816018 38

[52] M. K. Qureshi. Adaptive Spill-Receive for Robust High-Performance Caching in CMPs. In
Proceedings of HPCA, 2009. 38, 41, 51

[53] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer. Adap-
tive Insertion Policies for High Performance Caching. In Proceedings of ISCA, 2007.
DOI: 10.1145/1250662.1250709 38, 43, 45, 58, 66

[54] H. Lee, S. Cho, and B. Childers. CloudCache: Expanding and Shrinking Private Caches. In
Proceedings of HPCA, 2011. DOI: 10.1109/HPCA.2011.5749731 39

[55] H.Lee,S.Cho, and B.Childers. StimulusCache: Boosting Performance of Chip Multiproces-
sors with Excess Cache. In Proceedings of HPCA, 2010. DOI: 10.1109/HPCA.2010.5416644
39

[56] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. Irwin, and Y. Xie. MorphCache: A
Reconfigurable Adaptive Multi-Level Cache Hierarchy for CMPs.
DOI: 10.1109/HPCA.2011.5749732 39

[57] T. Yeh and G. Reinman. Fast and Fair: Data-Stream Quality of Service. In Proceedings of
CASES, 2005. DOI: 10.1145/1086297.1086328 42, 48, 52

[58] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitarian, and Capitalist
Cache Policies on CMPs: Caches as a Shared Resource. In Proceedings of PACT, 2006.
DOI: 10.1145/1152154.1152161 42, 52

http://dx.doi.org/10.1109/HPCA.2008.4658653
http://dx.doi.org/10.1145/1654059.1654074
http://dx.doi.org/10.1145/1150019.1136509
http://dx.doi.org/10.1109/ISCA.2005.8
http://dx.doi.org/10.1145/1454115.1454136
http://dx.doi.org/10.1145/1816038.1816018
http://dx.doi.org/10.1145/1250662.1250709
http://dx.doi.org/10.1109/HPCA.2011.5749731
http://dx.doi.org/10.1109/HPCA.2010.5416644
http://dx.doi.org/10.1109/HPCA.2011.5749732
http://dx.doi.org/10.1145/1086297.1086328
http://dx.doi.org/10.1145/1152154.1152161

124 BIBLIOGRAPHY

[59] M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt. A Case for MLP-Aware Cache Replacement.
In Proceedings of ISCA, 2006. DOI: 10.1109/ISCA.2006.5 43, 56

[60] M. Qureshi and Y. Patt. Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches. In Proceedings of MICRO,
2006. DOI: 10.1109/MICRO.2006.49 44, 48, 50, 54

[61] G.E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache Memory. J.
Supercomput., 28(1), 2004. DOI: 10.1023/B:SUPE.0000014800.27383.8f 44, 48

[62] X. Lin and R. Balasubramonian. Refining the Utility Metric for Utility-Based Cache Parti-
tioning. In Proceedings of WDDD, 2011. 44

[63] G.Suo,X.Yang,G.Liu, J.Wu,K.Zeng,B.Zhang, and Y.Lin. IPC-Based Cache Partitioning:
An IPC-Oriented Dynamic Shared Cache Partitioning Mechanism. In Proceedings of ICHIT,
2008. DOI: 10.1109/ICHIT.2008.164 44

[64] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, Jr. S. Steely, and J. Emer. Adaptive Insertion
Policies For Managing Shared Caches. In Proceedings of PACT, 2008.
DOI: 10.1145/1454115.1454145 45, 50

[65] Y. Xie and G. Loh. PIPP: Promotion/Insertion Pseudo-Partitioning ofMulti-Core Shared
Caches. In Proceedings of ISCA, 2009. DOI: 10.1145/1555815.1555778 46, 59, 61

[66] W. Liu and D. Yeung. Using Aggressor Thread Information to Improve Shared Cache
Management for CMPs. In Proceedings of PACT, 2009. DOI: 10.1109/PACT.2009.13 47

[67] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi. Dynamically Managing the
Communication-Parallelism Trade-Off in Future Clustered Processors. In Proceedings of
ISCA-30, pages 275–286, June 2003. DOI: 10.1145/871656.859650 47

[68] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, G. Se-
meraro, G. Magklis, and M. L. Scott. Integrating Adaptive On-Chip Storage Struc-
tures for Reduced Dynamic Power. In Proceedings of the 11th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 141–152, September 2002.
DOI: 10.1109/PACT.2002.1106013 48

[69] N.Rafique,W.Lim,and M.Thottethodi. Architectural Support for Operating System Driven
CMP Cache Management. In Proceedings of PACT, 2006. DOI: 10.1145/1152154.1152160
48

[70] J. Chang and G. Sohi. Co-Operative Cache Partitioning for Chip Multiprocessors. In
Proceedings of ICS, 2007. DOI: 10.1145/1274971.1275005 49

http://dx.doi.org/10.1109/ISCA.2006.5
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1023/B:SUPE.0000014800.27383.8f
http://dx.doi.org/10.1109/ICHIT.2008.164
http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1145/1555815.1555778
http://dx.doi.org/10.1109/PACT.2009.13
http://dx.doi.org/10.1145/871656.859650
http://dx.doi.org/10.1109/PACT.2002.1106013
http://dx.doi.org/10.1145/1152154.1152160
http://dx.doi.org/10.1145/1274971.1275005

BIBLIOGRAPHY 125

[71] S. Srikantaiah, M. Kandemir, and M. Irwin. Adaptive Set Pinning: Managing Shared Caches
in Chip Multiprocessors. In Proceedings of ASPLOS, 2008. DOI: 10.1145/1353534.1346299
49

[72] T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses Using Hardware and Software
Page Placement. In Proceedings of SC, 1999. DOI: 10.1145/305138.305189 49, 64

[73] X. Jiang, A. Mishra, L. Zhao, R. Iyer, Z. Fang, S. Srinivasan, S. Makineni, P. Brett, and C. Das.
ACCESS: Smart Scheduling for Asymmetric Cache CMPs. In Proceedings of HPCA, 2011.
DOI: 10.1109/HPCA.2011.5749757 50

[74] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache contention on a
chip-multiprocessor architecture. In Proceedings of HPCA-11, February 2005.
DOI: 10.1109/HPCA.2005.27 50

[75] D. Tam, R. Azimi, L. Soares, and M. Stumm. RapidMRC: Approximating L2 Miss Rate
Curves on Commodity Systems for Online Optimizations. In Proceedings of ASPLOS, 2009.
DOI: 10.1145/1508284.1508259 51, 52

[76] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared Resource Con-
tention in Multicore Processors via Scheduling. In Proceedings of ASPLOS, 2010.
DOI: 10.1145/1735971.1736036 51

[77] R. Iyer, L. Zhao, F. Guo, R. Illikkal, D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS
Policies and Architecture for Cache/Memory in CMP Platforms. In Proceedings of SIGMET-
RICS, 2007. DOI: 10.1145/1254882.1254886 52, 54

[78] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms. In
Proceedings of ICS, 2004. DOI: 10.1145/1006209.1006246 53

[79] K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni, and D. Newell.
Molecular Caches: A Caching Structure for Dynamic Creation of Application-Specific Het-
erogeneous Cache Regions. In Proceedings of MICRO, 2006.DOI: 10.1109/MICRO.2006.38
53

[80] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality of Service in
Chip Multi-Processors. In Proceedings of MICRO, 2007. DOI: 10.1109/MICRO.2007.6 53,
54

[81] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni, and Don Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms. In Proceedings
of PACT, 2007. DOI: 10.1109/PACT.2007.19 54

http://dx.doi.org/10.1145/1353534.1346299
http://dx.doi.org/10.1145/305138.305189
http://dx.doi.org/10.1109/HPCA.2011.5749757
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1145/1508284.1508259
http://dx.doi.org/10.1145/1735971.1736036
http://dx.doi.org/10.1145/1254882.1254886
http://dx.doi.org/10.1145/1006209.1006246
http://dx.doi.org/10.1109/MICRO.2006.38
http://dx.doi.org/10.1109/MICRO.2007.6
http://dx.doi.org/10.1109/PACT.2007.19

126 BIBLIOGRAPHY

[82] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP Control: Controlled Shared Cache
Management in Chip Multiprocessors. In Proceedings of MICRO, 2009.
DOI: 10.1145/1669112.1669177 54

[83] S. Srikantaiah, R. Das, A. Mishra, C. Das, and M. Kandemir. A Case for Integrated
Processor-Cache Partitioning in Chip Multiprocessors. In Proceedings of Supercomputing,
2009. DOI: 10.1145/1654059.1654066 54

[84] K. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In Proceedings ISCA, 2007.
DOI: 10.1145/1250662.1250671 55

[85] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a Chip Mul-
tiprocessor Architecture. In Proceedings PACT, 2004. DOI: 10.1109/PACT.2004.1342546
55

[86] L. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer. IBM Systems
Journal, 1966. DOI: 10.1147/sj.52.0078 56, 58, 117

[87] J. Jeong and M. Dubois. Optimal Replacements in Caches with Two Miss Costs. In Pro-
ceedings of SPAA, 1999. DOI: 10.1145/305619.305636 56

[88] J. Jeong and M. Dubois. Cost-Sensitive Cache Replacement Algorithms. In Proceedings of
HPCA, 2003. DOI: 10.1109/HPCA.2003.1183550 56, 57

[89] W. Wong and J. Baer. Modified LRU Policies for Improving Second-Level Cache Behavior.
In Proceedings of HPCA, 2000. DOI: 10.1109/HPCA.2000.824338 56

[90] A. Jaleel, K. Theobald, S. Steely, and J. Emer. High Performance Cache Replacement Using
Re-Reference Interval Prediction (RRIP). In Proceedings of ISCA, 2010. 56, 60

[91] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson. Locality vs. Criticality. In Proceedings of
ISCA-28, pages 132–143, July 2001. DOI: 10.1109/ISCA.2001.937442 57

[92] R. Balasubramonian, V. Srinivasan, and S. Dwarkadas. Hot-and-Cold: Using Criticality in
the Design of Energy-Efficient Caches. In Workshop on Power-Aware Computer Systems, in
conjunction with MICRO-36, December 2003. 57

[93] R. Subramanian, Y. Smaragdakis, and G. Loh. Adaptive Caches: Effective Shaping of Cache
Behavior to Workloads. In Proceedings of MICRO-39, December 2006.
DOI: 10.1109/MICRO.2006.7 57

[94] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement based on Reuse-Distance
Prediction. In Proceedings of ICCD, 2007. DOI: 10.1109/ICCD.2007.4601909 58

[95] K. Rajan and R. Govindarajan. Emulating Optimal Replacement with a Shepherd Cache.
In Proceedings of MICRO, 2007. DOI: 10.1109/MICRO.2007.14 58, 59, 61, 72

http://dx.doi.org/10.1145/1669112.1669177
http://dx.doi.org/10.1145/1654059.1654066
http://dx.doi.org/10.1145/1250662.1250671
http://dx.doi.org/10.1109/PACT.2004.1342546
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1145/305619.305636
http://dx.doi.org/10.1109/HPCA.2003.1183550
http://dx.doi.org/10.1109/HPCA.2000.824338
http://dx.doi.org/10.1109/ISCA.2001.937442
http://dx.doi.org/10.1109/MICRO.2006.7
http://dx.doi.org/10.1109/ICCD.2007.4601909
http://dx.doi.org/10.1109/MICRO.2007.14

BIBLIOGRAPHY 127

[96] J. Zebchuk, S. Makineni, and D. Newell. Re-examining Cache Replacement Policies. In
Proceedings of ICCD, 2008. DOI: 10.1109/ICCD.2008.4751933 59

[97] K. So and R. Rechtshaffen. Cache Operations by MRU Change. IEEE Transactions on
Computers, 37(6), June 1988. DOI: 10.1109/12.2208 59

[98] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. LRFU: A Spectrum of Policies
that Subsumes the Least Recently Used and Least Frequently Used Policies. IEEE Trans. on
Computers, 50(12), 2001. DOI: 10.1109/TC.2001.970573 60

[99] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New Family of Replacement Policies for
Last-level Caches. In Proceedings of MICRO, 2009. DOI: 10.1145/1669112.1669164 61, 62

[100] M. Kharbutli and Y. Solihin. Counter-Based Cache Replacement and Bypassing Algorithms.
IEEE Trans. on Computers, 2008. DOI: 10.1109/TC.2007.70816 62, 67, 71, 72

[101] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache Bursts: A New Approach for Elim-
inating Dead Blocks and Increasing Cache Efficiency. In Proceedings of MICRO, 2008.
DOI: 10.1109/MICRO.2008.4771793 62, 67, 71

[102] S. Khan, D. Jimenez, D. Burger, and B. Falsafi. Using Dead Blocks as a Virtual Victim Cache.
In Proceedings of PACT, 2010. DOI: 10.1145/1854273.1854333 62, 65, 67, 72

[103] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Scavenger: A New Last
Level Cache Architecture with Global Block Priority. In Proceedings of MICRO, 2007.
DOI: 10.1109/MICRO.2007.36 62

[104] N. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In Proceedings of ISCA-17, pages 364–373, May
1990. DOI: 10.1109/ISCA.1990.134547 62, 67, 68

[105] R. Manikantan, K. Rajan, and R. Govindarajan. NUcache: An Efficient Multicore Cache
Organization Based on Next-Use Distance. In Proceedings of HPCA, 2011.
DOI: 10.1145/1854273.1854356 62

[106] L. Soares, D. Tam, and M. Stumm. Reducing the Harmful Effects of Last-Level Cache
Polluters with an OS-Level, Software-Only Pollute Buffer. In Proceedings of MICRO, 2008.
DOI: 10.1109/MICRO.2008.4771796 63

[107] Intel. Intel Core i7 Processor. http://www.intel.com/products/processor/corei7/
specifications.htm. 64

[108] AMD. AMD Athlon Processor and AMD Duron Processor with Full-Speed On-die L2
Cache, 2000. 64

http://dx.doi.org/10.1109/ICCD.2008.4751933
http://dx.doi.org/10.1109/12.2208
http://dx.doi.org/10.1109/TC.2001.970573
http://dx.doi.org/10.1145/1669112.1669164
http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/MICRO.2008.4771793
http://dx.doi.org/10.1145/1854273.1854333
http://dx.doi.org/10.1109/MICRO.2007.36
http://dx.doi.org/10.1109/ISCA.1990.134547
http://dx.doi.org/10.1145/1854273.1854356
http://dx.doi.org/10.1109/MICRO.2008.4771796
http://www.intel.com/products/processor/corei7/specifications.htm
http://www.intel.com/products/processor/corei7/specifications.htm

128 BIBLIOGRAPHY

[109] A. Seznec. A Case for Two-Way Skewed-Associative Caches. In Proceedings of ISCA, 1993.
DOI: 10.1145/173682.165152 64, 66

[110] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using Prime Numbers for Cache Indexing to
Eliminate Conflict Misses. In Proceedings of HPCA, 2004. DOI: 10.1109/HPCA.2004.10015
64

[111] D. Rolan, B. Fraguela, and R. Doallo. Adaptive Line Placement with the Set Balancing
Cache. In Proceedings of MICRO, 2009. DOI: 10.1145/1669112.1669178 65, 72

[112] C. Zhang. Balanced Cache: Reducing Conflict Misses of Direct-Mapped Caches. In Pro-
ceedings of ISCA, 2006. DOI: 10.1145/1150019.1136499 65

[113] D. Zhan, H. Jiang, and S. Seth. STEM: Spatiotemporal Management of Capacity for Intra-
Core Last Level Caches. In Proceedings of MICRO, 2010. DOI: 10.1109/MICRO.2010.31
66

[114] T. Chen and J. Baer. Effective Hardware Based Data Prefetching for High Performance
Processors. IEEE Transactions on Computers, 44(5):609–623, May 1995.
DOI: 10.1109/12.381947 67

[115] A.J. Smith. Cache Memories. Computing Surveys, 14(4), 1982.
DOI: 10.1145/356887.356892 67

[116] Alaa Alameldeen and David Wood. Interactions Between Compression and Prefetching in
Chip Multiprocessors. In Proceedings of HPCA, 2007. DOI: 10.1109/HPCA.2007.346200
67, 75

[117] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems. In Proceedings of HPCA, 2009. 67,
70

[118] A. Lai, C. Fide, and B. Falsafi. Dead-Block Prediction and Dead-Block Correlating Prefetch-
ers. In Proceedings of ISCA, 2001. DOI: 10.1145/379240.379259 67, 72

[119] D. Wood, M. Hill, and R. Kessler. A Model for Estimating Trace-Sample Miss Ratios. In
Proceedings of SIGMETRICS, 1991. DOI: 10.1145/107972.107981 67

[120] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory System: Predicting and
Optimizing Memory Behavior. In Proceedings of ISCA, 2002. DOI: 10.1145/545214.545239
67

[121] M. Ferdman and B. Falsafi. Last-Touch Correlated Data Streaming. In Proceedings of ISPASS,
2007. DOI: 10.1109/ISPASS.2007.363741 67

http://dx.doi.org/10.1145/173682.165152
http://dx.doi.org/10.1109/HPCA.2004.10015
http://dx.doi.org/10.1145/1669112.1669178
http://dx.doi.org/10.1145/1150019.1136499
http://dx.doi.org/10.1109/MICRO.2010.31
http://dx.doi.org/10.1109/12.381947
http://dx.doi.org/10.1145/356887.356892
http://dx.doi.org/10.1109/HPCA.2007.346200
http://dx.doi.org/10.1145/379240.379259
http://dx.doi.org/10.1145/107972.107981
http://dx.doi.org/10.1145/545214.545239
http://dx.doi.org/10.1109/ISPASS.2007.363741

BIBLIOGRAPHY 129

[122] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Simple Tech-
niques for Reducing Leakage Power. In Proceedings of ISCA, 2002.
DOI: 10.1109/ISCA.2002.1003572 67

[123] J. Abella, A. Gonzalez, X. Vera, and M. O’Boyle. IATAC: A Smart Predictor to Turn-Off
L2 Cache Lines. ACM Trans. on Architecture and Code Optimization, 2005.
DOI: 10.1145/1061267.1061271 67, 71

[124] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Behavior to Re-
duce Cache Leakage Power. In Proceedings of ISCA, 2001. DOI: 10.1109/ISCA.2001.937453
67

[125] Z. Hu, M. Martonosi, and S. Kaxiras. TCP: Tag Correlating Prefetchers. In Proceedings of
HPCA, 2003. DOI: 10.1109/HPCA.2003.1183549 67

[126] K. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global History Buffer. In
Proceedings HPCA, 2004. DOI: 10.1109/HPCA.2004.10030 67

[127] R. Manikantan and R. Govindarajan. Focused Prefetching: Performance Oriented Prefetch-
ing Based on Commit Stalls. In Proceedings of ICS, 2008. DOI: 10.1145/1375527.1375576
67

[128] H.Zhu,Y.Chen,and X.Sun.Timing Local Streams: ImprovingTimeliness in Data Prefetch-
ing. In Proceedings of ICS, 2010. DOI: 10.1145/1810085.1810110 67

[129] M. Grannaes, M. Jahre, and L. Natvig. Multi-Level Hardware Prefetching using Low Com-
plexity Delta Correlating Prediction Tables with Partial Matching. In Proceedings of HiPEAC,
2010. DOI: 10.1007/978-3-642-11515-8_19 67

[130] V. Srinivasan, E. Davidson, and G. Tyson. A Prefetch Taxonomy. IEEE Trans. on Computers,
February 2004. DOI: 10.1109/TC.2004.1261824 67

[131] L. Spracklen, Y. Chou, and S. Abraham. Effective Instruction Prefetching in Chip Multi-
processors for Modern Commercial Applications. In Proceedings of HPCA, 2005.
DOI: 10.1109/HPCA.2005.13 67

[132] T.Wenisch,S.Somogyi,N.Hardavellas, J.Kim,A.Ailamaki, and B.Falsafi.Temporal Stream-
ing of Shared Memory. In Proceedings of ISCA, 2005. DOI: 10.1145/1080695.1069989 68

[133] T. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos. Practical Off-Chip
Meta-Data for Temporal Memory Streaming. In Proceedings of HPCA, 2009.
DOI: 10.1109/HPCA.2009.4798239 69

[134] M. Ferdman, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Temporal Instruction
Fetch Streaming. In Proceedings of MICRO, 2008. DOI: 10.1109/MICRO.2008.4771774 69

http://dx.doi.org/10.1109/ISCA.2002.1003572
http://dx.doi.org/10.1145/1061267.1061271
http://dx.doi.org/10.1109/ISCA.2001.937453
http://dx.doi.org/10.1109/HPCA.2003.1183549
http://dx.doi.org/10.1109/HPCA.2004.10030
http://dx.doi.org/10.1145/1375527.1375576
http://dx.doi.org/10.1145/1810085.1810110
http://dx.doi.org/10.1007/978-3-642-11515-8_19
http://dx.doi.org/10.1109/TC.2004.1261824
http://dx.doi.org/10.1109/HPCA.2005.13
http://dx.doi.org/10.1145/1080695.1069989
http://dx.doi.org/10.1109/HPCA.2009.4798239
http://dx.doi.org/10.1109/MICRO.2008.4771774

130 BIBLIOGRAPHY

[135] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial Memory Stream-
ing. In Proceedings of ISCA, 2006. DOI: 10.1145/1150019.1136508 69

[136] S. Somogyi, T. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-Temporal Memory Streaming.
In Proceedings of ISCA, 2009. DOI: 10.1145/1555754.1555766 69

[137] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers. In Proceedings of HPCA,
2007. DOI: 10.1109/HPCA.2007.346185 70

[138] J.M.Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. Power4 System Microarchitecture.
Technical report, Technical White Paper, IBM, October 2001. DOI: 10.1147/rd.461.0005
70

[139] I. Hur and C. Lin. Memory Prefetching Using Adaptive Stream Detection. In Proceedings of
MICRO, 2006. DOI: 10.1109/MICRO.2006.32 70

[140] I. Hur and C. Lin. Feedback Mechanisms for Improving Probabilistic Memory Prefetching.
In Proceedings of HPCA, 2009. DOI: 10.1109/HPCA.2009.4798282 70

[141] E. Ebrahimi, O. Mutlu, C. Lee, and Y. Patt. Coordinated Control of Multiple Prefetchers in
Multi-Core Systems. In Proceedings of MICRO, 2009. DOI: 10.1145/1669112.1669154 70

[142] S. Khan, Y. Tian, and D. Jimenez. Dead Block Replacement and Bypass with a Sampling
Predictor. In Proceedings of MICRO, 2010. 72

[143] C. Chen, S. Yang, B. Falsafi, and A. Moshovos. Accurate and Complexity-Effective Spatial
Pattern Prediction. In Proceedings of HPCA, 2004. DOI: 10.1109/HPCA.2004.10010 73

[144] T. Johnson. Run-time Adaptive Cache Management. PhD thesis, University of Illinois, May
1998. 73

[145] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in Data Caches Using Spatial
Footprints. In Proceedings of ISCA, 1998. DOI: 10.1109/ISCA.1998.694794 73

[146] A. Seznec. Decoupled Sectored Caches: Conciliating Low Tag Implementation Cost. In
Proceedings of ISCA, 1994. DOI: 10.1109/ISCA.1994.288133 73, 74

[147] P. Pujara and A. Aggarwal. Increasing the Cache Efficiency by Eliminating Noise. In
Proceedings of HPCA, 2006. DOI: 10.1109/HPCA.2006.1598121 73

[148] P. Pujara and A. Aggarwal. Increasing Cache Capacity through Word Filtering. In Proceedings
of ICS, 2007. DOI: 10.1145/1274971.1275002 73

[149] M. Ekman and P. Stenstrom. A Robust Main-Memory Compression Scheme. In Proceedings
of ISCA, 2005. DOI: 10.1145/1080695.1069978 73

http://dx.doi.org/10.1145/1150019.1136508
http://dx.doi.org/10.1145/1555754.1555766
http://dx.doi.org/10.1109/HPCA.2007.346185
http://dx.doi.org/10.1147/rd.461.0005
http://dx.doi.org/10.1109/MICRO.2006.32
http://dx.doi.org/10.1109/HPCA.2009.4798282
http://dx.doi.org/10.1145/1669112.1669154
http://dx.doi.org/10.1109/HPCA.2004.10010
http://dx.doi.org/10.1109/ISCA.1998.694794
http://dx.doi.org/10.1109/ISCA.1994.288133
http://dx.doi.org/10.1109/HPCA.2006.1598121
http://dx.doi.org/10.1145/1274971.1275002
http://dx.doi.org/10.1145/1080695.1069978

BIBLIOGRAPHY 131

[150] B. Abali, H. Franke, S. Xiaowei, D. Poff, and T. Smith. Performance of Hardware Compressed
Main Memory. In Proceedings of HPCA, 2001. DOI: 10.1109/HPCA.2001.903253 73

[151] R. Tremaine, P. Franaszek, J. Robinson, C. Schulz, T. Smith, M. Wazlowski, and P. Bland.
IBM Memory Expansion Technology (MXT). IBM Journal of Research and Development,
45(2), 2001. DOI: 10.1147/rd.452.0271 73

[152] J. Yang, Y. Zhang, and R. Gupta. Frequent Value Compression in Data Caches. In Proceedings
of MICRO-33, pages 258–265, December 2000. DOI: 10.1145/360128.360154 73

[153] Y. Zhang, J. Yang, and R. Gupta. Frequent Value Locality and Value-Centric Data Cache
Design. In Proceedings of ASPLOS, 2000. DOI: 10.1090/S0002-9939-99-05318-6 73

[154] M. Qureshi, M. Suleman, and Y. Patt. Line Distillation: Increasing Cache Capacity by
Filtering Unused Words in Cache Lines. In Proceedings of HPCA, 2007.
DOI: 10.1109/HPCA.2007.346202 73, 75

[155] Alaa Alameldeen and David Wood. Adaptive Cache Compression for High-Performance
Processors. In Proceedings of ISCA, 2004. DOI: 10.1145/1028176.1006719 74, 75

[156] J. Lee, W. Hong, and S. Kim. Design and Evaluation of a Selective Compressed Memory
System. In Proceedings of ICCD, 1999. DOI: 10.1109/ICCD.1999.808424 74

[157] E. Hallnor and S. Reinhardt. A Unified Compressed Memory Hierarchy. In Proceedings of
HPCA, 2005. DOI: 10.1109/HPCA.2005.4 74

[158] E. Hallnor and S. Reinhardt. A Fully Associative Software-Managed Cache Design. In
Proceedings of ISCA, 2000. DOI: 10.1145/339647.339660 74

[159] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Solihin, and
R. Balasubramonian. CHOP: Adaptive Filter-Based DRAM Caching for CMP Server
Platforms. In Proceedings of HPCA, 2010. 75

[160] R. Ho, K.W. Mai, and M.A. Horowitz. The Future of Wires. Proceedings of the IEEE, Vol.89,
No.4, April 2001. DOI: 10.1109/5.920580 79

[161] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE Micro, 25(2), 2005. DOI: 10.1109/MM.2005.35 81

[162] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in Multi-Core Architectures: Un-
derstanding Mechanisms, Overheads, and Scaling. In Proceedings of ISCA, 2005.
DOI: 10.1109/ISCA.2005.34 81

[163] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann, 1st edition, 2003. 81, 86

http://dx.doi.org/10.1109/HPCA.2001.903253
http://dx.doi.org/10.1147/rd.452.0271
http://dx.doi.org/10.1145/360128.360154
http://dx.doi.org/10.1090/S0002-9939-99-05318-6
http://dx.doi.org/10.1109/HPCA.2007.346202
http://dx.doi.org/10.1145/1028176.1006719
http://dx.doi.org/10.1109/ICCD.1999.808424
http://dx.doi.org/10.1109/HPCA.2005.4
http://dx.doi.org/10.1145/339647.339660
http://dx.doi.org/10.1109/5.920580
http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1109/ISCA.2005.34

132 BIBLIOGRAPHY

[164] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks. In
Proceedings of DAC, 2001. DOI: 10.1109/DAC.2001.156225 81

[165] P. Kundu. On-Die Interconnects for Next Generation CMPs. In Workshop on On- and
Off-Chip Interconnection Networks for Multicore Systems (OCIN), 2006. 83, 88

[166] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: A Power-
Performance Simulator for Interconnection Networks. In Proceedings of MICRO-35, Novem-
ber 2002. DOI: 10.1109/MICRO.2002.1176258 83, 90

[167] H-S. Wang, L-S. Peh, and S. Malik. Power-Driven Design of Router Microarchitectures in
On-Chip Networks. In Proceedings of MICRO, 2003.
DOI: 10.1109/MICRO.2003.1253187 83, 89

[168] H.-S. Wang, L.-S. Peh, and S. Malik. A Power Model for Routers: Modeling Al-
pha 21364 and InfiniBand Routers. In IEEE Micro, Vol 24, No 1, January 2003.
DOI: 10.1109/MM.2003.1179895 83, 88

[169] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in On-Chip Networks. In
Proceedings of ISCA, 2009. DOI: 10.1145/1555754.1555781 83, 89

[170] R. Mullins, A. West, and S. Moore. Low-Latency Virtual-Channel Routers for On-Chip
Networks. In Proceedings of ISCA, 2004. DOI: 10.1109/ISCA.2004.1310774 86

[171] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS.
In Proceedings of ISSCC, 2010. DOI: 10.1109/JSSC.2010.2079450 88

[172] C. Nicopoulos, D. Park, J. Kim, V. Narayanan, M. Yousif, and C. Das. ViChaR: A Dynamic
Virtual Channel Regulator for Network-on-Chip Routers. In Proceedings of MICRO, 2006.
DOI: 10.1109/MICRO.2006.50 89

[173] J. Kim, C. Nicopoulos, D. Park,V. Narayanan, M.Yousif, and C. Das. A Gracefully Degrading
and Energy-Efficient Modular Router Architecture for On-Chip Networks. In Proceedings
of ISCA, 2006. DOI: 10.1109/ISCA.2006.6 89

[174] R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford University, August 2003.
89, 93

[175] W. J. Dally. Express Cubes: Improving the Performance of k-ary n-cube Interconnection
Networks. IEEE Transactions on Computers, 40(9), 1991. DOI: 10.1109/12.83652 89

[176] A. Kumar, L. Peh, P. Kundu, and N. Jha. Express Virtual Channels: Towards the Ideal
Interconnection Fabric. In Proceedings of ISCA, 2007. DOI: 10.1145/1273440.1250681 89

[177] J.Balfour and W.J.Dally. DesignTradeoffs forTiled CMP On-Chip Networks. In Proceedings
of ICS, 2006. DOI: 10.1145/1183401.1183430 89

http://dx.doi.org/10.1109/DAC.2001.156225
http://dx.doi.org/10.1109/MICRO.2002.1176258
http://dx.doi.org/10.1109/MICRO.2003.1253187
http://dx.doi.org/10.1109/MM.2003.1179895
http://dx.doi.org/10.1145/1555754.1555781
http://dx.doi.org/10.1109/ISCA.2004.1310774
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1109/MICRO.2006.50
http://dx.doi.org/10.1109/ISCA.2006.6
http://dx.doi.org/10.1109/12.83652
http://dx.doi.org/10.1145/1273440.1250681
http://dx.doi.org/10.1145/1183401.1183430

BIBLIOGRAPHY 133

[178] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Architecting Efficient Interconnects
for Large Caches with CACTI 6.0. IEEE Micro (Special Issue on Top Picks from Architecture
Conferences), Jan/Feb 2008. DOI: 10.1109/MM.2008.2 89

[179] R. Ho, K. Mai, and M. Horowitz. Efficient On-Chip Global Interconnects. In Proceedings
of VLSI, 2003. DOI: 10.1023/A:1023331803664 90, 93

[180] A. Udipi, N. Muralimanohar, and R. Balasubramonian. Non-Uniform Power Access in Large
Caches with Low-Swing Wires. In Proceedings of HiPC, 2009.
DOI: 10.1109/HIPC.2009.5433222 93

[181] M. Minzuno, K. Anjo, Y. Sume, M. Fukaishi, H. Wakabayashi, T. Mogami, T. Horiuchi,
and M. Yamashina. Clock Distribution Networks with On-Chip Transmission Lines. In
Proceedings of the IEEE International Interconnect Technology Conference, pages 3–5, 2000. 94

[182] J.D. Warnock, J.M. Keaty, J. Petrovick, J.G. Clabes, C.J. Kircher, B.L. Krauter, P.J. Res-
tle, B.A. Zoric, and C.J. Anderson. The Circuit and Physical Design of the POWER4
Microprocessor. IBM Journal of Research and Development, 46(1):27–51, January 2002.
DOI: 10.1147/rd.461.0027 94

[183] T. Xanthopoulos, D.W. Bailey, A.K. Gangwar, M.K. Gowan, A.K. Jain, and B.K. Prewitt. The
Design and Analysis of the Clock Distribution Network for a 1.2GHz Alpha Microprocessor.
In Proceedings of the IEEE International Solid-State Circuits Conference, pages 402–403, 2001.
DOI: 10.1109/ISSCC.2001.912693 94

[184] R.T. Chang, N. Talwalkar, C.P. Yue, and S.S. Wong. Near Speed-of-Light Signaling Over
On-Chip Electrical Interconnects. IEEE Journal of Solid-State Circuits, 38(5):834–838, May
2003. DOI: 10.1109/JSSC.2003.810060 94

[185] A. Deutsch. Electrical Characteristics of Interconnections for High-Performance Systems.
Proceedings of the IEEE, 86(2):315–355, February 1998. DOI: 10.1109/5.659489 94

[186] B.M.Beckmann and D.A.Wood.TLC:Transmission Line Caches. In Proceedings of MICRO-
36, December 2003. DOI: 10.1109/MICRO.2003.1253182 94, 100

[187] R. Manevich, I. Walter, I. Cidon, and A. Kolodny. Best of Both Worlds: A Bus-Enhanced
NoC (BENoC). In Proceedings of NOCS, 2009. DOI: 10.1109/NOCS.2009.5071465 97,
100

[188] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter. Interconnect-
Aware Coherence Protocols for Chip Multiprocessors. In Proceedings of 33rd International
Symposium on Computer Architecture (ISCA-33), pages 339–350, June 2006.
DOI: 10.1109/ISCA.2006.23 97, 100

http://dx.doi.org/10.1109/MM.2008.2
http://dx.doi.org/10.1023/A:1023331803664
http://dx.doi.org/10.1109/HIPC.2009.5433222
http://dx.doi.org/10.1147/rd.461.0027
http://dx.doi.org/10.1109/ISSCC.2001.912693
http://dx.doi.org/10.1109/JSSC.2003.810060
http://dx.doi.org/10.1109/5.659489
http://dx.doi.org/10.1109/MICRO.2003.1253182
http://dx.doi.org/10.1109/NOCS.2009.5071465
http://dx.doi.org/10.1109/ISCA.2006.23

134 BIBLIOGRAPHY

[189] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The Power of Priority: NoC based
Distributed Cache Coherency. In Proceedings of NOCS, 2007. DOI: 10.1109/NOCS.2007.42
98, 100

[190] N. Eisley, L-S. Peh, and L. Shang. In-Network Cache Coherence. In Proceedings of MICRO,
2006. DOI: 10.1109/MICRO.2006.27 98, 100

[191] N. Eisley, L-S. Peh, and L. Shang. Leveraging On-Chip Networks for Cache Migration in
Chip Multiprocessors. In Proceedings of PACT, 2008. DOI: 10.1145/1454115.1454144 99,
100

[192] N. Agarwal, L-S. Peh, and N. Jha. In-Network Snoop Ordering: Snoopy Coherence on Un-
ordered Interconnects. In Proceedings of HPCA, 2009. DOI: 10.1109/HPCA.2009.4798238
99, 100

[193] N. Agarwal, L-S. Peh, and N. Jha. In-Network Coherence Filtering: Snoopy Coherence
without Broadcasts. In Proceedings of MICRO, 2009. DOI: 10.1145/1669112.1669143 99,
100

[194] R.Das,S.Eachempati,A.K.Mishra,N.Vijaykrishnan, and C.R.Das. Design and Evaluation
of Hierarchical On-Chip Network Topologies for Next Generation CMPs. In Proceedings of
HPCA, 2009. 100

[195] S. Borkar. Designing Reliable Systems from Unreliable Components: The Challenges of
Transistor Variability and Degradation. IEEE Micro, Nov/Dec 2005.
DOI: 10.1109/MM.2005.110 102

[196] Y. B. Kim et al. Low Power 8T SRAM Using 32nm Independent Gate FinFET Technology.
In SOC Conference, 2008. DOI: 10.1109/SOCC.2008.4641521 102

[197] S. M. Jahinuzzaman et al. A Soft ErrorTolerant 10T SRAM Bit-Cell With DIfferential Read
Capability. In IEEETransactions on Nuclear Science, 2009.DOI: 10.1109/TNS.2009.2032090
102

[198] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter Variations
and Impact on Circuits and Microarchitecture. In Proceedings of DAC, 2003.
DOI: 10.1109/DAC.2003.1219020 102

[199] E. Humenay, D. Tarjan, and K. Skadron. 103

[200] ITRS. International Technology Roadmap for Semiconductors, 2009 Edition. 103

[201] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-Aware Cache Architectures.
In Proceedings of MICRO, 2006. DOI: 10.1109/MICRO.2006.52 104

http://dx.doi.org/10.1109/NOCS.2007.42
http://dx.doi.org/10.1109/MICRO.2006.27
http://dx.doi.org/10.1145/1454115.1454144
http://dx.doi.org/10.1109/HPCA.2009.4798238
http://dx.doi.org/10.1145/1669112.1669143
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/SOCC.2008.4641521
http://dx.doi.org/10.1109/TNS.2009.2032090
http://dx.doi.org/10.1109/DAC.2003.1219020
http://dx.doi.org/10.1109/MICRO.2006.52

BIBLIOGRAPHY 135

[202] D.H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation. 1999.
DOI: 10.1109/MICRO.1999.809463 104, 105

[203] A. Das, B. Ozisikylmaz, S. Ozdemir, G. Memik, J. Zambreno, and A. Choudhary. Evaluating
the Effects of Cache Redundancy on Profit. In Proceedings of MICRO, 2008.
DOI: 10.1109/MICRO.2008.4771807 105

[204] R. C. Bose and D. K. Ray-Chaudhuri. On a Class of Error Correcting Binary Group Codes.
In Information and Control, 1960. DOI: 10.1016/S0019-9958(60)90870-6 106

[205] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. 106, 107

[206] D. H. Yoon and M. Erez. Memory Mapped ECC: Low-Cost Error Protection for Last Level
Caches. In Proceedings of ISCA, 2009. DOI: 10.1145/1555815.1555771 107

[207] Y. Xie, G. Loh, B. Black, and K. Bernstein. Design Space Exploration for 3D Architectures.
ACM Journal of Emerging Technologies in Computing Systems, 2(2):65–103, April 2006.
DOI: 10.1145/1148015.1148016 108

[208] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, S. Reinhardt, K. Flautner, and
T. Mudge. PicoServer: Using 3D Stacking Technology to Enable a Compact Energy Efficient
Chip Multiprocessor. In Proceedings of ASPLOS, 2006. DOI: 10.1145/1168919.1168873 108

[209] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, N. Vijaykrishnan, and M. Kandemir. Design
and Management of 3D Chip Multiprocessors Using Network-in-Memory. In Proceedings
of ISCA-33, June 2006. DOI: 10.1109/ISCA.2006.18 108

[210] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the Processor-Memory Per-
formance Gap with 3D IC Technology. IEEE Design and Test of Computers, 22:556–564,
November 2005. DOI: 10.1109/MDT.2005.134 108

[211] G. Loh. 3D-Stacked Memory Architectures for Multi-Core Processors. In Proceedings of
ISCA, 2008. DOI: 10.1109/ISCA.2008.15 108

[212] G. Loi, B. Agrawal, N. Srivastava, S. Lin, T. Sherwood, and K. Banerjee. A Thermally-
Aware Performance Analysis of Vertically Integrated (3-D) Processor-Memory Hierarchy.
In Proceedings of DAC-43, June 2006. DOI: 10.1109/DAC.2006.229426 108

[213] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie. Leveraging 3D PCRAM
Technologies to Reduce Checkpoint Overhead in Future Exascale Systems. In Proceedings of
SC, 2009. DOI: 10.1145/1654059.1654117 108

[214] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid Cache Architecture
with Disparate Memory Technologies. In Proceedings of ISCA, 2009.
DOI: 10.1145/1555754.1555761 108, 114

http://dx.doi.org/10.1109/MICRO.1999.809463
http://dx.doi.org/10.1109/MICRO.2008.4771807
http://dx.doi.org/10.1016/S0019-9958(60)90870-6
http://dx.doi.org/10.1145/1555815.1555771
http://dx.doi.org/10.1145/1148015.1148016
http://dx.doi.org/10.1145/1168919.1168873
http://dx.doi.org/10.1109/ISCA.2006.18
http://dx.doi.org/10.1109/MDT.2005.134
http://dx.doi.org/10.1109/ISCA.2008.15
http://dx.doi.org/10.1109/DAC.2006.229426
http://dx.doi.org/10.1145/1654059.1654117
http://dx.doi.org/10.1145/1555754.1555761

136 BIBLIOGRAPHY

[215] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A Novel Architecture of the 3D Stacked MRAM
L2 Cache for CMPs. In Proceedings of HPCA, 2009. DOI: 10.1109/HPCA.2009.4798259
108, 114

[216] B. Zhao, Y. Du, Y. Zhang, and J. Yang. Variation-Tolerant Non-Uniform 3D Cache Man-
agement in Die Stacked Multicore Processor. In Proceedings of MICRO, 2009.
DOI: 10.1145/1669112.1669141 108

[217] Y. Xu, Y. Du, B. Zhao, X. Zhou, Y. Zhang, and J. Yang. A Low-Radix and Low-Diameter
3D Interconnection Network Design. In Proceedings of HPCA, 2009.
DOI: 10.1109/HPCA.2009.4798234 108

[218] K.Puttaswamy and G.Loh. Implementing Caches in a 3DTechnology for High Performance
Processors. In Proceedings of ICCD, October 2005. DOI: 10.1109/ICCD.2005.65 108

[219] J. Poulton, R. Palmer, A. M. Fuller,T. Greer, J. Eyles, W. J. Dally, and M. Horowitz. A 14mW
6.25-Gb/s Transceiver in 90nm CMOS. In IEEE Journal of Solid State Circuits, 2009.
DOI: 10.1109/JSSC.2007.908692 110

[220] IBM. IBM Unveils New POWER7 Systems To Manage Increasingly Data-Intensive Ser-
vices. http://www-03.ibm.com/press/us/en/pressrelease/29315.wss. 111, 113

[221] W. K. Luk and R. H. Denard. A Novel Dynamic Memory Cell with Internal Voltage Gain.
In IEEE Journal of Solid State Circuits, 2005. DOI: 10.1109/JSSC.2004.842854 111

[222] X. Liang, R. Canal, G. Wei, and D. Brooks. Process Variation Tolerant 3T1D-Based Cache
Architectures. In Proceedings of MICRO, 2007. DOI: 10.1109/MICRO.2007.40 112

[223] C. Wilkerson, A.R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-L Lu. Reducing
Cache Power with Low-Cost, Multi-Bit Error Correcting Codes. In Proceedings of ISCA,
2010. DOI: 10.1145/1816038.1815973 113

[224] X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi. Simple but Effective Heterogeneous
Main Memory with On-Chip Memory Controller Support. In Proceedings of SC, 2010.
DOI: 10.1109/SC.2010.50 116

[225] J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L. John. The Virtual Write Queue:
Coordinating DRAM and Last-Level Cache Policies. In Proceedings of ISCA, 2010.
DOI: 10.1145/1816038.1815972 117

[226] S. Liu, B. Leung, A. Neckar, S. Memik, G. Memik, and N. Hardavellas. Hardware/Software
Techniques for DRAM Thermal Management. In Proceedings of HPCA, 2011.
DOI: 10.1109/HPCA.2011.5749756 118

http://dx.doi.org/10.1109/HPCA.2009.4798259
http://dx.doi.org/10.1145/1669112.1669141
http://dx.doi.org/10.1109/HPCA.2009.4798234
http://dx.doi.org/10.1109/ICCD.2005.65
http://dx.doi.org/10.1109/JSSC.2007.908692
http://www-03.ibm.com/press/us/en/pressrelease/29315.wss
http://www-03.ibm.com/press/us/en/pressrelease/29315.wss
http://dx.doi.org/10.1109/JSSC.2004.842854
http://dx.doi.org/10.1109/MICRO.2007.40
http://dx.doi.org/10.1145/1816038.1815973
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1145/1816038.1815972
http://dx.doi.org/10.1109/HPCA.2011.5749756

137

Authors’ Biographies

RAJEEV BALASUBRAMONIAN
Rajeev Balasubramonian is an Associate Professor at the School of Computing, University of Utah.
He received his B.Tech in Computer Science and Engineering from the Indian Institute of Technol-
ogy, Bombay in 1998. He received his MS (2000) and Ph.D. (2003) degrees from the University of
Rochester. His primary research areas include memory hierarchies and on-chip interconnects. Prof.
Balasubramonian is a recipient of the NSF CAREER award and a teaching award from the School
of Computing. He has co-authored papers that have been selected as IEEE Micro Top Picks (2007
and 2010) and that have received best paper awards (HiPC’09 and PACT’10).

NORMAN P. JOUPPI
Norman P. Jouppi is an HP Senior Fellow and Director of the Intelligent Infrastructure Lab
at HP Labs. He is known for his innovations in computer memory systems, including stream
prefetch buffers, victim caching, multi-level exclusive caching and development of the CACTI tool
for modeling cache timing, area, and power. He has also been the principal architect and lead designer
of several microprocessors, contributed to the architecture and design of graphics accelerators, and
extensively researched video, audio, and physical telepresence. Jouppi received his Ph.D. in electrical
engineering from Stanford University in 1984, where he was one of the principal architects and
designers of the MIPS microprocessor, as well as a developer of techniques for CMOS VLSI timing
verification.He currently serves as past chair of ACM SIGARCH and is a member of the Computing
Research Association (CRA) board. He is on the editorial board of Communications of the ACM
and IEEE Micro. He is a Fellow of the ACM and the IEEE, and holds more than 50 U.S. patents.
He has published over 100 technical papers, with several best paper awards and one Symposium on
Computer Architecture (ISCA) Influential Paper Award.

NAVEEN MURALIMANOHAR
Naveen Muralimanohar is a senior researcher in the Intelligent Infrastructure Lab at HP Labs.
His research focuses on designing reliable and efficient memory hierarchies and communication
fabrics for high performance systems. He has published several influential papers on on-chip caches,
including a best paper award and an IEEE Micro Top Pick for his work on large cache models
with CACTI. He received his Ph.D. in computer science from the University of Utah and B.E in
electrical engineering from the University of Madras.

	Preface
	Acknowledgments
	Basic Elements of Large Cache Design
	Shared Vs. Private Caches
	Shared LLC
	Private LLC
	Workload Analysis

	Centralized Vs. Distributed Shared Caches
	Non-Uniform Cache Access
	Inclusion

	Organizing Data in CMP Last Level Caches
	Data Management for a Large Shared NUCA Cache
	Placement/Migration/Search Policies for D-NUCA
	Replication Policies in Shared Caches
	OS-based Page Placement

	Data Management for a Collection of Private Caches
	Discussion

	Policies Impacting Cache Hit Rates
	Cache Partitioning for Throughput and Quality-of-Service
	Introduction
	Throughput
	QoS Policies

	Selecting a Highly Useful Population for a Large Shared Cache
	Replacement/Insertion Policies
	Novel Organizations for Associativity
	Block-Level Optimizations

	Summary

	Interconnection Networks within Large Caches
	Basic Large Cache Design
	Cache Array Design
	Cache Interconnects
	Packet-Switched Routed Networks

	The Impact of Interconnect Design on NUCA and UCA Caches
	NUCA Caches
	UCA Caches

	Innovative Network Architectures for Large Caches

	Technology
	Static-RAM Limitations
	Parameter Variation
	Modeling Methodology
	Mitigating the Effects of Process Variation

	Tolerating Hard and Soft Errors
	Leveraging 3D Stacking to Resolve SRAM Problems
	Emerging Technologies
	3T1D RAM
	Embedded DRAM
	Non-Volatile Memories

	Concluding Remarks
	Bibliography
	Authors' Biographies
	fm.pdf
	Preface
	Acknowledgments
	Basic Elements of Large Cache Design
	Shared Vs. Private Caches
	Shared LLC
	Private LLC
	Workload Analysis

	Centralized Vs. Distributed Shared Caches
	Non-Uniform Cache Access
	Inclusion

	Organizing Data in CMP Last Level Caches
	Data Management for a Large Shared NUCA Cache
	Placement/Migration/Search Policies for D-NUCA
	Replication Policies in Shared Caches
	OS-based Page Placement

	Data Management for a Collection of Private Caches
	Discussion

	Policies Impacting Cache Hit Rates
	Cache Partitioning for Throughput and Quality-of-Service
	Introduction
	Throughput
	QoS Policies

	Selecting a Highly Useful Population for a Large Shared Cache
	Replacement/Insertion Policies
	Novel Organizations for Associativity
	Block-Level Optimizations

	Summary

	Interconnection Networks within Large Caches
	Basic Large Cache Design
	Cache Array Design
	Cache Interconnects
	Packet-Switched Routed Networks

	The Impact of Interconnect Design on NUCA and UCA Caches
	NUCA Caches
	UCA Caches

	Innovative Network Architectures for Large Caches

	Technology
	Static-RAM Limitations
	Parameter Variation
	Modeling Methodology
	Mitigating the Effects of Process Variation

	Tolerating Hard and Soft Errors
	Leveraging 3D Stacking to Resolve SRAM Problems
	Emerging Technologies
	3T1D RAM
	Embedded DRAM
	Non-Volatile Memories

	Concluding Remarks
	Bibliography
	Authors' Biographies

