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Chapter 1: Review of the Basic Number Representations and Arithmetic

Algorithms

• General-purpose processors

3 Main use: numerical computations

3 Address calculations

- basic operations

- fixed point and floating point

- IEEE standard

- vector processors

• Special-purpose (application-specific) processors

- for numerically intensive applications

- single computation or classes of computations
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Application-specific processor

• Areas of application:

- signal processing

- embedded systems

- matrix computations

- graphics, vision, multi-media

- cryptography and security

- robotics, instrumentation; others?

• Features:

- better use of technology

- improvement in speed, area, power

- flexibility in

* implementation; decomposition into modules

* number systems and data formats; algorithms

• Need good design tools; difficult to change; FPGAs?
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GENERAL-PURPOSE VS. APPLICATION-SPECIFIC

• Flexibility

• Matching specific applications

• Use of VLSI and special technology

• Use of hardware-level parallel processing

• Lower software overhead
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ARITHMETIC PROCESSORS: USER’S VIEW

AP = (operands, operation, results, conditions, singularities)

• Numerical operands and results specified by

– Set of numerical values x ∈ N (finite and ordered set)

– Range Vmin ≤ x ≤ Vmax

– Precision

– Number representation system (NRS)

• Set of operations: addition, subtraction, multiplication, division, ...

• Conditions: values of the results – zero, negative, etc.

• Singularities: Illegal results – overflow, underflow, Nan, etc.
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LEVELS OF DESCRIPTION AND IMPLEMENTATION

• Numerical computations (applications)

• Algorithms

• Arithmetic operations

Operations Operands-Result Algorithm
Numerical function Numbers Numerical Algorithm

↓ ↓
↓ Number System Arithmetic design

↓ ↓
Digit-vector function Digit vector Digit-vector Algorithm

↓ ↓
↓ Digit Coding RTL design

↓ ↓
Bit-vector function Bit vector Bit-vector Algorithm

↓
Logic Design
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NUMBER REPRESENTATION SYSTEMS

value: x ∈ N =⇒NRS =⇒X ∈ V : digit vector

• Digit Vector

X = (xa, . . . , xi, . . . , xb)

– indexing:

Leftward Zero Origin (LZ) (integers)

X = (xn−1, xn−2, . . . , x0)

Rightward One Origin (RO) (fractions)

X = (x1, x2, . . . , xn)

– Digit set Di - set of values for digit xi (usually consecutive integers)
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NUMBER REPRESENTATION (cont.)

• Number of (unambiguously) representable numbers

|N | ≤ Π|Di|

• Number representation system

F : N → V

• Choose NRS to

– allow efficient computation(s)

– suitable interface with other systems

• Different implementation-performance constraints

=⇒ variety of NRS
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SOME CHARACTERISTICS OF NRS

a) Range: finite set of digit-vector values

b) Unambiguity: two numbers should not have same representation

If x ∈ N, y ∈ N, x 6= y then F (x) 6= F (y)

c) Nonredundant/redundant

Redundant: F−1(X) = F−1(Y )
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WEIGHTED NUMBER REPRESENTATION SYSTEMS

Integer x represented by digit vector X = (xn−1 . . . , x0),

x =
n−1
∑

i=0
xi · wi

where
W = (wn−1, . . . , w0) weight vector

Define
R = (rn−1, . . . , r0) radix vector

so that
w0 = 1 wi = wi−1ri−1
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WEIGHTED NUMBER REPRESENTATION (cont.)

• Fixed-radix NRS
ri = r

Then wi = ri so that

x =
n−1
∑

i=0
xir

i

• Canonical digit set
Di = {0, 1, 2, . . . , |ri| − 1}

• Conventional number system

– Fixed radix positive

– Canonical digit set
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NON-CONVENTIONAL FIXED-RADIX SYSTEM

• Negative radix

r = −2, x = ∑n−1
i=0 xi(−2)i

1011 = (-8) + 0 + (-2) + 1 = -9

0111 = 0 + 4 + (-2) + 1 = 3

• Complex radix

r = 2j, j =
√
−1, xi ∈ {0, 1, 2, 3} (Knuth’s quarter imaginary NRS)

W: -8j -4 +2j +1

1231 =⇒1× (−8j) + 2× (−4) + 3× (2j) + 1× 1 = −7− 2j

• Non-canonical digit set, r = 2, {-1,0,1} or {0,1,2}
Example: radix 4 D = {−3,−2,−1, 0, 1, 2, 3}

x = 27 represented by (1, 2, 3) or (2,−2, 3)

Digital Arithmetic - Ercegovac/Lang 2003 1 – Introduction



14
REDUNDANT NRS

• Fixed radix r

• Non-canonical digit set

D = {−a,−a + 1, . . . ,−1, 0, 1, . . . , b− 1, b}

• Symmetric if a = b

• Redundant a + b + 1 > r (a, b ≤ r − 1)

– ”standard” a, b ≤ r − 1

– over-redundant a, b > r − 1

– Redundancy factor

ρ =
a

r − 1
, ρ >

1

2
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EXAMPLES OF REDUNDANT DIGIT SETS

r a Digit set ρ Comment

2 1 { -1, 0, 1} 1 minimally/maximally redundant
4 2 {-2, -1, 0, 1, 2} 2/3 minimally redundant
4 3 {-3, -2, . . . , 2, 3} 1 maximally redundant
4 4 {-4, . . . , 4} 4/3 over-redundant
9 4 {-4, . . . , 4} 1/2 non-redundant

10 5 {-5, . . . , 5} 5/9 minimally redundant
10 6 {-6, . . . , 6} 2/3 redundant
10 9 {-9, . . . , 9} 1 maximally redundant
10 13 {-13, . . . , 13} 13/9 over-redundant
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MIXED-RADIX NUMBER SYSTEM

• ri 6= rj

• Example: Representation of time R = (31, 24, 60, 60)

• Example: Factorial number system

ri = i + 2, i = 0, . . . , n− 1

R = (n + 1, n, . . . , 3, 2)

wi = (i + 1)!

Canonical digit set

Integers in range 0 ≤ x ≤ (n + 1)!− 1
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NON-WEIGHTED NUMBER SYSTEMS: RESIDUE (RNS)

• Base vector B of moduli mi

B = (mn−1, mn−2, . . . , m0)

mi positive integers and pairwise relatively prime

• Integer x is represented by vector

X = (xn−1, xn−2, . . . , x0)

where xi = x mod mi

• Represents uniquely integers in the range

0 ≤ x < Πn−1
i=0 mi

(more later)
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REPRESENTATION OF SIGNED INTEGERS

A. Directly in the number representation

Examples: Signed-Digit Number System

B. With an extra symbol: Sign-and-magnitude

C. Additional mapping on positive integers

Signed integers x
↓

Positive integers xR

↓
Digit-vectors X

Examples:

• True-and-Complement (TC):

– 2’s complement

– 1s’ complement

• Biased representation
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TRUE-AND-COMPLEMENT SYSTEM

• −k ≤ x ≤ k signed integer (implicit value)

• xR positive integer (representation value)

• C – complementation constant

• Mapping xe = x mod C

• Unambiguous if k < C/2

• Equivalent to

xR =















x if x ≥ 0
C − |x| if x < 0

• Converse mapping

x =















xR if xR < C/2
xR − C if xR > C/2
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NUMBER REPRESENTATION (cont.)

• xR represented in any number system

• In fixed-radix system two common choices:

– 2’s complement: C = rn (Range-complement system)

– 1s’ complement: C = rn − 1 (Diminished-radix-complement system)
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BIASED REPRESENTATION

• B – bias

• −k ≤ x ≤ k

• xR = x + B

• B ≥ k
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TYPES OF ARITHMETIC ALGORITHMS

• Bottom-up development

Primitives

+ Addition/subtraction

+ Multioperand addition

+ Arithmetic shifts

+ Multiplication by digit

+ Result-digit selection (PLA)

+ Table look-up

+ Multiplication

• Algorithms

+ Composition of primitives
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TYPES (cont.)

• (Digit) Recurrences (continued sums)

3 Residual recurrence: R[i + 1] = f (R[i], X, Y, Z[i], zi+1)

Uses: Add/sub, single-position shifts, multiplication by digit

3 Output digit selection: zi+1 = g(R[i], X, Y, Z[i])

(keep R[i + 1] bounded)

Uses: Comparisons, PLA

3 Result recurrence

Z[i + 1] = Z[i] + zi+1r
i+1 (continued sum)

Uses: Concatenation

• Examples:

3 multiplication R[i + 1] = 1
r(R[i] + X · rnyi)

3 division R[i + 1] = rR[i]− qi+1Y qi+1 = g(R[i + 1], Y )
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Types of algorithms

• Continued product recurrences

R[i + 1] = f (R[i], X, Y, Z[i], zz+1)

Uses: Add/sub, variable shifts, mult. by digit

zi+1 = g(R[i], X, Y, Z[i])(keep R[i + 1] bounded)

Uses: Comparisons, PLA

Z[i + 1] = Z[i](1 + zi+1r
−(i+1)) (continued product)

Uses: Variable shift, addition

• Example:

3 division

R[i + 1] = rR[i](1 + qi+1r
−(i+1)) + qi+1

qi+1 = g(R[i], Y )

Q[i + 1] = Q[i](1 + qi+1r
−(i+1))
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TYPES (cont.)

• Iterative Approximations

Z[i + 1] = f (Z[i], X, Y ) until g(Z(i)) < ε

Example:

3 reciprocal

Z[i + 1] = Z[i](2− Z[i]X)

• Polynomial Approximations

z = a0 + a1x + a2x
2 + · · ·
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PERFORMANCE

• Measures

+ Execution time

+ Throughput

• Improving speed

a) Arithmetic level

+ Reducing number of steps

Example: higher radix

Example: combinational instead of sequential

+ Reducing time of step

Example: carry-save adder instead of carry-propagate

+ Overlap steps (concurrency/pipelining)

Example: multiple generation and addition (in mult.)

Example: simultaneous additions (in mult.)

b) Implementation level

+ Reduce number of logic levels
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POWER AND COST

• Measures

+ Packaging

+ Interconnection complexity

+ Number of pins

+ Number of chips and types of chips

+ Number of gates and types of gates

+ Area

+ Design cost; verification and testing cost

+ Power dissipation

+ Power consumption

• Reduction of cost
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FAST TWO-OPERAND ADDITION

A. Conventional number system.

Carry-propagate adders (CPA)

• Switched carry-ripple adder

• Carry-skip adder

• Carry-lookahead adder

• Prefix adder

• Carry-select adder and conditional-sum adder

• Variable-time adder

B. Redundant number system.

Totally-parallel adders (TPA); adders with limited carry propagation

• Carry-save adder

• Signed-digit adder
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n-BIT ADDITION

x + y + cin = 2ncout + s

The solution:

s = (x + y + cin) mod 2n

cout =















1 if (x + y + cin) ≥ 2n

0 otherwise

= b(x + y + cin)/2nc
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ADDER

X

n

Y

n

S

n

cout cin

(a)

FA

(b)

xi yi

si

ci
ci+1

Figure 2.1: (a) An n-bit adder. (b) 1-bit adder (full adder module).
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1-BIT ADDITION

• Primitive module full adder (FA)

xi + yi + ci = 2ci+1 + si

with solution
si = (xi + yi + ci) mod 2

ci+1 = b(xi + yi + ci)/2c
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ADDITION: TWO-STEP PROCESS

1. Obtain carries (carry at i depends on j ≤ i)

– non-trivial to do fast

2. Compute sum bits (local function)

c noutc =

c 0= inc

n-1c

xn-1

yn-1

sn-1

xi

yi

ci

si

Step 1: 
Obtain carries

Step 2: 
Compute sum bits 

x1

y1

c1

s1

x0

y0

c0

s0

X
n

Y
n

Figure 2.2: Steps in addition.
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CARRY-OUT CASES

Case xi yi xi + yi ci+1 Comment
1 0 0 0 0 kill (stop) carry-in
2 0 1 1 ci propagate carry-in

1 0 1 ci propagate carry-in
3 1 1 2 1 generate carry-out

Case 1 (Kill): ki = x′iy
′
i = (xi yi)

′

Case 2 (Propagate): pi = xi ⊕ yi

Case 3 (Generate): gi = xiyi

Then
ci+1 = gi pici = xiyi (xi ⊕ yi)ci

Alternative (simpler) expression:

ci+1 = gi aici

Since ai = k′i we call it ”alive”
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CARRY CHAINS

Two types:

1-carry chain consisting of carry=1
0-carry chain consisting of carry=0

i 9 8 7 6 5 4 3 2 1 0
xi 1 0 1 0 1 1 1 1 0 0
yi 0 0 0 1 0 1 0 0 1 0

p k p p p g p p p k
a a a a a a a a

ci+1 0 ← 0 1 ← 1 ← 1 ← 1 0 ← 0 ← 0 ← 0
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Generalization to group of bits

cj+1 = g(j,i) p(j,i)ci = g(j,i) a(j,i)ci

or, for i = 0

cj+1 = g(j,0) p(j,0)c0 = g(j,0) a(j,0)c0

Recursive combining of subranges of variables:

g(f,d) = g(f,e) p(f,e)g(e−1,d) = g(f,e) a(f,e)g(e−1,d)

a(f,d) = a(f,e)a(e−1,d)

p(f,d) = p(f,e)p(e−1,d)
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Generalization (cont.)

(b)

gL aL gR aR

gout aout

GA

g(f,e) a(f,e) g(e-1,d) a(e-1,d)

f e e-1 d

g(f,d) a(f,d)

(a)

GA

Figure 2.3: Computing (g(f,d), a(f,d)).
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BASIC CARRY-RIPPLE ADDER (CRA)

FA=cnc
out = c

in
c

0

y
0

x
0

c
1

y
n-1

x
n-1

sn-1
s
0

FA

y
i

x
i

c
i+1 c

i

si

FA

Figure 2.4: Carry-ripple adder.

TCRA = (n− 1)tc + max (tc, ts)
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Implementations of full-adder

(a)ci

(c)

si

xi

yi

ci

ci+1

pi

g’i

Half Adder (HA)
HA

(b)

si

xi

yi

ci

ci+1

pi

gi

xi x’i
yi y’i

x’i

y’i c’i

yi

xi

ci

x’i y’i

c’i

yi
xi

si

xi

yi

xi

ci

ci

yi

ci+1

c’i+1

Figure 2.5: Implementation of full-adder. (a) Two-level network. (b) Multilevel network with xor, and and or gates; (c) Multilevel
implementation with xor and nand gates.
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SWITCHED CARRY-RIPPLE (Manchester) ADDER

ci

ci+1

CC CC CC CCCC

cin

c1c2cout

(a)

(b)

piki

gi

GKP

"1"

"0"

cici+1

CC 
(Chain Control)

xiyi

xiyi x1y1 x0y0
yn-1 x n-1 yn-2 x n-2

cn-1

Figure 2.6: Switch carry-ripple network (Manchester circuit)
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CARRY-SKIP ADDER

0

1

m-bit Carry-Ripple Adder
(group j)

MUX

m m

m

CSK-m  adder

(a)

CSK-m
ADDER

m m

m

CSK-m
ADDER

m m

m

CSK-m
ADDER

m m

m

(b)

Module 0Module jModule (n/m - 1)

P(j)

x
(j)

y
(j)

s
(j)

cin
(j)

cout
(j)

cin
(j+1)

Figure 2.7: Carry-skip adder: (a) A group with carry bypass. (b) n-bit CSK adder.
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CARRY CHAINS IN CARRY-SKIP ADDER

0
position

15

t

c4c8

4

6

4812

c1c3c7
c2 2

c6c10
c11

1
1

0
1

1
1

1
0

0
1

0
1

0
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

0
0

X
Y

c16

c14

c13

c15

group 3 group 2 group 1 group 0

group size m = 4

carry-skip path

carry-ripple path

c9 c5c12

Figure 2.8: Carry chains in carry-skip adder: A case with several carry chains.
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m-bit Carry-Ripple Adder

cn c0

sn-1

M
U

X

M
U

X

M
U

X
(a)

(b)

0
position

15

t

4

6

4812

c1

c3

c2 2

c5

8

1
1

0
1

0
1

1
0

0
1

0
1

0
1

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

1
0

X
Y

group 3 group 2 group 1 group 0

c4

c6

c7

c8

c9

c10

c11

group size m = 4

carry-skip path
carry-ripple path

c12

c13

c14

c15

c16

Figure 2.9: (a) Critical path in carry-skip adder. (b) The worst-case situation for n = 16.
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WORST-CASE DELAY

TCSK = mtc + tmux + (
n

m
− 2)tmux + (m− 1)tc + ts

= (2m− 1)tc + (
n

m
− 1)tmux + ts
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PROBLEM WITH CLEARING OF CARRIES

m-bit Carry-Ripple Adder
(group j)

P(j)

cin
(j)cout

(j)

cin
(j+1)

Figure 2.10: Carry-skip adder using AND-OR for bypass
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GROUP SIZE IN CARRY-SKIP ADDERS

Fixed-size:

mopt = (tmux
2tc

n)1/2 (minimum delay)

Topt ≈ (8tmuxtcn)1/2

Variable-size:

Group size

Group  i
0M-1

mi

M - number of groups

Figure 2.11: Optimal distribution of group sizes in carry-skip adder.
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CARRY-LOOKAHEAD ADDER(CLA)

CLA
k-1

mm

m

x(k-1) y(k-1)

s (k-1)

CLA
1

m m

m

CLA
0

m m

m

x(0)x(1) y(0)y(1)

s (0)s (1)

c
m

c
2mCLA

j

m m

m

x(j) y(j)

s (j)

k=n/m

 c
0

cn

Figure 2.12: One-level carry-lookahead adder
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CARRY-LOOKAHEAD MODULE

CARRY LOOKAHEAD  GENERATOR
(CLG-4)

c 4

y 1 x 1y 2 x 2y 3 x 3

c 0G

A

g3 p 3
p 2 p 1

p 3
p 2

p 1
p 0

c 3
c 2

c 1

s 3
s 2

s 1
s 0

g0 p 0

y 0 x 0

gap

a0

gap

a1

gap

a2

gap

a3
g1g2

CLA-4

Figure 2.13: Carry-lookahead adder module (m = 4).
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CARRY-LOOKAHEAD GENERATOR

G

c
0

CLG-4

a
3

a
2g

2
g

3
g

1
a

1
g

0
a

0

c
4

c
3

c
2

c
1

A

Figure 2.14: 4-bit carry-lookahead generator CLG-4.
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TWO-LEVEL CARRY-LOOKAHEAD ADDER

2 2 2 2 2 2 2 24

s7

4

s6

4

s5

4

s4

4

s3

4

s2

4

s1

4

s0

CLA-4

x7

4

CLA-4

x6

4

CLA-4

x5

4

CLA-4

x4

4

CLA-4

x3

4

CLA-4

x2

4

CLA-4

x1

4

CLA-4

x0

4

G7 A7 G6 A6 G5 A5 G4 A4 G3 A3 G2 A2 G1 A1 G0 A0

CLG-4 CLG-4

y7

4

y6

4

y5

4

y4

4

y3

4

y2

4

y1

4

y0

4

c
0

carries to CLA-4 modules

carries from CLG-4 modules

critical path

c (5)=c20 c (1)=c4c (2)=c8c (3)=c12c (4)=c16

c (1)=c4c (2)=c8c (3)=c12c (4)=c16c (5)=c20c (6)=c24c (7)=c28

c (6)=c24c (7)=c28

c (8)=c32

*

* Carry-out is not used

* * * * * * *

Figure 2.15: Two-level carry-lookahead adder (n = 32)
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2 2 2 22
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x1

2

CLA-2

x0

2

G
(1)
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3 G
(1)

2 A
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2 G
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1 A
(1)

1 G
(1)

0 A
(1)

0

y3

2

y2
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2

y0

2

c
0

carries from CLG-2 modules

c (1)=c2c (2)=c4c (3)=c6

* Carry-out is not used

* * * *

c (1)=c2

CLG-2

c (3)=c6

CLG-2

CLG-2

c4

c8

G
(2)

0 A
(2)

0
G

(1)

1 A
(1)

1

c4

Figure 2.16: Three-level carry-lookahead adder (n = 8, m = 2).
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Prefix adders

(b)

gL aL gR aR

gout aout

GA

left2 right2 left1 right1

(a)

GA

g(left2,right1)
a(left2,right1)

2

22

g(right2,right1)
a(right2,right1)

g(left2,left1)
a(left2,left1)

Figure 2.17: Composition of spans in computing (g, a) signals.
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0

from position 
(-1)g(6,5) g(4,3) g(2,1)

g(6,3) g(5,3) g(2,-1) g(1,-1)

g(0,-1)

g(6,-1) =c7 c
6

a(6,5)

a(6,3)

2

a(5,3)

a(4,3) a(2,1)

Figure 2.18: 8-bit prefix adder. (Modules to obtain pi, gi, and ai signals not shown.)
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a(4,3) g(4,3) g(2,1) g(0,-1)

g(2,-1)

a(2,1)

g(3,-1)g(4,-1)

g(5,-1)

Figure 2.19: 8-bit prefix adder with maximum fanout of three and five levels. (Modules to obtain pi, gi, and ai signals not shown.)
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a(6,5)

g(7,6) g(6,5)
a(7,6) a(5,4)

g(4,3) g(3,2) g(2,1) g(1,0) g(0,-1)
a(4,3) a(3,2) a(2,1) a(1,0)

g(7,4)
g(6,3) g(5,2) g(4,1) g(3,0) g(2,-1) g(1,-1)

g(7,0)

g(7,-1)

*

*

*  a(j,k)  not labeled

Figure 2.20: 8-bit prefix adder with minimum number of levels and fanout of two.(Modules to obtain pi, gi, and ai signals not shown.)
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CONDITIONAL ADDER (COND ADDER)

COND
ADDER

m+1

m m

m+1

(b)

x y

(c0
m , S0)(c1

m , S1)

1 m-BIT 
ADDER

0

m+1

(a)

m-BIT 
ADDER

m+1

m m

(c0
m , S0)(c1

m , S1)

x y

COND ADDER

Two adders use shared circuits 

Figure 2.21: (a) Obtaining conditional outputs. (b) Combined conditi onal adder.
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CARRY-SELECT ADDER

MUX

m-BIT 
ADDER

m+1

m

c0

cn

MUX

m+1

MUX

m+1

k=n/m
x (1) y (1)

x (i) y (i)x (k-1) y (k-1)

COND-
ADDER

m+1m+1

COND-
ADDER

m+1m+1

COND-
ADDER

m+1m+1

x (0) y (0)

mm mm mm mm

s (k-1)
s (i)

s (1) s (0)

Figure 2.22: Carry-select adder.
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CONDITIONAL-SUM ADDER

MUX MUX

X L YL X R YR

c
R
1 S

R
1 c

R
0 S

R
0

n/2+1
n/2+1

n/2

n/2n/2 n/2n/2

COND-ADDER COND-ADDER

(c
L
1 S

L
1, )

n/2+1
(c

L
0 S

L
0, )

n/2+1 n/2 n/2

n/2
n+1 n+1

(c0 S 0, )(c1 S 1, )

Figure 2.23: Doubling the number of bits of the conditional sum.
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16-bit CONDITIONAL-SUM ADDER

5

ADDER

X
3-0

Y
3-0

c
0

MUX MUX

MUX

s
15-8

MUX

5

44

s
7-4

s
3-0

c
4

c
8

9c
16

5 5

X
15-12

Y
15-12

COND-
ADDER

COND-
ADDER

X
11-8

Y
11-8

5 5

X
7-4

Y
7-4

COND-
ADDER

5

Figure 2.24: 16-bit conditional-sum adder (m = 4).
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TEMPLATE

s0
3 s0

2 s0
1 s0

0

c0
4 c0

2

Step 2
s1

3 s1
2 s1

1 s1
0

c1
4 c1

2

s0
3 s0

2 s0
1 s0

0

c0
4

Step 3
s1

3 s1
2 s1

1 s1
0

c1
4

Figure 2.25: Conditional-sum addition for eight bits with m = 1: (a) Template. (b) E xample.
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7 6 5 4 3 2 1 0
x 0 1 0 1 1 0 1 1 c0 = 0
y 0 1 0 1 0 1 0 1
s0 0 0 0 0 1 1 1 0
c0 0 1 0 1 0 0 0 1

Step 1
s1 1 1 1 1 0 0 0
c1 0 1 0 1 1 1 1
s0 1 0 1 0 1 1 0 0
c0 0 0 0 1

Step 2
s1 1 1 1 1 0 0
c1 0 0 1
s0 1 0 1 0 0 0 0 0
c0 0 1

Step 3
s1 1 0 1 1
c1 0
s 1 0 1 1 0 0 0 0
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PIPELINED ADDERS

Increase throughput

y
0

x
0

s
0

FA

y
1

x
1

s
1

FA

y
2

x
2

s
2

FA

y
3

x
3

s
3

FA c 0

- latch

c
4

Figure 2.26: Pipelined carry-ripple adder (for group size of 1 and n = 4)
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VARIABLE-TIME ADDER: Type 1

STFA

ci
1

ci
0

STFA

c1
1

c1
0

STFA

c0
1

c0
0

STFA

cn-1
1

cn-1
0

F

cn
1

cn
0

STFA   - full-adder module
with self-timed carry circuit

Figure 2.27: Variable-time adder: Type 1.

Two carry signals:
c0
i zero carry c1

i one carry

with coding:

c0
i c1

i ci

0 0 not determined (yet)
0 1 1
1 0 0
1 1 does not occur
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VARIABLE-TIME ADDER: Type 1 cont.

STFA module expressions:

c0
i+1 = ki(c

0
i c1

i ) pic
0
i = kic

1
i + (pi ki)c

0
i

c1
i+1 = gi(c

0
i c1

i ) pic
1
i = gic

0
i (pi gi)c

1
i

si = pi ⊕ c1
i

ki = x′iy
′
i, gi = xiyi, pi = xi ⊕ yi

Addition time: based on actual delays, not worst-case

Tvar−1 =
n−1
∑

i=0
tc,i
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VARIABLE-TIME ADDER: Type 2

CSFA

ci
1

ci
0

CSFA

c1
1

c1
0 CSFA

c0
1

c0
0

CSFA

cn-1
1

cn-1
0

F

cn
1

cn
0

CSFA - full-adder module with
carry   completion sensing

Figure 2.28: Variable-time adder: Type 2.

Carry chains initiated simultaneously
CSFA module expressions:

c0
i+1 = ki pic

0
i , c1

i+1 = gi pic
1
i
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Example

X 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0
Y 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0
+ a a a b c c c c c d d d d d d e Prop.chains

Completion signal:

F =
n−1

∏

i=0
(c0

i c1
i )

Addition time: proportional to log2(n)

Digital Arithmetic - Ercegovac/Lang 2003 2 – Fast Two-Operand Adders



39
2’s COMPLEMENT AND 1s’ COMPLEMENT ADDERS
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g(4,0)
a(3,0)

g(3,0)
a(2,0)
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a(1,0)
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Figure 2.29: Implementing ones’ complement adder with prefix network. (Modules to obtain pi, gi, and ai signals not shown.)
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ADDERS WITH REDUNDANT DIGIT-SET

CPA

X[i] S[i]

S[i+1]

Redundant Adder

X[i] S[i]

S[i+1]

(a) (b)

redundant

cycle time 
depends on precision

cycle time does not
depend on precision

Figure 2.30: Accumulation with (a) non-redundant, and (b) redundant representation of sum.
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CARRY-SAVE ADDER

(b)

FA

(a)

xi yi z
i

vci+1

vs
i

FA

xi+1 yi+1 zi+1

vci+2

vs
i+1

FA

xn-1 yn-1 zn-1

vs
n-1

FA

x0 y0 z0

vc1

vs
0

vc
0

cin

vcn= cout

X Y Z

CSA

VC VS

cincout

n n n

nn

(vc0 = cin)

Figure 2.31: Carry-save adder: (a) Bit level. (b) Bit-vector level.
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EXAMPLE OF CARRY-SAVE OPERATION

X 0 1 1 1 0 1 0 0
Y 0 0 1 1 1 0 1 1
Z 1 0 1 0 1 0 1 0

V S 1 1 1 0 0 1 0 1
(cout, V C) 0 0 1 1 1 0 1 0 1
digit value 0 1 2 2 1 0 2 0 2
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[4:2] ADDER

vsi

FA

FA

FA

FA

vci

FA

vsi+1 vci+1

xi yi wi zi

Figure 2.32: [4:2] adder.
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HIGH RADIX CARRY-SAVE REPRESENTATION

XS 1 0 1 1 0 1 1 0 0
XC 1 1 0
Y 0 1 0 0 0 1 1 1 1

VS 0 0 0 1 1 1 0 1 1
(cout,VC) 1 0 1 0

3-bit adder

XS:

XC:

Y:

VS:

VC:

3-bit adder

Figure 2.33: Radix-8 carry-save adder.
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SIGNED-DIGIT ADDITION

• Uses signed-digit representation (redundant)

x =
n−1
∑

0
xir

i

with digit set
D = {−a, . . . ,−1, 0, 1, . . . , a}

• Limits carry propagation to next position

• Addition algorithm:

Step 1: x + y = w + t
xi + yi = wi + rti+1

Step 2: s = w + t
si = wi + ti

• No carry produced in Step 2
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SD ADDER

(a)
SDA

X

n

Y

n

S

n

tn
t0

TW Step 1

Step 2

TW

ADD

TW

ADD ADD

(b)

ADD

TW

s0si-1sisn-1sn

tn

xn-1 yn-1 xi yi xi-1 yi-1 x0 y0

t0
w0t1ti-1wi-1tiwiti+1tn-1wn-1

Figure 2.34: Signed-digit addition.
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CASES CONSIDERED

Case A : two SD operands; result SD

Step 1:

(ti+1, wi) =































(0, xi + yi) if −a + 1 ≤ xi + yi ≤ a− 1
(1, xi + yi − r) if xi + yi ≥ a
(−1, xi + yi + r) if xi + yi ≤ −a

- algorithm modified for r = 2

Case B : two conventional operands; result SD

Case C : one conventional, one SD; result SD
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SIGNED-BINARY ADDITION: METHOD 1 (DOUBLE RECODING)

RECODING 1:

xi + yi = 2hi+1 + zi ∈ {−2,−1, 0, 1, 2}
hi ∈ {0, 1}, zi ∈ {−2,−1, 0}

qi = zi + hi ∈ {−2,−1, 0, 1}
RECODING 2:

qi = zi + hi = 2ti+1 + wi ∈ {−2,−1, 0, 1}
ti ∈ {−1, 0}, wi ∈ {0, 1}

THE RESULT: si = wi + ti ∈ {−1, 0, 1}
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METHOD 1 SD ADDER

s
i

s
i-1

t
i+1 wi-1

tiw
i

t
i-1

TW TW

ADD ADD

q
i

q
i-1

h
i+1 z i-1hi

z
i h

i-1

HZ

ADD ADD

Recoding 1

Recoding 2

HZ HZ

x
i

y
i xi-1 yi-1 xi-2 yi-2

Figure 2.35: Double recoding method for signed-bit addition

Digital Arithmetic - Ercegovac/Lang 2003 2 – Fast Two-Operand Adders



50

SIGNED BINARY ADDITION: METHOD 2 (Using Previous Digit)

Pi =































0 if (xi, yi) both nonnegative
(which implies ti+1 ≥ 0)

1 otherwise (ti+1 ≤ 0)

xi + yi Pi−1 ti+1 wi

2 - 1 0
1 0(ti ≥ 0) 1 -1
1 1(ti ≤ 0) 0 1
0 - 0 0
-1 0(ti ≥ 0) 0 -1
-1 1(ti ≤ 0) -1 1
-2 - -1 0
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METHOD 2 SD ADDER

s
i

s
i-1

t
i+1 wi-1tiw

i t
i-1

TW

ADD ADD

TW

xi-2

TW

P P

P
i-1

x
i

y
i

xi-1 yi-1 Pi-2

yi-2

Figure 2.36: Signed-bit addition using the information from previous digit
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Example

X 0 1 1 1 1 1 0 1 1
Y 0 1 1 0 1 0 1 0 1

P 0 0 0 0 1 0 0 1 0

W 0 0 0 1 0 1 1 1 0
T 0 1 1 0 1 1 0 0 1 0

S 1 1 0 0 1 1 1 0 0
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BIT-LEVEL IMPLEMENTATION OF RADIX-2 ALGORITHMS

• Case C: xi ∈ {0, 1}, yi, si ∈ {−1, 0, 1}
• Code: borrow-save yi = y+

i − y−i , y+
i , y−i ∈ {0, 1}, sim. for si

• xi + yi ∈ {−1, 0, 1, 2}: recode to (ti+1, wi), ti+1 ∈ {0, 1}, wi ∈ {−1, 0}

xi + y+
i − y−i = 2ti+1 + wi

xi + yi -1 0 1 2
wi -1 0 -1 0
ti+1 0 0 1 1

Digital Arithmetic - Ercegovac/Lang 2003 2 – Fast Two-Operand Adders



54
SWITCHING FUNCTIONS FOR ti+1 AND wi

xi y+
i y−i xi + yi ti+1 −wi

0 0 0 0 0 0
0 0 1 -1 0 1
0 1 0 1 1 1
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 1 0 2 1 0
1 1 1 1 1 1

wi = (xi ⊕ y+
i ⊕ (y−i )′)′

ti+1 = xiy
+
i xi(y

−
i )′ y+

i (y−i )′

=⇒ implemented using a full-adder and inverters (for variables subtracted)
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FA

xi y+
i

y-
i

witi+1

s-
i

FA

xi-1 y+
i-1

y-
i-1

wi-1t i

s-
i-1

s+
i

s+
i-1

ti-1

Figure 2.37: Redundant adder: one operand conventional, one operand redundant, result redundant.
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BOTH OPERANDS REDUNDANT

• Apply double recoding

FA

witi+1

s-
i

FA

wi-1t i

s-
i-1

s+
i

s+
i-1

ti-1

FA

y+
i

x-
i

z i

hi+1

FA

y+
i-1

y-
i-1

z i-1

hi hi-1

y-
i

x+
i-1

x-
i-1

x+
i

{0,1}

{-2,-1,0}

{0,1}

{-1,0}{0,1}

v i v i-1

Figure 2.38: Redundant adder: operands and result redundant
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SUMMARY

Scheme Delay Area
proportional to proportional to

Linear structures:
Carry ripple n n
Carry lookahead (one level) n/m (kmm)(n/m) = kmn
Carry select (one level) n/m (kmm)(n/m) = kmn
Carry skip (one level)

√
n n

Logarithmic structures:
Carry lookahead (max. levels) 2 logm n (kmm)(n/m) = kmn
Prefix logm n ((kmm) logm n)n
Conditional sum log2(n/m) (km + log2(n/m))n

Completion signal (avg. delay) (log2 n)/m kmm(n/m) = kmn

Redundant const. n
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MULTI-OPERAND ADDITION

• Bit-arrays for unsigned and signed operands

- simplification of sign extension

• Reduction by rows and by columns

- [p:2] modules and [p:2] adders for reduction by rows

- (p:q] counters and multicolumn counters for reduction by columns

• Sequential implementation

• Combinational implementation

- Reduction by rows: arrays of adders (linear arrays, adder trees)

- Reduction by columns: (p:q] counters

- systematic design method for reduction by columns with (3:2] and (2:2]
counters

• Pipelined adder arrays

• Partially combinational implementation
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BIT ARRAYS FOR UNSIGNED AND SIGNED OPERANDS

sign extension

a1a2 an. . . .

b1b2 bn. . . .

c1c2 cn. . . .

d1d2 dn. . . .

e1e2 en
. . . .

a0a0a0a0
b0b0b0b0

c0c0c0c0

d0d0d0d0

e0e0e0e0

Figure 3.1: SIGN-EXTENDED ARRAY FOR m = 5.
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Reduced to
Reduced to

(a)

(b)

Transformed to
1 0 1 1

s’ .  x x x x  . . . x

s’ .  x x x x  . . . x

s’ .  x x x x  . . . x

. x x x x  . . . xs’
y y y y . . . y

. x x x x  . . . xs’
-1

. x x x x  . . . xs’
-1

. x x x x  . . . xs’
-1

. x x x x  . . . xs’
-1

a’0 . a1a2 ... an

b’0 . b1b2 ... bn

c’0 . c1c2 ... cn

d’0 . d1d2 ... dn

e’0 . e1e2 ... en

-1

-1

-1

-1

-1

a’0 . a1a2 ... an

b’0 . b1b2 ... bn

c’0 . c1c2 ... cn

d’0 . d1d2 ... dn

e’0 . e1e2 ... en

a’0 . a1a2 ... an

b’0 . b1b2 ... bn

c’0 . c1c2 ... cn

d’0 . d1d2 ... dn

 1e’0 e0 e0  . e1e2 ... en

Figure 3.2: SIMPLIFYING SIGN-EXTENSION: (a) GENERAL CASE. (b) EXAMPLE OF SIMPLIFYING ARRAY WITH m = 5.
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REDUCTION

• By rows

• By columns
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[p:2] ADDERS FOR REDUCTION BY ROWS

hout

pp

hin

k

2 2
k

z

Z

pp

k

pp

k

H

(b)

(a)

[p:2] module

...

...

...

...
...

...

...

...
...

...

...

...
...

...

...

...
...

...

...

... . . .p

2

. . .

input carries
output carries

[p:2] adder k

[p:2] module

Figure 3.3: A [p:2] adder: (a) Input-output bit-matrix. (b) k-column [p:2] module decomposition.
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MODEL OF [p:2] MODULE

pp

2 2

w

hin
hout

k

k

 HW

z

 Z

log2 W
max value H

max value 2kH

max value 2(2k - 1)

max value W

max value p(2k - 1)

Figure 3.4: A model of a [p:2] module.
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inputs of weight  2
i

inputs of weight  2
i-1

ca
rr

ie
s

to
 n

ex
t c

ol
um

n

ca
rr

ie
s 

fr
om

pr
ev

io
us

 c
ol

um
n

denotes  the bits representing w
such that

xi,3 xi,2 xi,1 xi,0

xi,3 xi,1

xi,0

xi-1,0

xi-1,3
xi-1,2

xi-1,1 xi-1,0

xi-1,3 xi-1,1

Z

MUX
0 1

MUX
0 1

MUX
0 1

MUX
0 1

a

c

hi-1, 1

hi-1, 2

hi+1, 1

hi+1, 2

xi-1,0

MUX

b

hi-1, 1

a

w = 2c + 2b + a

Note that w  < 4 since ab = 0

Figure 3.5: Gate network implementation of [4:2] module.
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(b)

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

ca
rr

ie
s 

fr
om

pr
ev

io
us

 c
ol

um
n

ca
rr

ie
s

to
 n

ex
t c

ol
um

n

inputs of weight  2
i

inputs of weight  2 i-1
inputs of weight  2 i-2

(a)

inputs of weight  2
i

inputs of weight  2
i-1

ca
rr

ie
s

to
 n

ex
t c

ol
um

n

ca
rr

ie
s 

fr
om

pr
ev

io
us

 c
ol

um
n

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

sc
FA

denotes  the bits representing w

denotes  the bits representing w

Figure 3.6: (a) [5:2] module. (b) [7:2] module.
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(p:q] COUNTERS FOR REDUCTION BY COLUMNS

p−1
∑

i=0
xi =

q−1
∑

j=0
yj2

j

2q − 1 ≥ p, i.e., q = dlog2(p + 1)e

. . .
. . .

q outputs

p inputs (same weight)

x0

x1

.

.

.
     xp-1

yq-1 ... y0

+

(a) (b)

Figure 3.7: (a) (p:q] reduction. (b) Counter representation.
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IMPLEMENTATION OF (p:q] COUNTERS

FA FA

FA

FA

all inputs of weight (1)

sc

scsc

(1)(1)(1)

(2) (2) (2)

(2) (1)(4)

Figure 3.8: Implementation of (7:3] counter by an array of full adders.
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qB0 qA0qA1

q0q1
q2

x0x1x2x2
x0 x0x1x6

x5 x4

x3 x6

x5 x4

x3 x2
x1 x6

x5 x4

x3

(qB2)’

x4

x3x6

x5

(qB1)’

a

Figure 3.9: Gate network of a (7:3] counter.
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MULTICOLUMN COUNTER

(pk−1, pk−2, . . . , p0 : q]

v =
k−1
∑

i=0

pi
∑

j=1
aij2

i ≤ 2q − 1

(a) (b)

Figure 3.10: (a) (5,5:4] counter. (b) (1,2,3:4] counter.
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clk
S[i]

X[i]

(a)

Carry Propagate Adder

Register S

S[i-1]

cycle time dependent  on precision

(c)

 

PS[i]

X[i]

C[i]

To CPA to get S

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

(b)

[p:2] Adder

PS[i]

X[i(p-2)]

C[i]

To CPA to get S

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

X[(i-1)(p-2)+1]

cycle time not dependent  on precision

[3:2] Adder

Figure 3.11: SEQUENTIAL MULTIOPERAND ADDITION: a) WITH CONVENTIONAL ADDER. b) WITH [p:2] ADDER. c) WITH
[3:2] ADDER.
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COMBINATIONAL IMPLEMENTATION

• Reduction by rows: array of adders

– Linear array

– Adder tree

• Reduction by columns with (p:q] counters
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[p:2] ADDER

[p:2] ADDER

[p:2] ADDER

[p:2] ADDER

p-2 operands

p-2 operands

p-2 operands

p operands

to CPA

Figure 3.12: LINEAR ARRAY OF [p:2] ADDERS FOR MULTIOPERAND ADDITION.
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ADDER TREE

• k - the number of [p:2] CS adders for m operands:

pk = m + 2(k − 1)

k =













m− 2

p− 2













[p:2] carry-save adders

• The number of adder levels

[p:2] tree of  l-1 levels

[p:2] tree of  
l  levels

m
l-1

m
l

2

[p:2] [p:2]

Figure 3.13: Construction of a [p:2] carry-save adder tree.

ml = p








ml−1

2







 + ml−1mod 2
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NUMBER OF LEVELS (cont.)

Table 3.1: [3:2] Reduction sequence.

l 1 2 3 4 5 6 7 8 9
ml 3 4 6 9 13 19 28 42 63

ml ≈
pl

2l−1

l ≈ logp/2(ml/2)
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m = 9

L= 4
a: (n-1,..., 0)
b: (n ,..., 1)
c: (n ,..., 0)
d: (n+1,...,2)
e: (n+1 ,..., 0)
f: (n+2 ,..., 1)

Bit-vector types

CSA CSA CSA

CSA CSA

CSA

CSA

a a a a a a a a a

ababab

cd b c

ed

ef

Level 4 CSAs

Level 3CSAs

Level 2 CSA

Level 1 CSA

c
e
d
e
f

       x x x x
    x x x x x
    x x x 
    x x x x x
 x x x x x 

   x x x      x x x      x x x
   x x x      x x x      x x x
   x x x      x x x      x x x
   x x x      x x x      x x x
x x x      x x x      x x x

a
a
a
a
b

   x x x
      x x x
   x x x
   x x x x
x x x

   x x x
x x x 
   x x x
x x x x
x x x

b
a
b
c
d

a
b
a
c
b

   x x x 
   x x x x
x x x x
x x x x x
x x x

b
c
d
e
d

Figure 3.14: [3:2] adder tree for 9 operands (magnitudes with n = 3) .
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[4:2] ADDER [4:2]  ADDER [4:2]  ADDER [4:2]  ADDER

[4:2] ADDER [4:2]  ADDER

[4:2] ADDER

Figure 3.15: Tree of [4:2] adders for m = 16.
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REDUCTION BY COLUMNS WITH (p:q] COUNTERS

1 0 1 1
0 0 1 0
1 0 0 1
0 1 1 0
1 0 1 0
1 1 1 1
0 1 1 0
0 1 0 1

0 1 1 1
1 0 1 0

Figure 3.16: Example of reduction using (7:3] counters.
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NUMBER OF COUNTER LEVELS

m1 = p

ml = p
⌊

ml−1
q

⌋

+ ml−1 mod q

l ≈ logp/q(ml/q)

(p:q]  tree of  l-1 levels

(p:q]  tree of  
l  levels

m l-1

m l

qq

p p

q

mod qml-1

(p:q] (p:q]

Figure 3.17: Construction of (p:q] reduction tree.
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Table 3.2: Sequence for (7:3] counters

Number of levels 1 2 3 4 ...
Max. number of rows 7 15 35 79 ...
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15

7

3

Figure 3.18: Multilevel reduction with (7:3] counters
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SYSTEMATIC DESIGN METHOD

Full adder
(3-2)

Half adder
(2-2)

or or

2 i2 i+12 i2 i+1

diagonal outputs when
representing separately
sum and carry bit-vectors
is preferrable

horizontal outputs when
interleaving sum and carry bits
is acceptable

denotes 0 or 1

Figure 3.19: Full adder and half adder as (3:2] and (2:2] counters.

Digital Arithmetic - Ercegovac/Lang 2003 3 – Multi-Operand Addition



25

6

4

# of rows

reduce

transfer

column: 01

Figure 3.20: Reduction process.
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RELATION AT LEVEL l

ei – number of bits in column i

fi – number of full adders in column i

hi – number of half adders in column i

ei − 2fi − hi + fi−1 + hi−1 = ml−1

resulting in

2fi + hi = ei −ml−1 + fi−1 + hi−1 = pi

Solution producing min number of carries:

fi = bpi/2c hi = pi mod 2
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i
6 5 4 3 2 1 0

l = 4
ei 8 8 8 8 8
m3 6 6 6 6 6
hi 0 0 0 1 0
fi 2 2 2 1 1
l = 3
ei 2 6 6 6 6 6
m2 4 4 4 4 4 4
hi 0 0 0 0 1 0
fi 0 2 2 2 1 1
l = 2
ei 4 4 4 4 4 4
m1 3 3 3 3 3 3
hi 0 0 0 0 0 1
fi 1 1 1 1 1 0
l = 1
ei 1 3 3 3 3 3 3
m0 2 2 2 2 2 2 2
hi 0 0 0 0 0 0 1
fi 0 1 1 1 1 1 0Digital Arithmetic - Ercegovac/Lang 2003 3 – Multi-Operand Addition
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m0=2

m3=6

m2=4

m1=3

CPA

Level 4

Level 3

Level 1

Level 2

(8FAs, 1HA)

(8FAs, 1HA)

(5FAs, 1HA)

(5FAs, 1HA)

Figure 3.21: Reduction by columns of 8 5-bit magnitudes. Cost of reduction: 26 FAs and 4 HAs.
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EXAMPLE: ARRAY FOR f = a + 3b + 3c + d

Operands in [-4,3). Result range:

−4 + (−12) + (−12)− 4 = −32 ≤ f ≤ 3 + 9 + 9 + 3 = 24
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a a2 a2 a2 a2 a1 a0

b b2 b2 b2 b2 b1 b0

2b b2 b2 b2 b1 b0 0
c c2 c2 c2 c2 c1 c0

2c c2 c2 c2 c1 c0 0
d d2 d2 d2 d2 d1 d0

transformed into

a a′2 a1 a0

-1
b b′2 b1 b0

-1
2b b′2 b1 b0

-1
c c′2 c1 c0

-1
2c c′2 c1 c0

-1
d d′2 d1 d0

-1
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FINAL BIT MATRIX

1 0 b′2 a′2 a1 a0

c′2 b′2 b1 b0

b1 b0

c′2 c1 c0

c1 c0

d′2 d1 d0
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i
5 4 3 2 1 0

l = 3
ei 1 0 2 6 6 4
m2 4 4 4 4 4 4
hi 0 0 0 1 0 0
fi 0 0 0 1 1 0
l = 2
ei 1 0 4 4 4 4
m1 3 3 3 3 3 3
hi 0 0 0 0 0 1
fi 0 0 1 1 1 0
l = 1
ei 1 1 3 3 3 3
m0 2 2 2 2 2 1*
hi 0 0 0 0 0 0
fi 0 0 1 1 1 1
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d
1

c
1

c
0

2
1

2
2

d’
2

H1

cH1 sH1

sF1

c
0

cH1

1 0 F5

cF5 sF5

b’
2

c’
2

cF2

sF2

cF1

c
1

c
0

a
0

b
0

d
0

2
0

a
0

b
0

d
0

c
0

b’
2

c’
2

2
3

1

2
5

0

2
4

F7

cF7 sF7

sF1

sF3

cH2

cF51 F9

cF9 sF9

sF5

cF4

cH1

F8

cF8 sF8

sF2

sF4

c
0

sH2

H3

cH3

sF7

cF6

F10

cF10

sF8

cF7

F11

cF11

sF9

cF8

F12

cF12

cF5

cF9

a’
2

b’
2

b
1

F2

cF2 sF2

f
0

f
1

f
2

f
3

f
4

f
5

Level 3

(m2=4)

Level 2

(m1=3)

Level 1

(m0=2)

Carry-ripple
 adder

c’
2

c
1

d
1

H2

cH2 sH2

d
0

F6

cF6 sF6

b
0

F1

cF1 sF1

a
1

b
1

F4

cF4 sF4

F3

cF3 sF3

sH1
c’

2

cF3

Figure 3.22: Reduction array f = a + 3b + 3c + d.Digital Arithmetic - Ercegovac/Lang 2003 3 – Multi-Operand Addition
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PIPELINED LINEAR ARRAY

- latches

Pipelined CPA

[4:2] ADDER

[4:2] ADDER

[4:2] ADDER

X[8,j] X[1,j]

Stage 1

Stage 2

Stage 3

Stage 4

X[1,j-1]

X[1,j-2]

S[j-4]

S[j-3]

Pipelined CPA

X[8,j] X[1,j]

Stage 1

Stage 2

Stage 3

S[j-3]

S[j-2]

[4:2] ADDER [4:2] ADDER

[4:2] ADDER

(a) (b)

Figure 3.23: Pipelined arrays with [4:2] adders for computing S[j] =
∑8

i=1 X[i, j], j = 1, . . . , N : (a) Linear array. (b) Tree array.
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PARTIALLY COMBINATIONAL IMPLEMENTATION

- latches

(a) (b)

Stage 1

Stage 2

a b c d

[3:2] 

CPA

s

a b c d

CPA

s

[3:2] 

[4:2] 

[4:2] 

[4:2] 

Figure 3.24: Partially combinational scheme for summation of 4 operands per iteration: (a) Nonpipelined. (b) Pipelined.
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- latches

CSA

CSA

Reduction q-to-2

CSA

CSA

s

CSA

CSA

CPA

CSA

CSA

Accumulation

q operands

Figure 3.25: Scheme for summation of q operands per iteration.
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MULTIPLICATION

p = x× y
x (multiplicand), y (multiplier), and p (product) signed integers

• SCHEMES

a) SEQUENTIAL ADD-SHIFT RECURRENCE

∗ CPA, CSA, SIGNED-DIGIT ADDER

∗ HIGHER RADIX AND RECODING

b) COMBINATIONAL

∗ CPA, CSA, SIGNED-DIGIT ADDER

∗ HIGHER RADIX AND RECODING

c) COLUMN REDUCTION

d) ARRAYS WITH k × l MULTIPLIERS
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TOPICS (cont.)

• MULTIPLY-ADD AND MULTIPLY-ACCUMULATE

• SATURATING MULTIPLIERS

• TRUNCATING MULTIPLIERS

• RECTANGULAR MULTIPLIERS

• SQUARERS

• CONSTANT AND MULTIPLE CONSTANT MULTIPLIERS
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SIGN-AND-MAGNITUDE

• EACH OPERAND:
sign with value +1 and −1 and n-digit magnitude

• RESULT: a sign and a 2n-digit magnitude
• HIGH-LEVEL ALGORITHM

sign(p) = sign(x) · sign(y)

|p| = |x||y|
• REPRESENTATIONS OF MAGNITUDES

X = (xn−1, xn−2, . . . , x0) |x| = ∑n−1
i=0 xir

i (multiplicand)
Y = (yn−1, yn−2, . . . , y0) |y| = ∑n−1

i=0 yir
i (multiplier)

P = (p2n−1, p2n−2, . . . , p0) |p| = ∑2n−1
i=0 pir

i (product)
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TWO’S COMPLEMENT

• RADIX-2 CASE
• EACH OPERAND: n-BIT VECTOR
• RESULT: 2n-BIT VECTOR

−(2n−1)(2n−1 − 1) ≤ p ≤ (−2n−1)(−2n−1) = 22n−2

• xR, yR and pR – positive integer representations of x, y, and p
• HIGH-LEVEL ALGORITHM

pR =















































xRyR if x ≥ 0, y ≥ 0
22n − (2n − xR)yR if x < 0, y ≥ 0
22n − xR(2n − yR) if x ≥ 0, y < 0
(2n − xR)(2n − yR) if x < 0, y < 0
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TYPES OF ALGORITHMS

1. ADD-AND-SHIFT ALGORITHM

• SEQUENTIAL

• COMBINATIONAL

2. COMPOSITION OF SMALLER MULTIPLICATIONS
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RECURRENCE FOR MAGNITUDES

p[0] = 0

p[j + 1] = r−1(p(j) + x · rnyj) for j = 0, 1, . . . , n− 1

p = p[n]
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RELATIVE POSITION OF OPERANDS

shift right

Multiplier
Multiplicand y

j

Y

Xrn

p[j]

rp[j+1]

p[j+1]

xrnyj

ADDER

vector - digit multiplier

Figure 4.1: RELATIVE POSITION OF OPERANDS IN MULTIPLICATION RECURRENCE

T = n(tdigmult + tadd + treg)
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SEQUENTIAL MULTIPLIER WITH REDUNDANT ADDER

X Y

p[j+1]

p[j]

y
j

REDUNDANT
ADDER

MULTIPLE GEN.

Reg. X

Reg. PH Shift Reg. PL

Shift Reg. Y

ADDER

P

CONVERTER

nonredundant

redundant

Figure 4.2: SEQUENTIAL MULTIPLIER WITH REDUNDANT ADDER
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RADIX-4 SEQUENTIAL MULTIPLIER RECODING

• MULTIPLIER RECODING TO AVOID VALUES zi = 3

zi = yi + ci − 4ci+1

yi + ci zi ci+1

0 0 0
1 1 0
2 2 0
3 -1 1
4 0 1
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RADIX-4 MULTIPLIER IMPLEMENTATION

THREE PIPELINED STAGES

• Stage 1: MULTIPLIER RECODING

• Stage 2: GENERATING THE MULTIPLE OF THE MULTIPLICAND

• Stage 3: ADDITION AND SHIFT (with conversion of the shifted-out bits).

cycle 0 1 2 3 4 5 ... m + 1 m + 2
LOAD X
LOAD Y

Stage 1 0 z0 z1 z2 z3 z4

Stage 2 0 0 Xz0 Xz1 Xz2 Xz3 Xzm−1

Stage 3 0 0 0 PS[1] PS[2] PS[3] PS[m− 1] PS[m]
SC[1] SC[2] SC[3] SC[m− 1] SC[m]

CPA Final
product
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Reg X

SELECTOR

Reg XY

CARRY-SAVE
ADDER

to CPA
(most significant part)

X

X

multiple of X

shifted PS

STAGE 1

STAGE 2

STAGE 3

FINAL STEP

STAGE 3

(register control signals not shown)

X

2X

n-2

shifted SC
n+3 n+3

n - even

n+3

n+2

n+3

(SC1,PS1)

Product
(least significant part)

CONV
2

Reg  PL

n

(Register  PL could be
 merged with register M)

(SC0,PS0)

(SC1,PS1) (SC0,PS0)

2 2

2 22 2

Reg CS[1,0]

n-2 (lower)

Reg SCH Reg PSH

cShift-Reg M

Recoder

Reg

Y

one

neg

zero

carry

1 0

n+3

sign-extended

cin

Figure 4.3: RADIX-4 MULTIPLIER.
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RECODING IMPLEMENTATION

• BASED ON MULTIPLIER BITS (M1, M0) and CARRY FLAG C

one = M0 ⊕ C =















0 select 2x
1 select x

neg = M1 · C M1 ·M0 =















0 select direct
1 select complement

zero = M1 ·M0 · C M ′
1 ·M ′

0 · C ′ =















0 load non− zero multiple
1 load zero multiple (clear)

Cnext = M1M0 M1C
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M 1

M 0

C

one zeroneg Cnext

Figure 4.4: RECODER IMPLEMENTATION.
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GENERATION OF (−1)x

PS[j] PSn+2 PSn+1 PSn · · · PS1 PS0

SC[j] SCn+2 SCn+1 SCn · · · SC1 SC0

−x X ′
n+2 X ′

n+1 X ′
n · · · X ′

1 X ′
0

CSA sn+2 sn+1 sn · · · s1 s0

cn+2 cn+1 cn · · · c1 1∗

∗ for 2’s complement of x
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EXAMPLE OF RADIX-4 MULTIPLICATION

n = 6 m = 3 radix-4 digits
x = 29 X = 11101
y = 27 Y = 11011
Z = 211 (z = y) (−1 = 1)
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CSA shifted out
PS[0] 00000000
SC[0] 00000000

xZ0 11100010
4PS[1] 11100010
4SC[1] 00000001

PS[1] 11111000 11
SC[1] 00000000

xZ1 11100010
4PS[2] 00011010
4SC[2] 11000001

PS[2] 00000110 1111
SC[2] 11110000

xZ2 00111010
4PS[3] 11001100
4SC[3] 01100100

PS[3] 11110011 001111
SC[3] 00011001

P 1100 001111 = 783
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EXTENSION TO HIGHER RADICES

• EXTENSION TO HIGHER RADICES REQUIRES PREPROCESSING OF MORE
MULTIPLES

• ALTERNATIVE: USE SEVERAL RADIX-4 AND/OR RADIX-2 STAGES IN
ONE ITERATION

EXAMPLE: RADIX-16 MULTIPLIER DIGIT {0,...,15} RECODED
INTO A RADIX-16 SIGNED-DIGIT vi IN THE SET {-10,...,0,...,10} AND
DECOMPOSED INTO TWO RADIX-4 DIGITS ui and wi SUCH THAT

vi = 4ui + wi ui, wi ∈ {−2,−1, 0, 1, 2}

Digital Arithmetic - Ercegovac/Lang 2003 4 – Multiplication



18

Reg X

X

(-2,-1,0,1,2) multiple of X

CSA 2

SELECTOR

SELECTOR

CSA 1

Reg SC Reg PS

SC PS

(-2,-1,0,1,2) multiple of 4X

radix-16
signed-digit

q[j]

wj

vj

uj

xwj

4xuj{-10,...,10}

x x . . . x x x
x x . . . x x x
x x . . . x x x

x x x x . . . x x x
x x x x . . . x x x
x x . . . x x x
x x . . . x x x
x x . . . x x x
 x x . . . x x x
 x x . . . x x x

CSA 1

CSA 2

to SC and PS
registers (shifted)

to spill converter

to spill converter

n+3

sign extension

(see comments in Section "Radix 4")

SC PS 16p[j+1]

A [4:2] adder can be used
instead of two [3:2] adders

Figure 4.5: RADIX-16 MULTIPLICATION DATAPATH (partial).
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TWO’S COMPLEMENT

• MULTIPLICAND IN 2’S COMPLEMENT =⇒ ADDITION AND SHIFT
OPERATIONS PERFORMED IN THIS SYSTEM

• THE EFFECT OF 2’S COMPLEMENT MULTIPLIER TAKEN INTO AC-
COUNT IN TWO WAYS:

1. BY SUBTRACTING INSTEAD OF ADDING IN
THE LAST ITERATION

y = −yn−12
n−1 +

n−2
∑

i=0
yi2

i

=⇒ CORRECTION STEP.

2. BY RECODING THE MULTIPLIER INTO A SIGNED-DIGIT SET
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COMBINATIONAL MULTIPLICATION

p =
n−1
∑

i=0
xyir

i

DONE IN TWO STEPS:

1. GENERATION OF THE MULTIPLES OF THE MULTIPLICAND

(x× yi)r
i

2. MULTIOPERAND ADDITION OF THE MULTIPLES GENERATED IN STEP
1.
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m[0]

m[1]

m[2]

m[3]

m[4]

m[5]

m[6]

m[7]

y
i

x
0

x
1

x
n-1

m[i]

(a)

(b)

y
3

x
1

Figure 4.6: (a) RADIX-2 MULTIPLE GENERATION. (b) BIT-MATRIX FOR MULTIPLICATION Of MAGNITUDES (n = 8).
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RADIX-2 TWO’S COMPLEMENT MULTIPLICATION

1. EXTEND RANGE BY REPLICATING THE SIGN BIT OF MULTIPLES

• PRODUCT HAS 2n BITS

2. THE MULTIPLE xyn−12
n−1 SUBTRACTED INSTEAD OF ADDED

y = −yn−12
n−1 +

n−2
∑

i=0
yi2

i

• COMPLEMENT AND ADD

3. RECODE THE (2’S COMPLEMENT) MULTIPLIER INTO THE DIGIT SET
{-1,0,1}
• NO ADVANTAGE IN FOLLOWING THIS APPROACH
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BIT-MATRIX IN RADIX-2 2’S COMPLEMENT MULTIPLIER

• Simplification of sign extension based on

(−s) + 1− 1 = (1− s)− 1 = s′ − 1

Consequently,

xn−1yi xn−2yi . . . x0yi

is replaced by
(xn−1yi)

′ xn−2yi . . . x0yi

-1
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7 6 5 4 3 2 1 0

x3y0 x3y0 x3y0 x3y0 x3y0 x2y0 x1y0 x0y0

x3y1 x3y1 x3y1 x3y1 x2y1 x1y1 x0y1

x3y2 x3y2 x3y2 x2y2 x1y2 x0y2

x′
3
y3 x′

3
y3 x′

2
y3 x′

1
y3 x′

0
y3

y3

(a)

7 6 5 4 3 2 1 0

(x3y0)
′ x2y0 x1y0 x0y0

(x3y1)
′ x2y1 x1y1 x0y1

(x3y2)
′ x2y2 x1y2 x0y2

(x′
3
y3)

′ x′
2
y3 x′

ly3 x′
0
y3

y3

0 -1 -1 -1 -1

(b)

7 6 5 4 3 2 1 0

y3 (x3y0)
′ x2y0 x1y0 x0y0

(x3y1)
′ x2y1 x1y1 x0y1

(x3y2)
′ x2y2 x1y2 x0y2

1 (x′
3
y3)

′ x′
2
y3 x′

ly3 (x0y3)
′

(c)

Figure 4.7: Constructing bit-matrix for two’s complement multiplier (n = 4).
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RADIX-4 MULTIPLICATION

• REDUCE NUMBER OF STEPS TO n/2

• PARALLEL OR SEQUENTIAL RECODING

• TWO CASES

1. BIT ARRAY ADDED BY A LINEAR ARRAY OF ADDERS

– SEQUENTIAL RECODING INTO {-1,0,1,2} SUFFICIENT

2. BIT ARRAY ADDED BY A TREE OF ADDERS

– PARALLEL RECODING INTO {-2,-1,0,1,2} REQUIRED

Digital Arithmetic - Ercegovac/Lang 2003 4 – Multiplication



26
PARALLEL RADIX-4 RECODING

• RADIX-2 MULTIPLIER

yn−1, yn−2..., y1, y0

yi – multiplier bit; vj ∈ {0, 1, 2, 3} – radix-4 multiplier digit

vj = 2y2j+1 + y2j j = (
n

2
− 1, ..., 0)

• RECODING ALGORITHM

1. Obtain wj and tj+1 such that

vj = wj + 4tj+1

2. Obtain
zj = wj + tj

• TO AVOID CARRY PROPAGATION:

−2 ≤ wj ≤ 1 0 ≤ tj+1 ≤ 1
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PARALLEL RADIX-4 RECODING ALGORITHM

(tj+1, wj) =















(0, vj) if vj ≤ 1
(1, vj − 4) if vj ≥ 2

zj = wj + tj

vj-1

TW

ADD

TW

ADD

vj

tj-1tjwj wj-1tj+1

zj-1zj

Figure 4.8: RADIX-4 PARALLEL RECODING FROM {0,1,2,3} INTO {-2,-1,0,1,2}.
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BIT-LEVEL IMPLEMENTATION

• radix-2 multiplier

Y = (yn−1, yn−2, . . . , y0) yi ∈ {0, 1}
• recoded radix-4 multiplier

Z = (zm−1, zm−2, . . . , z0) zi ∈ {−2,−1, 0, 1, 2}

y2j+1 y2j y2j−1 zj

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0
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EXAMPLES OF RECODING

y = 01011110 y = 10001101

z = 1 2 0 2 z = 2 1 1 1
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RECODER IMPLEMENTATION

• sign = 1 if zj is negative

• one = 1 if zj is either 1 or -1

• two = 1 if zj is either 2 or -2.

sign = y2j+1

one = y2j ⊕ y2j−1

two = y2j+1y
′
2jy

′
2j−1 + y′2j+1y2jy2j−1

• carry-in: c = sign
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(a)

onesign

vj

y
2j+1

y
2j

y
2j-1

twoc

(b)

bit-vector

sign
BIT-INVERTER

multiplicand  X

2X X
onetwo

1, 0, X, 2X2X, X,

Figure 4.9: (a) IMPLEMENTATION OF RECODER. (b) IMPLEMENTATION OF MULTIPLE GENERATOR.
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

xz0: se se se se se se e e e e e e e e

xz1: sf sf sf sf f f f f f f f f ce

xz2: sg sg g g g g g g g g cf

xz3: h h h h h h h h cg

(a)

xz0: s′e e e e e e e e e

xz1: s′f f f f f f f f f ce

xz2: s′g g g g g g g g g cf

xz3: h h h h h h h h cg

-1 -1 -1

(b)

xz0: 1 1 s′e se se e e e e e e e e

xz1: s′f f f f f f f f f ce

xz2: s′g g g g g g g g g cf

xz3: h h h h h h h h cg

(c)

Figure 4.10: RADIX-4 BIT-MATRIX FOR MULTIPLICATION OF MAGNITUDES (n = 7).
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xz0: se se se se se se se se e e e e e e e e

xz1: sf sf sf sf sf sf f f f f f f f f ce

xz2: sg sg sg sg g g g g g g g g cf

xz3: sh sh h h h h h h h h cg

ch

(a)

xz0: s′e e e e e e e e e

xz1: s′f f f f f f f f f ce

xz2: s′g g g g g g g g g cf

xz3: s′h h h h h h h h h cg

-1 -1 -1 -1 ch

(b)

xz0: 1 1 1 s′e se se e e e e e e e e

xz1: s′f f f f f f f f f ce

xz2: s′g g g g g g g g g cf

xz3: s′h h h h h h h h h cg

ch

(c)

Figure 4.11: RADIX-4 BIT-MATRIX FOR 2’S COMPLEMENT MULTIPLICATION (n = 8).
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(b)

y
2

y
3

y
4

x (multiplicand)

y 
(m

ul
ti

pl
ie

r)

- vector AND gateVAND

p
0

2x VAND
y

1

y
0

(a)

VAND+[3:2]

VAND+[3:2]

VAND+[3:2]

VAND+[3:2]

p
1

p
2

p
3

p
4

VAND+[3:2]

VAND+[3:2]

VAND+[3:2]

VAND+[3:2]

p
5

p
6

p
7

p
8

VAND+[3:2]

VAND+[3:2]

p
9

p
10

y
5

y
6

y
7

y
8

y
9

y
11

y
10

CPA

p
23

p
11-p (product) p

10 - p0

12

2xMG + [4:2]

MG+[3:2]

x (multiplicand)

y 
(m

ul
ti

pl
ie

r)

CPA

- multiple generatorMG

p (product)

4x REC
8

 2xREC
5

 REC
1

24

12
(z3, z2, z1, z0)

(z5, z4)

z6

4xMG + [4:2]

0  0  y11   y10  y9  y8  y7  y6  y5  y4  y3  y2  y1  y0  0

z6 (z5, z4) (z3, z2, z1, z0)

Recoding:

Figure 4.12: LINEAR CSA ARRAY FOR (a) r = 2. (b) r = 4.
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DELAY OF LINEAR ARRAY MULTIPLIERS

• For radix 2,
T = tAND + (n− 2)tfa + t(cpa,(n+1))

• For radix 4
T = trec + tAND−OR + (

n

2
− 2)tfa + t(cpa,n)
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REDUCTION BY ROWS: ADDER TREES

[3:2] [3:2]

CPA

multiples of x

product

(a)

CPA

 multiples of x

product

(b)

[3:2][3:2]

[3:2]

[3:2]

[4:2] [4:2]

[4:2]

Figure 4.13: TREE ARRAYS OF ADDERS: a) with [3:2] adders. b) with [4:2] adders.
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Level 4
(16 FA + 3HAs)

Level 3
(10 FA + 7HAs)

Level 2
(7 FA + 5HAs)

Level 1
(3 FA + 9HAs)

11-bit CPA 

[3:2] 
adder*

[3:2] 
adder

[3:2] 
adder

[3:2] 
adder

[3:2] 
adder

[3:2] 
adder

* [3:2] adder uses HAs when possible.

Figure 4.14: REDUCTION BY ROWS USING FAs AND HAs (n = 8): Cost 36 FAs, 24 HAs, 11-bit CPA.
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HAHAHA

HAHAOR

HAOR

OR

- latch

Full-adder
with AND

gate

x
3

x
2

x
1

x
0

y
3

y
2

y
1

y
0

p
3

p
2

p
1

p
0

p
7

p
6

p
5

p
4

FA
c s

0 0 0 0 0 0 0 0

0

0

0

c
s

0

0

0 0 0 0

Modules with 

0 inputs can 

be simplified

Figure 4.15: PIPELINED LINEAR CSA MULTIPLIER FOR POSITIVE INTEGERS (n = 4)
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REDUCTION BY COLUMNS USING (p, q] COUNTERS

m[0]

m[1]

m[2]

m[3]

m[4]

m[5]

m[6]

m[7]

Figure 4.16: BITS OF MULTIPLES ORGANIZED AS BIT-TRIANGLE.

Digital Arithmetic - Ercegovac/Lang 2003 4 – Multiplication



40

Table 4.3: Reduction by columns using FAs and HAs for 8x8 radix-2 magnitude multiplier.

i
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 4
ei 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
hi 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
fi 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

l = 3
ei 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1
m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0

l = 2
ei 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

l = 1
ei 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fi 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

CPA 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1
ei is the number of inputs in column i; fi is the number of FAs; hi is the number of HAs; mj is the

number of operands in the next level in the reduction sequence.
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Level 4
(3 FA + 3HAs)

Level 3
(12 FA + 2HAs)

Level 2
(9 FA + 1HA)

Level 1
(11 FA + 1HA)

14-bit  CPA

Figure 4.17: REDUCTION BY COLUMNS USING FAs and HAs (n = 8): Cost 35 FAs, 7 HAs, 14-bit CPA.
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FINAL ADDER

position2n-1 (MSB) 0 (LSB)

0

time

Middle Region LS RegionMS Region

CRAFast Adder
Carry-Select

Adder

Product (conventional form)

Product (redundant form)

(a)

(b)

Figure 4.18: Final adder: (a) Arrival time of the inputs to the final adder. (b) Hybrid final adder.
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PARTIALLY COMBINATIONAL IMPLEMENTATION

[3:2]

x (multiplicand)

(12+1) bits of 
multiplier

RECODERS + MULTIPLE
GENERATORS

- latch

[4:2]

[4:2]

to CPA

[4:2]

Figure 4.19: RADIX 212 SEQUENTIAL MULTIPLIER USING CSA TREE.
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ARRAYS OF SMALLER MULTIPLIERS

p = a× b

A = (ak−1, ak−2, . . . , a0)

B = (bl−1, bl−2, . . . , b0)

P = (pk+l−1, pk+l−2, . . . , p0)

• USE OF k × l MODULES
• OPERANDS DECOMPOSED INTO DIGITS OF RADIX 2k AND 2l

x =
(n/k)−1

∑

i=0
x(i)2ki

y =
(n/l)−1

∑

j=0
y(j)2lj

p = x · y =
(n/k)−1

∑

i=0
x(i)2ki ×

(n/l)−1
∑

j=0
y(j)2lj

=
∑

x(i)y(j)2ki+lj =
∑

p(i,j)2ki+lj

• (n/k)× (n/l) MODULES NEEDED
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EXAMPLE 12× 12 USING 4× 4 MODULES

x = ax2
8 + bx2

4 + cx

y = ay2
8 + by2

4 + cy

x×y = axay2
16+axby2

12+bxay2
12+axcy2

8+bxby2
8+cxay2

8+bxcy2
4+cxby2

4+cxcy

x(0)y(0)

Figure 4.20: 12 × 12 MULTIPLICATION USING 4 × 4 MULTIPLIERS: BIT MATRIX.
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MULTIPLY-ADD AND MULTIPLY-ACCUMULATE (MAC)

• Multiply-add: S = X × Y + W

13 12 11 10 9 8 7 6 5 4 3 2 1 0
xz0: s′e se se e e e e e e e e
xz1: 1 s′f f f f f f f f f ce

xz2: 1 s′g g g g g g g g g cf

xz3: h h h h h h h h cg

w: w w w w w w w

Figure 4.21: Radix-4 bit-matrix for multiply-add of magnitudes (n = 7). zi’s are radix-4 digits obtained by multiplier recoding.

• Multiply-accumulate:

S =
m
∑

i=1
X [i]× Y [i]

S[i + 1] = X [i]× Y [i] + S[i]
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x (multiplicand) y (multiplier)

RECODERS + MULTIPLE
GENERATORS

[4:2]

to CPA

 latches

S[i+1]

S[i]

(b)

y (multiplier)

RECODERS + MULTIPLE
GENERATORS

x (multiplicand)

BIT-ARRAY
REDUCTION

to CPA

(a)

BIT-ARRAY REDUCTION

INCR

precision of
the product

w

Incrementer

Figure 4.22: Block-diagrams of: (a) Multiply-add unit. (b) Multiply-accumulate unit.
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SATURATING MULTIPLIERS

overflow

p2n-1 pn
pn-1 p0

 all 1s if overflow

computed product

Figure 4.23: Detection and result setting for multiplication of magnitudes.
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TRUNCATING MULTIPLIERS

not implemented

k

truncated product

rounded product

Figure 4.24: Bit-matrix of a truncated magnitude multiplier.
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11 10 9 8 7 6 5 4 3 2 1 0

x5x0 x4x0 x3x0 x2x0 x1x0 x0x0

x5x1 x4x1 x3x1 x2x1 x1x1 x0x1

x5x2 x4x2 x3x2 x2x2 x1x2 x0x2

x5x3 x4x3 x3x3 x2x3 x1x3 x0x3

x5x4 x4x4 x3x4 x2x4 x1x4 x0x4

x5x5 x4x5 x3x5 x2x5 x1x5 x0x5

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x2

x3

(a)

11 10 9 8 7 6 5 4 3 2 1 0

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x3x
′
2

x2

(b)

Figure 4.25: Bit-array simplification in squaring of magnitudes (n = 6).
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CONSTANT AND MULTIPLE CONSTANT MULTIPLIERS

P = X × C, C - constant

DONE AS

P = ∑

j X × Cj2
j

{j} corresponds to 1’s in binary representation of C

• ADDERS ONLY

• HOW TO REDUCE NUMBER OF ADDERS?

1. Recode to radix 4: max n/2− 1 adders

2. Apply canonical recoding: n/3 adders avg, n/2− 1 max

3. Decomposition and sharing of subexpressions

4. Multiple constant multiplication - further reductions
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CONSTANT MULT. (cont.)

45X = 5X × 9 = X(22 + 1)(23 + 1)

X

ADDER

ADDER

45X

SL2

SL3

SLk - shift left k positions

4X

5X

40X

Figure 4.26: Implementation of P = X × C for C = 45 using common subexpressions.
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MULTIPLE CONSTANT MULTIPLICATION

COMPUTE
P1 = 9X = 5X + 4X
P2 = 13X = 5X + 8X
P3 = 18X = 2× 9X
P4 = 21X = 5X + 16X

• WITH SEPARATE CONSTANT MULTIPLIERS: 6 ADDERS

• BY SHARING SUBEXPRESSIONS: 4 ADDERS
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X

ADDER

ADDER

SL2

SL3

SLk - shift left k positions

4X

5X

SL1

18X9X

ADDERADDER

21X 13X

SL4

16X 8X

Figure 4.27: An example of multiple constants multipliers.
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DIVISION BY DIGIT RECURRENCE

SEVERAL DIVISION METHODS:

• DIGIT-RECURRENCE METHOD – studied in this chapter

• MULTIPLICATIVE METHOD (Chapter 7)

• VARIOUS APPROXIMATION METHODS (power series expansion),

• SPECIAL METHODS SUCH AS CORDIC (Chapter 11) AND CONTINUED
PRODUCT METHODS.

IMPLEMENTATIONS:

• SEQUENTIAL

• COMBINATIONAL

1. PIPELINED

2. NONPIPELINED

• COMBINATIONAL/SEQUENTIAL
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DEFINITION AND NOTATION

x = q · d + rem

|rem| < |d| · ulp and sign(rem) = sign(x)

DIVIDEND x
DIVISOR d
QUOTIENT q
REMAINDER rem

• INTEGER QUOTIENT: ulp = 1,

• FRACTIONAL QUOTIENT: ulp = r−n

TWO TYPES OF DIVISION OPERATION:

1. INTEGER DIVISION, WITH INTEGER OPERANDS AND RESULT

USUALLY REQUIRES AN EXACT REMAINDER

2. FRACTIONAL DIVISION

TO AVOID QUOTIENT OVERFLOW: x < d

QUOTIENT ROUNDED, WHICH CAN RESULT IN A NEGATIVE REMAIN-
DER
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FRACTIONAL DIVISION - ASSUMPTIONS

• OPERANDS/RESULT IN SIGN-AND-MAGNITUDE FORMAT =⇒CONSIDER
MAGNITUDES ONLY

1/2 ≤ d < 1; x < d; 0 < q < 1

• FOR SIMPLER SELECTION: qj ∈ Da = {−a,−a+1, . . . ,−1, 0, 1, . . . , a−
1, a}

• REDUNDANCY FACTOR

ρ =
a

r − 1
,

1

2
< ρ ≤ 1
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RECURRENCE

• QUOTIENT AFTER j STEPS: q[j] = q[0] + ∑j
i=1 qir

−i

• FINAL QUOTIENT: q = q[n] = q[0] + ∑n
i=1 qir

−i

• FINAL QUOTIENT ERROR BOUND: 0 ≤ ǫq = x
d − q < r−n

• ERROR AT STEP j:

ǫ[j] =
x

d
− q[j] ≤ ǫ[n] +

n∑

i=j+1
max(qi)r

−i = ǫ[n] +
a

r − 1
(r−j − r−n)

• FOR CONVERGENCE: ǫ[j] ≤ ρr−j

• FOR SIMPLER SELECTION, ALLOW NEGATIVE ERRORS

|ǫ[j]| = |
x

d
− q[j]| ≤ ρr−j

• ELIMINATE DIVISION FROM ERROR BOUND: |x− dq[j]| ≤ ρdr−j

• DEFINE RESIDUAL (PARTIAL REMAINDER): w[j] = rj(x− dq[j])

• RESIDUAL RECURRENCE: w[j + 1] = rw[j]− dqj+1 w[0] = x
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cont.

• BOUND ON w[j]: |w[j]| ≤ ρd

• SELECT QUOTIENT DIGIT TO KEEP w[j + 1] BOUNDED:

qj+1 = SEL(rw[j], d)

• REDUNDANCY IN QUOTIENT-DIGIT SET ALLOWS

qj+1 = SEL(ŷ, ̂d)

WHERE ŷ IS TRUNCATED rw[j], etc.
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IMPLEMENTATION OF DIVISION STEP

1. ONE DIGIT ARITHMETIC LEFT-SHIFT OF w[j] TO PRODUCE rw[j];

2. DETERMINATION OF THE QUOTIENT DIGIT qj+1

BY THE QUOTIENT-DIGIT SELECTION FUNCTION;

3. GENERATION OF THE DIVISOR MULTIPLE d× qj+1; and

4. SUBTRACTION OF dqj+1 from rw[j].

5. UPDATE OF THE QUOTIENT q[j] TO q[j + 1] BY THE ON-THE-FLY
CONVERSION

q[j + 1] = CONV (q[j], qj+1)
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subtractionqj+1 

selection

dqj+1

(b)

(a)

SUBTRACTION

rw[j] - shifted residual

dqj+1rw[j]

w[j+1]  -  next residual

w[j] - present residual

d  -  divisor

DIVISOR MULTIPLE 
GENERATION

qj+1

SEL

ARITHMETIC LEFT SHIFT

y d

QUOTIENT CONVERSION qj+1

q[j+1]

recurrence step time

quotient update
(on-the-fly)

Figure 5.1: (a) COMPONENTS OF A DIVISION STEP. (b) TIMING.
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MAIN FACTORS AFFECTING COST AND EXECUTION TIME

• RADIX r

• QUOTIENT-DIGIT SET

1. CANONICAL: 0 ≤ qj ≤ r − 1

2. REDUNDANT: qj ∈ Da = {−a,−a + 1, . . . ,−1, 0, 1, . . . , a− 1, a}

• REDUNDANCY FACTOR: ρ = a
r−1

, ρ > 1
2

• REPRESENTATION OF RESIDUAL:

1. NONREDUNDANT (e.g., 2’s complement)

2. REDUNDANT: carry-save, signed-digit

• QUOTIENT-DIGIT SELECTION FUNCTION
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INITIALIZATION AND TERMINATION

Initialization:

• w[0] = x− dq[0] and |w[0]| ≤ ρd. Options:

– Make q[0] = 0 and

∗ For ρ = 1 we make w[0] = x/2.

∗ For 1/2 < ρ < 1 we make w[0] = x/4

Compensated in the termination step

– Make q[0] = 1 and w[0] = x− d. Applicable for ρ < 1 because q > 1 + ρ
not allowed.

Termination:

• QUOTIENT:

q =





q[N ] if w[N ] ≥ 0
q[N ]− r−N if w[N ] < 0

N – number of iterations
If dividend shifted in initialization - shift quotient (extra iteration)
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ON-THE-FLY QUOTIENT CONVERSION

• j MS DIGITS OF CONVERTED QUOTIENT

Q[j] =
j∑

i=1
qir
−i

• UPDATE
Q[j + 1] = Q[j] + qj+1r

−(j+1)

• SINCE qj+1 CAN BE NEGATIVE:

Q[j + 1] =





Q[j] + qj+1r
−(j+1) if qj+1 ≥ 0

Q[j]− r−j + (r − |qj+1|)r
−(j+1) if qj+1 < 0

• DISADVANTAGE: SUBTRACTION Q[j]− r−j

REQUIRES THE PROPAGATION OF A BORROW – SLOW
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ON-THE-FLY CONVERSION (cont.)

• DEFINE ANOTHER FORM QM [j]

QM [j] = Q[j]− r−j

• NEW CONVERSION ALGORITHM IS

Q[j + 1] =





Q[j] + qj+1r
−(j+1) if qj+1 ≥ 0

QM [j] + (r − |qj+1|)r
−(j+1) if qj+1 < 0

• SUBTRACTION REPLACED BY LOADING THE FORM QM [j]

• UPDATE FORM QM [j] AS FOLLOWS:

QM [j + 1] = Q[j + 1]− r−(j+1)

=





Q[j] + (qj+1 − 1)r−(j+1) if qj+1 > 0
QM [j] + ((r − 1)− |qj+1|)r

−(j+1) if qj+1 ≤ 0

• ALL ADDITIONS ARE CONCATENATIONS
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ON-THE-FLY CONVERSION ALGORITHM

Q[j + 1] =





(Q[j], qj+1) if qj+1 ≥ 0
(QM [j], (r − |qj+1|)) if qj+1 < 0

QM [j + 1] =





(Q[j], qj+1 − 1) if qj+1 > 0
(QM [j], ((r − 1)− |qj+1|)) if qj+1 ≤ 0

INITIAL CONDITIONS Q[0] = QM [0] = 0 (for a positive quotient)

Digital Arithmetic – Ercegovac/Lang 2003 5 – Division



13
EXAMPLE OF RADIX-2 CONVERSION

j qj Q[j] QM [j]

0 0 0
1 1 0.1 0.0
2 1 0.11 0.10
3 0 0.110 0.101
4 1 0.1101 0.1100
5 -1 0.11001 0.11000
6 0 0.110010 0.110001
7 0 0.1100100 0.1100011
8 -1 0.11000111 0.11000110
9 1 0.110001111 0.110001110

10 0 0.1100011110 0.1100011101
11 1 0.11000111101 0.11000111100
12 0 0.110001111010 0.110001111001
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IMPLEMENTATION OF THE CONVERSION

2-1 MUX

2-1 MUX

QM REG

Q REG

Q

QM

QM

QM

q

Q

Qin

QMin

load
select

L
O

A
D

 &
 S

H
IF

T
-I

N
C

O
N

T
R

O
L

qj+1

load
select

Figure 5.2: Implementation of on-the-fly conversion.

Q←





shift Q with insert (Qin) if CshiftQ = 1
shift QM with insert (Qin) if CloadQ = 1

QM ←





shift QM with insert (QMin) if CshiftQM = 1
shift Q with insert (QMin) if CloadQM = 1
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cont.

Qin =





qj+1 if qj+1 ≥ 0
r − |qj+1| if qj+1 < 0

QMin =





qj+1 − 1 if qj+1 > 0
(r − 1)− |qj+1| if qj+1 ≤ 0

REGISTER CONTROL SIGNALS: CloadQ = C ′shiftQ and CloadQM = C ′shiftQM
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EXAMPLE OF RADIX-4 CONVERSION

qj+1 Qin CshiftQ Q[j + 1] QMin CshiftQM QM [j + 1]

3 3 1 (Q[j], 3) 2 0 (Q[j], 2)
2 2 1 (Q[j], 2) 1 0 (Q[j], 1)
1 1 1 (Q[j], 1) 0 0 (Q[j], 0)
0 0 1 (Q[j], 0) 3 1 (QM [j], 3)
-1 3 0 (QM [j], 3) 2 1 (QM [j], 2)
-2 2 0 (QM [j], 2) 1 1 (QM [j], 1)
-3 1 0 (QM [j], 1) 0 1 (QM [j], 0)
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Figure 5.3: DIVISION IMPLEMENTATION: (a) TOTALLY SEQUENTIAL. (b) TOTALLY COMBINATIONAL. (c) COMBINED
IMPLEMENTATION.
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EXAMPLES OF ALGORITHMS AND IMPLEMENTATIONS

• CELLS: delay function of the load; delay and area in terms of 2-NAND.

• DEGREE OF OPTIMIZATION: the same modules have been used in all de-
signs.

• INTERCONNECTIONS NOT INCLUDED: not considered the delay, area nor
load of interconnections.

• EXECUTION TIME AND THE AREA FOR 53-BIT OPERANDS AND RE-
SULT

• INCLUDED DELAY AND AREA OF REGISTERS
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SCHEMES COMPARED

r2 Scheme Radix-2 with carry-save residual.

r4 Scheme Radix-4 with a = 2 and carry-save residual.

r8 Scheme Radix-8 with a = 7 and carry-save residual.

r16over Scheme Radix-16 with two overlapped radix-4 stages.

r512 Scheme Radix-512 with a = 511, carry-save residual, scaling, and quotient-
digit selection by rounding.

Digital Arithmetic – Ercegovac/Lang 2003 5 – Division



20

ti+1

Delays: 

to ti+1: 1.6

to vci+1: 5.6

to vsi: 6.0

Area: 15.5

a b c d

[4:2]
Module

a b b c c a

d

a b c d
[4:2] MODULE

vsi

ti

vci

vci+1

MUX
0 1

ti+1

ti

vsivci+1

vci

Delay: 1.4
Area: 3.0

2-input MUX

Delay: 1.6
Area: 4.4

3-input MUX:

Delay: 1.8
Area: 5.6

4-input MUX:

a b c

Delays:

a,b to vsi: 4.2

c to vsi: 2.2

a,b to vci+1 : 3.8

c to vci+1: 2.0

Area: 6.7

[3:2] MODULE
(FULL ADDER)

g’
p

vsivci+1Delay: 1.8
Area:2.6

BUFFER

D Q

CK

SET

REGISTER CELL

Delay: 4.0
Area: 4.0

(a)

(b) (c)

(d)

g’ p

a b c

vsivci+1

HA

HA*

Figure 5.4: Basic modules: (a) Multiplexers. (b) Buffer and register cell. (c) Full-adder. (d) [4:2] module.
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RADIX-2 DIVISION WITH CS RESIDUAL

• REDUNDANT RESIDUAL w[j] = (WC[j], WS[j])

1. [Initialize]
WS[0]← x/2; WC[0]← 0; q0← 0;Q[-1]=0

2. [Recurrence]
for j = 0 . . . n + 1 (n + 2 iterations because of initialization and guard bit)
qj+1 ← SEL(ŷ);
(WC[j + 1], WS[j + 1])← CSADD(2WC[j], 2WS[j], −qj+1d);
Q[j]← CONV ERT (Q[j − 1], qj)
end for

3. [Terminate]
If w[n + 2] < 0 then q = 2(CONV ERT (Q[n + 1], qn+2 − 1))
else q = 2(CONV ERT (Q[n + 1], qn+2))
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RADIX-2 ALGORITHM (cont.)

• n is the precision in bits,

• SEL is the quotient-digit selection function:

qj+1 = SEL(ŷ) =





1 if 0 ≤ ŷ ≤ 3/2
0 if ŷ = −1/2
−1 if −5/2 ≤ ŷ ≤ −1

The estimate ŷ has four bits (three integer bits and one fractional bit) of the
shifted residual in carry-save form,

• CSADD is carry-save addition

• −qj+1d is in 2’s complement form, and

• CONV ERT on-the-fly quotient conversion function
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Dividend x = (0.10011111), divisor d = (0.11000101), scaled residual
2w[0] = 2(x/2) = x, qcomputed = q/2

2WS[0] = 000.10011111
2WC[0] = 000.00000001 ∗ ŷ[0] = 0.5 q1 = 1
−q1d = 11.00111010

2WS[1] = 111.01001000
2WC[1] = 000.01101100 ŷ[0] = −1 q2 = −1
−q2d = 00.11000101

2WS[2] = 111.11000010
2WC[2] = 001.00110001 ∗ ŷ[1] = 0.5 q3 = 1
−q3d = 11.00111010

2WS[3] = 011.10010010
2WC[3] = 100.11001001 ∗ ŷ[2] = 0 q4 = 1
−q4d = 11.00111010

2WS[4] = 000.11000010
2WC[4] = 110.01101000 ŷ[4] = −1.5 q5 = −1
−q5d = 00.11000101

* for 2’s complement of qj+1d
q = 2(.11̄111̄) = .1101

Figure 5.7: Example of radix-2 division with residual in carry-save form.
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SZ; Convert

[3:2]

Reg. D Reg. WC Reg. WS

2-1 MUX
qSEL

4
4

q

WS[j+1]
WC[j+1]

buffers
qj+1

qj+1

WS[j+1]WC[j+1]Divisor d WS[0] = x /2

2WC[j] 2WS[j]

2

2

d

q-abc

qSEL buff MUX HA* REG

HA

6.8 1.8 1.4

2.2

4

d

 critical path

{d, 0, d}

[3:2] adder

WC[0] = 0

qj+1   q+  q-

1    1    0
0    0    0
-1   0     1

Modules defined in Fig. 5.4

Figure 5.8: IMPLEMENTATION OF RADIX-2 SCHEME.
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DELAY AND AREA OF RADIX-2 STAGE

element delay area

q-digit selection 6.8 50
buffers 1.8 5
MUX 1.4 160
CSA 2.2 360

registers (3) 4.0 650
Convert & Round (NC) 1360

Cycle time 16.2
Total area 2585

NC denotes a delay not in the critical path
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RADIX-4 DIVISION WITH CS RESIDUAL

1. QUOTIENT DIGIT SET {-2,-1,0,1,2}

2. ρ < 1 initialize WS[0]← x/4

3. THE NEXT RESIDUAL

(WC[j + 1], WS[j + 1])← CSADD(4WC[j], 4WS[j], −qj+1d)

4. QUOTIENT-DIGIT SELECTION DEPENDS ON ESTIMATES OF SHIFTED
RESIDUAL AND DIVISOR described in terms of SELECTION CONSTANTS
mk(i)

qj+1 = k if mk(i) ≤ ŷ < mk+1(i)

5. FINAL QUOTIENT = 4 x OBTAINED QUOTIENT
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SELECTION CONSTANTS

• qj+1 = k if mk(i) ≤ ŷ < mk+1(i)

• i = 16d̂ and d̂ divisor truncated to the 4th fractional bit and

• ŷ is 4w[j] truncated to the 4th fractional bit.

i 8 9 10 11 12 13 14 15

m2(i)
+ 12 14 15 16 18 20 20 24

m1(i)
+ 4 4 4 4 6 6 8 8

m0(i)
+ -4 -6 -6 -6 -8 -8 -8 -8

m−1(i)
+ -13 -15 -16 -18 -20 -20 -22 -24

+: real value = shown value/16
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Dividend x = (0.10101111), divisor d = (0.11000101) (i = 16(0.1100)2 = 12)
scaled residual 4w[0] = 4(x/4) = x, qcomputed = q/4

4WS[0]+ = 000.10101111
4WC[0]+ = 000.00000001 ∗ ŷ[0] = 10/16 q1 = 1
−q1d

+ = 11.00111010
WS[1] = 1.10010100
WC[1] = 0.01010110

4WS[1]+ = 110.01010000
4WC[1]+ = 001.01011000 ŷ[1] = −6/16 q2 = 0
−q2d

+ = 00.00000000
WS[2] = 1.00001000
WC[2] = 0.10100000

4WS[2]+ = 100.00100000
4WC[2]+ = 010.10000000 ŷ[2] = −22/16 q3 = −2
−q3d

+ = 01.10001010
w[3] = 0.00101010

* least-significant 1 for 2’s complement of qj+1d
+ only one integer bit used in the recurrence, because of the range of w[j + 1].

q[3] = .102̄4 = .0324

Figure 5.9: Example of radix-4 division with residual in carry-save form.(On-the-fly conversion and termination not shown)
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DELAY AND AREA OF RADIX-4 STAGE

element delay area

q-digit selection 10.8 160
buffers 1.8 10
MUX 1.8 300
CSA 2.2 360

registers (3) 4.0 650
Convert & Round (NC) 1360

Cycle time 20.6
Total area 2840

NC denotes a delay not in the critical path
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{2d, d, 0, d, 2d}

 SZ; Convert

[3:2]

Reg. D Reg. WC Reg. WS

4-1 MUX
qSEL

7
7

q

WS[j+1]
WC[j+1]

buffers
qj+1

qj+1

WS[j+1]WC[j+1]Divisor d WS[0] = x /4

4WC[j] 4WS[j]

4

4

d

abc

qSEL buff MUX HA* REG

HA

10.8 1.8 1.8

2.2

4

d

qj+1 = 0 coded as

(0, 0, 0, 0)

{d}4

3

[3:2] adder

 critical path

(qj+1 < 0)

WC[0]=0

(q2+, q2-, q1+, q1-)

Modules defined in Fig. 5.4

Figure 5.10: IMPLEMENTATION OF RADIX-4 SCHEME.
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RADIX-8 DIVISION WITH CS RESIDUAL

• QUOTIENT DIGIT SET {-7, ..., 7} DECOMPOSED INTO

qH = {−8,−4, 0, 4, 8}

AND

qL = {−2,−1, 0, 1, 2}

element delay area

q-digit selection (qh) 12.2 610
buffers 1.8 20
MUXes 1.8 600

CSAh 2.2 360
CSAl 4.2 360

registers (3) 4.0 650
Convert & Round (NC) 1360

Cycle time 26.2
Total area 3960
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Reg. D Reg. WC Reg. WS

qSEL

8
8

WS[j+1]WC[j+1]Divisor d WS[0]=x/2

8WC[j] 8WS[j]

{d}4

3

 SZ; Convert

q

WS[j+1]
WC[j+1]

[3:2]

4-1 MUX

buffers
qH

j+1

4

d

{8d, 4d, 0, 4d, 8d}

4-1 MUX

buffers

4

d

{2d, d, 0, d, 2d}

qL
j+1

4 4

qH
j+1 qL

j+1

(qH
j+1,qL

j+1) 

(decoded as
in Fig. 5.10)

qj+1:
[3:2]

(qH
j+1 < 0)

(qL
j+1 < 0)

qSEL buff MUX HA*

12.2 1.8 1.8

2.2

qH
j+1

qSEL buff MUX

qL
j+1

 critical path

REG

4

HA

4.2HA

HA*

WC[0]=0

d

d

Modules defined in Fig. 5.4

Figure 5.11: Implementation of radix-8 scheme.
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RADIX-16 DIVISION WITH TWO RADIX-4 OVERLAPPED STAGES

element delay area

CSA 4.2 220
q-digit selection 11.2 820

MUX 1.4
buffers 1.8 20
MUXes 1.8 600

CSA1 (NC) 360
CSA2 2.1 360

registers (3) 4.0 650
Convert & Round (NC) 1360

Cycle time 26.6
Total area 4390
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Reg. D Reg. WC Reg. WS

WS[j+2]WC[j+2]Divisor d WS[0]=x/4

4WC[j] 4WS[j]

WS[j+2] WC[j+2]

[3:2]

4-1 MUX

buffers
qj+1

4

4-1 MUX

buffers

4
qj+2

[3:2]

WS[j+1] WC[j+1]

4W[j+1]

(qj+1 < 0)

(qj+2 < 0)

-2 -1   0.  1   2   3   4   5   6   7
   x   x    x.  x   x   x   x   x   x   x
   x   x    x.  x   x   x   x   x   x   x

7 most 8 least

4WS[j]

4WC[j]
{4W[j]}7

qSEL [3:2]

7 7

8 8 8

[3:2] [3:2]

qSEL

[3:2]

qSEL qSEL qSEL qSEL

8 least

7 most

5-1 MUX

{2d}7 {d}7 {d}7 {2d}7

{4W[j]}7

{d}4

3

(a)

(b)

{2d, d, 0, d, 2d}

{2d, d, 0, d, 2d}

d d

d d

WC[0]=0

qj+1 qj+2

Conditional truncated
 residuals

Figure 5.12: Implementation of radix-16 with radix-4 stages.
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qSEL buff MUX CSA1

12.2 1.8 1.8

2.2

qj+1

 critical path

REG

4

HA

HA*

qj+2

buff MUXqSEL[3:2]8 MUX

CSA2

4.2 11.2 1.4 1.8 1.8

Modules defined in Fig. 5.4

Figure 5.13: Critical path in radix-16 scheme.
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RADIX-512 DIVISION WITH PRESCALING AND SELECTION BY

ROUNDING

Cycle 1 : COMPUTE M ≈ 1/d; compare d and x and set g

Cycle 2 : COMPUTE z = Md (in c-s form); v = 2−gx

Cycle 3 : INITIALIZE w[0] = Mv (in c-s form); ASSIMILATE z;

Cycles 4 to 9 : ITERATE

qj+1 = round(ŷ); w[j + 1] = 512w[j]− qj+1z

Cycle 10 : CORRECTING AND ROUNDING.
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RADIX-512 DIVISON (cont.)

• RECTANGULAR MULTIPLIER-ACCUMULATOR
• DELAY-AREA

element delay area

M-module (NC) 1800
MUX 1.4
recoder 6.0 70
buffer 1.8
MUX 1.8 3000
2 levels of 4-2 CSA 12.0 3100
registers(3) 4.0 650
Convert & Round (NC) 1360
Cycle time 27
Total area 9980
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WC[j] WS[j]

WC[j+1] WS[j+1]

WC[j+1] WS[j+1]

qj+1

{d}15

x
d

z

scale/iterate

15

53+9+5 = 67

67 67

2(10+2)

qj+1

q

W

512w[j]

Md; Mx; 512w -qz

CPA

SZ; CONVERT

MULTIPLIER 
- ACCUMULATOR

Round & 
Recode

MUX MUX

Module 
M

M

8 + 8

8 + 8

M ; qj+1 

(Initialization not shown)

Figure 5.14: Implementation of radix-512 scheme.
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OVERALL COMPARISONS

Scheme r2 r4 r8 r16 (overlapped) r512

Cycle-time factor 1.0 1.3 1.6 1.6 1.7
Number of cycles† 57 29 20 15 10

Speedup 1.0 1.5 1.8 2.4 3.4
Area factor 1.0 1.1 1.5 1.7 3.9

†Correction: two cycles for radix-2, one cycle for other cases.
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QUOTIENT-DIGIT SELECTION FUNCTION

Quotient-digit set:

qj+1 ∈ Da = {−a,−a + 1, . . . ,−1, 0, 1, . . . , a− 1, a}

Redundancy factor:

ρ =
a

r − 1
,

1

2
< ρ ≤ 1

• TWO FUNDAMENTAL CONDITIONS FOR q-SELECTION

• CONTAINMENT – must guarantee bounded residual

• CONTINUITY – there must exist a valid choice of qj+1 in the range of shifted
residual
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CONTAINMENT AND SELECTION INTERVALS

• RESIDUAL RECURRENCE

w[j + 1] = rw[j]− dqj+1 |w[j]| ≤ ρd

ρ = a/(r − 1) − a ≤ qj ≤ a

• SELECTION INTERVALS
• If rw[j] ∈ [Lk, Uk] then qj+1 = k makes w[j + 1] bounded

Lk ≤ rw[j] ≤ Uk ⇒ ρd ≤ w[j + 1] = rw[j]− k · d ≤ ρd

• EXPRESSIONS FOR SELECTION INTERVALS

Uk = (k + ρ)d Lk = (k − ρ)d
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ROBERTSON’S AND P-D DIAGRAMS

w[j+1]

(a)

-rρd

rw[j]

10-1

ρd

-ρd

rρdrw[5]

w[6]

d-d

-a

-ad

k

kd

Lk Uk

a

ad

Figure 5.16: ROBERTSON’S DIAGRAM
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d

rw[j]

0

Ua=rρd

Uk

Lk

U0

L0

Uk

Lk

L-a=-rρd

selection region 

for qj+1=k

(b)

k<0

k>0

Figure 5.16: P-D DIAGRAM (for d > 0).
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CONTINUITY CONDITION, OVERLAP, AND Q-DIGIT SELECTION

qj+1 = SEL(w[j], d)

• SEL represented by the set {sk},−a ≤ k ≤ a,

qj+1 = k if sk ≤ rw[j] ≤ sk+1 − ulp

• sk defined as the minimum value of rw[j] for which qj+1 = k
• sk’s are functions of the divisor d
• CONTAINMENT: Lk ≤ sk ≤ Uk

• CONTINUITY: qj+1 = k − 1 for rw[j] = sk − ulp ≤ Uk−1

Uk ≥ Uk−1 + ulp → Lk ≤ sk ≤ Uk−1 + ulp or Lk ≤ sk ≤ Uk−1

• OVERLAP

Uk−1 − Lk = (k − 1 + ρ)d− (k − ρ)d = (2ρ− 1)d

RESULTING IN

ρ ≥ 2−1

• REDUNDANCY IN q-DIGIT SET → OVERLAP BETWEEN SELECTION
INTERVALS - SIMPLER SELECTION
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rw[j]

(a)

UkLk

Uk-1Lk-1

qj+1=kqj+1=k-1

overlap
k or
k-1

k-1

k

w[j+1]

Figure 5.17: Overlap between selection intervals.
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rw[j]

d
11/2

(b)

sk

Uk-1

Lk

normalized divisor range

qj+1=k

qj+1=k-1

overlap

(k or k-1)

Figure 5.17: Selection function.
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SELECTION USING CONSTANTS

• USE CONSTANTS mk, INDEPENDENT OF DIVISOR

max(Lk) ≤ mk ≤ min(Uk−1) + ulp

max and min for the range 2−1 ≤ d < 1

• For k > 0
(k − ρ) ≤ mk ≤ (k − 1 + ρ)2−1 + ulp

which requires

ρ ≥
k + 1

3

• For k ≤ 0
(k − ρ)2−1 ≤ k − 1 + ρ

which requires

ρ ≥
(−k) + 2

3
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d

rw[j]

L k

Uk-1

Uk-1

L k

m k

m k

1/2 1
k<0

k>0

Figure 5.18: BOUNDS ON mk.
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RADIX-2 DIVISION WITH NON-REDUNDANT RESIDUAL

• EXTENSION OF NON-RESTORING DIVISION: {-1,0,1} SRT
• ALLOWS SKIPPING OVER ZEROS

U1 = 2d L1 = 0
U0 = d ≥ 1/2 L0 = −d ≤ −1/2
U−1 = 0 L−1 = −2d

• SELECTION CONSTANTS:

0 ≤ m1 ≤ 1/2, −1/2 ≤ m0 ≤ 0

Choose: m1 = 1/2 and m0 = −1/2
• THE QUOTIENT-DIGIT SELECTION FUNCTION

qj+1 =





1 if 1/2 ≤ 2w[j]
0 if −1/2 ≤ 2w[j] < 1/2
−1 if 2w[j] < − 1/2
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L-1

-1/2

-d

U0L0

-1 10

U-1 L1 U1

2w[j]

w[j+1]

10-1

1/2

d
2d

d

-d

-2d

(a)

Digital Arithmetic – Ercegovac/Lang 2003 5 – Division



51

2w[j]

d

2

1

1/2

-1/2

-1

-2

qj+1=1

qj+1=0

qj+1=-1

U1

U0

U-1

L1

L0

L-1

m1=1/2

m0=-1/2

11/2
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STAIRCASE SELECTION FUNCTION

• FOR r > 2, mk DEPENDS ON DIVISOR

• DIVIDE RANGE OF DIVISOR INTO INTERVALS [di, di+1) with

d0 =
1

2
, di+1 = di + 2−δ

δ MS FRACTIONAL BITS OF DIVISOR REPRESENT THE INTERVAL

• FOR EACH INTERVAL, THERE IS A SET of selection constants mk(i)

for d ∈ [di, di+1), qj+1 = k if mk(i) ≤ rw[j] ≤ mk+1(i)− ulp
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DEFINITION OF mk(i)

rw[j]

d

mk+1(i)

mk(i)

di di+1

2-δ

qj+1=k+1

qj+1=k

ulp

Figure 5.20: DEFINITION OF mk(i).
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RANGE CONDITION FOR SELECTION CONSTANTS

max(Lk(di), Lk(di+1)) ≤ mk(i) ≤ min(Uk−1(di), Uk−1(di+1)) + ulp

rw[j]

d

region for mk(i)

di di+1

2-δ

max(Lk(di), Lk(di+1))

min(Uk-1(di), Uk-1(di+1))

Uk-1

Lk

Figure 5.21: SELECTION CONSTANT REGION.
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LOW-PRECISION SELECTION CONSTANTS

mk(i) = Ak(i)2
−c

WHERE Ak(i) IS INTEGER

• CAN USE TRUNCATED RESIDUAL IN COMPARISONS
WITH SELECTION CONSTANTS
• RESIDUAL MUST BE IN 2’s COMPLEMENT
• SELECTION CONDITIONS

for k > 0 Lk(di + 2−δ) ≤ Ak(i)2
−c ≤ Uk−1(di)

(5.1)

for k ≤ 0 Lk(di) ≤ Ak(i)2
−c ≤ Uk−1(di + 2−δ) + ulp
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USE OF SELECTION CONSTANTS

rw[j]

d

d1

Uk-1

Lk

d0 d2 d3 d4 d5

2-c

mk(0)
mk(1)

mk(4)

mk(2,3) 

2-δ

Figure 5.22: QUOTIENT-DIGIT SELECTION WITH SELECTION CONSTANTS.
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SELECTION WITH TRUNCATED RESIDUAL AND DIVISOR

SELECTION
FUNCTION

1 + log2r + c

log2r + c + δ
{rw [j ]}c

{d }δ

q j+1

δ − 1

Figure 5.23: SELECTION WITH TRUNCATED RESIDUAL AND DIVISOR.
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LOWER BOUND ON δ

• CONSIDER CASE k > 0 (similar argument for k ≤ 0);
• FROM CONTINUITY CONDITION

Uk−1(di)− Lk(di + 2−δ) ≥ 0

(ρ + k − 1)di − (−ρ + k)(di + 2−δ) ≥ 0

=⇒

(2ρ− 1)di ≥ (k − ρ)2−δ

• Worst case: d ≥ 1/2 and k ≤ a:

2−δ ≤
2ρ− 1

2(a− ρ)
=

2ρ− 1

2ρ(r − 2)

• MINIMUM VALUE OF δ CAN RESULT IN A LARGE VALUE OF c
• OPTIMIZE THE VALUES OF δ AND c TOGETHER
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RADIX-4 DIVISION WITH NONREDUNDANT RESIDUAL

• Known as Robertson’s division

• qj ∈ {−2,−1, 0, 1, 2}

• Uk = (2
3 + k)d Lk = (−2

3 + k)d

• BOUND ON δ

2−δ ≤
2ρ− 1

2(a− ρ)
=

1

8
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U0

U1

U2

L1

L2

L0

U-1

L-1

U-2

L-2

1

2

-1

-2

1
d

4w[j]

d=1/2

0

1

2

-1

-2

(b)

w[j+1]

4w[j]

2d/3

-2d/3

d/3

2d/3

4d/3

5d/3

0 1 2

8d/3

(a)

Figure 5.24: ROBERTSON’S AND PD DIAGRAMS FOR RADIX-4 AND a = 2.
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[di, di+1)
+ [8, 9) [9, 10) [10, 11) [11, 12)

L2(di+1), U1(di)
# 36, 40 40, 45 44, 50 48, 55

m2(i)
∗ 6 7 8 8

L1(di+1), U0(di)
# 9,16 10, 18 11, 20 12, 22

m1(i) 2 2 2 2

L0(di), U−1(di+1)
# -16, -9 -18, -10 -20, -11 -22, -12

m0(i) -2 -2 -2 -2

L−1(di), U−2(di+1)
# -40, -36 -45, -40 -50, -44 -55, -48

m−1(i) -6 -7 -8 -8

[di, di+1)
+ [12, 13) [13, 14) [14, 15) [15, 16)

L2(di+1), U1(di)
# 52, 60 56, 65 60, 70 64, 75

m2(i) 10 10 10 12

L1(di+1), U0(di)
# 13, 24 14, 26 15, 28 16, 30

m1(i) 4 4 4 4

L0(di), U−1(di+1)
# -24, -13 -26, -14 -28, -15 -30, -16

m0(i) -4 -4 -4 -4

L−1(di), U−2(di+1)
# -60, -52 -65, -56 -70, -60 -75, -64

m−1(i) -10 -10 -10 -12
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QUOTIENT-DIGIT SELECTION FOR RADIX-4 DIVISION;

NON-REDUNDANT RESIDUAL

{4w[j]}3

{d}4

U1

L2

m2(0)

5/8

1

7/8

6/8

9/8

10/8

11/8

12/8

1/2

9/16

10/16

11/16

12/16

13/16

14/16

15/16

1

m2(1)

m2(2,3)

m2(4,5,6)

m2(7)

qj+1=2

qj+1=1

(a)

SELECTION 

{4w[j]}3

6

{d}4

3

3

qj+1

xxx.xxx 0.1xxx

(b)

Figure 5.25: QUOTIENT-DIGIT SELECTION: (a) FRAGMENT OF THE P-D DIAGRAM. (b) IMPLEMENTATION.
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USE OF REDUNDANT ADDER

• SO FAR: COMPUTE rw[j] IN FULL PRECISION, TRUNCATE, AND COM-
PARE WITH LOW-PRECISION CONSTANTS

• FULL-PRECISION ADDITION: significant portion of the cycle time

• OVERLAP BETWEEN SELECTION INTERVALS
=⇒COULD USE AN ESTIMATE OF rw[j]

• ERROR IN ESTIMATE:

ǫmin ≤ y − ŷ ≤ ǫmax

• BASIC CONSTRAINT: if we choose qj+1 = k for an estimate ŷ then

y ∈ [ŷ + ǫmin, ŷ + ǫmax]

L∗k = Lk − ǫmin

U ∗k = Uk − ǫmax
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CONSTRAINTS ON SELECTION CONSTANTS

max(L∗k(di), L
∗
k(di+1)) ≤ mk(i) ≤ min(U ∗k−1(di), U

∗
k−1(di+1))

L k

L*k

−εmin

Uk-1

U*k-1

region for mk (i)

di di+1

εmax

Figure 5.26: CONSTRAINTS FOR SELECTION BASED ON ESTIMATES.
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MINIMUM OVERLAP AND RANGE OF ESTIMATE

• OVERLAP

min(U ∗k−1(di), U
∗
k−1(di+1))−max(L∗k(di), L

∗
k(di+1)) ≥ 0

• RANGE

|rw[j]| ≤ rρd < rρ (for d < 1)

−rρ− ǫmax < ŷ < rρ− ǫmin

y=rw[j]

(estimate) y

εmax -εmin

-rρ rρ

Figure 5.27: RANGE OF ESTIMATE
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REDUNDANT ADDER

rw[j]

w[j+1]

(redundant)

(redundant)

-q
j+1

d

(a) REDUNDANT ADDER

ws
wc

x
x
-

x
x
+

x.
x.
+.

x
x
+

x
x
+

x
x
+

x
x
+

x
x
+

x
x
+

x
x
+

x
x
+

rw[j]

t

y
-

y
+

y.
+.

y
+

y
+

y
+ (truncation error)

ŷ (estimate)

(b)

x
+
-

x
+
-

x.
+.
-.

x
+
-

x
+
-

x
+
-

x
+
-

x
+
-

x
+
-

x
+
-

x
+
-

rw[j]

t

y
+
-

y
+
-

y.
+.
-

y
+
-

y
+
-

y
+
-

(truncation error)

ŷ (estimate)

(c)

2-t-ulp-(2-t-ulp)  < ε <2-t+1-ulp0 < ε <

Figure 5.28: USE OF REDUNDANT ADDER: (a) Redundant adder. (b) Carry-save case. (c) Signed-digit case.
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CARRY-SAVE ADDER

• ERRORS

ǫmin = 0 ǫmax = 2−t+1 − ulp

• RESTRICTED SELECTION INTERVAL

U ∗k = Uk − 2−t+1 + ulp

L∗k = Lk

̂Uk−1 = ⌊U ∗k−1 + 2−t⌋t = ⌊Uk−1 − 2−t⌋t

̂Lk = ⌈L∗k⌉t = ⌈Lk⌉t
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Uk-1

U*k-1

Uk-1
^

2
-t

L k L*k

L k
^

di
di+2di+1

2
-t+1

(represented by       )

(represented by       )

Case B

Case A

y

Case A:  U*
k-1 is on the grid;

                 Uk-1= U*
k-1+2-t on the grid

Case B:  U*
k-1 is off the grid;

                 Uk-1> U*
k-1  on the grid

Figure 5.29: Û and L̂ for residual in carry-save form.Digital Arithmetic – Ercegovac/Lang 2003 5 – Division
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LOWER BOUND FOR t and δ

(for positive k)
̂Uk−1(di)−

̂Lk(di+1) ≥ 0

Uk−1(di)− 2−t − Lk(di+1) ≥ 0

2ρ− 1

2
− (a− ρ)2−δ ≥ 2−t

• RANGE

⌊−rρ− 2−t⌋t ≤ ŷ ≤ ⌊rρ− ulp⌋t

⌊z⌋t = 2−t⌊2tz⌋
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RADIX-2 DIVISION WITH CARRY-SAVE ADDER

1

2
− 0× 2−δ ≥ 2−t

max( ̂Lk(di),
̂Lk(di+1)) ≤ mk(i) ≤ min(̂Uk−1(di),

̂Uk−1(di+1))

̂L1(1) = 0
̂U0(1/2) = 0
̂L0(1/2) = −1/2
̂U−1(1) = −1/2

( ̂L1(1) = 0) ≤ m1 ≤ (̂U0(1/2) = 0)

( ̂L0(1/2) = −1/2) ≤ m0 ≤ (̂U−1(1) = −1/2)

This results in the selection constants m1 = 0 and m0 = −1/2
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SELECTION FUNCTION

⌊−2− 2−1⌋1 ≤ ŷ ≤ ⌊2− ulp⌋1

−
5

2
≤ ŷ ≤ 3/2

qj+1 =





1 if 0 ≤ ŷ ≤ 3/2
0 if ŷ = −1/2
−1 if −5/2 ≤ ŷ ≤ −1
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RADIX-2 WITH CSA: PD PLOT

L -1

0

1

1/2

3/2

2

-1/2

-1

-3/2

-2

-5/2

U1

U*
0

d=1/2 d=1-ulp

y[j]^

d

L 0
^ -1U

^

2w[j]

(a)

q j+1=-1

q j+1=0

q j+1=1 m(1)=0

m(0)=-1/2

L 1
^

0U
^

U0

L 0 L*0,

U*
-1

L 1 U-1,

x x x. x
x x x. xy[j]^

SELECTION
FUNCTION

4+4

(b)

q j+1

Figure 5.30: RADIX-2 DIVISION WITH CARRY-SAVE ADDER: (a) P-D PLOT. (b) SELECTION FUNCTION.
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IMPLEMENTATION

qj+1 = (qs, qm)

qm = (p−1p0p1)
′ (5.2)

qs = p−2 ⊕ (g−1 + p−1g0 + p−1p0g1)

where
pi = ci ⊕ si gi = ci · si

and

(c−2, c−1, c0, c1)

(s−2, s−1, s0, s1)

qj+1 = 0 (qs, qm) = (1, 0)
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RADIX-4 ALGORITHM WITH CARRY-SAVE ADDER

1

6
−

4

3
2−δ ≥ 2−t

2−t ≤
1

6
−

1

12
=

1

12

⌊−8/3− 1/16⌋4 ≤ ŷ ≤ ⌊8/3− ulp⌋4

−
44

16
≤ ŷ ≤

42

16
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[di, di+1)
+ [8, 9) [9, 10) [10, 11) [11, 12)

L̂2(di+1), Û1(di)
+ 12, 12 14, 14 15, 15 16, 17

m2(i)
+ 12 14 15 16

L̂1(di+1), Û0(di)
+ 3, 4 4, 5 4, 5 4, 6

m1(i) 4 4 4 4

L̂0(di), Û−1(di+1)
+ -5, -4 -6, -5 -6, -5 -7, -5

m0(i) -4 -6 -6 -6

L̂−1(di), Û−2(di+1)
+ -13, -13 -15, -15 -16, -1 6 -18, -17

m−1(i) -13 -15 -16 -18

[di, di+1)
+ [12, 13) [13, 14) [14, 15) [15, 16)

L̂2(di+1), Û1(di)
+ 18, 19 19, 20 20, 22 22, 24

m2(i) 18 20 20 24

L̂1(di+1), Û0(di)
+ 4, 7 5, 7 5, 8 6, 9

m1(i) 6 6 8 8

L̂0(di), Û−1(di+1)
+ -8, -6 -8, -6 -9, -6 -10, -7

m0(i) -8 -8 -8 -8

L̂−1(di), Û−2(di+1)
+ -20, -19 -21, -20 -23, -2 1 -25, -23

m−1(i) -20 -20 -22 -24

+: real value = shown value/16; L̂k = ⌈Lk⌉4, Ûk = ⌊Uk −
1
16
⌋4.
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5/8

6/8

7/8

1

9/8

10/8

11/8

12/8

1/2 9/16 10/16 11/16 12/16 13/16 14/16 15/16 1

y[j]^

d
^

L 2

U1
U1
^

L 2
^

m2(i) region of choice for
m2(i)

(a)

SELECTION
FUNCTION

x x x.x x x x 0.1 x x x

37
ŷ d̂

qj+1

(b)

Figure 5.31: SELECTION FUNCTION FOR RADIX-4 SCHEME WITH CARRY-SAVE ADDER: (a) Fragment of P-D diagram. (b)
Implementation.
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RECIPROCAL, DIVISION, RECIPROCAL SQUARE ROOT AND SQUARE

ROOT BY ITERATIVE APPROXIMATION

• AN INITIAL APPROXIMATION OF A FUNCTION
ITERATIVELY IMPROVED

• BASED ON MULTIPLICATIONS AND ADDITIONS (vs. only additions and
shifts)

• CONVERGES TOWARDS THE RESULT WITH A QUADRATIC OR LINEAR
RATE

• QUOTIENT: RECIPROCAL OF THE DIVISOR × THE DIVIDEND

• SQUARE ROOT: INVERSE SQUARE ROOT × THE OPERAND

• ROUNDING HARDER THAN FOR THE DIGIT-RECURRENCE METHOD

• VARIATIONS TO OBTAIN DIRECTLY QUOTIENT AND SQUARE ROOT
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NEWTON-RAPHSON’S METHOD FOR RECIPROCAL APPROXIMATION

• BASED ON A GENERAL METHOD TO OBTAIN THE ZERO OF A FUNC-
TION (THE VALUE OF x FOR WHICH f (x) = 0)

• x[j] AN APPROXIMATION OF THE ZERO

• A BETTER APPROXIMATION IS

x[j + 1] = x[j]− f (x[j])

f ′(x[j])

f ′(x[j]) EVALUATED AT x[j]

• APPLY TO RECIPROCAL FUNCTION f (R) = 1/R− d
(whose zero is 1/d)

• RECURRENCE
R[j + 1] = R[j](2−R[j]d)

• INITIAL APPROXIMATION R[0]
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R[j]

f(R[j])

R[0] R[1] R[2] R[3]

1/d

-d

tangent

(Initial approximation)

Figure 7.1: Newton-Raphson iteration for finding reciprocal.
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RECIPROCAL (cont.)

• EACH ITERATION REQUIRES TWO MULTIPLICATIONS AND
ONE SUBTRACTION

• QUADRATIC CONVERGENCE

• RELATIVE ERROR ε[j]
ε[j] = 1− dR[j]

R[j + 1] = (
1− ε[j]

d
)(2− (1− ε[j]))

=
1− ε[j]2

d

=⇒

ε[j + 1] = 1− dR[j + 1] = ε[j]2
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RECIPROCAL (cont.)

• NUMBER OF ITERATIONS DEPENDS ON INITIAL APPROXIMATION

ε[0] ≤ 2−k

• TO GET AN ERROR

ε[m] ≤ 2−n

THE NUMBER OF ITERATIONS IS

m = dlog2(
n

k
)e
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EXAMPLE

RECIPROCAL OF d = 5/8

R[0] = 1

j R[j] dR[j] 2− dR[j] R[j + 1] ε[j + 1]

0 1 5× 2−3 11× 2−3 11× 2−3 0.14

1 11× 2−3 55× 2−6 73× 2−6 803× 2−9 = 1.5683594 0. 020

2 803× 2−9 4015× 2−12 4177× 2−12 3354131× 2−21 = 1.5993743... 0.00039

EXACT RESULT: 1/d = 8/5 = 1.6
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MULTIPLICATIVE NORMALIZATION METHOD

• R = 1
d = 1

d
P [0]
P [0]

P [1]
P [1] . . .

P [m]
P [m] = R[m]

d[m]

R = R[m] if d[m] = 1

• DEFINE APPROXIMATION R[j] = ∏j
i=0 P [i] AND d[j] = dR[j]

• IMPROVE APPROXIMATION BY

R[j + 1] = R[j]P [j + 1]
d[j + 1] = d[j]P [j + 1]
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MULTIPLICATIVE NORMALIZATION: RECIPROCAL

1/d

P[0]

1

Iteration j

1 2 3 4 5

R[j],d[j]

dP[0]

Figure 7.2: Illustration of iterations in the multiplicative normalization method.
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DETERMINATION OF P [j] FOR QUADRATIC CONVERGENCE

• DEFINE

d[j] = d
j−1
∏

i=0
P [i]

• OBTAIN THE RECURRENCE

d[j] = d[j − 1]P [j − 1]

• FOR QUADRATIC CONVERGENCE, IF

d[j − 1] = 1− ε[j − 1]

THEN
d[j] = 1− ε[j − 1]2

• CONSEQUENTLY,
P [j − 1] = 1 + ε[j − 1]

AND
d[j − 1] + P [j − 1] = 1− ε[i− 1] + 1 + ε[i− 1] = 2

SO THAT
P [j − 1] = 2− d[j − 1]
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MULTIPLICATIVE ALGORITHM FOR RECIPROCAL

1. Obtain approximation P [0] to 1/d

2. d[0] = dP [0]; R[0] = P [0]

3. For j = 0, 1, 2, 3, ..., m− 2 do

P [j + 1] = 2− d[j]

d[j + 1] = d[j]P [j + 1]; R[j + 1] = R[j]P [j + 1]

4. P [m] = 2− d[m− 1]; R[m] = R[m− 1]P [m]
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MUX MUX

MUX

Multiplier
Stage 1

(PP reduction)

Multiplier
Stage 2
(CPA)

IA
MODULE

2’s CMPL

1 d
{d}trunc

P[0]

P[j+1]

(Initial
 Approximation)

d[j] 
or R[j]

d[j+1] or R[j+1]

dP[0]

d[0],P[1]

R[0]

R[0]

d[0]P[1]

d[1],P[2]

R[0]P[1]

R[1]

STAGE 1

STAGE 2

(R[m-1]P[m])

R[m]

cycle

(a)

(b)

(latched every 
2nd clock)

INPUTS d
P[0]

1
P[0]

d[0]
P[1]

R[0]
P[1]

d[1]
P[2]

R[m-1]
P[m]

Figure 7.3: Multiplicative normalization for reciprocal: (a) Implementation with a 2-stage multiplier. (b) Timing diagram.
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INITIAL APPROXIMATION

1. PERFORM A TABLE LOOK-UP BASED ON TRUNCATED d

• GOOD FOR RELATIVELY LOW PRECISION INITIAL APPROXIMA-
TION

• PIECEWISE LINEAR APPROXIMATION IF TABLE TOO LARGE

d = dt2
−k + dp2

−p + dr2
−n

MS k bits of d used to access the table to get coefficients a and b. Then

R[0] = a + bdp2
−p

• REQUIRES A TABLE LOOK-UP AND A SMALL MULTIPLICATION

2. BIPARTITE METHOD: OBTAIN TWO VALUES FROM TABLES AND PER-
FORM AN ADDITION

• USES LARGER TABLES AND ADDER
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IMPLEMENTATION AND EXECUTION TIME

• MODULE TO COMPUTE THE INITIAL APPROXIMATION

• MULTIPLIER

• WIDTH OF PRODUCTS:

R[j] R[j]d R[j+1]= R[j](2-R[j]d)

j=0 a a+n 2a+n

j=1 2a+n 2a+2n 4a+3n

j=2 4a+3n 4a+4n 8a+7n

....

• AT ITERATION j APPROXIMATION HAS A PRECISION OF 2ja BITS

=⇒OK TO KEEP PRODUCTS AT THIS PRECISION

=⇒NEED NOT PERFORM MULTIPLICATIONS AT FULL PRECISION
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ALTERNATIVES

1. USE A FLOATING-POINT MULTIPLIER PRODUCING A ROUNDED PROD-
UCT

2. USE A RECTANGULAR MULTIPLIER

• A SEQUENCE OF MULTIPLICATIONS AS PRECISION INCREASES

• RECTANGULAR MULTIPLIER SMALLER AND FASTER THAN THE
SQUARE MULTIPLIER
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COMPARISON OF NUMBER OF CYCLES FOR FULL AND RECTANGULAR

MULTIPLIER ALTERNATIVES

• RECIPROCAL OF 54 BITS STARTING WITH r[0] ACCURATE TO 8 BITS

• MULTIPLIER IN SCHEME A STANDARD FLOATING-POINT MULTIPLIER

• MULTIPLIER IN SCHEME B A DEDICATED MULTIPLIER

• OPERATION REQUIRES AT LEAST THREE ITERATIONS

EACH CONSISTING OF TWO CONSECUTIVE MULTIPLICATIONS

IGNORE THE DELAY OF OBTAINING 2−R[i]d
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COMPARISON OF ALTERNATIVES (cont.)

1. SCHEME A: Full multiplier 55× 55→ 55 (rounded);
3 cycles per multiply; total: 1 + 3 x 2 x 3 = 19 cycles

2. SCHEME B: Rectangular multiplier 55× 16→ 55;
1 cycle per multiply; total: 1+ 2 + 2 + 4 = 9 cycles

• R[1] = R[0](2− dR[0]) to 16 bits we use 55× 16 multiplier twice (2 cycles);

• R[2] = R[1](2− dR[1]) to 32 bits we use 55× 16 multiplier twice (2 cycles);

• R[3] = R[2](2 − dR[2]) to 54 bits we use 55 × 16 multiplier four times (4
cycles).

• A COMPLEMENTER (2’s OR 1s’)
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DIVISION

• TO GET QUOTIENT

Q = R[m]x
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EXAMPLE OF IMPLEMENTATION: AMD-K7 FLPT UNIT

• DIVISION (20 CYCLES) AND SQUARE ROOT (27 CYCLES)

• DOUBLE PRECISION (53 bits); INTERNAL PRECISION: 76 bits (FOR EX-
TENDED FORMAT)

• USES 4-STAGE PIPELINED MULTIPLIER: 76 × 76 PRODUCING 152 BITS

• RADIX-8 MULTIPLIER RECODING WITH {-4, ..., 4}
• INITIAL APPROXIMATION: BIPARTITE TABLE LOOKUP (69K BITS +

ADDER)
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MUX MUX

3X GEN

MGENS

REC

TREE OF
[4:2] ADDERS

(4 levels)

[3:2] ADDER [3:2] ADDER

152-bit CPA 152-bit CPA

SB LOGIC

152-bit CPA

ROUNDING

Final Result

To local bypassingTo local bypassing

Local bypassingLocal bypassing

operand operand

Rounding 
constant 

(no overflow)
or dividend

Rounding 
constant 

( overflow)
or dividend

Stage
4

Stage
3

Stage
2

Stage
1

2x152

2x152 2x152 2x152

Figure 7.4: Block diagram of a division/square-root unit (Adapted from Oberman 1999)
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1. [Initialize]

P [0]← RECIP (d̂)
d[0]← d; q[0]← x

2. [Iterate]
for j = 0, 1
d[j + 1]← d[j]× p[j]; q[j + 1]← q[j]× p[j]
p[j + 1] = CMPL(d[j + 1])

end for

3. [Terminate]
q[3]← q[2]× p[2]
REM ← d× q[3]− x
q ← ROUND(q[3], REM,mode)

where

• RECIP produces the initial approximation of 1/d in three cycles.

• CMPL(a) performs bit complementation of a.

• REM is a negated remainder.

• ROUND produces a quotient rounded according to the specified mode

Figure 7.5: Multiplicative division algorithm (double precision).
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FLOATING-POINT ARITHMETIC

• Floating-point representation and dynamic range

• Normalized/unnormalized formats

• Values represented and their distribution

• Choice of base

• Representation of significand and of exponent

• Rounding modes and error analysis

• IEEE Standard 754

• Algorithms and implementations: addition/subtraction, multiplication and
division
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VALUES REPRESENTED IN FLPT SYSTEM

A B C D E

+ inf- inf
[A, B] - negative floating-point numbers (normalized)
[D,E] - positive floating-point numbers (normalized)
(B,b] & [d,D) - denormals
C          - zero
> E     - positive overflow
< A     - negative overflow
(B, C) - negative underflow (normalized)
(C, D) - positive underflow (normalized)

(a)

0 1/8 1/4 1/2 1

0.100  
0.101
0.110
0.111

2

significand

exponent -2 -1 0 1

(b)

b d

denormals

Figure 8.1: a) Regions in floating-point representation. b) Example for m = f = 3, r = 2, and −2 ≤ E ≤ 1 (only positive region).
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Floating-point system
Normalized Unnormalized

A −(rm−f − r−f)× bEmax

B −rm−f−1 × bEmin −r−f × bEmin

C 0

D rm−f−1 × bEmin r−f × bEmin

E (rm−f − r−f)× bEmax
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DISTRIBUTION FOR b = 2, m = f = 4, and e = 2

Significand 2E

1 2 4 8

0.1000 1/2 1 2 4
0.1001 9/16 9/8 9/4 9/2
0.1010 10/16 10/8 10/4 5
0.1011 11/16 11/8 11/4 11/2
0.1100 12/16 12/8 3 6
0.1101 13/16 13/8 13/4 13/2
0.1110 14/16 14/8 14/4 7
0.1111 15/16 15/8 15/4 15/2
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DISTRIBUTION FOR b = 2, m = f = 3, and e = 3

Significand 2E

1 2 4 8 16 32 64 128

0.100 1/2 1 2 4 8 16 32 64
0.101 5/8 5/4 5/2 5 10 20 40 80
0.110 6/8 3/2 3 6 12 24 48 96
0.111 7/8 7/4 7/2 7 14 28 56 112
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DISTRIBUTION FOR b = 4, m = f = 4, and e = 2

Significand 4E

1 4 16 64

0.0100 1/4 1 4 16
0.0101 5/16 5/4 5 20
0.0110 6/16 6/4 6 24
0.0111 7/16 7/4 7 28
0.1000 1/2 2 8 32
0.1001 9/16 9/4 9 36
0.1010 10/16 10/4 10 40
0.1011 11/16 11/4 11 44
0.1100 12/16 3 12 48
0.1101 13/16 13/4 13 52
0.1110 14/16 14/4 14 56
0.1111 15/16 15/4 15 60
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DISTRIBUTION OF FLPT NUMBERS

(a)    b=2, f=4, e=2

0 1/2 1 2 3 4 5 6 7

1 2 4 8E:

(b)  b=2, f=3, e=3

0 1/2 1 2 3 4 5 6 7 8 ,10,12,14,16,20,24,28,
32,40,48,56, 64,80,96,112

1 2 4 8E: 16, 32, 64, 128

0 1/4 1/2 1 2 3 4 5 6 7 8 , 9, ..., 16, 20, 24, ...,60

(c)  b=4, f=4, e=2

1 4 16, 64E:

Figure 8.2: EXAMPLES OF DISTRIBUTIONS OF FLOATING-POINT NUMBERS.
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REPRESENTATION OF SIGNIFICAND AND EXPONENT

• SIGNIFICAND: SM with HIDDEN BIT

• EXPONENT: BIASED ER = E + B, minER = 0 ⇒ B = −Emin

• Symmetric range −B ≤ E ≤ B ⇒ 0 ≤ ER ≤ 2B ≤ 2e − 1
• for 8-bit exponent: B = 127, −127 ≤ E ≤ 128, 0 ≤ ER ≤ 255
• ER = 255 not used

• SIMPLIFIES COMPARISON OF FLOATING-POINT NUMBERS (same as in
fixed-point)

• MINIMUM EXPONENT REPRESENTED BY 0 SO THAT
FLOATING-POINT VALUE 0: ALL ZEROS
(0 sign, 0 exponent, 0 significand)
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SPECIAL VALUES AND EXCEPTIONS

• Special values - not representable in the FLPT system

– NAN (Not A Number)

– Infinity (pos, neg)

– allow computation in presence of special values

• Exceptions: result produced not representable - set a flag

– Exponent overflow

– Underflow

Digital Arithmetic - Ercegovac/Lang 2003 8 – Floating-Point Arithmetic



10
ROUNDOFF MODES AND ERROR ANALYSIS

• Exact results (inf. precision): x, y, etc.

• FLPT number representing x is Rmode(x) with rounding mode mode

• Basic relations:

1. If x ≤ y then Rmode(x) ≤ Rmode(y)

2. If x is a FLPT number then Rmode(x) = x

3. If F1 and F2 are two consecutive FLPT numbers then for F1 ≤ x ≤ F2

x is either F1 or F2

F1 F2x

Figure 8.3: Relation between x, Rmode(x), and floating-point numbers F1 and F2.
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ROUNDING MODES

• Round to nearest (tie to even). Rnear(x) is the floating-point number that
is closest to x.

Rnear(x) =































F1 if |x− F1| < |x− F2|
F2 if |x− F1| > |x− F2|
even(F1, F2) if |x− F1| = |x− F2|

• Round toward zero (truncate). Rtrunc(x) is the closest to 0 among F1 and
F2.

Rtrunc(x) =















F1 if x ≥ 0
F2 if x < 0

• Round toward plus infinity. Rpinf (x) is the largest among F1 and F2

Rpinf (x) = F2

• Round toward minus infinity. Rninf (x) is the smallest among F1 and F2

Rninf (x) = F1
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ROUNDING ERRORS

1. The (maximum) absolute representation error ABRE (MABRE))

ABRE = Rmode(x)− x

so that
MABRE = maxx(|ABRE|)

2. The average bias (RB)

RB = lim
t→∞

∑

M∈{Mm+t}(Rmode(M)−M)

#M

where {Mm+t} is the set of all significands with m + t bits, and #M is the
number of significands in the set.

3. The relative representation error (RRE)

RRE =
Rmode(x)− x

x
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ERRORS AND IMPLEMENTATION CHARACTERISTICS OF R-MODES

• x described exactly by the triple (Sx, Ex, Mx)

•Mx normalized but having infinite precision

•Mx decomposed into two components Mf and Md:

Mx = Mf + Md × r−f

•Mf has precision of significand in the FLPT system

•Md represents the rest, 0 ≤Md < 1
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ROUNDING TO NEAREST - UNBIASED, TIE TO EVEN

• Value represented - closest possible to the exact value

• The smallest absolute error - the default mode of the IEEE Standard

• Round to nearest specification:

Rnear(x) =















Mf + r−f if Md ≥ 1/2
Mf if Md < 1/2

• The addition of r−f can produce significand overflow

• Equivalently

Rnear(x) = (b(Mx +
r−f

2
)rfc)r−f

• Example: The exact value 1.100100011101 is rounded to nearest with 8-bit
precision

1.100100011101

+ 1

--------------

1.10010010
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ROUND TO NEAREST (cont.)

• The absolute error is

ABRE[Rnear] =















−Mdr
−f × bE if Md < 1/2

(1−Md)r
−f × bE if Md ≥ 1/2

• The maximum absolute error occurs when Md = 1/2

MABRE[Rnear] =
r−f

2
× bEmax

• unbiased round to nearest

Rnear(x) =















































Mf if Md < 1/2
Mf + r−f if Md > 1/2
Mf if Md = 1/2 and Mf = even
Mf + r−f if Md = 1/2 and Mf = odd

• For this mode
RB[Rnear] = 0
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ROUND TOWARD ZERO (TRUNCATION)

• rounded significand is obtained by discarding Md.

Rzero(x) = (bM × rfc)r−f = Mf

• The absolute error

ABRE[Rzero] = −Mdr
−f × bE

and

MABRE[Rzero] ≈ r−f × bEmax

• Absolute error always negative, the average bias is significant

AB[Rzero] ≈ −1

2
r−f
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ROUND TOWARD PLUS/MINUS INFINITY

• These two directed modes useful for interval arithmetic (operands and the
result of an operation are intervals)

• This permits the monitoring of the accuracy of the result

• Specs:

Rpinf (x) =















Mf + r−f if Md > 0 and S = 0
Mf if Md = 0 or S = 1

Rninf (x) =















Mf + r−f if Md > 0 and S = 1
Mf if Md = 0 or S = 0

• The addition of r−f can produce a significand overflow
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ILLUSTRATIONS OF ROUNDING MODES

Rminf(x)

x

Rpinf(x)

(c)

-1.00-1.01-1.10-1.11

-1.00-1.01-1.10-1.11 1.00 1.01 1.10 1.11

x

-1.00-1.01-1.10-1.11 1.00 1.01 1.10 1.11

(d)

(b)

|x|

1.00 1.01 1.10 1.11

1.00 1.01 1.10 1.11

|Rzero(x)|

(a)

|Rnear(x)|

1.00 1.01 1.10 1.11

1.001 1.011 1.101 1.111

1.00 1.01 1.10 1.11
(tie to even)

|x|

1.00 1.01 1.10 1.11

-1.00-1.01-1.10-1.11 1.00 1.01 1.10 1.11

Figure 8.4: ROUNDING TO (a) NEAREST, TIE TO EVEN. (b) ZERO. (c) PLUS INFINITY. (d) MINUS INFINITY.
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IEEE FLOATING-POINT STANDARD 754

• Minimizes anomalies

• Enhances portability

• Enhances numerical quality

• Allows different implementations
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REPRESENTATION AND FORMATS

1. The significand in SM representation:

• Sign S. One bit. S = 1 if negative.

• Magnitude (also called the significand). Represented in radix 2 with one
integer bit. That is, the normalized significand is represented by

1.F

where F of f bits (depending on the format) is called the fraction and
the most-significant 1 is the hidden bit.

The range of the (normalized) significand

1 ≤ 1.F ≤ 2− 2−f

2. Exponent. Base 2 and biased representation; the exponent field e, depending
of the format; biased with bias B = 2e−1 − 1.
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SPECIAL VALUES

• The representation of floating-point zero: E = 0 and F = 0. The sign S
differentiates between positive and negative zero.

• The representation E = 0 and F 6= 0 used for denormals; in this case the
floating-point value represented is

v = (−1)S2−(B−1)(0.F )

• The maximum exponent representation (E = 2e−1) represents not-a-number
(NAN) for F 6= 0 and plus and minus infinity for F = 0.
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BASIC AND EXTENDED FORMATS

• The basic format allows representation in single and double precision

1. Basic: single (32 bits) and double (64 bits)

• single: S(1),E(8),F(23)

(a) If 1 ≤ E ≤ 254, then v = (−1)S2E−127(1.F ) (normalized fp number)

(b) If E = 255 and F 6= 0, then v = NAN (not a number)

(c) If E = 255 and F = 0, then v = (−1)S∞ (plus and minus infinity)

(d) If E = 0 and F 6= 0, then v = (−1)S2−126(0.F ) (denormal, gradual
underflow)

(e) If E = 0 and F = 0, then v = (−1)S0 (positive and negative zero)

• double: S(1) E(11) F(52)

– Similar representation to single, replacing 255 by 2047, etc.

2. Extended: single (at least 43=1+11+31) and double (at least 79=1+15+63)
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ROUNDING, OPERATIONS, AND EXCEPTIONS

• Rounding
Default Mode:
round to nearest, to even when tie

Directed modes:
round toward plus infinity
round toward minus infinity
round toward 0 (truncate)

• Operations

Numerical:

Add, Sub, Mult, Div, Square root, Rem

Conversions

Floating to integer

Binary to decimal (integer)

Binary to decimal (floating)
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cont.

Miscellaneous

Change formats

Compare and set condition code

• Exceptions: By default set a flag and the computation continues

Overflow (when rounded value too large to be represented). Result is set to
± infinity.

Underflow (when rounded value too small to be represented)

Division by zero

Inexact result (result is not an exact floating-point number). Infinite precision
result different than floating-point number.

Invalid. This flag is set when a NAN result is produced.
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FLOATING-POINT ADDITION/SUBTRACTION

• x and y - normalized operands represented by (Sx, Mx, Ex) and (Sy, My, Ey)

1. Add/subtract significand and set exponent

M ∗
z =















(M ∗
x ± (M ∗

y )× (bEy−Ex))× bEx if Ex ≥ Ey

((M ∗
x)× (bEx−Ey)±M ∗

y )× bEy if Ex < Ey

Ez = max(Ex, Ey)

Ex - Ey = 4

Mx 1.xxxxxxxxxxx

My(2^(Ey-Ex)) 0.0001yyyyyyyyyyy

-----------------

z.zzzzzzzzzzzzzzz

2. Normalize significand and update exponent.

3. Round, normalize and adjust exponent.

4. Set flags for special cases.
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BASIC ALGORITHM

1. Subtract exponents (d = Ex − Ey).

2. Align significands

• Shift right d positions the significand of the operand with the smallest
exponent.

• Select as exponent of the result the largest exponent.

3. Add (Subtract) significands and produce sign of result. The
effective operation (add or subtract):

Floating-point op. Signs of operands Effective operation (EOP)
ADD equal add
ADD different subtract
SUB equal subtract
SUB different add
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cont.

4. Normalization of result. Three situations can occur:

(a) The result already normalized: no action is needed

1.10011111

0.00101011

ADD ----------

1.11001010

(b) Effective operation addition: there might be an overflow of the significand.
The normalization consists in

• Shift right the significand one position

• Increment by one the exponent

1.1001111

0.0110110

ADD ---------

10.0000101

NORM 1.00000101
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cont.

(c) Effective operation subtraction: the result might have leading zeros. Nor-
malize:

• Shift left the significand by a number of positions corresponding to the
number of leading zeros.

• Decrement the exponent by the number of leading zeros.

1.1001111

1.1001010

SUB ---------

0.0000101

NORM 1.0100000

5. Round. According to the specified mode. Might require an addition. If
overflow occurs, normalize by a right shift and increment the exponent.

6. Determine exception flags and special values : exponent overflow
(special value ± infinity), exponent underflow (special value gradual under-
flow), inexact, and the special value zero.
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EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL 
CASES

exponent overflow/underflow,

zero, inexact, NAN

LODL/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP: effective operation
R-SHIFTER: variable right shifter
L/R1-SHIFTER: variable left/one pos. right shifter
LOD: Leading One Detector

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure 8.5: BASIC IMPLEMENTATION OF FLOATING-POINT ADDITION.
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COMMENTS ON BASIC IMPLEMENTATION

• Significand normalized and in SM

• Base of exponent is 2

1. One alignment shifter: swap the significands according to the sign of the
exponent difference.

2. The adder: SM adder. Complicated - several options can be used:

(a) Use a two’s complement adder

(b) Use a ones’ complement adder

(c) Use a two’s complement adder; complement the smallest operand so that
the result is positive and no complementation is required.

To determine the smallest operand, two cases:

• The exponents are different: the operand with smallest exponent shifted
right and complemented

• The exponents are the same: compare the significands in parallel with
the alignment
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COMMENTS (cont.)

3. The normalization step requires:

• The detection of the position of the leading 1 uses

LOD (Leading-One-Detector)

• A shift performed by the shifter:

– no shift

– right shift of one position, or

– left shift of up to m positions

4. The rounding step uses several guard bits
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GUARD BITS AND ROUNDING

• Keep all 2m bits? No, a few additional bits sufficient: guard bits

• How many?

• For rounding toward zero (truncation): f fractional bits

• For rounding to nearest: one additional bit is required (f + 1 fractional bits).

For unbiased rounding to even: necessary to know when the rest of the bits
are all zero

• For rounding toward infinity: necessary to know when all the bits to be dis-
carded are zero
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EFFECTIVE ADDITION/SUBTRACTION CASES

1. Effective addition:

• Result either normalized or produces an overflow

• Normalization: a 1-bit right shift (if overflow); no left shift required

• ⇒ f + 1 fractional bits of the result required (R)

• Determine whether all the discarded bits are zero: sticky bit T , corre-
sponds to the OR of the discarded bits

1.0101110

0.00010101010

ADD -------------

1.01110001 T=OR(010)=1

Digital Arithmetic - Ercegovac/Lang 2003 8 – Floating-Point Arithmetic



34
cont.

2. Effective subtraction. Two sub-cases:

(a) The difference of exponents d is larger than 1.

• the smallest operand is aligned so that there are more than one leading
zeros

• the result is either normalized or, if not normalized, has only one leading
zero

• the normalization is performed by a left shift of one position, in addition
to the bit for rounding to nearest, another bit is required in the result of
the addition.

⇒ f + 2 fractional bits of result required

• During the subtraction, a borrow produced when sticky = 1

⇒ f + 3 bits required in subtraction (GRT)
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cont.

Example: After alignment

1.0000011

0.000011011001

SUB ----------------

During alignment compute T=OR(001)=1 resulting in

1.0000011

0.0000110111

SUB -------------

0.1111100001

NORM 1.1111000010
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cont.

(b) The difference of exponents is either 0 or 1.

• Result might have more than one leading zeros

• Left shift of up to m positions required

• Since alignment shift only of zero or one position, at most one non-zero
bit is shifted in during the normalization

⇒ only one additional bit required

1.0000011

0.11111001

SUB ----------

0.00001101

NORM 1.10100000

Digital Arithmetic - Ercegovac/Lang 2003 8 – Floating-Point Arithmetic



37
SUMMARY OF GUARD BITS

• in all cases three additional bits sufficient:

guard (G), round(R), and sticky (T)

• After normalization guard bits labeled as follows:

LGRT

1.xxxxxxxxxxxx

----f----

• During normalization sticky bit recomputed ( OR of the previous T and the
previous R)
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ROUND TO NEAREST

• Round up (add rnd to position L)

– If G = 1 and R and T are not both zero, rnd = G(R + T )

– If G = 1 and R = T = 0 then rnd = G(R + T )′L – tie case

Combining both cases,

rnd = G(R T ) + G(R T )′L = G(L R T )

L 1 1 0 1 1 1 G=1, R=1, T = 1 -> rnd = 1

L 1 0 0 0 0 0 G=1, R=0, T=1 -> rnd = 1 (tie case)

L 0 x x x x x G=0 rnd = 0
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DIRECTED ROUNDINGS

• Round toward zero: after normalization, truncate at bit L

• Round toward infinity:

Positive infinity

rnd = sgn′(G R T )

Negative infinity

rnd = sgn(G R T )
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EXCEPTIONS AND SPECIAL VALUES

• Overflow:

– detected by an exponent E ≥ 255

– set overflow flag, set result to ± infinity

• Underflow:

– detected when during the left shift the exponent E = 1 and the significand
not normalized

– set underflow flag, set result exponent to E = 0

– fraction left unnormalized (denormal, gradual underflow)

• Zero: the significand of the result of addition is 0

The result is E = 0 and F = 0

• Inexact:

– detected before rounding: the result is inexact if G R T = 1

– set inexact flag

• NAN: if one (or both) operand is a NAN, the result set to NAN.
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DENORMAL AND ZERO OPERANDS AND/OR RESULT

• Operand(s):

– Operand a denormal number (E = 0 and F 6= 0): no hidden 1

– Set operand of addition to E = 1 and 0.F

• Zero operand (E = 0 and F = 0): treated as a denormal number

• Result:

– detected during left shift: partially updated exponent E = 1 and signifi-
cand not normalized

– If resulting significand is not 0 then it is a denormal,

if it is 0 then the result is zero

exponent set to E = 0
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CRITICAL PATH

Exponent Difference

Swap

Right shift

Add significands

LOD

Left shift

Round

Adjust exponent

Special cases

Figure 8.6: FLPT ADDITION: Critical Path.
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SWAP

R-SHIFTERMUX

COMPARE

LZA

L1/R1-SHIFTER

MUX

L-SHIFTER

ROUND 

EXPONENT
UPDATE

2’s COMPLEMENT
ADDER

sgn(d)

d

sgn(d)

3 ms bits of
 adder output

(ovf , A[0],A[1])

cmp

Ez Mz

Mx My

1 0

sub

SIGN

sgn(d)
Sx

Sy

EOP

Sz

zero(d)

2

cmp

EXPONENT
DIFFERENCE

d

Ex Ey

COND. BIT-INVERT

(handling of special cases not shown)
EOP: effective operation
R-SHIFTER: variable right shifter
L-SHIFTER: variable left shifter
L1/R1-SHIFTER: one position left/right shifter

A[0:f+3]

(ovf, A[0],A[1]) = 000

ovf

COND. BIT-INVERT

EOP bit-invert
controlzero(d)

ovf ovf_rnd

Figure 8.7: IMPROVED SINGLE-PATH FLOATING-POINT ADDITION.
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control signals,

handling of exponent, sign,

special values not shown

L-SHIFTER

2’s COMPLEMENT
COMPOUND

ADDER

MUX

Mz

R-SHIFTER

R1-SHIFTER

CLOSE PATH

sub AND  (|d|= 0 or 1)

FAR PATH

add OR (sub AND  |d|> 1)

MUX
1 0

B B+1

COND. BIT-INVERT

ADD, 
 ROUND &

NORMALIZE
MODULE

R1-SHIFTER: one position right shifter
R-SHIFTER: variable right shifter
L-SHIFTER: variable left shifter

INVERT,  ADD, 
 ROUND &

INVERT
MODULE

sub AND  (|d|= 0 or 1)

LZA

SWAP

MyMx

Figure 8.8: DOUBLE-PATH IMPLEMENTATION OF FLOATING-POINT ADDITION.
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DEPENDENCE GRAPH FOR DOUBLE-PATH SCHEME

Swap

Cond bit-invert

Add, round, 

& normalize

R1- shift

Invert, add, round, 

& invert

MUX

LZA

R- shift

L- shift

Figure 8.9: Dependence graph for double-path scheme.
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PIPELINED IMPLEMENTATION

SWAP

COND. BIT-INVERT

L1/R1-SHIFTER

MUX

2’s COMPLEMENT
ADDER

Mz

Mx My

(a) (b)

bit-invert
control

control signals,
handling of exponent, sign,
special values
not shown

R1-SHIFTER: one position right shifter
R-SHIFTER: variable right shifter
L1/R1-SHIFTER: one position left/right shifter
L-SHIFTER: variable left shifter

modules with large delay

latch

R-SHIFTER

COND. BIT-INVERT

COMPARE

LZA

ROUND &
NORMALIZE OVF

L-SHIFTER
L-SHIFTER

Mz

R1-SHIFTER

CLOSE PATH FAR PATH

MUX

COND. BIT-INVERTINVERT,  ADD, 
 ROUND &

INVERT
MODULE

ADD, 
 ROUND &

NORMALIZE
MODULE

R-SHIFTER

LZA

SWAP

MyMx

Figure 8.10: PIPELINED IMPLEMENTATIONS: (a) SINGLE-PATH SCHEME. (b) DOUBLE-PATH SCHEME.
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FLPT MULTIPLICATION

• x and y - normalized operands represented by (Sx, Mx, Ex) and (Sy, My, Ey)

1. Multiply significands, add exponents, and determine sign

M ∗
z = M ∗

x ×M ∗
y

Ez = Ex + Ey

2. Normalize M ∗
z and update exponent

3. Round

4. Determine exception flags and special values
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BASIC IMPLEMENTATION

control signals,
handling of exceptions

not shown

XOR

Sz

NORMALIZE

ROUND

m by m
MULTIPLIER

EXPONENT
UPDATE

EXPONENT
 ADDITION

2m

P[-1:m]

P[m+1:2m-2]

m-2m+2
T

Sx Sy

Ez Mz

Ex Ey Mx My

STICKY

m+1

m

P[-1:2m-2]

L, G

rnd

RND Sz

Figure 8.11: BASIC IMPLEMENTATION OF FLOATING-POINT MULTIPLICATION.
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COMMENTS ON IMPLEMENTATION

1. Multiplication of magnitudes

• produces magnitude P of 2m bits - only m bits in result: one guard bit
and the sticky bit

Output of multiplier module P:

Bit position: (-1)0.123...(m-2)(m-1) m (m+1)...(2m-2)

2. Exponent of result

Ez = Ex + Ey −B

3. Sign of result
Sz = Sx ⊕ Sy
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cont.

4. Normalization: 1 ≤Mx, My < 2, the result in range [1, 4)

Output of multiplier module P:

Bit position: (-1)0.123...(m-2)(m-1) m (m+1)...(2m-2)

If P[-1]=0, P is normalized:

L = P[m-1], G = P[m], T = OR(P[m+1],...,P[2m-2])

If P[-1] = 1, normalize P by shifting right one position

L = P[m-2], G = P[m-1], T = OR(P[m],...,P[2m-2])
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cont.

5. Rounding: four rounding modes with guard bit (G) and sticky bit (T)

• Round to nearest

rnd = G(T ) G(T )′L = G(T L)

with G and T the two bits following L AFTER the normalization.

• Round toward zero

Result after normalization truncated at bit L

• Round toward infinity

positive infinity add

rnd = sgn′(G T )

negative infinity

rnd = sgn(G T )
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EXCEPTIONS AND SPECIAL VALUES, ETC.

• Overflow: exponent too large;

detected after exponent update;

overflow flag set; result value is ±infinity

• Underflow: resulting exponent too small;

underflow flag set; exponent set to E = 0

significand shifted right to represent a denormal

• Zero: when one of the operands has value 0 and the other is not ± infinity;

• zero result set
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EXCEPTIONS, SPECIAL VALUES, ETC. (cont.)

• Inexact: result inexact if, after normalization, G T = 1

• NAN: result NAN if one (or both) of the operands is a NAN or if one of the
operands is a 0 and the other ± infinity

• Denormals: result denormal if one or both operands are denormal;

left shift necessary;

if exponent underflow, right shift (gradual underflow); set E=0
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ALTERNATIVE IMPLEMENTATION

control signals,

handling of exponents 

and exceptions

not shown

ADD

CARRY NET

m by m
MULTIPLIER

with CS OUTPUT

2m

PS[-1:m]

PS[m+1:2m-2]

m-3

cm

PC[-1:m]

PC[m+1:2m-3]

2m-1

m+2 m+2

m-2

NORMALIZE
ROUND

T

STICKY

PS[-1:2m-2]PC[-1:2m-3]

Mx My

Mz

Sz

Figure 8.12: ALTERNATIVE IMPLEMENTATION.
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REDUCING THE LATENCY

• Compute MS half (+ guard bit) in conventional form using cm;

cm in the critical path

• Determine sticky from the operands;

needs detector of trailing zeros, adder, and comparator
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S s s s s s s s s

C c c c c c c c c

-1 1 1 1 1 1 1 1 1

----------------

z z z z z z z z

t t t t t t t

zi = (si ⊕ ci)
′

ti = si+1 ci+1
(8.3)

Compute

wi = zi ⊕ ti (8.4)

Sticky bit is
T = NAND(wi) (8.5)
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CARRY FROM LS PART

Product P[-1:2m-2]

-------(m+2)----- -----(m-2)-----

xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx

c_m

c_m is the carry produced by

the least-significant m-2 bits of product P

and added in position m.

Figure 8.13: ADDING CARRY FROM THE LEAST SIGNIFICANT HALF.
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ROUNDING POSITION

Bit position: (-1)(0).123...(m-2)(m-1) m

0 1 .xxx... x x x

c_m

1

(a)

Bit position: (-1)(0).123...(m-2)(m-1) m

1 x .xxx... x x x

1 c_m

(b)

Figure 8.14: ROUNDING POSITION: (a) NORMALIZED PRODUCT. (b) UNNORMALIZED PRODUCT.
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ADDING CARRY AND ROUNDING

• Product in CS form - normalized?

• Combine final addition and rounding. Select the correct result.

• PM = PS + PC – the MS of the product up to position m

• Compute
P0 = PM + (cm + 1)× 2−m

and
P1 = PM + (cm + 2)× 2−m

and then select

P =















P0 if P0[−1] = 0
2−1P1 if P0[−1] = 1
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(-1) 0. 1 2 3 ... (m-2)(m-1)(m)

PS x x x x x x x x

PC x x x x x x x x

c_m c’_m <=> (c_m+1)2^(-m)

---------------------------------

PS* x x x x x x x x

PC* x x x x x x x

Get P0 and P1 = P0 + 2^{-m}:

PS* x x x x x x x x

PC* x x x x x x x 0

-----------------------------------

P0 ovf x x x x x x x

P1 x x x x x x x x

After selection:

P 1. x x x ... x L

Figure 8.15: ADDING CARRY cm AND ROUNDING.
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IMPLEMENTATION

MUX

rounded & normalized
fraction of the result significand

COMPOUND ADDER

FA FAm Half Adders

cm

cm

PS[-1..m-2]

PC[-1..m-2]

L G

P1[1..m] P0[1..m]

T (sticky)

LADJ

P1[m]

P[m-1,m] 2
P[1..m]

m+2 m+2

PC[m-1] PC[m]

PS[m-1] PS[m]

m m

m-1

(shifted)

PC* PS*

Fz [1..m-1]

(cm+1)2-m

m-2

P0[-1]

P0[-1]

P0[0]
P1[0]

Last digit 

adjustment network

Figure 8.16: ADDING CARRY, NORMALIZATION, AND ROUNDING IMPLEMENTATION
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IMPLEMENTATION (cont.)

1. A row of HAs and FAs to add (cm + 1)2−m to PS[−1,m] and PC[−1, m].

2. A compound adder that produces the sum P0 and the sum plus 1 (P1).

3. A multiplexer which selects P0 or the normalized (shifted) P1 depending
whether P0 does not overflow or overflows

4. A module LADJ which determines the least-significant bit of the significand.

sticky bit update:

T ∗ = T P1[m] · P0[−1] update sticky bit

adjustment of the least-significant bit

L = P [m− 1](P [m] T ∗)
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REMOVING cm FROM CRITICAL PATH

carry+sum range of Σ range pre-add range of Σ range
in pos. m before pre-add of cm−1 1? after pre-add of cm−1

0 [1,3] [0,1] NO [1,3] [0,1]
1 [2,4] [1,2] YES [0,2] [0,1]
2 [3,5] [1,2] YES [1,3] [0,1]
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MUX

COMPOUND ADDER

P0[-1..m-1]

PS[-1..m-1]PC[-1..m-1]

m+1 m+1

m+1 Half Adders

. . . 

PC[m]

PS[m]

"preadd 1"m+1m

P0[m]

m+1m+1

R1 SHIFTER

rounded & normalized
fraction of the result significand

T (sticky) 

LADJ

PP[m]

P[m-1]

P[1..m-1]

m-1

Fz [1..m-1]

m-2

P1[-1..m-1]

PP[-1..m-1]PP[-1]

(m-1)

PP[-1]

PP[0..m-1]

cm

PC[m] PS[m]

SEL

P0[-1]

Figure 8.17: Adding carry, normalization, and rounding implementation with carry out of critical path.
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MULTIPLY-ADD FUSED (MAF)

control signals, sign,

handling of exceptions

not shown

m by m
MULTIPLIER
(CS RESULT)

Mx My

RIGHT
SHIFTER

Mw

SHIFT DISTANCE/
EXPONENT

Ex EwEy

d

max(Ex+Ey , Ew)

REALIGN/
NORMALIZE

ROUND

Mz

m+1

m

3m+2

LOP STICKYADDER

CSA

EXPONENT
UPDATE

Ez

2m 2m3m+2

mm m

Figure 8.18: BASIC IMPLEMENTATION OF MAF OPERATION.
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MAF (cont.)

------ m ------ -------- 2m ---------

Product x*y: 00xx.xxxxx...xxxxxxxxxx

Addend: 1.xxxxxxxxxxxxx

|--- m-1+4 -------|

(a)

-------- 2m ---------

Product x*y: xx.xxxxx...xxxxxxxxxx

Addend: 01xxxxxxxxxxxxx

Shift distance: |--- 2m-2+1 -------|

(b)

Figure 8.19: Position of addends using bidirectional shift: (a) Maximum left shift. (b) Maximum right shift.
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AVOIDING BIDIRECTIONAL SHIFTER

• Position addend Mw m + 3 bits to the left of the product

• shift right by the distance

d = Ex + Ey − Ew + m + 3 (8.6)

• for biased exponent performed as

d = EB
x + EB

y − EB
w −B + m + 3 (8.7)

• No shift performed for d ≤ 0 and the maximum shift is 3m + 1
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Initial position:

------ m ------ -------- 2m ------------

Product x*y: 00xxxxxxxx....xxxxxxxxxxxx

Addend: 1.xxxxxxxxxxxxx

|--- m-1+4 -------|

|--- sticky ------------|

region

(a)

Alignment when Exy = Ew:

------ m ------ -------- 2m --------------

Product x*y: 00xx.xxxxx....xxxxxxxxxxxxxxx

Addend: 1.xxxxxxxxxxxxx

|-sticky|

Shift distance: |--- m-1+4 -------|

(b)
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Alignment when Exy - Ew = k:

------ m ------ -------- 2m --------

Product x*y: 00xx.xxxxx....xxxxxxxx

Addend: 1xxxxxxxxxxxxx

Shift distance: |----- m+3 -------|----- k ----|

(c)

Alignment when Exy - Ew >= 2m-1:

------ m ------ -------- 2m --------

Product x*y: 00xx.xxxxx....xxxxxxxx

Addend: 01xxxxxxxxxxxxx

Shift distance: |----- m+3 -------|----- 2m-1 -------|

(d)

Figure 8.20: Alignment with right shifter.
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Mx My

RIGHT
SHIFTER

Mw

CSA+ADDERINCREMENTER

2m 2m
3m+2

m+2

m by m
MULTIPLIER

m m m

2m

m+2 2m

to Realign/Normalize

3m+2

Figure 8.21: Implementation of MAF adder.
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LEFT SHIFTING OF ADDER OUTPUT

Adder output |----- m+2 -----|--------- 2m ----------|

Before shift 0000000000000000001.xxxxxxxxxxxxxxxxxxx

After shift 1.xxxxxxxxxxxxLGRT

Figure 8.22: Left shifting of the adder output.
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PIPELINED MAF

• MAF unit usually pipelined.

• Three-stage pipeline:

– Stage 1 implements the multiplication, alignment and 3-2 carry-save ad-
dition;

– Stage 2 performs 2-1 addition and predicts the leading one in the sum;

– Stage 3 performs normalization and rounding
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FLOATING-POINT DIVISION

• Operands: x and d represented by (M ∗
x , Ex) and (M ∗

d , Ed), with M ∗
x and

M ∗
d signed and normalized. The result

q = x/d (8.8)

represented by (M ∗
q , Eq), with Mq also signed and normalized.

• The high-level description of the floating-point division algorithm

1. Divide significands and subtract exponents

M ∗
q = M ∗

x/M ∗
d

Eq = Ex − Ed
(8.9)

2. Normalize M ∗
q and update exponent

3. Round

4. Determine exception flags and special values
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IMPLEMENTATION

control signals,
special cases

not shown

EXPONENT
UPDATE

E q

XOR

S q

NORMALIZE

ROUND

M q

SIGNIFICAND
DIVIDER

MyMxEyEx

Sx Sy

EXPONENT
DIFFERENCE

Figure 8.23: Basic implementation of floating-point division.
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DIGIT-SERIAL ARITHMETIC

• Modes of operation:LSDF and MSDF

• Algorithm and implementation models

• LSDF arithmetic

• MSDF: Online arithmetic
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TIMING PARAMETERS

• radix-r number system: conventional and redundant

• Serial signal: a numerical input or output with one digit per clock cycle

• For an n digit signal, the clock cycles are numbered from 1 to n

• Timing characteristics of a serial operation determined by two parameters:

– initial delay δ: additional number of operand digits required to determine
the first result digit

– execution time Tn; the time between the first digit of the operand and
the last digit of the result

Tn = δ + n + 1
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input

output

δ = 0

(a)

cycle: 1 2 3 4 5 6 7 8 9 10 11 12

T12 = 1 + 12

(b)

input

output
δ =3

cycle: -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

T12 = 3+1+12

compute

0

compute

Figure 9.1: Timing characteristics of serial operation with n = 12. (a) With δ = 0. (b) With δ = 3.
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LSDF AND MSDF

1. Least-significant digit first (LSDF) mode (right-to-left mode)

x =
n−1∑

i=0
xir

i

2. Most-significant digit first (MSDF) mode (left-to-right mode)

also known as online arithmetic

initial delay called online delay

x =
n∑

i=1
xir
−i
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ALGORITHM MODEL

• Operands x and y, result z: n radix-r digits

• In cycle j the result digit zj+1 is computed

• Cycles labeled −δ, . . . , 0, 1, . . . , n

• In cycle j receive the operand digits xj+1+δ and yj+1+δ, and output zj

• x[j], y[j] and z[j] are the numerical values of the corresponding signals when
their representation consists of the first j + δ digits for the operands, and j
digits for the result.

In iteration j

x[j + 1] = (x[j], xj+1+δ)
y[j + 1] = (y[j], yj+1+δ)
zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j])
z[j + 1] = (z[j, ], zj+1)
w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1)
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xj+1+δ

yj+1+δ

xj+2+δ

yj+2+δ
Input

Cycle

j j+1

x[j+1]

x[j+2]

zj+1

zj

zj+2

zj+1

Compute

Output

(a)

(b)

F; G

W

xj+1+δ yj+1+δ

zj+1

X; Y

x[j] y[j]

w[j+1]

digit-serial 

digit-parallel
zj

w[j] (residual)

zj

z[j]

Z

zj+1
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Table 9.1: Initial delay (δ)

Operation LSDF MSDF
Addition 0 2 (r = 2)

1 (r ≥ 4)
Multiplication 0 3 (r = 2)

2 (r = 4)
(only MS half) n
Division 2n 4
Square root 2n 4
Max/min n 0
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a) LSDF mode

n-digit addition:

Cycle: 0 1 2 . . .

LSD MSD

Inputs: x x x x x x x x x

Output: x x x x x x x x x

n by n --> 2n multiplication:

LSD MSD

Inputs: x x x x x x x x x

Output: x x x x x x x x x x x x x x x x x x

-----------------

MS half

b) MSDF mode

Cycle: -2 -1 0 1 2 . . .

n-digit operation:

MSD LSD

Inputs: x x x x x x x x x

Output: x x x x x x x x x

---

online delay = 2

Figure 9.3: LSDF and MSDF modes.
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COMPOSITE ALGORITHM: EXAMPLE

• Givens method for matrix triangularization

• Rotation factors:

c =
x√

x2 + y2
s =

y√
x2 + y2

• The online delay of the network

∆rot = δ1 + δ2 + δ3 + δ4 = 13

• Execution time (latency): Drot = ∆rot + n + 4
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OLSQ OLSQ

OLADD

OLSQRT

OLDIV OLDIV

xh

δ1 δ1

δ2

δ3

δ4δ4

ai i = h-δ1−1

fk k=i−δ2−1

gp

sqcq

p=k−δ3−1

q=p−δ4−1

∆ ∆ ∆=p∆=p

(on-line 

delay)

(p-bit shift

register)

(a)

yh

bi

Operation:

Squaring

Addition

Square root

Division

(b)

x,y
a,b

f
g
c, s

δ1

δ2

δ3

δ4

Figure 9.4: Online computation of rotation factors: (a) Network. (b) Timing diagram.
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LSDF ARITHMETIC: ADDITION/SUBTRACTION

• The cycle delay
tLSDFadd−k = tCPA(k) + tFF

• The total time for n-bit addition

TLSDFadd−n = (
n

k
+ 1)tLSDFadd−k

• The cost: one k-bit CPA, one flip-flop, and one k-bit output register
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SUB

(initialize to 0 if ADD

                1 if SUB)

carry/borrow FF

4
-b

it
 A

D
D

E
R

z i-1,0

Operand X:Operand Y: Result Z:

z i,0

c

yi.0
xi,0

yi,1
xi,1

yi,2
xi,2

yi,3
xi,3

z

z

z

z

z i,1

z i,2

z i,3

z i-1,1

z i-1,2

z i-1,3

(a)

k-bit

CPA

z i-1

Operand X:
Operand Y: Result Z:z i

yi

xi
z

c

(initialize to 0 if ADD

                1 if SUB)

carry/borrow FF

SUB

result digit

register

k

k

k

k k
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LSDF MULTIPLICATION

• For radix-2 and 2’s complement representation:

1. Serial-serial (LSDF-SS) multiplier, both operands used in digit-serial form.

2. Serial-parallel ( LSDF-SP) multiplier, one operand first converted to parallel
form

• Operation cannot be completed during the input of operands
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SERIAL-SERIAL MULTIPLIER

• Define internal state (residual)

w[j] = 2−(j+1)(x[j]× y[j]− p[j])

where x[j] = ∑j
i=0 xi2

i and similarly for y[j] and p[j].

• Both operands used in serial form; the recurrence is

w[j + 1] = 2−(j+2)(x[j + 1]× y[j + 1]− p[j + 1])
= 2−(j+2)((x[j] + xj+12

j+1)(y[j] + yj+12
j+1)− (p[j] + pj+12

j+1))
= 2−1(w[j] + y[j + 1]xj+1 + x[j]yj+1 − pj+1)

• This can be expressed as

v[j] = w[j] + y[j + 1]xj+1 + x[j]yj+1

and
w[j + 1] = b2−1v[j]c
pj+1 = v[j]mod 2
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Position
Cycle 8 7 6 5 4 3 2 1 0

0 y0x0

1 x0y1

y1x1 y0x1

2 x1y2 x0y2

y2x2 y1x2 y0x2

3 x2y3 x1y3 x0y3

y3x3 y2x3 y1x3 y0x3

4 x3y4 x2y4 x1y4 x0y4

y4x4 y3x4 y2x4 y1x4 y0x4
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(register control signals not shown)

SELECTOR

y[j+1]

LA-Reg Y

n n

y
j+2

y
j+1

x
j+1

SELECTOR

LA-Reg X

n n

x
j+2

x
j+1

x[j]

y
j+1

[4:2]

ADDER

shifted WS

n+1

Reg WC Reg WS

LS bits

MS bits

n

n

n

shifted WC

n

SA

FA

sign(x)

n n

(shift-register for load control in left-append registers not shown)

w[j+1]:

w[j]: 

sign(y)

cycle n

SA - Serial adder

carry-out

x
j+1

pj+1

x[j] y[j+1]

Figure 9.6: Serial-serial 2’s complement radix-2 multiplier.
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cont.

• The total execution time

TSSMULT = 2ntcyc

• The delay of the critical path in a cycle

tcyc = tSEL + t4−2CSA + tFF

• Cost: one n-bit [4:2] adder, 5 n-bit registers, and gates to form multiples
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SERIAL-PARALLEL MULTIPLIER

• One of the operands is a constant,
One possibility: perform operation in 3n cycles

Phase 1: Serial input and conversion of one operand to parallel form;

Phase 2: Serial-parallel processing and output of the LS half of the product.

Phase 3: Serial output of the MS half of the product.

• The critical path in a cycle

tcyc = tSEL + tCSA + tFF

• The delay of the LSDF-SP multiplier

TSPrnd = 3n× tcyc
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Phase 1: shift-in operand X  (n cycles)

Phase 2: serial-parallel carry-save multiplication (n cycles)

                  shifted sum and carry bit-vectors loaded bit-parallel

Phase 3: MS bits obtained using bit-serial adder SA operating

                 on bits shifted out of WC and WS shift-registers (n cycles)

(used serially 

in Phase 2)

SELECTOR

x

(register control signals not shown)

n

Shift-Reg X

[3:2]

ADDER

shifted WS

n+1

Reg WC Reg WS

n n

LS bits

MS bits

n

n

n

shifted WC

n

sign(y)

(shifted -in 

in Phase 1 or

constant)

SA

HA

x
j

y
j

(shifted -out 

in Phase 3)

(shifted -out 

in Phase 2)

cycle n

in Phase 2

SA - Serial adder

carry-out

x

{ 0, x, x }

w[j]

w[j+1]

Figure 9.7: 3-phase serial multiplier.Digital Arithmetic - Ercegovac/Lang 2003 9 – Digit-Serial Arithmetic
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MSDF: ONLINE ARITHMETIC

• Online arithmetic algorithms operate in a digit-serial MSDF mode

• To compute the first digit of the result, δ + 1 digits of the input operands
needed

• Thereafter, for each new digit of the operands, an extra digit of the result
obtained

• The online delay δ typically a small integer, e.g., 1 to 4.

Cycle -2 -1 0 1 2 · · ·
Input x1 x2 x3 x4 x5 · · ·
Compute z1 z2 z3 · · ·
Output z1 z2 · · ·

——–
δ = 2

Figure 9.8: Timing in online arithmetic.
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REDUNDANT REPRESENTATION

• The left-to-right mode of computation requires redundancy

• Both symmetric {−a, . . . , a} and asymmetric {b, . . . , c}) digit-sets used in
online arithmetic

• Over-redundant digit-sets also useful

• Examples of radix-4 redundant digit sets:

{-1,0,1,2,3} (asymmetric, minimally-redundant),

{-2,-1,0,1,2} (symmetric, minimally-redundant), and

{-5,-4,-3,-2,-1,0,1,2,3,4,5} (symmetric, over-redundant)

• Heterogeneous representations to optimize the implementation

• Conversion to conventional representation: use on-the-fly conversion
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ADDITION/SUBTRACTION

• The online addition/subtraction algorithm: the serialization of a redundant
addition (carry-save or signed-digit)

• Radix r > 2

(tj+1, wj+2) =





(0, xj+2 + yj+2) if |xj+2 + yj+2| ≤ a− 1
(1, xj+2 + yj+2 − r) if xj+2 + yj+2 ≥ a
(−1, xj+2 + yj+2 + r) if xj+2 + yj+2 ≤ −a

and
•

zj+1 = wj+1 + tj+1

where xj, yj, zj ∈ {−a, . . . , a}.
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EXAMPLE OF ONLINE ADDITION (r = 4, a = 3)

• Operands x = (.123̄301̄) y = (.21̄3̄322)

• The result z = (1.1̄01̄221).

j xj+2 yj+2 tj+1 wj+2 wj+1 zj+1 zj

-1 1 2 1 -1 0* 1 0*
0 2 -1 0 1 -1 -1 1
1 -3 -3 -1 -2 1 0 -1
2 3 3 1 2 -2 -1 0
3 0 2 0 2 2 2 -1
4 -1 2 0 1 2 2 2
5 0 0 0 0 1 1 2
6 0 0 0 0 0 0 1
* latches initialized to 0.
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RADIX r > 2 ONLINE ADDER

x
j

y
j

t
j-1

w
j

w
j+1

SUM

z
j

TW

x
j+1

y
j+1

t
j

SUM

z
j+1

TW

x
j+2

y
j+2

t
j+1

w
j+2

SUM

z
j+2

TW

t
j+2

(a)

latch

x
j+2

y
j+2

t
j+1

w
j+2

w
j+1

SUM

z
j+1

z
j

TW

(b)

Figure 9.9: (a) A segment of radix-r > 2 signed-digit parallel adder. (b) Radix-r > 2 online adder. All latches cleared at start.
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RADIX-2 ONLINE ADDER

• Digit-parallel radix-2 signed-digit adder converted into a radix-2 online adder
with online delay δ = 2

(a)

FA

wj+3t j+2 t j+3

FA

g j+3 hj+3

h j+2

FA

wj+2t j+1

FA

g j+2

hj+1

FA

wj+1t j

FA

g j+1

hj

FA

FA

g j+3

latch

h j+2

g j+2

wj+2

(b)

(output latches)

z-j+3z+
j+3z-j+2z+

j+2z+
j+1 z-j+1 = t j+1z-j+1

= w
j+1z+

j+1

y-
j+3y+

j+3x-
j+3x+

j+3y-
j+2y+

j+2 y-
j+3y+

j+3x-
j+3x+

j+3y-
j+1y+

j+1x-
j+1x+

j+1 x-
j+2x+

j+2

z-j z+
j

Figure 9.10: (a) A segment of radix-2 signed-digit parallel adder. (b) Online adder.
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cont.

• The cycle time is tcyc = 2tFA + tFF

• The operation time TOLADD−2 = (2 + n + 1)tcyc

• The cost 2 FAs and 5 FFs.

• To reduce the cycle time, pipeline the two stages:

reduces the cycle time by one tFA; increases online delay to δ = 3
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EXAMPLE OF RADIX-2 ONLINE ADDITION

x = (.0101̄1101̄)

y = (.101̄011̄1̄0)

z = (1.1̄01001̄01)

j xj+3 yj+3 x+
j+3x

−
j+3 y+

j+3y
−
j+3 hj+2 gj+3 gj+2 tj+1wj+2 z+

j+1z
−
j+1 zj

-2 0 1 00 10 1 10 00* 0 1 - - -
-1 1 0 10 00 1 10 10 0 0 10 -
0 0 -1 00 01 0 01 10 1 1 01 1
1 -1 0 01 00 0 10 01 1 1 11 -1
2 1 1 10 10 1 00 10 0 0 10 0
3 1 -1 10 01 0 11 00 0 1 00 1
4 0 -1 00 01 0 01 11 1 0 11 0
5 -1 0 01 00 0 10 01 1 1 01 0
6 0 0 00 00 0 00 10 1 1 11 -1
7 0 0 00 00 0 00 00 0 0 10 0
8 0 0 00 00 0 00 00 0 0 00 1
* g latches initialized to 00.
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METHOD FOR DEVELOPING ONLINE ALGORITHMS

• Part 1: development of the residual recurrence

w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1)

for −δ ≤ j ≤ n− 1 where

x[j] =
j+δ∑

i=1
xir
−i, y[j] =

j+δ∑

i=1
yir
−i, z[j] =

j∑

i=1
zir
−i

are the online forms of the operands and the result

• Part 2: the result digit selection

zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j])
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Part 1: RESIDUAL AND ITS RECURRENCE

Step 1. Describe the online operation by the error bound after j digits

|f (x[j], y[j])− z[j]| < r−j

Step 2 Transform expression to use only

• multiplication by r (shift),

• addition/subtraction,

• multiplication by a single digit

B < G(f (x[j], y[j])− z[j]) < B

where G is the required transformation and B and B are the transformed
bounds

Example: division error expression |x[j]/y[j]− z[j]| < r−j transformed into

|x[j]− z[j] · y[j]| < |r−jy[j]|
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cont.

Step 3 Define a scaled residual

w[j] = rj(G(f (x[j], y[j])− z[j]))

with the bound
ω = rjB < w[j] < rjB = ω

and initial condition w[−δ] = 0. ω and ω are the actual bounds determined
in Step 6

Step 4 Determine a recurrence on w[j]

w[j+1] = rw[j]+rj+1(G(f (x[j+1], y[j+1])−z[j+1])−G(f (x[j], y[j])−z[j]))

Step 5 Decompose recurrence so that H1 is independent of zj+1

w[j + 1] = rw[j] + H1 + H2(zj+1) = v[j] + H2(zj+1)
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cont.

Step 6 Determine the bounds of w[j + 1] in terms of H1 and H2

ω = rω + max(H1) + H2(a)

resulting in

ω = −max(H1) + H2(a)

r − 1
Similarly,

ω = −min(H1) + H2(−a)

r − 1
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Part 2a: SELECTION FUNCTION WITH SELECTION CONSTANTS

zj+1 = k if mk ≤ v̂[j] < mk+1

where v̂[j] is an estimate of v[j] obtained by truncating the redundant repre-
sentation of v[j] to t fractional bits.

Selection constants need to satisfy

max( ̂Lk) ≤ mk ≤ min(̂Uk−1)

where [ ̂Lk,
̂Uk] is the selection interval of the estimate v̂[j]

Step 7 Determine [ ̂Lk,
̂Uk]

First, determine [Lk, Uk] for v[j]

ω = Uk + H2(k) ω = Lk + H2(k)

Substituting ω and ω the selection intervals for v[j] is,

Uk = −max(H1)+H2(a)
r−1 −H2(k)

Lk = −min(H1)+H2(−a)
r−1 −H2(k)
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cont.

Now restrict the intervals because of the use of the estimate v̂[j]

emin ≤ v[j]− v̂[j] ≤ emax

producing the error-restricted selection interval [L∗k, U ∗k ] with

U ∗k = Uk − emax L∗k = Lk + |emin|
The errors are

• For carry-save representation emax = 2−t+1 − ulp and emin = 0.

• For signed-digit representation emax = 2−t−ulp and emin = −(2−t−ulp).

̂Uk−1 = bU ∗k−1 + 2−tct
̂Lk = dL∗ket

where bxct and dxet indicate x values truncated to t fractional bits.
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2-t

L
k

Uk-1

v[j]
- possible choices

    for mk

L*
k

L
k

(the ticks on the v[j] line represent the estimate v[j])

U
k-1

2-t+1

U*
k-1

Figure 9.11: The choices of selection constant mk.
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cont.

Step 8 Determine t and δ. To determine mk, we need

min(̂Uk−1)−max( ̂Lk) ≥ 0

This relation between t and δ is used to choose suitable values.

Step 9 Determine the selection constants mk and the range of v̂[j] as

brω + min(H1)− emaxct ≤ v̂[j] ≤ brω + max(H1) + |emin|ct
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Part 2b: SELECTION BY ROUNDING

• In algorithms using a higher radix (r > 4)

w[j + 1] = rw[j] + H1 + H2(zj+1) = v[j] + H2(zj+1)

• In the rounding method, the result digit is obtained as

zj+1 = bv[j] +
1

2
c

with |v[j]| < r − 1
2 to avoid over-redundant output digit.

w[j + 1] = v[j] + H2(bv[j] +
1

2
c)

• For CS form of t fractional bits, the estimate error

emax = 2−t+1 − ulp

• When v̂[j] = mk − 2−t it must be possible to choose zj+1 = k − 1

mk − 2−t + emax =
2k − 1

2
+ 2−t ≤ ̂Uk−1
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GENERIC FORM OF EXECUTION AND IMPLEMENTATION.

• Execution: n + δ iterations of the recurrence, each one clock cycle

• Iterations (cycles) labeled from −δ to n− 1

• One digit of each input introduced during cycles −δ to n− 1− δ and digits
value 0 thereafter

• Result digits 0 for cycles −δ to −1 and z1 is produced in cycle 0

• Result digit zj is output in cycle j (one extra cycle to output zn)
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cont.

• The actions in cycle j:

– Input xj+1+δ and yj+1+δ.

– Update x[j+1] = (x[j], xj+1+δ) and y[j+1] = (y[j], yj+1+δ) by appending
the input digits.

– Compute v[j] = rw[j] + H1

– Determine zj+1 using the selection function.

– Update z[j + 1] = (z[j], zj+1+δ) by appending the result digits.

– Compute the next residual w[j + 1] = v[j] + H2(zj+1)

– Output result digit zj
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IMPLEMENTATION

• Similar structure of algorithms → all implemented with same basic compo-
nents, such as

(i) registers to store operands, results, and residual vectors;

(ii) multiplication of vector by digit;

(iii) append units to append a new digit to a vector;

(iv) Two-operand and multioperand redundant adders, such as signed digit
adders, [3:2] carry-save adders and their generalization to [4:2] and [5:2]
adders;

(v) converters from redundant representations (i.e., signed digit and carry
save) to conventional representations;

(vi) carry-propagate adders of limited precision (3 to 6 bits) to produce esti-
mates of the residual functions; and

(vii) digit-selection schemes to obtain output digits.
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cont.

• Online algorithm implementation similar to implementation of digit-recurrence
algorithms

• Algorithms and implementations developed for most of basic arithmetic op-
erations and for certain composite operations

• Larger set of operations possible than with LSDF approach
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DIGIT-SLICE ORGANIZATION

1*** 2 m

x
j+1+δ y

j+1+δ

z
j+1

*

**

*      paths for appending input digits 

**   left-shifted bits of the residual

*** the width of the MS slice depends

        on the selection functionz
j

digit slice

Figure 9.12: A typical digit-slice organization of online arithmetic unit
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ONLINE MULTIPLICATION

• Online forms

x[j] =
j+δ∑

i=1
xir
−i, y[j] =

j+δ∑

i=1
yir
−i, p[j] =

j∑

i=1
pir
−i

• The error bound at cycle j

|x[j] · y[j]− p[j]| < r−j

• The residual
w[j] = rj(x[j] · y[j]− p[j])

with the bound |w[j]| < ω

• The residual recurrence

w[j + 1] = rw[j] + (x[j]yj+1+δ + y[j + 1]xj+1+δ)r
−δ − pj+1

= v[j]− pj+1
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SELECTION FUNCTION

• Decomposition

H1 = (x[j]yj+1+δ + y[j + 1]xj+1+δ)r
−δ H2 = −pj+1

• Bound
ω = −ω = ω = ρ(1− 2r−δ)

• Selection intervals
Uk = ρ(1− 2r−δ) + k
Lk = −ρ(1− 2r−δ) + k

• With carry-save representation for w[j] and v[j], the grid-restricted intervals
are

̂Uk = bρ(1− 2r−δ) + k − 2−tct
̂Lk = d−ρ(1− 2r−δ) + ket

• The expression to determine t and δ:

bρ(1− 2r−δ) + k − 1− 2−tct − d−ρ(1− 2r−δ) + ket ≥ 0

resulting in
bρ(1− 2r−δ)ct ≥ 2−1(1 + 2−t)
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cont.

• Several examples of relations between r, ρ, t, and δ

Radix ρ t δ

2 1 2 3
4 1 2 2

2/3 3 3
8 2/3 2 3
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RADIX-2 ONLINE MULTIPLICATION

• δ = 3 and t = 2

• Selection constants mk’s obtained from
̂Lk ≤ mk ≤ ̂Uk−1

where
̂Uk = b1− 2−2 + k − 2−2c2 = k + 2−1

̂Lk = d−1 + 2−2 + ke2 = k − 3× 2−2

• Since ̂Uk−1 = k − 2−1 and ̂Lk = k − 3× 2−2, mk = k − 2−1 is acceptable.
The selection constants are

m0 = −2−1, m1 = 2−1

• Range of v̂[j] is
−2 ≤ v̂[j] ≤ 7/4

• The selection function SELM(v̂[j]) is

pj+1 = SELM(v̂[j]) =





1 if 1/2 ≤ v̂[j] ≤ 7/4
0 if − 1/2 ≤ v̂[j] ≤ 1/4
−1 if − 2 ≤ v̂[j] ≤ −3/4
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IMPLEMENTATION OF SELECTION FUNCTION

• Estimate v̂ represented by (v−1, v0, v1, v2)

• Product digit pj+1 = (pp, pn) with the code

pj+1 pp pn
1 1 0
0 0 0
-1 0 1

• Switching expressions:

pp = v′−1(v0 v1)

pn = v1(v
′
0 v′1)
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v̂ v−1v0v1v2 pj+1

7/4 01.11 1
6/4 01.10 1
5/4 01.01 1
1 01.00 1

3/4 00.11 1
1/2 00.10 1
1/4 00.01 0
0 00.00 0

-1/4 11.11 0
-1/2 11.10 0
-3/4 11.01 -1
-1 11.00 -1

-5/4 10.11 -1
-6/4 10.10 -1
-7/4 10.01 -1
-2 10.00 -1
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1. [Initialize]
x[−3] = y[−3] = w[−3] = 0

for j = −3,−2,−1
x[j + 1]← CA(x[j], xj+4); y[j + 1]← CA(y[j], yj+4)
v[j] = 2w[j] + (x[j]yj+4 + y[j + 1]xj+4)2

−3

w[j + 1]← v[j]
end for

2. [Recurrence]
for j = 0 . . . n− 1
x[j + 1]← CA(x[j], xj+4); y[j + 1]← CA(y[j], yj+4)
v[j] = 2w[j] + (x[j]yj+4 + y[j + 1]xj+4)2

−3

pj+1 = SELM(
̂

v[j]);
w[j + 1]← v[j]− pj+1

Pout ← pj+1

end for

Figure 9.13: Radix-2 online multiplication algorithm.
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Figure 9.14: (a) Implementation of radix-2 online multiplier. (b) Calculation of 2w[j + 1].
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EXAMPLE OF RADIX-2 ONLINE MULTIPLICATION

Operands:

x = (.1101̄101̄1)

y = (.1011̄1̄110)

j xj+4 yj+4 x[j + 1] y[j + 1] v[j] pj+1 w[j + 1]

-3 1 1 .1 .1 00.0001 0 00.0001
-2 1 0 .11 .10 00.00110 0 00.00110
-1 0 1 .110 .101 00.011110 0 00.011110
0 -1 -1 .1011 .1001 00.1100011 1 11.1100011
1 1 -1 .10111 .10001 11.10000111 0 11.10000111
2 0 1 .101110 .100011 11.001001010 -1 00.001001010
3 -1 1 .1011011 .1000111 00.0100111101 0 00.0100111101
4 1 0 .10110111 .10001110 00.10110000010 1 11.10110000010
5 0 0 .10110111 .10001110 11.0110000010 -1 00.0110000010
6 0 0 .10110111 .10001110 00.110000010 1 11.110000010
7 0 0 .10110111 .10001110 11.10000010 0 11.10000010
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cont.

• Computed product: p = (.101̄011̄10)

• The exact double precision product p∗ = (.0110010110000010)

• The absolute error wrt to the exact product truncated to 8 bits:

|p− p∗tr| = 2−8

• Note: p[8] + w[8]2−8 = p∗
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ONLINE DIVISION

• Online forms

x[j] =
j+δ∑

i=1
xir
−i, y[j] =

j+δ∑

i=1
yir
−i, q[j] =

j∑

i=1
qir
−i

• Error bound at cycle j

|x[j]− q[j]d[j]| < d[j]r−j

• Residual
w[j] = rj(x[j]− q[j]d[j]) ‖w[j]| < ω ≤ d[j]

• Residual recurrence

w[j + 1] = rw[j] + xj+1+δr
−δ − q[j]dj+1+δr

−δ − d[j + 1]qj+1

= v[j]− d[j + 1]qj+1
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RADIX-2 ONLINE DIVISION

• δ = 4 and t = 3

• Selection intervals and selection constants

min ̂U0 = ̂U0[d[j + 1] = 1/2] = 2−1 − 2−3 + 0− 2−3 = 2−2

max ̂L1 = ̂L1[d[j + 1] = 1] = −1 + 2−3 + 1 = 2−3

resulting in m1 = 2−2

min ̂U−1 = ̂U−1[d[j + 1] = 1] = 1− 2−3 − 1− 2−3 = −2−2

max ̂L0 = ̂L0[d[j + 1] = 1/2] = −2−1 + 2−3 = −3× 2−3

so that m0 = −2−2.

qj+1 = SELD(v̂[j]) =





1 if 1/4 ≤ v̂[j] ≤ 15/8
0 if − 1/4 ≤ v̂[j] ≤ 1/8
−1 if − 2 ≤ v̂[j] ≤ −1/2
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RADIX-2 ONLINE DIVISION: ALGORITHM

1. [Initialize]
x[−4] = d[−4] = w[−4] = q[0] = 0

for j = −4, . . . ,−1
d[j + 1]← CA(d[j], dj+5)
v[j] = 2w[j] + xj+52

−4

w[j + 1]← v[j]
end for

2. [Recurrence]
for j = 0 . . . n− 1
d[j + 1]← CA(d[j], dj+5)
v[j] = 2w[j] + xj+52

−4 − q[j]dj+52
−4

qj+1 = SELD(v̂[j]);
w[j + 1]← v[j]− qj+1d[j + 1]
q[j + 1]← CA(q[j], qj+1)
Qout ← qj+1

end for
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REDUCTION OF DIGIT-SLICES

• Selection valid if (t fractional bits)

p− 2h + δ ≥ t

• p + h = n + δ

p =



2n + δ + t

3




• Total number of bit-slices: ib + p, ib - no. integer bits

• For example, the number of bit-slices for 32-bit radix-2 online multiplication
is

2 +



2× 32 + 3 + 2

3



= 2 + 23 = 25

compared to 34 in implementation without slice reduction.
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Figure 9.17: Reduction of bit-slices in implementation.

Digital Arithmetic - Ercegovac/Lang 2003 9 – Digit-Serial Arithmetic



58
MULTI-OPERATION AND COMPOSITE ONLINE ALGORITHMS

• To reduce the overall online delay of a group of operations

- combine several operations into a single multi-operation online algorithm

• Example: x2 + y2 + z2

• Inputs in [1/2,1), output in [1/4, 3)

• Online delay δss = 0 when the output digit is over-redundant.

• Online delay (3+2+2=7) of the corresponding network
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ALGORITHM FOR SUM OF SQUARES

1. [Initialize]
w[0] = x[0] = y[0] = z[0] = 0

2. [Recurrence]
for j = 0 . . . n− 1
v[j] = 2w[j] + (2x[j] + xj2

−j)xj + (2y[j] + yj2
−j)yj + (2z[j] + zj2

−j)zj

w[j + 1]← csfract(v[j])
sj+1 ← csint(v[j])
x[j + 1]← (x[j], xj+1); y[j + 1]← (y[j], yj+1); z[j + 1]← (z[j], zj+1)
Sout ← sj+1

end for

Figure 9.18: Radix-2 online sum of squares algorithm.
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COMPOSITE ALGORITHM

• d =
√
(x2 + y2 + z2)

• Overall online delay of 5

• A network of standard online modules: online delay of 11

Digital Arithmetic - Ercegovac/Lang 2003 9 – Digit-Serial Arithmetic



62

serial

parallel

x
j+5 z

j+5

WS

WC

[5:2] ADDER

CPA

w[j+1]

2w[j]

w[j+1]

RS

RC

[3:2] ADDERdsel

R[j+1]

R[j]

R[j+1]

dj

s
j+6

s
j+5

CONVERT

APPEND

dd

u=-(2 d[j]d
j+1

+d2
j+1

2-j-1)

On-the-Fly

converter

y
j+5

Sout

Dout

dj+1

x[j]

APPEND

MUL/

APPEND

y[j]

APPEND

z[j]

APPEND

x[j+1]

{0,...8}

{-1,0,1}

Operation:

Sum of squares

Square root

d
j+1

MUL/

APPEND

MUL/

APPEND

Figure 9.20: Composite scheme for computing d =
√

(x2 + y2 + z2).
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ONLINE IMPLEMENTATION OF RECURSIVE FILTER

• IIR filter
y(k) = a1y(k − 1) + a2y(k − 2) + bx(k)

• Conventional parallel arithmetic

– time to obtain y[k]: TCONV = 6tmodule.

– tmodule ≈ 6tFA

– rate of filter computation: RCONV ≈ 1/(4× 6tFA)

• LSDF serial arithmetic

– time to obtain y[k]: TLSDF = ntFA.

– rate of filter computation: RLSDF ≈ 1/(n× tFA)

• Online arithmetic

– Multioperation modules of type vu + w, online delay of 4

– cycle time tM ≈ 3tFA

– Throughput independent of working precision but not the number of online
units

– Rate: ROL = 1/(∆iter × tM) ≈ 1/(12tFA)
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Figure 9.21: Conventional implementation of second-order IIR filter: (a) Filter. (b) 5-stage pipeline. (c) Timing diagram.
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Figure 9.22: Online implementation of second-order IIR filter.
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CORDIC ALGORITHM AND IMPLEMENTATIONS

• CORDIC METHOD

• ROTATION AND VECTORING MODE

• CONVERGENCE, PRECISION AND RANGE

• SCALING FACTOR AND COMPENSATION

• IMPLEMENTATIONS: word-serial and pipelined

• EXTENSION TO HYPERBOLIC AND LINEAR COORDINATES

• UNIFIED DESCRIPTION

• REDUNDANT ADDITION AND HIGH RADIX

Digital Arithmetic - Ercegovac/Lang 2003 11 – CORDIC



2
MAIN USES

• REALIZATION OF ROTATIONS

• CALCULATION OF TRIGONOMETRIC FUNCTIONS

• CALCULATION OF INVERSE TRIGONOMETRIC FUNCTION tan−1(a/b)

• CALCULATION OF
√

a2 + b2, etc.

• EXTENDED TO HYPERBOLIC FUNCTIONS

• DIVISION AND MULTIPLICATION

• CALCULATION OF SQRT, LOG, AND EXP

• FOR LINEAR TRANSFORMS, DIGITAL FILTERS, AND SOLVING LIN. SYS-
TEMS

• MAIN APPLICATIONS: DSP, IMAGE PROCESSING, 3D GRAPHICS, ROBOTICS.
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CORDIC ALGORITHM

• CIRCULAR COORDINATE SYSTEM

• PERFECT ROTATION:

xR = Min cos(β + θ) = xin cos θ − yin sin θ

yR = Min sin(β + θ) = xin sin θ + yin cos θ

•Min – THE MODULUS OF THE VECTOR

• β – THE INITIAL ANGLE

• IN MATRIX FORM:








xR

yR









=









cos θ − sin θ
sin θ cos θ

















xin

yin









= ROT (θ)









xin

yin








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y
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(xin, yin )

(xR, yR )

Θ

β

M in

Figure 11.1: VECTOR ROTATION
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MICRO-ROTATIONS

• USE ELEMENTARY ROTATION ANGLES αj

• DECOMPOSE THE ANGLE θ:

θ =
∞
∑

j=0
αj

SO THAT
ROT (θ) =

∞
∏

j=0
ROT (αj)

• THEN ROT (αj):

xR[j + 1] = xR[j] cos(αj)− yR[j] sin(αj)

yR[j + 1] = xR[j] sin(αj) + yR[j] cos(αj)
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SIMPLIFYING MICRO-ROTATIONS

• HOW TO AVOID MULTIPLICATIONS?

1. DECOMPOSE ROTATION INTO:

SCALING OPERATION AND ROTATION-EXTENSION

xR[j + 1] = cos(αj)(xR[j]− yR[j] tan(αj))

yR[j + 1] = cos(αj)(yR[j] + xR[j] tan(αj))

2. CHOOSE ELEMENTARY ANGLES

αj = tan−1(σj(2
−j)) = σj tan−1(2−j)

WITH σj ∈ {−1, 1}
RESULTS IN ROTATION-EXTENSION RECURRENCE WITHOUT MPYs

x[j + 1] = x[j]− σj2
−jy[j]

y[j + 1] = y[j] + σj2
−jx[j]

=⇒ONLY ADDITIONS AND SHIFTS
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ROTATION-EXTENSION (cont.)

• ROTATION-EXTENSION SCALES MODULUS M [j]

M [j+1] = K[j]M [j] =
1

cos αj
M [j] = (1+σ2

j2
−2j)1/2M [j] = (1+2−2j)1/2M [j]

• TOTAL SCALING FACTOR

K =
∞
∏

j=0
(1 + 2−2j)1/2 ≈ 1.6468

CONSTANT, INDEPENDENT OF THE ANGLE

• RECURRENCE FOR DECOMPOSITION/ACCUMULATION OF ANGLE:

z[j + 1] = z[j]− αj = z[j]− σj tan−1(2−j)
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IMPLEMENTATION OF CORDIC ITERATION

CORDIC MICROROTATION

x[j + 1] = x[j]− σj2
−jy[j]

y[j + 1] = y[j] + σj2
−jx[j]

z[j + 1] = z[j]− σj tan−1(2−j)
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ADD/SUBσj

X[j]

X[j+1]

SHIFTER
j

ADD/SUB

Y[j]

Y[j+1]

SHIFTER
j

Z[j]

Z[j+1]

αj

ADD/SUB

TABLE
j

σj σj

σj+1 = {
sign(Y[j+1]) in vectoring

sign(Z[j+1]) in rotationADD/SUB module includes 
conditional complementer

sign(Y) sign(Z)
MUX

Figure 11.2: IMPLEMENTATION OF ONE ITERATION.
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ROTATION MODE

• ROTATE AN INITIAL VECTOR (xin, yin) BY θ

• DECOMPOSE THE ANGLE

z[j + 1] = z[j]− σj tan−1(2−j)

z[0] = θ x[0] = xin y[0] = yin

σj =















1 if z[j] ≥ 0
−1 if z[j] < 0

• PERFORM MICRO-ROTATIONS

• FINAL VALUES

xf = K(xin cos θ − yin sin θ)

yf = K(xin sin θ + yin cos θ)

zf = 0
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Figure 11.3: Rotating a vector using microrotations.
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EXAMPLE OF ROTATION

ROTATE (xin, yin) BY 67◦ USING n = 12 MICRO-ROTATIONS
INITIAL COORDINATES: xin = 1, yin = 0.125
FINAL COORDINATES: xR = 0.2756, yR = 0.9693

j z[j] σj x[j] y[j]

0 1.1693 1 1.0 0.125
1 0.3839 1 0.875 1.125
2 -0.0796 -1 0.3125 1.1562
3 0.1653 1 0.7031 1.4843
4 0.0409 1 0.5175 1.5722
5 -0.0214 -1 0.4193 1.6046
6 0.0097 1 0.4694 1.5915
7 -0.0058 -1 0.4445 1.5988
8 0.0019 1 0.4570 1.5953
9 -0.0019 -1 0.4508 1.5971

10 0.0000 1 0.4539 1.5962
11 -0.0009 -1 0.4524 1.5967
12 -0.0004 -1 0.4531 1.5965
13 0.4535 1.5963
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EXAMPLE 11.1 (cont.)

• AFTER COMPENSATION OF SCALING FACTOR K = 1.64676

COORDINATES ARE x[13]/K = 0.2753 and y[13]/K = 0.9693

• ERRORS < 2−12
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SPECIAL CASES

• TO COMPUTE cos θ AND sin θ

MAKE INITIAL CONDITION x[0] = 1/K AND y[0] = 0

• IN GENERAL, FOR a AND b CONSTANTS

a cos θ − b sin θ

a sin θ + b cos θ

COMPUTED BY SETTING x[0] = a/K AND y[0] = b/K
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VECTORING MODE

• ROTATE INITIAL VECTOR (xin, yin) UNTIL y = 0

• FOR INITIAL VECTOR IN THE FIRST QUADRANT:

σj =















1 if y[j] < 0
−1 if y[j] ≥ 0

• ACCUMULATE ROTATION ANGLE IN z

• FOR x[0] = xin, y[0] = yin and z[0] = zin, THE FINAL VALUES ARE

xf = K(x2
in + y2

in)
1/2

yf = 0

zf = zin + tan−1(
yin

xin
)
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EXAMPLE OF VECTORING

• INITIAL VECTOR (xin = 0.75, yin = 0.43)

• y FORCED TO ZERO IN n = 12 MICRO-ROTATIONS

• ROTATED VECTOR: xR =
√

x2
in + y2

in = 0.8645, yR = 0.0

• ROTATED ANGLE zf = tan−1(0.43
0.75) = 0.5205
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j y[j] σj x[j] z[j]

0 0.43 -1 0.75 0.0
1 -0.32 1 1.18 0.7853
2 0.27 -1 1.34 0.3217
3 -0.065 1 1.4075 0.5667
4 0.1109 -1 1.4156 0.4423
5 0.0224 -1 1.4225 0.5047
6 -0.0219 1 1.4232 0.5360
7 0.0002 -1 1.4236 0.5204
8 -0.0108 1 1.4236 0.5282
9 -0.0053 1 1.4236 0.5243

10 -0.0025 1 1.4236 0.5223
11 -0.0011 1 1.4236 0.5213
12 -0.0004 1 1.4236 0.5208
13 1.4236 0.5206
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EXAMPLE 11.2 (cont.)

• ACCUMULATED ANGLE z[13] = 0.5206

• AFTER PERFORMING COMPENSATION OF K = 1.64676,
x[13]/K = 0.864

• ERRORS < 2−12
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CONVERGENCE, PRECISION, AND RANGE

• ROTATION MODE

• CONVERGENCE

|z[i]| ≤ ∞
∑

j=i
tan−1(2−j)

θmax = z[0]max =
∞
∑

j=0
tan−1(2−j) ≈ 1.7429 (99.88o)

FOR THIS ANGLE ALL σj = 1 and z[j] > 0.

• CONSIDER θ < θmax

|z[i]| ≤ tan−1(2−(i−1))

• CONSEQUENTLY

tan−1(2−i−1) ≤ ∞
∑

j=i
tan−1(2−j)

OR
tan−1(2−i) ≤ ∞

∑

j=i+1
tan−1(2−j)

SATISFIED FOR ALL i
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Figure 11.4: CONVERGENCE CONDITION: THE MAXIMUM NEGATIVE CASE.
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PRECISION AND RANGE FOR n ITERATIONS

• n ITERATIONS (FINITE SEQUENCE)

• RESIDUAL ANGLE AFTER n ITERATIONS z[n]

|z[n]| ≤ tan−1(2−(n−1))

2−n < tan−1(2−(n−1)) < 2−(n−1)

• THE MAXIMUM ANGLE FOR CONVERGENCE

θmax =
n−1
∑

i=0
tan−1(2−j) + 2−n+1

• 2−n+1 THE MAXIMUM RESIDUAL ANGLE
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COMPENSATION OF SCALING FACTOR

• MOST DIRECT METHOD: MULTIPLY BY 1/K

• USE SCALING ITERATIONS OF THE FORM (1± 2−i)

xs = x± x(2−i)

• USE REPETITIONS OF CORDIC ITERATIONS

|z[i + 1]| ≤ tan−1(2−i)

• OPTIMIZATION: FIND THE MINIMUM NUMBER OF SCALING ITERA-
TIONS PLUS REPETITIONS SO THAT THE SCALE FACTOR IS COM-
PENSATED.

Table 11.4: Scale factor compensation for n = 24

Scaling iterations (-1)(+2)(-5)(+10)(+16)(+19)(+22)
Scalings (-2)(+16)(+17)

+ repetitions 1,3,5,6
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IMPLEMENTATIONS

MUX SHIFTER MUXSHIFTER

j j

X[0] Y[0]

MUX

j

Z[0]

TABLE

αj

REG X

ADD/SUB
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REG Y

ADD/SUB

Y[j]

Y[j+1]

σj

sign(Y[j]) sign(Z[j])

fo
r 

sc
al
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g 

it
er

at
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ns

σj = {
sign(Y[j]) in vectoring

sign(Z[j]) in rotation
ADD/SUB module includes conditional complementer

MUXMUX

MUX

REG Z

ADD/SUB

Z[j]

Z[j+1]

σj

Figure 11.5: WORD-SERIAL IMPLEMENTATION.
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ADD/SUBσ0

X[0]

ADD/SUB

Y[0]

X[1] Y[1]

ADD/SUB

X[2]

wired shift 
(1)

ADD/SUB

Y[2]

wired shift 
(1)

X[j] Y[j]

ADD/SUBσj

X[j+1]

wired shift 
(j)

ADD/SUB

Y[j+1]

σj

wired shift 
(j)

Z[j]

Z[j+1]

αj

ADD/SUBσj

Z[2]

α1

ADD/SUBσ1

Z[1]

α0

ADD/SUB

Z[0]

σ1σ1

σ0 σ0

σj = {
sign(Y[j]) in vectoring

sign(Z[j]) in rotationADD/SUB module includes 
conditional complementer

sign(Y) sign(Z)
MUX
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sign(Y) sign(Z)
MUX

σ2

sign(Y) sign(Z)
MUX
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Figure 11.6: PIPELINED IMPLEMENTATION.
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EXTENSION TO HYPERBOLIC AND LINEAR COORDINATES

• HYPERBOLIC COORDINATES








xR

yR









=









cosh θ sinh θ
sinh θ cosh θ

















xin

yin









• CORDIC HYPERBOLIC MICROROTATION:

x[j + 1] = x[j] + σj2
−jy[j]

y[j + 1] = y[j] + σj2
−jx[j]

z[j + 1] = z[j]− σj tanh−1(2−j)

• SCALING FACTOR IN ITERATION j

Kh[j] = (1− 2−2j)1/2

• tanh−1 20 =∞ (and Kh[0] = 0) =⇒NECESSARY TO BEGIN FROM ITER-
ATION j = 1
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y
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Figure 11.7: ROTATION IN HYPERBOLIC COORDINATE SYSTEM.
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CONVERGENCE PROBLEM

• DOES NOT CONVERGE WITH SEQUENCE OF ANGLES tanh−1(2−j) SINCE

∞
∑

j=i+1
tanh−1(2−j) < tanh−1(2−i)

• A SOLUTION: REPEAT SOME ITERATIONS

∞
∑

i=j+1
tanh−1(2−i) < tanh−1(2−j) <

∞
∑

i=j+1
tanh−1(2−i) + tanh−1(2−(3j+1))

=⇒REPEATING ITERATIONS 4, 13, 40, ..., k, 3k + 1, ... RESULTS IN A
CONVERGENT ALGORITHM.

• WITH THESE REPETITIONS

Kh ≈ 0.82816

θmax = 1.11817
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HYPERBOLIC ROTATION AND VECTORING

FINAL VALUES:

• FOR ROTATION MODE

xf = Kh(xin cosh θ + yin sinh θ)

yf = Kh(xin sinh θ + yin cosh θ)

zf = 0

• FOR VECTORING MODE

xf = Kh(x
2
in − y2

in)
1/2

yf = 0

zf = zin + tanh−1(
yin

xin
)
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LINEAR COORDINATES

xR = xin

yR = yin + xinzin

x[j + 1] = x[j]

y[j + 1] = y[j] + σj2
−jx[j]

z[j + 1] = z[j]− σj(2
−j)

THE SCALING FACTOR IS 1.
FOR THE VECTORING MODE THE FINAL VALUES

xf = xin

zf = zin +
yin

xin
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Figure 11.8: ROTATION IN LINEAR COORDINATE SYSTEM.
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UNIFIED DESCRIPTION

• m = 1 FOR CIRCULAR COORDINATES

• m = −1 FOR HYPERBOLIC COORDINATES

• m = 0 FOR LINEAR COORDINATES

• UNIFIED MICROROTATION IS

x[j + 1] = x[j]−mσj2
−jy[j]

y[j + 1] = y[j] + σj2
−jx[j]

z[j + 1] =































z[j]− σj tan−1(2−j) if m = 1
z[j]− σj tanh−1(2−j) if m = −1
z[j]− σj(2

−j) if m = 0

ALSO z[j + 1] = z[j]− σjm
−1/2 tan−1(m1/22−j)

• THE SCALING FACTOR IS

Km[j] = (1 + m2−2j)1/2
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Table 11.5: UNIFIED CORDIC

Coordinates Rotation mode Vectoring mode
σj = sign(z[j])+ σj = −sign(y[j])+

Circular (m = 1) xf = K1(xin cos(zin) − yin sin(zin)) xf = K1(x
2

in + y2

in)
1/2

αj = tan−1(2−j) yf = K1(xin sin(zin) + yin cos(zin)) yf = 0
initial j = 0 zf = 0 zf = zin + tan−1( yin

xin

)

j = 0, 1, 2, .., n
K1 ≈ 1.64676
θmax ≈ 1.74329

Linear (m = 0) xf = xin xf = xin

αj = 2−j yf = yin + xinzin yf = 0
initial j = 0 zf = 0 zf = zin + yin

xin

j = 0, 1, , 2, ..., n
K0 = 1

θmax = 2 − 2−n

Hyperbolic (m = −1) xf = K−1(xin cosh(zin) + yin sinh(zin)) xf = K−1(x
2

in − y2

in)
1/2

αj = tanh−1(2−j) yf = K−1(xin sinh(zin) + yin cosh(zin)) yf = 0
initial j = 1 zf = 0 zf = zin + tanh−1( yin

xin

)

j = 1, 2, 3, 4, 4, 5...13, 13, ...
K−1 ≈ 0.82816
θmax ≈ 1.11817

+ sign(a) = 1 if a ≥ 0, sign(a) = −1 if a < 0.
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OTHER FUNCTIONS

Table 11.6: SOME ADDITIONAL FUNCTIONS

m Mode Initial values Functions

xin yin zin xR yR or zR

1 rotation 1 0 θ cos θ yR = sin θ
-1 rotation 1 0 θ cosh θ yR = sinh θ
-1 rotation a a θ aeθ yR = aeθ

1 vectoring 1 a π/2
√

a2 + 1 zR = cot−1(a)

-1 vectoring a 1 0
√

a2 − 1 zR = coth−1(a)
-1 vectoring a + 1 a− 1 0 2

√
a zR = 0.5 ln(a)

-1 vectoring a + 1
4 a− 1

4 0
√

a zR = ln(1
4a)

-1 vectoring a + b a− b 0 2
√

ab zR = 0.5 ln(a
b)

Note: the final values xR and yR are obtained after compensation of the scale
factor.
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REDUNDANT REPRESENTATION

• CRITICAL PATH of CORDIC ITERATION: ADDER (CPA)

• TO REDUCE IT: USE OF REDUNDANT ADDER

• PROBLEM WITH SIGN DETECTION:

– If σ ∈ {−1, 1}, must convert to conventional - NO GOOD

– If σ ∈ {−1, 0, 1}, can use estimate in selection

⇒ SCALING FACTOR NO LONGER CONSTANT

• TWO APPROACHES FOR σ ∈ {−1, 0, 1}
1. CALCULATE VARIABLE SCALING FACTOR AND PERFORM COM-

PENSATION

2. DOUBLE-ROTATION APPROACH

• TWO APPROACHES FOR σ ∈ {−1, 1}
1. USE ADDITIONAL ITERATIONS (Correcting iterations)

2. USE 2 CORDIC MODULES (Plus/Minus)
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DOUBLE ROTATION APPROACH

• σj is {−1, 0, 1}
• To maintain the constant scale factor, perform a double rotation

– σj = 1. Both rotations are by angle tan−1(2−(j+1))

– σ = 0. The two rotations are by the angles tan−1(2−(j+1)) and− tan−1(2−(j+1)).

– σj = −1. Both rotations are by the angle − tan−1(2−(j+1)).

• Consequently, the scaling factor is constant and has value

K =
n
∏

j=1
(1 + 2−2j)

• The elementary are αj = 2 tan−1(2−(j+1))
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RECURRENCES FOR DOUBLE ROTATION

x[j + 1] = x[j]− qj2
−jy[j]− pj2

−2j−2x[j]

y[j + 1] = y[j] + qj2
−jx[j]− pj2

−2j−2y[j]

z[j + 1] = z[j]− qj(2 tan−1(2−(j+1)))

• Two control variables (qj, pj): (1,1) for σj = 1; (0,-1) for σj = 0; and (-1,1)
for σj = −1

• The value of σj determined from an estimate of variable (z[j] for rotation
and y[j] for vectoring)

• since the variable converges to 0, the estimate of the sign uses the bits j− 1,
j, and j + 1.

• Advantage: uses a redundant representation and produces a constant scaling
factor

• Disadvantage: the recurrence requires three terms instead of two
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DIGITAL ARITHMETIC
Miloš D. Ercegovac and Tomás Lang

Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

COMMENTS AND ERRATA

Updated: September 25, 2004

Chapter 1

page 36, line 14 and 16: replace w̃[j] with w̃[j + 1]

page 39, lines 8, 10, and -4: Replace qn−1−j with qn−j

page 39, in Algorithm NRD, move endfor before Step 4.

page 39, line 17: replace ”fractions” with ”integers”

page 45: Exercise 1.22: replace ”right” with ”left”

page 46, line -5: replace ”Hennessay” with ”Hennessy”

Chapter 2

page 64, line -1: after ”... buffers required” insert ”for”

page 65, line 4: replace ”(2.21)” with ”(2.22)”

page 70, line 1 in Section 2.5.2: (2.30) should be (2.31)

Comment on delay calculation for Carry-lookahead adder (CLA): Because
of the implementation of the CLG module shown in Figure 2.14, in delay
expressions 2.43, 2.48, and 2.52 the term tclg corresponds to the delay
between module input c0 and module output ci, i 6= 0.

page 82, line -11: Change ”The number of cells is the same as for the basic
scheme.” to ”The number of cells is reduced by two compared to the basic
scheme.”

page 115: Exercise 2.2: replace ”Table 2.4” with ”Table 2.2”

Chapter 3

page 155, in Figure 3.14, line 13: replace ”d xxxx” with ”d xxx” (only 3
x’s)
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Chapter 4

page 183, line 1: insert ”multiplying” between ”for” and ”magnitudes”.

page 186, Figure 4.3: eliminate ”Stage 3” in the top left corner.

page 193, line -9: replace ”page 286” with ”page 198”

page 196, Figure 4.9(b,c), column 4, row 4: replace xl with x1

page 216, expression (4.41): put parentheses around superscripts in the
rightmost term.

Comment on Figure 4.26 (page 220): The figure is generic: it does not
imply that for a 8-bit result k = 6. The references cited on pages 236-237
should be consulted for details about determining truncation precision.

page 227, line -7: replace with ”For the design exercises use the circuit
data from Table 2.4 and Figure 5.4. Note also that the delays in Figure 5.4
are given in tNAND2 units, whereas those in Table 2.4 are in nanoseconds.
It might be best to report the results of the exercises in tNAND2 units.

page 229, in Exercise 4.8, replace ”Exercise 4.7” with ”Figure 4.7”

Chapter 5

page 264, line 2: replace ”ps + pc > 0” with ”ps + pc < 0”

page 264: in ”Radix-4 division algorithm with the residual in carry-save
form” there are some additional differences with respect to the radix-2
algorithm in Figure 5.6 which should be considered. Namely,

a) In the recurrence step, the number of iterations is N =
⌈

n+2+1
2

⌉
(be-

cause of the initialization step and the guard bit) where n is the number
of bits of the operands.

b) In the termination step, instead of the radix-2 expression

q = 2 (CONV ERT (Q [n + 1] , qn+2 − 1))

use the corresponding radix-4 expression

q = 4 (CONV ERT (Q [N − 1] , qN − 1))

and instead of the expression

q = 2 (CONV ERT (Q [n + 1] , qn+2))

use
q = 4 (CONV ERT (Q [N − 1] , qN ))

page 266, Figure 5.6: The fact that ŷ is represented by three integer bits
and one fractional bit, does not imply that its range is [-4, 3.5]. The
range of ŷ in the selection function is obtained from expression (5.102)
and determined by expression (5.107) for radix-2 division with carry-save
adder.
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page 270, Figure 5.9, line 14: the least significant bit of 4WC[2] should
be 0, eliminate *

page 270, Figure 5.9, line 16: the least significant bit of w[3] should be 0

page 278: line -4, replace ”0 ≤ d ≤ rn − 1” with ”0 < d ≤ rn − 1”

page 278: In Table 5.8 footnote replace ”Correction” by ”Termination
step”

page 278: In Section 5.4 there is ambiguity because of the use of r (radix)
for two different purposes:

– On page 278 lines -5 and -4, the r refers to the radix in the repre-
sentation of the operands. Usually, this radix will be 2. This also
corresponds to the r in expression 5.46, 5.47, and 5.49.

– On page 279, line after expression 5.45, the r = 2k refers to the radix
of the quotient-digit, as produced by the division algorithm. That,
is for example in a radix-4 division algorithm, this radix would be 4.

To avoid this ambiguity, the caption of Figure 5.15 should say n = 8 bits,
instead of n = 4 (radix-4 digits), since the operands are in radix 2.

page 279: Expression 5.44: replace the term ”... = 2mbx/d∗c” with

... = b2m × (x/d∗)c

page 279: replace expression 5.48 with

N = d(m + v)/ke

That is, the +1 is incorrect and the k is missing. The argument for
eliminating the +1 is based on the fact that the quotient obtained by a
fractional division algorithm is 1/2 ≤ q < 2, as indicated in item 2 of the
same page.

page 280: Example 5.1: replace the expression for N with

N = d(m + v)/2e = 4

page 282: expression 5.53 should be |w[j]| ≤ ρd.

page 297: Figure 5.25, number the mk constants beginning from m2(0) to
m2(7).

page 311: Exercise 5.8: line -11: Remove sentence ”Show all details.”.

page 312: Exercise 5.15: line -9: Replace sentence ”Draw the correspond-
ing P-D diagrams (first quadrant only).” with ”Draw the corresponding
P-D diagrams (give the portion for k = 6, first quadrant only).”

page 313: Exercise 5.17: line 8: Expression qj+1 = integer (rw [j] + 0.5)
is valid if w [j] is expressed in two’s complement. When considering a sign
and magnitude representation for the residuals, the expression has to be
replaced by qj+1 = round (rw [j]).

page 313: Exercise 5.17: line 14: Replace ”a fast radix-2 division algo-
rithm.” with ”other low radix division algorithms.”.
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Chapter 6

page 352: line 15: replace sentence ”max (Lk (Ii)) j is positive” with
”max (Lk (Ii)) the term depending on j is positive”.

page 358: Exercise 6.5, line 16: the expression for tcycle is

tcycle = tSELSQRT
+ tbuff + tmux + tHA + treg = 4 + 1 + 1 + 1 + 2 = 9tg

page 359: Exercise 6.8, line 6: replace sentence ”Perform the integer di-
vision algorithm for radix 4 with residual in carry-save representation for
x = 53 and d = 9.” with ”Perform the integer square root algorithm for
radix 4 with residual in carry-save representation for x = 53.”

Chapter 7

page 371, expression (7.11): replace P [j] with R[j]

page 382, line 11: replace R[j] with S[j]

page 388: Exercise 7.6: a and b are defined in Exercise 7.5.

Chapter 8

page 407, line 9: replace ”are not representable in the floating-point sys-
tem” with ”do not correspond to real numbers”

page 420, footnote No. 14: replace ”bised” with ”biased”

page 427, line 9: replace ”put” with ”plus”.

page 434, Paragraph 3, line 4: replace ”significants” with ”significands”.

page 428: In Figure 8.8 the Exponent Update module should have also an
input to update when the significand is shifted after the adder.

Chapter 9

pages 499 and 501, Figure 9.6 and 9.7: Replace ”Shift-Reg WC” with
”Reg WC”; replace ”Shift-Reg WS” with ”Reg WS”; replace ”2w[j] with
”w[j]”

page 510, line 6: eliminate one ”the”

page 516, Table 9.4, row 2: replace 6 with 3. Add to caption: The initial
number of bits/operand is log2r × δ.

page 535: In Exercise 9.3 the initial conditions are x[−1] = y[−1] =
w[−1] = 0. In the illustration of the input sequence, replace x[j] and y[j]
with xj and yj , respectively.
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Chapter 11

page 620: The sequence of scaling iterations is incorrect. A suitable se-
quence is (-1)(+2)(-5)(+8)(-10)(+15)(-17)(-19). Note that the scaling (-1)
corresponds to a multiplication by 2−1, so no scaling iteration is required.

The sequence of scalings plus repetitions is correct. However, it assumes
that the CORDIC iterations begin at j = 1. This is acceptable because the
repetitions make the convergence range as large as that without repetitions
beginning at j = 0.

page 627: Table 11.4. For clarity and consistency the initial values xi, yi,
and zi should be denoted with xin, yin, and zin, respectively.

page 628: row 7, last column of Table 11.5 should read: zR = 0.5 ln(4a)

page 629, line 16: replace ”hight” by ”high”

page 629, last line: add ”(See Exercise 11.4)”

page 630, replace lines -6 to -3 by: It has been shown that when m digits
are used for the estimation of the sign, the distance between repetitions
is m − 2 iterations for the rotation mode and m − 5 iterations for the
vectoring mode.

More specifically, in iteration j the following digits are inspected:

– For rotation inspect digits with weights from 2−(j−1) to 2−(j+m−2).

– For vectoring inspect digits with weights from 2−(j−2) to 2−(j+m−3).

page 635: Exercise 11.1. Interpret ”a precision of seven bits” as ”perform
the minimum number of iterations required to reduce the angle to 0 with
the given data-path width”. With respect to part c) we have not found a
systematic solution.

page 636: Exercise 11.2. Perform the minimum number of iterations re-
quired to reduce the angle to 0 with the given datapath width. With
respect to part c) we have not found a systematic solution.

page 636: Exercise 11.3. Perform the minimum number of iterations to
reduce y to 0 with the given datapath width. With respect to part c) we
have not found a systematic solution.

page 636: Exercise 11.4. The sequence αi should be a decreasing sequence.
That is, the relation between αi and αi+1 should be

αi+1 < αi ≤ 2αi+1

page 637: Exercise 11.15 According to the Errata for page 630 replace
”Use a selection function with an estimate of the sign with two digits...”
by ”... with four digits...”

page 637: Exercise 11.16 According to the Errata for page 630 use an
estimate of seven digits.
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DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang

Morgan Kaufmann Publishers, an imprint of Elsevier, c©2004

Chapter 1: Solutions to Exercises

Exercise 1.1

(a) 1. 9 bits since 2
8 ≤ 297 ≤ 2

9

2. 3 radix-8 digits since 8
2 ≤ 297 ≤ 8

3

3. 3 radix-17 digits since 17
2 ≤ 297 ≤ 17

3

4. The weights are 120, 24, 6, 2, and 1. To represent 297, 5 mixed-radix

digits are needed: 2× 120 + 2× 24 + 1× 6 + 1× 2 + 1× 1 = 297

(b) 1. xmax = 2
9 − 1 = 511

2. xmax = 8
3 − 1 = 511

3. xmax = 17
3 − 1 = 4912

4. xmax = 5× 120 + 4× 24 + 3× 6 + 2× 2 + 1× 1 = 719

(c) 1. Binary representation uses 9 bits; E = 1

2. Radix-8 digits represented in binary with 3 bits per digit. Digit-

vector: 3× 3 = 9 bits; E = 9/(3× 3) = 1

3. Radix-17 digits represented in binary with 5 bits. Digit-vector: 3 ×
5 = 15 bits; E = 9/(3× 5) = 0.6

4. The digit sets for the mixed-radix representation and their lengths

in binary representation of digits are

d0 1,0 1

d1 2,1,0 2

d2 3,2,1,0 2

d3 4,3,2,1,0 3

d4 5,4,3,2,1,0 3

Digit-vector: 3+3+2+2+1 = 11; E = 9/11 = 0.82
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Exercise 1.2

XRNS - digit-vector in RNS representation;

XRNS−bin - bit-vector of XRNS ;

x XRNS XRNS−bin

0 (0 0 0 0) (000 000 00 0)

13 (6 3 1 1) (110 011 01 1)

15 (1 0 0 1) (001 000 00 1)

19 (5 4 1 1) (101 100 01 1)

22 (1 2 1 0) (001 010 01 0)

127 (1 2 1 1) (001 010 01 1)

To compute the efficiency need to determine the number of bits for the binary

representation. This number depends on the range of integers represented; we

consider two situations:

i) The largest integer is 127. In such a case, the number of bits is 7 and the

efficiency is

E = nr2/nRNS−bin = 7/9

ii) The largest integer is the maximum allowed by the moduli of the RNS

representation. This value is 7x5x3x2-1= 209. Consequently, 8 bits are needed

for the radix-2 representation, resulting in

E = 8/9
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Exercise 1.3

If the moduli are not relatively prime, different values may have the same

representation. For example, if P = (4,2), x = 3 and x = 7 have the same RNS

digit-vector (3,1).

Exercise 1.4

1. 1 ≤ x ≤ 2
8+8 − 1, E = 1

2. 1 ≤ x ≤ 10
4 − 1, E = (10

4 − 1)/(216 − 1) = 0.152

3. 1 ≤ x ≤ 16
4 − 1 = 2

16 − 1, E = 1

Exercise 1.5

(a) Representation values

r xR

2 43

8 8
5

+ 8
3

+ 8 + 1 = 33289

10 10
5

+ 10
3

+ 10 + 1 = 101, 011

16 16
5

+ 16
3

+ 16 + 1 = 1, 052, 689

(b) Largest values for n = 6

r xRmax

2 63

10 10
6 − 1

16 16
6 − 1

Exercise 1.6

x C = 16 C = 15 C = 19 C = 127

6 0110 0110 00110 0000110

5 0101 0101 00101 0000101

4 0100 0100 00100 0000100

3 0011 0011 00011 0000011

2 0010 0010 00010 0000010

1 0001 0001 00001 0000001

0 0000 0000 00000 0000000

-0 - 1111 10011 1111111

-1 1111 1110 10010 1111110

-2 1110 1101 10001 1111101

-3 1101 1100 10000 1111100

-4 1100 1011 01111 1111011

-5 1011 1010 01110 1111010

-6 1010 1001 01101 1111001
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Exercise 1.7

(a) For r = 2, xR = 1110. For r = 7, xR = 35110. For r = 16, xR = 411310.

(b) For r = 2, xR = 11; for 2’s complement, C = 16; since xR > C/2 we have

x < 0 and x = 11− 16 = −5.

For r = 4, xR = 69; for 1s’ complement, C = 4
4−1 = 255; since xR < C/2,

we have x > 0 and x = 69.

For r = 8, xR = 521; for 1s’ complement, C = 8
4 − 1 = 4095, since

xR < C/2, we have x > 0 and x = 521.

Exercise 1.8

Value x Value xR Digit vector X

(a) −3910 405710 3331214

(b) −4110 21510 11010111

(c) −310 2910 11101

Exercise 1.9

Number Radix No. of Digits Value x Value xR Digit-vector X

system r n

SM 10 4 -837 -837 1837

2’s compl. 2 6 -10 54 110110

RC 3 4 -37 44 11223

RC 8 3 -149 363 5518

1s’ compl. 2 8 -83 172 10101100

2’s compl. 2 7 -19/64 1+45/64 1.101101

DC 8 4 -681 3415 65278

1s’ compl. 2 7 -19/64 1+44/64 1.101100

Exercise 1.10

NRS xmax Xmax xmin Xmin

SM 3+15/16 011.1111 -(3+15/16) 111.1111

2’s 3+15/16 011.1111 -4 100.0000

1s’ 3+15/16 011.1111 -(3+15/16) 100.0000

Exercise 1.11

NRS integer fraction

SM -5 -5/16

2’s -11 -11/16

1s’ -10 -10/16

Exercise 1.12

(a) In the integer case, 2’s complement, x = −5. Extending to n = 6 produces

Xint−2 = (1, 1, 1, 0, 1, 1).

In the 1s’ complement system, x = −4, and the 6-bit vector is Xint−1 =

(1, 1, 1, 0, 1, 1).

Note that in the case of integers, the extended bit-vectors are the same

for 2’s complement and for 1s’ complement.
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(b) We suppose that ”Do not change the position of the radix point” means

that the extended value should also be a fraction (having only the ”sign

bit” as integer bit).

In the two’s complement fraction case x = −5/8. Extending to n = 6

produces Xfrac−2 = (1, 0, 1, 1, 0, 0).

In the 1s’ complement fraction case x = −4/8 and the extended bit-vector

is Xfrac−1 = (1, 0, 1, 1, 1, 1).

Note that in the fraction case the extended bit-vectors are different.

Exercise 1.13

Sign-and-magnitude

• x + y.

Since x < 0, we complement x (2’s complement) and add

101110

001001

1

------

111000

The result is negative (sgn=1). We complement to obtain magnitude

00111+1=01000.

• y − x.

Change sign of x and add. Both operands of addition are positive. Sign

of result sgn=0.

001001

010001

-----

011010

• x− y.

Change sign of y and add. Both operands of addition are negative. Con-

sequently, add magnitudes and sign of result is sgn=1.

010001

001001

------

011010

• −x− y. This is −(x + y). So, perform (x + y) and change sign. Result is

sgn=0 and magnitude 01000.

• |x− y|. Perform x− y and make sgn=0. The magnitude is 11010.
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2’s complement and 1s’ complement

Consider the following table:

Operation 2’s Complement 1s’ Complement

x 101111 101110

y 001001 001001

111000 110111

cin/e-a-c 0 0

x + y 111000 110111

y 001001 001001

x̄ 010000 010001

cin/e-a-c 1 0

y − x 011010 011010

x 101111 101110

ȳ 110110 110110

cin/e-a-c 1 1

x− y 100110 100101

x̄ 010000 010001

ȳ 110110 110110

cin/e-a-c 1 1

000111 001000

1 -

−x− y 001000 001000

x 101111 101110

ȳ 110110 110110

cin/e-a-c 1 1

x− y 100110 100101

x− y 011001 011010

cin/e-a-c 1 -

|x− y| 011010 011010

Exercise 1.14

The effective operation to compute z = |x|−|y| in the 2’s complement system

as a function of the signs of the operands is shown in the following table:

x y |x| − |y|
+ + x− y

+ - x + y

- + −(x + y)

- - −x + y

The algorithm is

case of (sign(x), sign(y)):

(0,0): z = ADD(x, ȳ, 1);
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(0,1): z = ADD(x, y, 0);

(1,0): z = ADD(0, (ADD(x, y, 0)), 1);

(1,1): z = ADD(x̄, y, 1);

Exercise 1.15

As discussed in this chapter, the change of sign operation in the 2’s comple-

ment system is performed as

zR = (2
n − 1− xR) + 1

which corresponds to inverting each bit and adding 1. Let

Xb = (Xk, Xk−1, . . . , X0) = (1, 0, . . . , 0)

and

Xa = (Xn−1, . . . , Xk+1)

.

1. After bit-inverting Xb and Xa we get

Xb = (0, 1, . . . , 1)

Xa = (X ′

n−1, . . . , X
′

k+1)

2. After adding 1, Xb is reverted to Xb, while Xa remains unaffected.

Since the algorithm produces Xb and Xa, it performs the change of sign

operation.

Exercise 1.16

(a) We show two proofs: in the first we consider all possible cases and in the

second we manipulate the expressions.

First proof:

xn−1 yn−1 sn−1 cn−1 cn overflow?

0 0 0 0 0 n

0 0 1 1 0 y

0 1 0 1 1 n

0 1 1 0 0 n

1 1 0 0 1 y

1 1 1 1 1 n

Second proof:

The overflow in addition may only happen if the operands are of the same

sign, i.e., xn−1 ⊕ yn−1 = 0 and, consequently, in this situation
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sn−1 = xn−1 ⊕ yn−1 ⊕ cn−1 = cn−1

On the other hand,

cn ⊕ cn−1 = (xn−1yn−1 + xn−1cn−1 + yn−1cn−1)⊕ cn−1

= xn−1yn−1c
′

n−1 + x′

n−1y
′

n−1cn−1

= xn−1yn−1s
′

n−1 + x′

n−1y
′

n−1sn−1

which is the expression for overflow.

(b) The overflow detection using cn and cn−1 does not work in the 1s’ com-

plement system since (−0) + (−2
n−1

+ 1) produces cn = 1 and cn−1 = 0

indicating an overflow which does not exist. For example,

x = −3 = 100, y = −0 = 111

x 100

y 111

1011 cn = 1, cn−1 = 0, cn ⊕ cn−1 = 1

Overflow

s 100 No overflow

Exercise 1.17

(a) 1. Signed integers

NRS Range

SM [−(2
15 − 1), 215 − 1]

2’s [−2
15, 215 − 1]

1s’ [−(2
15 − 1), 215 − 1]

2. Unsigned integers: [0, 216 − 1]

(b) 1. With 2’s complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add yes yes no yes no

unsigned sub yes yes no yes no

2. With 1s’ complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add no no no yes no

unsigned sub no no no yes no

(c) We consider here only the case for 2’s complement representation for

signed integers. The case for the other two representations can be de-

termined in a similar manner.

For the comparison of A and B we perform A−B and set the flags. The

three conditions are determined as follows:

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises



9

– For signed integers in 2’s complement representation:

Equal Z = 1

SMALLER (OV F = 0 AND NEG = 1) OR (OV F = 1 AND

NEG = 0) (no overflow and negative or overflow and not negative)

GREATER (OV F = 0 AND NEG = 0) OR (OV F = 1 AND

NEG = 1) AND Z = 0 (not smaller and not zero)

– For unsigned:

Equal Z = 1

For the other cases we need to consider the effect of converting the

second operand to 2’s complement and adding. So the operation

A−B is performed as

D = A + (2
16 −B) = 2

16
+ (A−B)

Consequently, the flag CO is set when A−B ≥ 0. So,

GREATER (CO = 1 AND Z = 0)

SMALLER CO = 0

From these expression we see that only the branch on equal can be the

same for both signed and unsigned integers.

Exercise 1.18

(a) Integers a and b represented by A and B:

C a b

10
4

-2638 3216

10
4 − 1 -2637 3216

(b) Extended to six digits:

A = (9, 9, 7, 3, 6, 2), B = (0, 0, 3, 2, 1, 6)

(c) d = 10a, e = a/10 (integer), with seven digits

D = (9, 9, 7, 3, 6, 2, 0), E = (9, 9, 9, 9, 7, 3, 6)

Exercise 1.19

For x ≥ 0 we have that zR = xR. Consequently, since Xn−1 = 0, the

algorithm is correct. For x < 0, zR = Cz − |x| and xR = Cx − |x| where Cz and

Cx are the corresponding complementation constants. Consequently,

zR = Cz − Cx + xR (1)

Since for both the 2’s and 1s’ complement systems

Cz − Cx = 2
m − 2

n
(2)
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we obtain

zR = 2
m − 2

n
+ xR (3)

But 2
m − 2

n
is represented by the vector

(1, 1, ..., 1, 0, 0, ..., 0)

Consequently,

Z = (1, 1, ..., 1, Xn−1, . . . , X0) (4)

which corresponds to the given algorithm.

Exercise 1.20

Left shift. By definition z = 2x. i) If x ≥ 0 the representation is the same as in the

sign-and-magnitude system and, therefore, the same algorithm holds.

ii) If x ≤ 0 then x = xR−C and z = zR−C. Therefore, zR−C = 2(xR−C)

and zR = 2xR − C. Moreover, since x ≤ 0 we have Xn−1 = 1 and

2xR = 2 · 1 · 2n−1
+ 2Xn−22

n−2
+ . . . + 2X0

In the 2’s complement system, since C = 2
n

we obtain

zR = 2xR − 2
n

= 2 · 1 · 2n−1
+ 2Xn−22

n−2
+ . . . + 2X0 − 2

n

= Xn−22
n−1

+ Xn−32
n−2

+ . . . + X02 + 0 · 20

From the last expression we infer the corresponding left-shift algorithm

for the 2’s complement system. Note that overflow occurs when Xn−2 6=
Xn−1.

In the 1s’ complement system C = 2
n − 1 so that

zR = 2xR − (2
n − 1)

= 2xR − 2
n

+ 1

Using the expression for 2xR developed in the previous proof,

zR = Xn−22
n−1

+ Xn−32
n−2

+ . . . + X02 + 1 (5)

This corresponds to the indicated algorithm.

Right shift. By definition z = 2
−1x − ε. If x ≥ 0, the same algorithm as in the

sign-and-magnitude case holds.

If x ≤ 0 then zR − C = 2
−1

(xR − C)− ε and zR = 2
−1

(xR − C) + C − ε.

For the 2’s complement system C = 2
n
, so

2
−1

(xR − C) = −2
n−1

+ Xn−12
n−2

+ . . . + X12
0

+ X02
−1

(6)

and

zR = 2
n − 2

n−1
+ Xn−12

n−2
+ . . . + X1 + X02

−1 − ε

= 2
n−1

+ Xn−12
n−2

+ . . . + X1 + X02
−1 − ε

(7)
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Assuming ε = X02
−1

(this satisfies |ε| < 1), we obtain the corresponding

algorithm.

In the 1s’ complement system C = 2
n − 1, so that

2
−1

(xR − C) = −2
n−1

+ Xn−12
n−2

+ . . . + X12
0

+ (X0 + 1)2
−1

(8)

and

zR = 2
n − 2

n−1
+ Xn−12

n−2
+ . . . + X12

0
+ (X0 + 1)2

−1 − 1− ε (9)

Assuming now ε = 1− (X0 + 1)2
−1

the same algorithm is obtained.

Exercise 1.21

2’s complement:

X 00101101 45

SL(X) 01011010 90

SR(X) 00010110 22

Y 11010110 -42

SL(Y ) 10101100 -84

SR(Y ) 11101011 -21

1s’ complement:

X 00101101 45

SL(X) 01011010 90

SR(X) 00010110 22

Y 11010110 -41

SL(Y ) 10101101 -82

SR(Y ) 11101011 -20

Exercise 1.22

Overflow happens in the arithmetic shift-left if

Xn−2 6= Xn−1

This is because in this case the sign would change by the shift.

Exercise 1.23

Given

A = 1101 (a = −3)

B = 110 (b = −2)

C = 0101 (c = 5)

D = 10101 (d = −21)

compute z = −3 + (−2) + 8 ∗ 5− 2 ∗ (−21) = −7.

A 1111101

B 1111110

8C 0101000

2D 1101010

z 1111001

Exercise 1.24

The multiplication is shown in Figure E1.24.
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n = 5 x = 21 (X = 10101) y = 14 (Y = 01110)

p[0] 00000

2
5xY0 00000

00000

p[1] 00000 0

2
5xY1 10101

10101 0

p[2] 01010 10

2
5xY2 10101

11111 10

p[3] 01111 110

2
5xY3 10101

100100 110

p[4] 010010 0110

2
5xY4 00000

p[5] 10010 0110 = 294

Figure E1.24

Exercise 1.25

(a) The multiplication for 2’s complement representation is given in Fig.

E1.25a.

(b) The multiplication for 1s’ complement representation is in Fig. E1.25b.

Note that we complement the multiplier and then complement the result.

Exercise 1.26

The execution time of the basic multiplication scheme for n-bit non-negative

integers is

Tbasic = (tvd + tadd + treg)× n

The execution time can be reduced by using the multiplier as a radix-4

digit-vector to about Tbasic/2 as follows:

• Precompute 3X = 2X + X and store it in a register.

• In each iteration consider two bits of the multiplier as a radix-4 digit

zj ∈ {0, 1, 2, 3}. Select 0 × X, 1 × X, 2 × X (left shifted X produced

by wiring - no extra delay), or 3 ×X (precomputed using shift and add)

depending on the value of zj using a multiplexer.

• Perform n/2 iterations.

Since n/2 iterations are performed and one additional cycle is required for

the precomputation of 3x, the reduced execution time is

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises



13

n = 6 x = 21 (X = 010101) y = −17 (Y = 101111)

p[0] 0 000000

2
5xY0 0 010101

0 010101

p[1] 0 001010 1

2
5xY1 0 010101

0 011111 1

p[2] 0 001111 11

2
5xY2 0 010101

0 100100 11

p[3] 0 010010 011

2
5xY3 0 010101

0 100111 011

p[4] 0 010011 1011

2
5xY4 0 000000

0 010011 1011

p[5] 0 001001 11011

−2
5xY5 1 101011

p[6] 1 110100 11011 = xy = -357

Figure E1.25a 2’s complement multiplication.

n = 6 x = 21 (X = 010101) y = −17 (Y = 101110)

−y = 17 (010001)

p[0] 0 000000

2
5xY0 0 010101

0 010101

p[1] 0 001010 1

2
5xY1 0 000000

0 001010 1

p[2] 0 000101 01

2
5xY2 0 000000

0 000101 01

p[3] 0 000010 101

2
5xY3 0 000000

0 000010 101

p[4] 0 000001 0101

2
5xY4 0 010101

0 010110 0101

p[5] 0 001011 00101

complement

p[6] 1 110100 11010 = xy = -357

Figure E1.25b 1s’ complement multiplication.
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Treduced = (tMUX + tadd + treg)× (n/2 + 1)

Exercise 1.27

The recurrence for the left-to-right multiplication of non-negative integers is

p[0] = 0

p[j + 1] = rp[j] + xYn−1−j j = 0, 1, . . . , n− 1

p = p[n]

(10)

It can be shown by substitution that

p[j + 1] = rj+1p[0] + x

n−1
∑

k=n−1−j

Ykrk−(n−1−j)

so that

p[n] = rnp[0] + xy

The adder has 2n − 1 digits. The relative position of the operands in the

left-to-right recurrence is shown in Figure E1.27
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shift left

Multiplicand

y
j

X

rp[j]

p[j+1]

xyj

multiplier Y
digit of 

ADDER

vector - digit multiplier

rp[j+1]

Figure E1.27: Relative position of operands in left-to-right multiplication.

Since the adder is twice as wide as in the right-to-left (basic) multiplication,

the execution time is significantly increased.

Exercise 1.28

From Algorithm NRD for integer division of 2n-bit dividend x and n-bit

divisor d we have:

d∗ = d2
n w[0] = x

For j = 0, w[1] = 2w[0]− qn−1d
∗

For j = 1, w[2] = 2w[1]− qn−2d
∗

= 2
2w[0]− (2qn−1 + qn−2)d

∗

For j = n− 1, w[n] = 2
nw[0]− (2

n−1qn−1 + 2
n−2qn−2 + . . . + 2q1 + q0)d

∗

The last scaled remainder (corrected if negative) is

2
−nw[n] = w[0]− (

n−1
∑

j=0

qj2
j
)d∗

2
−n

= x− q · d

since w[0] = x and q =
∑

n−1
j=0 qj2

j
. Therefore,

x = q · d + w

Since the quotient-digit selection function guarantees bounded residuals |w[j]| <
d∗, the algorithm is correct.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises



16

Exercise 1.29

Perform non-restoring integer division for the following operands.

Dividend x = 1410 = (00001110)2, divisor d = 3 = (0011)2

w[0] = 0 0000 1110

2w[0] = 0 0001 1100

−d∗
= 1 1101

w[1] = 1 1110 1100 q3 = 0

2w[1] = 1 1101 1000

+d∗
= 0 0011

w[2] = 0 0000 1000 q2 = 1

2w[2] = 0 0001 0000

−d∗
= 1 1101

w[3] = 1 1110 0000 q1 = 0

2w[3] = 1 1100 0000

+d∗
= 0 0011

w[4] = 1 1111 0000 q0 = 0

w[4] = 0 0010 (corrected)

Quotient q = (0100)2 = 4, remainder w = (0010)2 = 2. Check: 14 = 3× 4 + 2.

Exercise 1.30

We consider the alternative with quotient-digit set {−1,+1}. If the divisor

is signed, the quotient-digit selection depends on the sign of the divisor. To

have a bounded residual, the selection function is

qn−j =

{

1 if sign(w[j]) = sign(d)

−1 if sign(w[j]) 6= sign(d)

We also want the quotient to be in 2’s complement representation. This is

accomplished by making the quotient

q = P + N

where P is the weighted sum of all digits having value 1 and N is the weighted

sum of all digits with value -1. Consequently, the 2’s complement representation

is obtained by adding P and N (2’s complement addition). For this, N (which

is negative) should be represented in 2’s complement.

It is also possible to do the conversion considering only P as follows. Since

all bits of q are either 1 or -1 we get

P −N = 2
n − 1

and

(P + N) + (P −N) = 2P = q + 2
n − 1

so that

q = −2
n

+ 2P + 1

Morover, since the maximum absolute value of the quotient is 2
n−1−1 (remem-

ber the the n− th bit is the ”sign bit”), The two most-significant signed digits
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of q cannot be of the same sign. Consequently, in P the most-significant two

bits are either 10 (positive quotient) or 01 (negative quotient). Therefore, when

subtraction 2
n

from 2P , we get a 2’s complement representation, as follows:

P=10... then 2P −2
n

= 0... (that is, bit n−1 is 0 and the result is positive)

P=01... then 2P −2
n

= 1....(that is, bit n−1 is 1 and the result is negative)

This can be implemented during the iterations by

• Replacing -1’s with 0’s

• Shifting the resulting vector one position to the left

• Inverting the quotient bit in position n− 1 and inserting 1 in the least-

significant position. If quotient correction is needed, 0 is inserted in its

least-significant position.
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Exercise 2.1

Assuming that ci is connected to the XOR input with load factor 1.1 (Fig.

2.5(c)), the average delay of the carry-out is

T1 = tNAND(1) + tNAND(2.1) = 0.07 + 0.033 + 0.07 + 0.033× 2.1 = 0.242ns

Adding an inverter and changing the XOR into XNOR, we obtain for the

carry delay:

T2 = tNAND(1) + tNAND(2) = 0.239ns

This represents a 1.4% reduction in the carry delay. Note that the difference

is very small because of the XOR input with load factor 1.1. A larger reduction

would result if the XOR input load factors were symmetrical at 2.

Exercise 2.4

TSRA = tsw + (n− 1)tp + (n/m)tbuf + ts (Expression (2.27))

tsw = max(tgi, tki, tpi) + tNAND−2(L=2) = tpi + tNAND−2(L=2) = 0.329 +

0.136 = 0.465ns

where, assuming a switch has one standard load,

tgi = tAND−2 = 0.16 + 0.027× 1 = 0.187ns

tki = tNOR−2 = 0.07 + 0.046× 1 = 0.116ns

tpi = tXOR−2 = 0.30 + 0.029× 1 = 0.329ns

tp = tNAND−2 = 0.07 + 0.033× 2 = 0.136ns (L = 2)

tbuf = 1.5× 0.136 = 0.204

ts = 0.46 + 0.03× L = 0.46ns (Table 2.2, delay ci to si with L = 0)

Therefore,

TSRA = 0.465 + 31× 0.136 + 8× 0.204 + 0.46 ≈ 6.8ns

From Exercise 2.2, TCRA = 13.8ns so the SRA aproximately halves the

delay. Note that to reduce the load the network for computing the sum bits

uses separately obtained pi signals
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Exercise 2.5

Figure E2.5 shows the carry chains for the given operands.

0
position

15

t

c4
c8

4

6

4812

c1c3

c7

c2 2

c6

c10

c9

c5

c11

0
0

1
0

1
1

0
1

1
0

1
0

1
0

0
1

0
0

0
1

1
1

1
0

0
1

0
1

1
0

0
1

X
Y

c12

s15

c14

c13

c15

group 3 group 2 group 1 group 0

group size m = 4

carry-skip path

carry-ripple path

c16

Figure E2.5: Carry chains in carry-skip adder (Exercise 2.5).

Exercise 2.10

(a) T = mtc + (s− 1)tmux + (p− 2)tmux + (s− 1)tmux + (m− 1)tc + ts.

(b) Let tc = tmux and m = s. T = (4m − 3 + n/m2
)tc + ts and mopt =

(n/2)1/3
.

Exercise 2.13

The gi and ai signals are

x 0 1 0 1

y 1 0 0 1

gi 0 0 0 1

ai 1 1 0 1

The expressions and values for the CLG-4 carries are

c0 = 1

c1 = g0 a0c0 = 1 1 · 1 = 1

c2 = g1 a1g0 a1a0c0 = 0 0 · 1 0 · 1 · 1 = 0

c3 = g2 a2g1 a2a1g0 a2a1a0c0 = 0 1 · 0 1 · 0 · 1 1 · 0 · 1 · 1 · 1 = 0

c4 = g3 a3g2 a3a2g1 a3a2a1g0 a3a2a1a0c0

= 0 1 · 0 1 · 1 · 0 1 · 1 · 0 · 1 1 · 1 · 0 · 1 · 1 = 0

Exercise 2.15

A 64-bit, three-level carry-lookahead adder is shown in Figure E2.15.

Exercise 2.17

n = 128, m = 4, tclg = tAG = 6tag = 3ts

T1−CLA = tag + (n/m)tclg + ts = 1 + 32× 6 + 2 = 195tag
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CLA4

A15

G15

c60

CLA4

A14

G14

c56

CLA4

A13

G13

c52

CLA4

A12

G12

c48

CLG-4

A15-12

G15-12 c60

c48

c56 c52

CLA4

A11

G11

c44

CLA4

A10

G10

c40

CLA4

A9

G9

c36

CLA4

A8

G8

c32

CLG-4

A11-8

G11-8

c32

CLA4

A7

G7

c28

CLA4

A6

G6

c24

CLA4

A5

G5

c20

CLA4

A4

G4

c16

CLG-4

A7-4

G7-4

CLA4

A3

G3

c12

CLA4

A2

G2

c8

CLA4

A1

G1

c4

CLA4

A0

G0

c0

CLG-4

A3-0

G3-0c44 c40 c36

c16

c28 c24 c20 c12 c8 c4

c0

c0

c16c32

CLG-4

c48c64

Figure E2.15: 64-bit three-level carry-lookahead adder.

T2−CLA = tag + tAG +(n/m2
)tclg + tclg + ts = 1+6+8×6+6+2 = 63tag

T3−CLA = tag +2tAG+(n/m3
)tclg +2tclg +ts = 1+12+12+12+2 = 39tag

For the 4-level CLA we use another level with a group size of 2. Because of

the smaller size of this group the delay of this level is smaller, we assume

it to be tclg2 = 2ta,g.

T4−CLA = tag + 2tAG4 + tclg2 + 3tclg + ts = 1 + 12 + 2 + 18 + 2 = 35tag

Exercise 2.20

i 8 7 6 5 4 3 2 1 0

xi 0 1 0 1 0 1 1 1

yi 1 1 1 0 0 1 1 1

gi 0 1 0 0 0 1 1 1

ai 1 1 1 1 0 1 1 1

pi 1 0 1 1 0 0 0 0

Level 1 outputs:

g(0,−1) = 1 = c1

g(1,0) = g1 a1g0 = 1, a(1,0) = a1a0 = 1

g(2,1) = g2 a2g1 = 1, a(2,1) = a2a1 = 1

g(3,2) = g3 a3g2 = 0, a(3,2) = a3a2 = 0

g(4,3) = g4 a4g3 = 0, a(4,3) = a4a3 = 0

g(5,4) = g5 a5g4 = 0, a(5,4) = a5a4 = 1

g(6,5) = g6 a6g5 = 1, a(6,5) = a6a5 = 1

g(7,6) = g7 a7g6 = 1, a(7,6) = a7a6 = 1

Level 2 outputs:
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g(1,−1) = g(1,0) a(1,0)c0 = 1 = c2

g(2,−1) = g(2,1) a(2,1)g(0,−1) = 1 = c3

g(3,0) = g(3,2) a(3,2)g(1,0) = 0, a(3,0) = a(3,2)a(1,0) = 0

g(4,1) = g(4,3) a(4,3)g(2,1) = 0, a(4,1) = a(4,3)a(2,1) = 0

g(5,2) = g(5,4) a(5,4)g(3,2) = 0, a(5,2) = a(5,4)a(3,1) = 0

g(6,3) = g(6,5) a(6,5)g(4,3) = 1, a(6,3) = a(6,5)a(4,3) = 0

g(7,4) = g(7,6) a(7,6)g(5,4) = 1, a(7,4) = a(7,6)a(5,4) = 1

Level 3 outputs:

c4 = g(3,0) a(3,0)c0 = 0

c5 = g(4,1) a(4,1)g(0,−1) = 0

c6 = g(5,2) a(5,2)g(1,−1) = 0

c7 = g(6,3) a(6,3)g(2,0) = 1

Level 4 outputs:

s0 = p0 ⊕ c0 = 1

s1 = p1 ⊕ c1 = 1

s2 = p2 ⊕ c2 = 1

s3 = p3 ⊕ c3 = 1

s4 = p4 ⊕ c4 = 1

s5 = p5 ⊕ c5 = 1

s6 = p6 ⊕ c6 = 0

s7 = p7 ⊕ c7 = 0

c8 = g(7,0) a(7,0)c0 = 1

Exercise 2.23

A diagram of a 4-bit conditional-adder module is shown in Figure E2.23.

Exercise 2.26

X 01 01 01 11

Y 10 10 11 11

S0
11 11 00 10

c0
0 0 1 1

S1
00 00 01 11

c1
1 1 1 1

S0
11 11 01 10

c0
0 1

S1
00 00 01 11

c1
1 1

S0
00 00 01 10

c0
1

S1
00 00 01 11

c1
1
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FA FA FA

HA HA HA

HA

NOT

x0 y0x1 y1x2 y2x3 y3

s0
0s0

1s0
2s0

3c0
4

s1
0s1

1s1
2s1

3c1
4

Figure E2.23: 4-bit conditional adder for Exercise 2.23.

The result is (c0, S0
) because cin = 0.

Exercise 2.29

a) Type 1 adder:

x 1000 100 111

y 0111 000 110

c0
i

11111 110 011

c1
i

00000 001 100

ci 00000 001 100

si 01111 101 101

The actual delay, assuming critical path in producing F , is

TType1 = tXOR + tOR−2 + 10× tc + tOR−2

where tc is the delay of producing a carry:

tc = tAND−2 + tOR−2

Given that tc has the same expression for the carry-ripple adder and that

the actual delay of tc is 15% smaller than its worst-case delay and assuming

the same variation for tXOR and tOR−2, we get:

TType1 ≈ 0.85TCRA
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b) Type 2 adder:

x 1000100111

y 0111000110

chains jihgfedcba

timing 6543211111

In this example, the longest chain is zero-carry chain efghij of 6 positions.

The actual delay is

TType2 = tXOR + tmax + tOR−2 + tAND−10

where tmax = 6tc.

Consequently, including the delay of AND-10, for this input pattern the

addition delay is rougly 70% of that of the adder of type I.

Exrecise 2.32

a)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1

Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1

W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S∗ 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0

C∗ 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a

Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1

S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1

C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in

b)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1

Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1

W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1

T 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a

P 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1

S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1

C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in; P output of Odd-parity module.

Exercise 2.35

101 110 110 011

1 1 0 1

011 100 111 011

001 011 101 111

1 1 1 0 0
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Exercise 2.39

Method 1:

X 0 1 1̄ 1 1̄ 0 1 1̄

Y 1 0 1 0 1 1̄ 1̄ 1

H 1 1 0 1 0 0 0 0

Z 1̄ 1̄ 0 1̄ 0 1̄ 0 0

Q 1 0 1̄ 1 1̄ 0 1̄ 0 0

T 0 0 1̄ 0 1̄ 0 1̄ 0 0

W 1 0 1 1 1 0 1 0 0

S 1 1̄ 1 0 1 1̄ 1 0 0

Method 2:

X 0 1 1̄ 1 1̄ 0 1 1̄

Y 1 0 1 0 1 1̄ 1̄ 1

P 0 0 1 0 1 1 1 1

T 1 0 0 0 0 1̄ 0 0

W 1̄ 1 0 1 0 1 0 0

S 1 1̄ 1 0 1 1̄ 1 0 0

Exercise 2.43

Radix-2 signed digit addition of one conventional and one signed-digit operand:

X 0 1 1 1 0 1 1 0

Y +
1 0 1 0 0 0 1 1

Y −
0 1 0 0 0 1 0 0

W 1 0 0 1 0 0 0 1

T 1 0 1 1 0 0 1 1

S+
1 0 1 1 0 0 1 1 0

S−
1 0 0 1 0 0 0 1

S 1 1̄ 1 1 1̄ 0 1 1 1̄
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Exercise 3.1

As explained in the text, for two’s complement representation the most-

significant bit of each operand is inverted and −m is added, with its least-

significant bit aligned with the most-significant bit of the operands. For m = 7

we add -7 = 1001. Moreover, to avoid an extra row, we evaluate 1001 + g′

0 =

10g′0g0. The resulting matrix is

a′

0. a1 a2 . . . an

b′0. b1 b2 . . . bn

c′0. c1 c2 . . . cn

d′0. d1 d2 . . . dn

e′0. e1 e2 . . . en

f ′

0. f1 f2 . . . fn

10g′0g0. g1 g2 . . . gn

Exercise 3.3

A [5:2] module is shown in Figure E3.3a. and an array of these modules to

reduce five 8-bit operands in Figure E3.3b.

To determine the critical path we use the following delay model, simplified

from the model given in Table 2.2:

FA HA

from/to cout s cout s

(x, y) 2 0.7 1.2

x 2

y 1.5

c 1 1.2 - -

where the delay is normalized to the delay tc−c.

Figure E3.3a indicates the module delays using this model. Consequently,

the critical path delay is 5tc−c. The implementation uses 22 FAs and 2 HAs.

For comparison, an array of [3:2] modules to reduce 5 8-bit operands is

shown in Figure 3.3c.As shown, the critical path has a delay of 5.5tc−c. The

network cost is cost 22 FAs and 3 HAs. We conclude that both networks have

the same cost and that the network using [5:2] modules is somewhat faster than

the network using [3:2] modules.
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FA

FA

FA

2 2

2

3
3.2

4.5

5

4.5

3

4.5

x y c

x y c

x y c

Figure E3.3a: The [5:2] module for Exercise 3.3.

Exercise 3.5

To determine the critical path we use the following delay model, simplified

from the model given in Table 2.2:

FA

from/to cout s

(x, y) 2

x 2

y 1.5

c 1 1.2

where the delay is normalized to the delay tc−c.

A [9:2] module is shown in Figure E3.5. The delay in the critical path is

T = 8tc−c.
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5

[5:2]

5

[5:2]

5

[5:2]

5

[5:2]

HA

01bit position: 7 6 5 4 3 2

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

HA

01bit position: 7 6 5 4 3 2

(b)

(c)

2222

3.22.7

22

43.543.5

5.255.554.74.2

22 22

43.5 43.5

x c y x c y x c y x c y x c y x c y

5.555.55

3

54.554.554.554.54.23.7

333

2222

FA

FA

HA

5

[5:2]

5

[5:2]

FA

FA

2222

3.23 3.23

4.23.9

33

54.554.5

22

5.55 5.55 5.55

HA

HA

x c y

4.43.9

Figure E3.3: (b) Network of [5:2] modules to reduce 5 8-bit operands. (c)

Network of [3:2] modules to reduce 5 8-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



4

FA FA

FA

2
2

2

4
4 4

7.5

6

FA

FAFA

FA

6
6

7.5 8

Figure E3.5: The network of FAs for Exercise 3.5.
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Exercise 3.8

A network of full-adders implementing a (15:4] counter is shown in Figure

E3.8.

FA FA FA

FA

FA FA

FA

FA FA

FA

FA

1212121212

1224

1224

24

48

(numbers indicate weights)

Figure E3.8: A network of FAs implementing (15:4] counter in Exercise 3.8.

Exercise 3.10

The maximum value of the sum is S = 32×127. Since 2
11 < S = 2

12−2
5 <

2
12

, 12 bits are necessary.

1. The logic diagram of a bit-slice showing only CSA and registers is given

in Figure E3.10(a).

2. The block diagram at the word level is shown in Figure E3.10(b).

3. The critical path delay: ts + treg where ts is the delay of the sum output

of a FA.

4. The latency: 32× (ts + treg) + tCPA = 32× (ts + treg) + 11tc + ts where

tc is the delay of the carry output of a FA.

5. Use a CRA instead of the CSA. In this case the adder has 11 bits plus the

carry-out. The critical path is 10tc + ts + treg. Assume that ts = 2tc and

treg = ts. Then the ratio of cycle times in the two alternatives is:
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(a)

To CPA to get S

PSj [i]

Xj[i]

Cj+1 [i]

PSj [i-1]

clk
FF C FF PS

Cj [i-1]

Bit-slice j

 FA

Cj [i]

(b)

PS[i]C[i]

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

X[i]

[3:2] Adder

CPA

S

7

12 12

1212

12 12

12

Figure E3.10: (a) Bit-slice of multi-operand adder. (b) Multi-operand adder of

Exercise 3.10.
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(10tc + ts + treg)/(ts + treg) = 7ts/2ts = 3.5

The latency of the alternative with CRA is 32× (10tc + ts + treg) and the

ratio of latencies is

(32× (10tc + ts + treg)/(32× (ts + treg) + 12tc + ts)

= (32× 7ts)/(32× 2ts + 6.5ts) = 224/70.5 = 3.2

In terms of hardware, the alterantive with CRA uses only one register

and an 11-bit adder. The alternative with CSA uses two registers and two

adders. This is roughly twice as much hardware.

Exercise 3.13

To determine the critical path we use the following delay model, simplified

from the model given in Table 2.2:

FA HA

from/to cout s cout s

(x, y) 2 0.7 1.2

x 2

y 1.5

c 1 1.2 - -

where the delay is normalized to the delay tc−c.

The [5:2] module shown in Fig. E3.13a has a critical path of 5tc−c.
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FA

FA

FA

2 2

2

3
3.2

4.5

5

4.5

3

4.5

x y c

x y c

x y c

Figure E3.13a: [5:2] module.

To reduce the ten 4-bit operands we use an array of [5:2] modules (forming

two adders of 5 inputs each) followed by a [4:2] adder, as shown in Figure E3.13b.

The critical path delay is 8tc−c. The implementation uses 28 FAs and 6 HAs.

For comparison, Figure E3.13c shows an array of [3:2] adders to reduce 10

4-bit operands. At the full-adder level, this array is implemented as shown in

Figure E3.13d. The corresponding critical path delay is 9.2tc−c.
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01bit position: 3 2

FA

FA

HA

5

[5:2]

FA

FA

5

[5:2]

HA

[5:2] adder
Level 2

FA

FA

HA

5

[5:2]

FA

FA

5

[5:2]

HA

[5:2] adder
Level 2

abcdefghij

FA

HA

FA

FA

FA

FA

FA

FAFA

HA[4:2] adder
Level 1

a

b

c

d

e

f

gh

i

j

22 22

3.23 3.23

54.5

4.23.9

22

33

54.5

3.23 3.23 4.2

3.9

53.95

4.5

4.54.5

4.2

3.7 4.2

4.43.9

5.45.26.266.26.55.76.2

6.66.17.47.287.57.77.57.47.2

x c y x c y

54.554.5 4.23.9

4.23.7

4.23.7

Figure E3.13b: Network of [5:2] and [4:2] modules to reduce 10 4-bit operands.
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[3:2] [3:2] [3:2]

[3:2] [3:2]

[3:2]

[3:2]

[3:2]Level 1

Level 2

Level 3

Level 4

Level 5

Figure E3.13c: Network of [3:2] adders to reduce 10 4-bit operands.
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FA

FA

FA

FAFA

FA

FA

FA

FAFA

FA

FA

FA

FAFA

FA

FA

FA

FAFA

FAFAFAFA

FAFA

2
2

4444444444444444

66666666

87.587.5

Level 5

Level 5

Level 5

Level 4

Level 3

Level 2

FA HAHA

9.28.78.78.57.26.7

Level 1

Figure E3.13d: Network of FAs and HAs to reduce 10 4-bit operands.
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Exercise 3.18

We use two [4:2] adders in the first level. Assuming that the range of each

operand is -128,127 we get a range of the output of each [4:2] adder of -512,508

requiring a width of 10 bits. Note that the sign extension could be simplified,

as done Section 3.1, reducing the width of the adders.

Performing the [4:2] addition using the modules of Figure 2.41, described by

ti+1 = MAJORITY (xi, yi, wi)

ci+1 =

�

ti if (xi + yi + wi + zi)mod 2 = 1

zi otherwise

si = (xi + yi + wi + zi + ti)mod 2

we get

73 0001001001 - 31 1111100001

- 52 1111001100 17 0000010001

22 0000010110 47 0000101111

-127 1110000001 -80 1110110000

--------- ---------

t 0010011000 t 0001000010

----------- ----------

s 0010001010 s 0000101101

c 1100100010 c 1110100100

Now one second-level[4:2] adder. The range of the result is -1024,1016, re-

quiring a width of 11 bits.

00010001010

11100100010

00000101101

11110100100

-----------

t 00001010100

-----------

s 00001110101

c 11100001000

-----------

11101111101 = -131
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Exercise 3.22

a) From the Figures we see that the reduction by columns (Figure 3.21) has

a CPA of 7 bits whereas the reduction by rows (Figure 3.27) has only 5 bits.

b) From the Figures, the critical path for reduction by columns is 4ts +

5tc + ts = 5tc + 5ts and that for reduction by rows is 5ts + 4tc.

c) Including the CPA, reduction by columns has 32 FA and 4 HA and re-

duction by rows has 32 FA and 3 HA.

Exercise 3.26

A pipelined linear array of adders is shown in Figure E3.26. For the final

adder we use a CRA with four pipelined stages, each stage having a delay similar

to a [4:2] adder.
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m=8, n=6, [0,63]x8 = [0,504] --- 9 bits

Bit-matrix:

xxxxxx

xxxxxx Stage 1

xxxxxx

xxxxxx

----------

ooooooo

oooooo

xxxxxx Stage 2

xxxxxx

----------

ooooooo

oooooo

oxxxxxx Stage 3

oxxxxxx

----------

oooooooo

ooooooo (CPA with 4 pipelined stages)

----------

sssssssss

- latches

Prefix Adder - 1

[4:2] ADDER

[4:2] ADDER

[4:2] ADDER

X[8,j] X[1,j]

Stage 1

Stage 2

Stage 3

X[1,j-1]

X[1,j-2]

6 6 6 6 6 6 6 6

Stage 4

S[j-4]

S[j-3]

Stage 5

S[j-5]

Prefix Adder - 2

Prefix Adder - 1: "gap" modules
+2 levels of "ga" modules

Prefix Adder - 2: 2 levels of 
"ga" modules + XORs

(see Figure 2.20)

Figure E3.26: Pipelined linear array of [4:2] adders.
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Exercise 4.1

x= 30 X = 011110

y = -25 Y = 100111 Z= (-2)2(-1)

CSA shifted out

PS[0] 00000000

SC[0] 00000000

xZ0 11100001

4PS[1] 11100001

4SC[1] 00000001

PS[1] 11111000 10

SC[1] 00000000

xZ1 00111100

4PS[2] 11000100

4SC[2] 01110000

PS[2] 11110001 0010

SC[2] 00011100

xZ2 11000011

4PS[3] 00101110

4SC[3] 10100011

PS[3] 00001011 010010 (cin=1)

SC[3] 11101000

P 110100 010010 = -750

From Figure 4.4 we determine that the number of cycles to obtain PS[3], PC[3]

is 6 (including one cycle to load X and Y ).

In the last pass through the pipeline the register values are :

Register X = 011110 Register Y = ....10 Register C=0

Register XY = 11000100

Register SCH = 11101000 Register PSH=00001011

Register CS[1,0]=(10,11) Register PL = 0010
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Exercise 4.3

To reduce the effect on the cycle time, the outputs of the carry-save adder

are latched before being used as inputs to the converter. The input/output

arithmetic relation is

2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] + SC0[j − 1] + w0[j − 1])

= 4w0[j] + 2p2j+1 + p2j

where w[0] is the state. Since 0 ≤ 2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] +

SC0[j − 1] ≤ 6 and 0 ≤ 2p2j+1 + p2j ≤ 3 we get 0 ≤ w0 ≤ 1.

This is implemented with a 2-bit adder with w0[j − 1] as the carry-in and

w0[j] as the carry-out. The corresponding delay is Tconv = tab−c + tc−c which

is somewhat larger than tab−s of the CS adder.

To keep the cycle time at tab−s as determined by the CSA, the scheme

requires additional pipelining. The latency of the converter pipeline should not

exceed the latency of the CPA used to obtain the MS bits of the product.

Exercise 4.5

A two’s complement sequential multiplier with operands X and Y of 16 bits

is designed similarly to the sequential multiplier in Figure 4.3. Note that the

scheme in Figure 4.3 uses positive n-bit operands. This requires extension by

two bits to handle negative multiples in radix 4. In this exercise, the operands

are in the two’s complement, thus one bit extension is suffucient. To reduce the

cycle time, the design is pipelined (Figure E4.5a).

The delay and area of components are obtained with respect to NAND-2

using Tables 2.4 and 5.4 and summarized next

delay area

NOT 0.7 1

NAND-3 1.2 2

NOR-3 1.7 2

NOR-2 1.1 1

XOR 1.7 3

buffer 1.8 2.6

MUX-2 1.4 3

FA 4.2 6.7

flip-flop 4 4

The modules are

• Stage 1: Radix-4 recoder

The sequential recoder for magnitudes described on p.185 and imple-

mented in Fig. 4.5 produces radix-4 digits in the set {-1,0,1,2}. Since

the multiplier in this exercise is in the two’s complement system, the most

significant radix-4 digit

z7 = −2y15 + y14 + c7

is in the set {-2,-1,0,1,2}.
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Reg X

SELECTOR

Reg XY

CARRY-SAVE
ADDER

to CPA
(most significant part)

X

X

multiple of X

shifted PS

STAGE 1

STAGE 2

STAGE 3

FINAL STEP

(register control signals not shown)

2X

14

shifted SC
18 18 18

17

18

(SC1,PS1)

Product
(least significant part)

CONV
2

Reg  PL

16

(Register  PL could be
 merged with register M)

(SC0,PS0)

(SC1,PS1) (SC0,PS0)

2 2

2 22 2

Reg CS[1,0]

14 (lower)

Reg SCH Reg PSH

cShift-Reg M

Recoder

Reg

Y

one

neg

zero

carry

1 0

18

sign-extended

cin

16 16

Figure E4.5a: 16-bit two’s complement sequential multiplier. (Exercise 4.5)
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The recoder of Fig. 4.5 is modified to produce a (-2) when M1 = 1,

M0 = 0 and C = 0 in the cycle when z7 is produced (last = 1). This

results in a modified expression for neg while one, zero, and Cnext remain

unchanged:

neg = M1C M1M0 last ·M1M0
′C ′

= M1(C M0 last ·M0
′C ′

)

= M1(C M0 last)

The modified recoder is shown in Figure E4.5b.

M
1

M
0

C

one zeroneg

Cnext

last

C

C

Figure E4.5b: Radix-4 recoder. (Exercise 4.5)

The delay and area of the recoder are:

delay area

1 XOR 1.7 3

2 NAND-3 1.2 4

2 NAND-2 1 2

1 NOR-3 1.7 2

1 NOR-2 1.1 1

3 NOT 0.7 3

4 FF 4 16

Total 2.9 +4 31

• Stage 2: Multiple generator

The multiples ±2×X, ±1×X, and 0×X are obtained as shown in Figure

E4.5c.

The delay and area of the multiple generator are:
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negBIT-INVERTER

multiplicand  X

2X X
one

 X, 2X2X, X, bit-vector

non-inverting buffer

inverting buffer

implemented
with MUX-2

Figure E4.5c: Multiple generator. (Exercise 4.5)

delay area

3 BUFF 1.8 7.8

18 MUX-2 1.4 54

18 XOR 1.7 54

18 FF 4 72

Total 4.9+4 ≈ 188

• Stage 3: CSA

The CSA adder consists of 19 FAs. The carry and sum are stored in two

19-bit registers SCH and PSH. The delay and area are:

delay area

19 FA 4.2 127.3

2x19 FF 4 152

Total 4.2+4 ≈ 280

The converter uses two FAs. To reduce the critical path, the 2-bit adder

is pipelined so that only one FA is in the critical path. Four extra FFs are

needed for pipelining. There is also a 16-bit register PL which stores the

least-significant 16 bits of the product. The cycle time of the converter is

4.2 +4 = 8.2. Its area is 2× 6.7 + 8× 4 ≈ 45. For PL register the area is

16× 4 = 64.

The cycle time of the multiplier is determined by the delay of Stage 2: 8.9

NAND-2 delays. To reduce this delay, a faster multiple generator could be

designed using a 4-to-1 multiplexer to select ±2 and ±1 multiples. This

would also require a change in the recoder design. The total area uses 544

equivalent gates.
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Exercise 4.8

• The cycle time of a radix-2 multiplier is

t2 = tbuf + tNAND + tc−s + treg

Using the values from Figure 5.4 we get

t2 = 1.8 + 1 + 2.2 + 4 = 9tNAND

• To reduce the cycle time of the radix-16 implementation we pipeline as

shown for radix 4 in Figure 4.3. The cycle time is the maximum of the

critical paths of the three stages. We assume it is the adder, implemented

as a [4:2] adder (Figure 2.41). Consequently, the cycle time is

t16 = t[4:2] + treg

Using the values from Figure 5.4 we get

t16 = 6 + 4 = 10tNAND

• The total delay corresponds to the iterations (n for radix 2 and n/4 for

radix 16) plus the two pipeline cycles for radix 16, plus the delay of the

final adder). The speedup is

S =
t2 × n + tCPA

t16 × (2 + n/4) + tCPA

=
36n + 4tCPA

10n + 80 + 4tCPA

• As seen in the expression, the speedup depends on n. This is because of

the two additional cycles in radix 16 and of the carry-propagate adder.

For instance, for n = 16 and using a carry-ripple adder we get

S =
36× 16 + 4(2.0× 16

10× 16 + 80 + 128
= 1.9

Exercise 4.11

a) Radix-4 bit-matrix for multiplication of magnitudes with x = 67 and

y = 76 is shown next. The recoded radix-4 multiplier is (11(-1)0).

13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0

1 0 1 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 0

0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x× y = 5092.

b) Radix-4 bit-matrix for multiplication of 2’s complement operands x =

−67 and y = −76. The recoded radix-4 multiplier is ((-1)(-1)10).
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 1 0

1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 1

1

0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x× y = 5092.

Exercise 4.13

The reduced bit-matrix for radix-4 multiplication of magnitudes with n = 12,

corresponding to Figure 4.14(b) is shown in Figure E4.13(a). The linear array

has three stages.

• Stage 1 consists of a [4:2] adder and converter K1. The inputs to the

converter in Stage 1 are denoted with ”k”.

• Stage 2 also has a [4:2] adder and converter K2.

• Stage 3 uses a [3:2] adder and a converter.

The partial inputs to Stage 2 and Stage 3 are shown in Figure E4.13(b) and (c),

respectively. Each converter produces a conventional radix-4 digit ({0,1,2,3})
and a carry.

• Converter K1 consists of two HAs and its delay is clearly shorter than that

of a [4:2] adder.

• Converter K2 uses one FA and one HA, again having a delay not greater

than that of a [4:2] adder.

• Converter in Stage 3 could also use one FA and one HA. However, its delay

would be longer than t[3:2] = tFA. To reduce its delay, bits denoted with

”c” are used to produce two conditional 3-bit results (carry + 2 sum bits)

in Stage 2. The delay of a 2-bit conditional adder (CA) is not larger than

the delay of [4:2] adder. The correct sum is obtained using a MUX in Stage

3 based on the carry produced by converter K2 in Stage 2. This MUX has

a shorter delay than a FA. Therefore, conversion of the least-significant

radix-4 redundant digits does not increase the delay in the critical path.

Since in each stage two bits of the product are obtained, the final adder has 24

- 6 = 18 bits.
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[4:2] K1

___ ____

1 1 1 1 1 s’ s s x x x x x x x x x x| k k

s’ x x x x x x x x x x x x| k

s’ x x x x x x x x x x x x x|

s’ x x x x x x x x x x x x x ___|

s’ x x x x x x x x x x x x x

s’ x x x x x x x x x x x x x

x x x x x x x x x x x x x

(a)

[4:2] CA K2

___ ____ ____

. . . . x x x x x x| c c x x p p

. . . . x x x x x x| c c x k

. . . . . . x x x x x|

. . . . . . . x x x ___|

(b)

[3:2]

___

. . . . . x x x x| x p p p p

. . . . x x x x x| k| MUX control

. . . . . x x x ___| c c c| MUX data

c c c| MUX data

-------

MUX

(c)

CPA

____________________________

. . . . x x x x x x p p p p p p

. . . . x x x x x c

(d)

Figure E4.13: A linear array of [4:2] and [3:2] adders for 12× 12 multiplication

of magnitudes: (a) Reduced bit-matrix. (b) Inputs to Stage 2. (c) Inputs to

Stage 3. (d) Inputs to CPA.
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Exercise 4.15

Tables to determine the number of full and half adders in column reduction

for multiplication of 8-bit operands for the following cases are:

(a) Radix-2 operands in two’s complement representation, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 (x′

7y7)
′
(x7y6)

′
(x7y5)

′
(x7y4)

′
(x7y3)

′
(x7y2)

′
(x7y1)

′
(x7y0)

′x6y0x5y0x4y0x3y0x2y0x1y0x0y0

x′

6y7 x6y6 x6y5 x6y4 x6y3 x6y2 x6y1 x5y1x4y1x3y1x2y1x1y1x0y1

x′

5y7 x5y6 x5y5 x5y4 x5y3 x5y2 x4y2x3y2x2y2x1y2x0y2

x′

4y7 x4y6 x4y5 x4y4 x4y3 x3y3x2y3x1y3x0y3

x′

3y7 x3y6 x3y5 x3y4 x2y4x1y4x0y4

x′

2y7 x2y6 x2y5 x1y5x0y5

x′

1y7 x1y6 x0y6

y7 (x0y7)
′

Reduction table:

i

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 4

ei 1 1 2 3 4 5 6 8 8 7 6 5 4 3 2 1

m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

hi 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

fi 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0

l = 3

ei 1 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1

m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

fi 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0

l = 2

ei 1 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1

m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

l = 1

ei 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1

m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

hi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

fi 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

ei is the number of inputs in column i; fi is the number of FAs; hi is the

number of HAs; mj is the number of operands in the next level in the

reduction sequence.
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(b) Radix 4, magnitudes, multiplier recoding, n = 7

Bit-matrix:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 s′
g

1 s′
e

se se e e e e e e e e

h h g s′
f

f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

Reduction table:

i

13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 2

ei 2 2 3 4 4 4 4 4 3 4 2 3 1 2

m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

hi 0 0 1 0 0 0 0 0 1 1 0 0 0 0

fi 0 0 0 1 1 1 1 1 0 0 0 0 0 0

l = 1

ei 2 3 3 3 3 3 3 3 3 3 2 3 1 2

m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2

hi 1 0 0 0 0 0 0 0 0 0 1 1 0 0

fi 0 1 1 1 1 1 1 1 1 1 0 0 0 0

CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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(c) Radix 4, two’s complement, multiplier recoding, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 s′
h

1 s′
g

1 s′
e

se se e e e e e e e e

h h g s′
f

f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

ch

Reduction table:

i

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 3

ei 1 1 2 2 3 4 4 4 4 5 3 4 2 3 1 2

m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

hi 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

fi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l = 2

ei 1 1 2 2 4 4 4 4 4 4 3 4 2 3 1 2

m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

fi 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

l = 1

ei 1 1 2 3 3 3 3 3 3 3 3 3 2 3 1 2

m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

hi 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0

fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Exercise 4.20

(a) The precision of S is 18 because 2
17 < 127

2 ∗ 16 < 2
18

.

(b) Since one pair of elements is available per cycle, a suitable algorithm is

S[i] = S[i− 1] + A[i]B[i]

with S = S[16] and S[0] = 0.

The recoding of B[i] produces radix-4 digits. The resulting pipelined linear

array with [3:2] adders is shown in Figure E4.20b.

(c) The cycle time is tcycle−b = max(tREC + tbuf + tmux, 2tFA)
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- latches

S

[3:2]

[3:2]

[3:2]

[3:2]

CPA

RECODER &
MULTIPLE 
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

Figure E4.20b: A linear array of [3:2] adders for Exercise 4.20(b).
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(d)

1 2 3 4 5 6 19 20

|-----|-----|-----|-----|-----|-----| . . . . |-----|-----|

compute S[1] S[2] S[3] S[16]

output S[1] S[2] . . . S[16]

The latency is T = 3 + 16 + 1 = 20 clock cycles.

(e) A pipelined linear array with[4:2] adders is shown in Figure E4.20e.

- latches

RECODER &
MULTIPLE 
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

[4:2]

[4:2]

S

CPA

Figure E4.20e: A linear array of [4:2] adders for Exercise 4.20(e).

tcycle−e = max(tREC + tbuf + tmux, t4−2)

Comparing with the linear array of part (b): The cycle time is the same if

tcycle−e = tREC + tbuf + tmux. Otherwise it depends on implementation of

the [4:2] adder. If implemented with two [3:2] adders, there is no difference.

If a gate network is used in implementing [4:2] module with a delay smaller

than 2tFA, this implementation would have a shorter cycle time.
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Exercise 4.26

The constant C = 2925 = 0101101101101 requires 8 additions.

Using canonical recoding we get C as 2925 = 101̄001̄001̄01̄01 which requires

6 additions/subtractions.

Using factoring we get C as 2925 = (4 + 1)(8 + 1)(64 + 1) = (2
2

+ 1)(2
3

+

1)(2
6

+ 1) which requires 3 additions.

We use the factoring approach. The two designs are shown in Figure E4.26.

X

CRA-1

CRA-2

45X

SL2

SL3

SLk - shift left k positions (wired)

4X

5X

40X

CRA-3

SL6
2880X

m m+2

m+3

m+6

m+6

m+12

X

[3:2] -1

SL2

SL6

m m+2

m+5

SL3 SL3

[3:2] -2

[3:2] -3

[3:2] -4

SL6

PREFIX ADDER

2925X

m+12

2925X

m+12

m+3

m+3

m+5

m+11

m+11

m+11

m+11

(a)

(b)

bit-vector output of SLk shifter has k  trailing 0s

Figure E4.26: Constant multiplier networks: (a) With CRAs. (b) With [3:2]

and prefix adder. (Exercise 4.26).

• Implementation with CRAs. To determine delay consider the following

input/output diagram. FA and HA are denoted with ”f” and ”h”. All

delays are in terms of tFA, and tHA = 0.5tFA (same for sum and carry

outputs). We show m = 8 in the diagram and generalize the result to

arbitrary m.
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xxxxxxxx

xxxxxxxx

CRA-1 hhfffffh

xxxxxxxxxxx

xxxxxxxxxxx

CRA-2 hhhfffffffh

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

CRA-3 hhhhhhfffffffh

xxxxxxxxxxxxxxxxxxxx

The critical path is: h+f+h+f+f+f+h+(fx(m-1))+h+h+h+h+h+h re-

sulting in

TCRA = 9tHA + (m + 3)tFA = (m + 7.5)tFA

The equivalent number of full adders is:

CCRA = (m− 3)FA + 3HA + (m− 1)FA + 4HA + (m− 1)FA + 7HA

= 14HA + (3m− 2)FA ≈ (3m + 5)FA

• Implementation with [3:2] adders and prefix adder.

We determine the delay in the critical path and the cost as in the case

with CRAs. To reduce the precision of the final adder, we apply [2:1]

reduction where applicable.

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffffh

xxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-2 fffffhhh

xxxxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-3 hhffhhhhhh

xxxxxxxxxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxxxxx

[3:2]-4 hhhffffffffhh

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxx

PA ==============

xxxxxxxxxxxxxxxxxxxx

The precision of the PA adder is m+7 - reduced from m+12 by 5 positions.

Using expression (2.61) the delay of the prefix adder is estimated as

TPA(m) = tga + log2(m)tcell + tXOR ≈ 0.5tFA + log2(m)×0.6tFA +0.5tFA
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= [1 + 0.6× log2(m)]tFA

Using expression (2.62), we get the equivalent number of full adders

CPA(m) ≈ m× FA + (m/2)log2(m)× 0.5FA

The critical path is: f+f+f+f+PA(m+7) resulting in

T[3:2]+PA = 4tFA + TPA(m + 7) < TCRA

The equivalent number of full adders is:

C[3:2]+PA = (m−3)FA+3HA+(m−3)FA+3HA+(m−6)FA+8HA+mFA+5HA+C(PA)

= (4m− 12)FA + 19HA + (m + 7)FA + 0.25(m + 7)log2(m + 7)FA

≈ [5m + 0.25(m + 7)log2(m + 7)]FA > CCRA

Without reducing the precision of the final adder, the input/output dia-

gram is

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffff

xxxxxxxxxxx

xxxxxxx x

xxxxxxxx

[3:2]-2 fffff

xxxxxxxxxxxxx

xxxxx xx x

xxxxxxx x

[3:2]-3 hhf

xxxxxxxxxxxxxxxxx

xxx xxxx xx x

xxxxxxxxxxxxx

[3:2]-4 hhhffffffff

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxx xx x

PA ===================

xxxxxxxxxxxxxxxxxxxx

Calculation of the delay and cost is left to the reader.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises



1

DIGITAL ARITHMETIC
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Exercise 5.2

In the following, two iterations of the division recurrence using a radix-16

implementation with two overlapped radix-4 stages for x = 0.1001001110100101

and d = 0.110 are shown.

• First iteration

4WS[0] = 000.1001001110100101

4WC[0] = 000.0000000000000001∗ ŷ [0] =
9
16 q1 = 1

−q1d = 111.0011111111111111

WS[1] = 111.1010110001011011

WC[1] = 000.0010011101001010

Speculative computations

– Case a) q1 = 2

4
2
̂WS [0] 010.01001

4
2
̂WC [0] 000.00000

4× (−2× d) 001.11111

011.1011

000.1001

100.0100 ŷ [1] = −60/16 q̂2 = −2 (tentative)

– Case b) q1 = 1

4
2
̂WS [0] 010.01001

4
2
̂WC [0] 000.00000

4× (−1× d) 100.11111

110.1011

000.1001

111.0100 ŷ [1] = −12/16 q̂2 = −1 (tentative)

– Case c) q1 = 0
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4
2
̂WS [0] 010.0100

4
2
̂WC [0] 000.0000

010.0100 ŷ [1] = 36/16 q̂2 = 2 (tentative)

– Case d) q1 = −1

4
2
̂WS [0] 010.01001

4
2
̂WC [0] 000.00000

4× (−1× d) 011.00000

001.0100

100.0000

101.0100 ŷ [1] = −44/16 q̂2 = −2 (tentative)

– Case e) q1 = −2

4
2
̂WS [0] 010.01001

4
2
̂WC [0] 000.00000

4× (−2× d) 110.00000

100.0100

100.0000

000.0100 ŷ [1] = 4/16 q̂2 = 0 (tentative)

Since q1 = 1, we select case b). Therefore we have q2 = −1. We can

complete the first iteration as follows:

4WS[1] = 110.1011000101101100

4WC[1] = 000.1001110100101000

−q2d = 000.1100000000000000

WS[2] = 110.1110110001000100

WC[2] = 001.0010001001010000

• Second iteration

4WS[2] = 011.1011000100010000

4WC[2] = 100.1000100101000000 ŷ [2] =
3
16 q3 = 0

−q3d = 000.0000000000000000

WS[3] = 111.0011100001010000

WC[3] = 001.0000001000000000

Speculative computations

– Case a) q3 = 2

4
2
̂WS [2] 110.11000

4
2
̂WC [2] 010.00100

4× (−2× d) 001.11111

101.0001

101.1100

010.1101 ŷ [3] = 45/16 q̂4 = 2 (tentative)

– Case b) q3 = 1
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4
2
̂WS [2] 110.11000

4
2
̂WC [2] 010.00100

4× (−1× d) 100.11111

000.0001

101.1100

101.1101 ŷ [3] = −35/16 q̂4 = −2 (tentative)

– Case c) q3 = 0

4
2
̂WS [2] 110.1100

4
2
̂WC [2] 010.0010

000.1110 ŷ [3] = 14/16 q̂4 = 1 (tentative)

– Case d) q3 = −1

4
2
̂WS [2] 110.11000

4
2
̂WC [2] 010.00100

4× (−1× d) 011.00000

111.1110

100.0000

011.1110 ŷ [3] = 62/16 q̂4 = 2 (tentative)

– Case e) q3 = −2

4
2
̂WS [2] 110.11000

4
2
̂WC [2] 010.00100

4× (−2× d) 110.00000

010.1110

100.0000

110.1110 ŷ [3] = −18/16 q̂4 = −1 (tentative)

Since q3 = 0 we select case c). Therefore we have q4 = 1. We can complete

the second iteration as follows:

4WS[3] = 100.1110000101000000

4WC[3] = 100.0000100000000001∗

−q4d = 111.0011111111111111

WS[4] = 111.1101011010111110

WC[4] = 000.0101001010000010

The digits of the result are q1 = 1, q2 = −1, q3 = 0 and q4 = 1. Therefore,

we have q = 00110001.

Exercise 5.5

Let Q [j] be the digit vector of the converted quotient consisting of the j

most-significant digits, that is

Q [j] =

j
∑

i=1

qir
−i
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We have Q [j + 1] = Q [j] + qj+1r
−(j+1)

. Since we are considering a radix-2

positive redundant representation with qi ∈ {0, 1, 2} , we can use the following

algorithm for the addition:

Q [j + 1] =

�

Q [j] + qj+12
−(j+1)

if qj+1 ≤ 1

Q [j] + 2
−j

if qj+1 = 2

This algorithm has the disadvantage that the addition Q [j] + 2
−j

requires

the propagation of a carry and therefore it is slow. To avoid this propagation

we define QP [j] with value

QP [j] = Q [j] + 2
−j

Using this second form, the conversion algorithm is

Q [j + 1] =

�

Q [j] + qj+12
−(j+1)

if qj+1 ≤ 1

QP [j] if qj+1 = 2

It is necessary to update also the form QP [j], as follows:

QP [j + 1] = Q [j + 1] + 2
−(j+1)

=







Q [j] + 2
−(j+1)

if qj+1 = 0

Q [j] + (1 + qj+1) 2
−(j+1)

if qj+1 = 1

QP [j] + 2
−(j+1)

if qj+1 = 2

Using the definition of QP [j], the expression for QP [j + 1] when qj+1 = 1

can be rewritten as follows:

Q [j] + (1 + qj+1) 2
−(j+1)

= Q [j] + 2
−j

= QP [j]

Therefore, the expression QP [j + 1] when qj+1 = 1 and qj+1 = 2 can be

condensed as follows:

QP [j + 1] = QP [j] + (qj+1 − 1) 2
−(j+1)

if qj+1 ≥ 1

In conclusion, the algorithm for QP [j + 1] can be rewritten as follows:

QP [j + 1] =

�

Q [j] + 2
−(j+1)

if qj+1 = 0

QP [j] + (qj+1 − 1) 2
−(j+1)

if qj+1 ≥ 1

All the additions are now expressed by means of concatenations and no carry

is propagated. In terms of concatenations, the on-the-fly conversion algorithm

for a radix-2 positive redundant representation with digit set {0, 1, 2} is

Q [j + 1] =

�

(Q [j] , qj+1) if qj+1 ≤ 1

(QP [j] , 0) if qj+1 = 2

QP [j + 1] =

�

(Q [j] , 1) if qj+1 = 0

(QP [j] , qj+1 − 1) if qj+1 ≥ 1

with the initial conditions Q [0] = 0 and QP [0] = 1 .

As an example, consider the conversion into conventional representation of

the result 10211202.
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j qj Q [j] QP [j]

0 0 1

1 1 0.1 1.0

2 0 0.10 0.11

3 2 0.110 0.111

4 1 0.1101 0.1110

5 1 0.11011 0.11100

6 2 0.111000 0.111001

7 0 0.1110000 0.1110001

8 2 0.11100010 0.11100011

Exercise 5.7

a) Implementation

An implementation of the retimed digit recurrence division (radix-4 with

carry-save adder) is illustrated in Figure E5.7a. Details regarding the size

of the most significant slice are presented in Figure E5.7b.

FMUX SMUX

FCSA SCSA

Divisor d

qSEL

qj+1

q

y

d

Registers

Figure E5.7a: Retimed implementation.

b) Delay analysis

– Conventional design

Computing the delay in the critical path we have (from Figure 5.4)

tcycle = tqsel(10.8) + tbuff (1.8) + tmux(1.8) + tHA(2.2) + treg(4).

Therefore, tcycle = 21tnand2. The number of iteration for IEEE dou-

ble precision operands (ρ < 1) is
⌈

53+1+2
2

⌉

= 28. The latency of the

conventional implementation can be computed as (28 + 1)× tcycle =

29× 21tnand2 = 609tnand2.

– Retimed version

Computing the delay in the critical path (fast part) we have
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x x x . x x x x x x x x   xq  d.

rw[j]
S

rw[j]
C

x . x x x x x x x x   x x

x x x . x x x x x x x x   x

x x x . x x x x x x x x   x

x . x x x x x x x x   x x

bits used for digit selection

Figure E5.7b: Size of the most significant part of the path (size of FCSA is 7

bits, size of FMUX is 8 bits).

tcycle = tbuff (1.8)× 40
100+

+(tmux(1.8) + tHA(2.2))× 80
100 + tqsel(10.8) + treg(4)

Therefore, tcycle = 19tnand2. Computing the latency of the retimed

version we get (28 + 1 + 1)× tcycle = 30× 19tnand2 = 570tnand2.

Exercise 5.10

We normalize d to produce d∗
= 10010000 = 2

md with m = 4. We define

df = d∗ × 2
−n

, where n = 8 is the number of bits of the operands. Assum-

ing a redundant quotient digit-set with qi ∈ {−2,−1, 0, 1, 2}, the redundancy

factor is ρ =
a

r−1 =
2
3 . Since ρ < 1, we have v = 2. In order to obtain

a correct remainder, the last digit of the quotient has to be aligned with a

radix-4 boundary. For this, it must be (m + v + s) mod k = 0. Therefore we

have (4 + 2 + s) mod 2 = 0 (with k = 2 and m = 4) and s = 0. We define

xf = x × 2
−n

(as for the divisor). To achieve the required alignment, we shift

xf right by v + s = 2 bits. The initial condition is therefore

w [0] =
xf

4
= .0001111000

Moreover, since the truncated divisor ̂d = 0.1001 =
9
16 , we can compute

i = 16̂d = 9. The corresponding selection constants are given by the following

table:

i 8 9 10 11 12 13 14 15

m2(i)
+

12 14 15 16 18 20 20 24

m1(i)
+

4 4 4 4 6 6 8 8

m0(i)
+

-4 -6 -6 -6 -8 -8 -8 -8

m−1(i)
+

-13 -15 -16 -18 -20 -20 -22 -24

Finally, we can compute the number of iteration, N =
⌈

m+v

k

⌉

. Here k = 2

(since r = 2
k

where r is the radix of the quotient digit as produced by the

division algorithm) and we get N =
⌈

4+2
2

⌉

= 3.
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4WS [0] = 000.01111000

4WC [0] = 000.00000001∗ ŷ [0] = 000.0111 =
7
16 q1 = 1

−df = 111.01101111

WS [1] = 111.00010110

WC [1] = 000.11010010

4WS [1] = 100.01011000

4WC [1] = 011.01001000 ŷ [1] = 111.1001 = − 7
16 q2 = 1

+df = 000.10010000

WS [2] = 111.10000000

WC [2] = 000.10110000

4WS [2] = 110.00000000

4WC [2] = 010.11000001∗ ŷ [2] = 000.1100 =
12
16 q3 = 1

−df = 111.01101111

WS [3] = 011.10101110

WC [3] = 100.10000010

Since w [3] > 0 the correction step is not needed. The quotient and the

remainder are

q = 111 = (13)10

rem = w [3]× 2
n log

2
2−m

= w [3]× 2
4

= 11 = (3)10

Exercise 5.12

For signed-digit representation of the residual we get

εmin = −2
−t

+ ulp emax = 2
−t

+ ulp

and

L∗

k
= Lk − emin = Lk + 2

−t − ulp

Uk = Uk − emax = Uk − 2
−t

+ ulp

resulting in

̂Uk−1 = bU∗

k−1 + 2
−tct = bUk−1ct

̂Lk = dL∗

k
et = dLk + 2

−tet
For a necessary condition on δ and t (for k > 0) we get

Uk−1(di)− Lk(di+1 + 2
−t ≥ 0

that is,

(k − 1 + ρ)di − ((k − ρ)(di + 2
−δ

) + 2
−t

) ≥ 0

The worst case is for k = a and di = 1/2 resulting in

2ρ− 1

2
− (a− ρ)2

−δ ≥ 2
−t

which is the same as for carry-save representation of the residual (expression

5.101). For radix 2 (ρ = a = 1 we get t ≥ 1 and it is possible to use the same

constant for the whole range of the divisor. We use t = 1 and obtain

̂U0(1/2) = 1/2 ̂U−1(1) = 0
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̂L1(1) = 1/2 ̂L0(1/2) = 0

Consequently, we get m1 = 1/2 and m0 = 0.

The range of the estimate ŷ is

b−rρ− (2
−t − ulp)ct ≤ rρ + 2

−t − ulpct

which for r = 2 and ρ = 1 results in

−2 ≤ ŷ ≤ 2

The selection function is then

qj+1 =







1 if 1/2 ≤ ŷ ≤ 2

0 if ŷ = 0

−1 if− 2 ≤ ŷ ≤ −1/2

The execution for x = 128× 2
−8

and d = 6× 2
−3

is as follows:

2W [0] = 0.10000000 ŷ[0] = 0.5 q1 = 1

−q1d = 0.1̄1̄000000

2W [1] = 0.1̄000000 ŷ[1] = −0.5 q2 = −1

−q2d = 0.11000000

2W [2] = 0.10000000 ŷ[2] = 0.5 q3 = 1

−q3d = 0.1̄1̄000000

2W [3] = 0.1̄0000000 ŷ[3] = −0.5 q4 = −1

Since the pattern is periodic (and final residual is negative) we get

q = 2(0.11̄11̄11̄11̄0 = 0.10101010

Exercise 5.14

From expression 5.100, we obtain the lower bound for t and δ by requiring

Uk−1 (di)− 2
−t − Lk(di+1) ≥ 0

Using the definitions of Lk and Uk and considering the worst case condition

di =
63
64 (for a range of the divisor restricted to

[

63
64 , 1

)

) and k = a = 2 (since

ρ =
2
3 ) we get

2
−δ ≤ 3

4
×

(

21

64
− 2

−t

)

If we try t = 2 we get 2
−δ ≤ 15

256 . We can use δ ≥ 5. In this case, if we use

δ = 5 we don’t have dependence on d in the selection function since the interval

of d is of width 2
−6

.

We compute the selection intervals for t = 2. For k = 2 we get ̂L2 = dL2e2
and ̂U1 = b(U1 − 2

−t
)c2. Since L2 =

(

2− 2
3

)

× 1 =
4
3 and U1 =

(

1 +
2
3

)

× 63
64 =

5
3 × 63

64 we get ̂L2 =
6
4 and ̂U1 =

5
4 . Being ̂L2 ≥ ̂U1, t = 2 is not a possible

solution.

We select t = 3. The corresponding selection intervals and selection contants

are presented in Table E5.14.

Only one fractional bit of ŷ is necessary for the selection function. A possible

implementation is presented in Figure E5.14.

Exercise 5.17
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[di, di+1)
[

63
64 , 1

)

̂L2 (di+1) , ̂U1 (di)
+

11, 12

m2 (i) 12

̂L1 (di+1) , ̂U0 (di)
+

3, 4

m1 (i) 4

̂L0 (di+1) , ̂U−1 (di)
+ −5,−4

m0 (i) −4

̂L−1 (di+1) , ̂U−2 (di)
+ −13,−12

m−1 (i) −12

Table E5.14: Selection interval and mk constants. Note:
+
: real value= shown

value/8

qSEL

qj+1

xxx.xxx
y

CPA

xxx.xxx

xxx.x

Figure E5.14: Implementation of the digit selection block.
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a) Range of the divisor

From expression 5.16 we have

w [j + 1] = rw [j]− qj+1d = rw [j]− qj+1 − qj+1 (d− 1)

Since |qj+1| ≤ a we get

−a (d− 1) ≤ −qj+1 (d− 1) ≤ a (d− 1)

From the expression for quotient digit selection

qj+1 = integer (rw [j] + 0.5) ≤ a

we have

−1

2
< rw [j]− qj+1 <

1

2

From expression 5.15 we have

|rw [j]| ≤ rρd

We obtain the following bounds on the shifted residual

max

(

−a +
1

2
,−rρd

)

< rw [j] < min

(

a− 1

2
, rρd

)

Since the most critical restriction is the positive bound, we get

1

2
+ a |(1− d)| < min

(

2a− 1

2r
, ρd

)

In this case, since d > 1, we have

1

2
+ a (d− 1) <

2a− 1

2r

Solving for d we get

d < 1 +
2a− r − 1

2ar

and therefore for convergence it must be

β <
1

r
− (r + 1)

2ar

b) Possible implementation

An implementation of a high radix digit recurrence division with scal-

ing and selection by rounding for nonredundant residuals is presented in

Figure E5.17.
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Module 
M

M

d

M
U
X

Round & 
Recode

Md; Mx; 512w -qz

MULTIPLIER-
ACCUMULATOR

*
+

MUX

ADDER

+

scale/iterate

x

z

M ; qj+1 

W

WS[j+1] WS[j+1]

W[j]

(Initialization not shown)

Figure E5.17: Implementation of a high radix division unit with scaling and

selection by rounding (nonredundant residuals).

The hardware cost is higher in the high radix unit with respect to other

low radix implementations due to the MAC block, additional registers and

the module to compute the prescaling factor M. In the high radix unit,

the number of cycles is reduced but tcycle is larger. In the proposed imple-

mentation the speed-up with respect to other low radix implementations

is limited by the nonredundant adder required to handle nonredundant

residuals. To achieve a higher speed-up, we should consider a redundant

representation of the residuals and a faster adder (see Chapter 5 for a fast

implementation of a radix-512 division unit with residuals in carry-save

form).

c) Example of execution for r = 100, x = 0.83703960 and d = 1.00827040

In the following we illustrate the method by finding the first three radix-r

quotient digits. The recurrence is as follows:

w [j + 1] = 100× w [j]− qj+1d

The expression for quotient digit selection (for residuals in two’s comple-

ment form) is

qj+1 = integer (100× w [j] + 0.5)

From a) we get

β <
1

r
− (r + 1)

2ar
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In this case, using a = r − 1 = 99 we get β < 0.004899. For convergence,

it must be

1 ≤ d ≤ 1.004899

We compute the scaling constant M = 1/1.005 ≈ 0.995. We scale the

divisor thus obtaining z = M × d = 1.00322904. We compute M × x and

initialize w [0] = M × x = 0.83285440.

w [0] = 0.83285440 → q1 = round(83.285440) = 83

w [1] = 100× 0.83285440− 83× 1.00322904 =

= 0.01742968→q2 = round(1.742968) = 2

w [2] = 100× (0.01742968)− 2× 1.00322904 =

= −0.26349008→q3 = round(−26.349008) = −26
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Miloš D. Ercegovac and Tomás Lang

Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

– Updated: September 23, 2003 –

Chapter 6: Solutions to Exercises

– With contributions by Elisardo Antelo and Fabrizio Lamberti –

Exercise 6.1

a) Radix-2, sj ∈ {−1, 0, 1}, conventional (nonredundant) residual

We have x = 144 × 2
−8

= 0.10010000 and ρ = 1. We choose s0 = 0.

Therefore the initialization is w [0] = x− s0 = 0.10010000.

We use the result-digit selection function for redundant residual but we

consider only 2 integer bits since the range of the residual estimate is

smaller than in the redundant case.

2w [0] = 001.00100000 ŷ = 1 s1 = 1

F1 [0] = 11.10000000 F−1 [0] = 11.10000000

w [1] = 00.10100000

2w [1] = 001.01000000 ŷ = 1 s2 = 1

F1 [1] = 10.11000000 F−1 [1] = 00.11000000

w [2] = 00.00000000

2w [2] = 000.00000000 ŷ = 0 s3 = 1

F1 [2] = 10.01100000 F−1 [2] = 01.01100000

w [3] = 10.01100000

2w [3] = 100.11000000 ŷ = −4 s4 = −1

F−1 [3] = 01.10110000 F1 [3] = 10.00110000

w [4] = 10.01110000

2w [4] = 100.11100000 ŷ = −4 s5 = −1

F−1 [4] = 01.10011000 F1 [4] = 10.01011000

w [5] = 10.01111000

2w [5] = 100.11110000 ŷ = −4 s6 = −1

F−1 [5] = 01.10001100 F1 [5] = 01.10001100

w [6] = 1110.01111100
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(continues on next page)

2w [6] = 100.11111000 ŷ = −4 s7 = −1

F−1 [6] = 01.10000110 F1 [6] = 10.01110110

w [7] = 10.01111110

2w [7] = 100.11111100 ŷ = −4 s8 = −1

F−1 [7] = 01.10000011 F1 [7] = 10.01111011

w [8] = 10.01111111

2w [8] = 100.11111110 ŷ = −4 s9 = −1

F−1 [8] = 01.10000001 F1 [8] = 10.01111101

w [9] = 10.01111111

We perform 9 iterations to compute the additional bit required for round-

ing. Since w [9] < 0 the correction step has to be performed. Thus

s9 = −2. The result is

s = 0.1111̄1̄1̄1̄1̄2̄ = (0.11000000)2

b) Radix-2, sj ∈ {−1, 0, 1}, carry-save residual

2WS [0] = 0001.00100000 ŷ = 1 s1 = 1

2WC [0] = 0000.00000000

F1 [0] = 111.10000000 F−1 [0] = 111.10000000

WS [1] = 110.10100000

WC [1] = 010.00000000

2WS [1] = 1101.01000000 ŷ = 1 s2 = 1

2WC [1] = 0100.00000000

F1 [1] = 110.11000000 F−1 [1] = 000.11000000

WS [2] = 111.10000000

WC [2] = 000.10000000

2WS [2] = 1111.00000000 ŷ = 0 s3 = 1

2WC [2] = 0001.00000000

F1 [2] = 110.01100000 F−1 [2] = 001.01100000

WS [3] = 000.01100000

WC [3] = 110.00000000

2WS [3] = 0000.11000000 ŷ = −4 s4 = −1

2WC [3] = 1100.00000000

F−1 [3] = 001.10110000 F1 [3] = 110.00110000

WS [4] = 101.01110000

WC [4] = 001.00000000

(continues on next page)
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2WS [4] = 1010.11100000 ŷ = −4 s5 = −1

2WC [4] = 0010.00000000

F−1 [4] = 001.10011000 F1 [4] = 110.01011000

WS [5] = 001.01111000

WC [5] = 101.00000000

2WS [5] = 0010.11110000 ŷ = −4 s6 = −1

2WC [5] = 1010.00000000

F−1 [5] = 001.10001100 F1 [5] = 001.10001100

WS [6] = 001.01111100

WC [6] = 101.00000000

2WS [6] = 0010.11111000 ŷ = −4 s7 = −1

2WC [6] = 1010.00000000

F−1 [6] = 001.10000110 F1 [6] = 110.01110110

WS [7] = 001.01111110

WC [7] = 101.00000000

2WS [7] = 0010.11111100 ŷ = −4 s8 = −1

2WC [7] = 1010.00000000

F−1 [7] = 001.10000011 F1 [7] = 110.01111011

WS [8] = 001.01111111

WC [8] = 101.00000000

2WS [8] = 0010.11111110 ŷ = −4 s9 = −1

2WC [8] = 1010.00000000

F−1 [8] = 001.10000001 F1 [8] = 110.01111101

WS [9] = 001.01111111

WC [9] = 101.00000000

We perform 9 iterations to compute the additional bit required for round-

ing. Since w [9] < 0 the correction step has to be performed. Thus

s9 = −2. The result is

s = 0.1111̄1̄1̄1̄1̄2̄ = (0.11000000)2

c) Radix-4, sj ∈ {−2,−1, 0, 1, 2}, carry-save residual

Since ρ =
a

r−1 =
2
3 < 1, s0 should be 1. Therefore w [0] = 1 − s0 =

111.10010000.
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4WS [0] = 1110.01000000 ̂S = 1.0000 S [0] = 1

4WC [0] = 0000.00000000 ŷ = 1110.010 s1 = −1

F1 [0] = 001.11000000 S [1] = 0.11

WS [1] = 11.10000000

WC [1] = 00.10000000

4WS [1] = 1110.00000000 ̂S = 0.1100 s2 = 0

4WC [1] = 0010.00000000 ŷ = 0000.000 S [2] = 0.1100

WS [2] = 00.00000000

WC [2] = 00.00000000

4WS [2] = 0000.00000000 ̂S = 0.1100 s3 = 0

4WC [2] = 0000.00000000 ŷ = 0000.000 S [3] = 0.110000

Since w = 0, the rest of the digits of S are 0. We perform 4 iterations to

take into account the generation of the additional bit required for round-

ing. The radix-4 digits of the result are s0 = 1, s1 = −1 , s2 = 0, s3 = 0,

s4 = 0 and s5 = 0. The result is

s = (0.11000000)2

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 6: Solutions to Exercises



5

Exercise 6.3

a) Use S [j] in its original signed digit form

In this case it is not necessary the on-the-fly conversion of S [j] for im-

plementing the recurrence. Neverthless the register K [j] is stil necessary.

F [j] is computed as

−Sj+1

(

2S [j] + Sj+1r
−(j+1)

)

which requires a single concatenation of Sj+1, and a digit multiplication

by Sj+1. Since F [j] is represented in signed-digit form, the adder of the

recurrence is more complex, that is, both operands are redundant.

b) Convert S [j] to two’s complement representation

The conversion is on-the-fly, and since this conversion is already necessary,

it does not introduce additional complexity. The adder is simpler that

in a) since one operand is in nonredundant form. More specifically the

term −Sj+1

(

2S [j] + Sj+1r
−(j+1)

)

is generated in nonredundant form as

follows:

– Sj+1 ≥ 0

Concatenate Sj+1 to 2S [j] in position j+1 . Set the most significant

digit to one to have a negative operand (the weight of the most

significant digit is negative). Then perform digit multiplication.

– Sj+1 < 0

In this case

(

2S [j] + Sj+1r
−(j+1)

)

= 2
(

S [j]− r−j
)

+ (2r − Sj+1) r−(j+1)

The term S [j]− r−j
is available from the on-the-fly conversion mod-

ule. The term 2r − Sj+1 is precomputed for every digit and is con-

catenated to 2
(

S [j]− r−j
)

in postion j + 1 . Finally, the digit mul-

tiplication is performed.
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Exercise 6.5

a) Network for digit selection

Figure E6.5a shows the network for the selection of sj+1 and sj+2 in a

radix-2 square root implementation using two radix-2 overlapped stages.

SELSQR

44

SELSQR

44

SELSQR

44

3-1 MUX

CSA

2  w[j]
2F  [j]

CSA

2F   [j]1 -1

2(2w[j])

22

2

SELSQR

44

2w[j]

s j+2

s j+1

2

2

2 2  w[j]
2

Figure E6.5a: Network for digit selection.

b) Network to produce the next residual

In Figure E6.5b the network producing the next residual is illustrated.

c) Delay analysis

– Conventional implementation

Computing the delay in the critical path we have

tcycle = tSELSQRT (4) + tbuff (1) + tmux(1) + tHA(1) + treg(2) = 9tg

The latency of the conventional implementation (8 fractional bits)

can be computed as 8× tcycle = 8× 9tg = 72tg.

– Overlapped implementation

Computing the delay in the critical path we have that the delay to

produce W [j + 1] (that is, the delay from W [j] to W [j + 1]) is

tSELSQRT (4) + tbuff (1) + tmux(1) + tHA(1) = 7tg

Moreover, the delay to produce sj+2 (delay of CSA + delay of selec-

tion network + delay of 3-1 multiplexer) is

tCSA(2) + tSELSQRT (4) + tmux(1) + tbuff (1) = 8tg
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F1 , F-1 , K REGISTERS

F1 , F-1 , K MODULE

F1 , F-1 , K MODULE

MUX

3-2 CSA

MUX

3-2 CSA

WS,WC REGISTERS

F  [j+2]1

F   [j+2]-1

K[j+2]

K[j+1]

K[j]

F  [j]1

F   [j]-1

F  [j+2]1

F   [j+2]-1

2w[j]

2w[j+1]

w[j+2]

s j+1

j+2
s

j=0 j=0

initial values w[0]

Figure E6.5b: Network to produce the next residual.
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Finally, the delay to produce W [j + 2] (delay to produce sj+2 +

delay of buffer + delay of mux + delay of HA) can be computed as

8tg + 1tg + 1tg + 1tg = 12tg

Adding the register delay we get tcycle = 11tg +2tg = 13tg. Comput-

ing the latency of the overlapped implementation (8 fractional bits)

we get 4× tcycle = 4× 13tg = 52tg

Exercise 6.8

We compute the radix-4 square root of x = (53)10 = (00110101)2. Since

n = 8, we perform a right-shift of m = 2 bits and produce x∗
= .11010100.

The number of bits of the integer result is
8−2
2 = 3. Consequently, two radix-

4 iterations are necessary. We have S [0] = 1 and w [0] = x∗ − 1 = 11.11010100.

Note that no alignment to digit boundary is needed, since the square root

algorithm does not require to compute a remainder.

The iterations are as follows:

4WS [0] = 1111.01010000

4WC [0] = 0000.00000000 ŷ = 1111.0101 s1 = −1 S [1] = 0.11

F−1 [0] = 001.11000000

WS [1] = 10.10010000

WC [1] = 10.10000000

4WS [1] = 1010.01000000

4WC [1] = 1010.00000000 ŷ = 0100.0100 s2 = 2 S [2] = 0.1110

We do not need to compute w [2]. Therefore the result is

s = 2
3
(0.111) = 111 = (7)10
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Exercise 6.13

We develop a radix-4 selection function for J = 3, t = 3 and δ = 4.

– k > 0

min (Uk−1 (Ii)) = 2×
(

1

2
+ i× 2

−4

)

×
(

k − 1

3

)

max (Lk (Ii)) = 2×
(

1

2
+ (i + 1)× 2

−4

)

×
(

k − 2

3

)

– k ≤ 0

min (Uk−1 (Ii)) = 2×
(

1

2
+ (i + 1)× 2

−4

)

×
(

k − 1

3

)

max (Lk (Ii)) = 2×
(

1

2
+ i× 2

−4

)

×
(

k − 2

3

)

+

(

k − 2

3

)2

× 4
−4

̂Lk = max (dLk (Ii)e3) ≤ mk (i) ≤ min (bUk−1 (Ii))− 2
−3c3 = ̂Uk−1

To improve the presentation of results, we use a bound for max (Lk (Ii)) .

More specifically, we want an upper bound of the term
(

k − 2
3

)2 × 4
−4

. For

k = 0 we have
4
9×4

−4
=

1
576 < 1

512 . For k = 1 we have
(

− 5
3

)2×4
−4

=
25

2304 < 1
64 .

The selection constants are presented in Table E6.13. Note that we give only

half of the table (for ̂S[j] = 8, 9, 10, 11) since there is an interval ̂U−2− ̂L−1 that

is negative. Consequently, there is no selection function for t = 3 and δ = 4.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 6: Solutions to Exercises



10

̂S [j] 8 9 10 11

̂L2, ̂U1 12, 12 14, 14 15, 15 16, 17

m2 12 14 15 16

̂L1, ̂U0 3, 4 4, 5 4, 5 4, 6

m1 4 4 4 4

̂L0, ̂U−1 −5, − 4 −5, − 5 −6, − 5 −7, − 5

m0 −4 −5 −6 −6

̂L−1, ̂U−2 −13, − 13 −14, − 15 −16, − 16 −18, − 17

m−1 −13 X −16 −18

Table E6.13: Selection interval and mk constants.

̂S[j]: real value= shown value/16.
̂Lk, ̂Uk−1 and mk: real value = shown value/8.
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Exercise 7.1

From

ε[j] = 1− d ·R[j]

ε[j + 1] = 1− d ·R[j + 1] = (ε[j])2 = (1− d ·R[j])2

we get

1− d ·R[j + 1] = 1− 2d ·R[j] + (d ·R[j])2

d ·R[j + 1] = 2d ·R[j]− (d ·R[j])2

R[j + 1] = 2R[j]− d ·R[j]2 = R[j](2− d ·R[j])

Exercise 7.4

Find the reciprocal of d = 29/256 by the multiplicative normalization method.

For the maximum error less tha 2
−12 ≈ 0.00024 in the range 1/2 ≤ d < 1 we

scale the input as follows:

1

d
=

1

29/256
=

1

29/32
× 2

3

and compute
1

29/32

P [0] = b2− 29/32c4 = 1.00012 = 1.0625

j P [j] d[j] R[j] ε[j]

0 1.0625 0.962891 1.0625 0.037

1 1.037109 0.998623 1.101929 1.38× 10
−3

2 1.001377 0.999998 1.103446 1.9× 10
−6

3 1.000002 0.999999 1.103448 3.6× 10
−12

The answer is R[3]×2
3

= 8.827586... compared to 256/29 = 8.827586... with

an error less than 2
−12

. Three iterations are used to guarantee that the error is

smaller than 2
−12

for 1/2 ≤ d < 1: for d = 1/2, ε[2] = 3.91 × 10
−3 > 2

−12
so

another iteration is needed.
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Exercise 7.6

Optimal 5-bit input, 4-bit output reciprocal table is shown below. The

actual input and output bits are underlined. The case 1.00000 produces the

same output as for 1.1111x and needs to be detected.

5-bit 4-bit 5-bit 4-bit

input output input output

1.00000 1.00000 1.10000 0.10101

1.00001 0.11111 1.10001 0.10101

1.00010 0.11110 1.10010 0.10100

1.00011 0.11101 1.10011 0.10100

1.00100 0.11100 1.10100 0.10100

1.00101 0.11011 1.10101 0.10011

1.00110 0.11011 1.10110 0.10011

1.00111 0.11010 1.10111 0.10010

1.01000 0.11001 1.11000 0.10010

1.01001 0.11001 1.11001 0.10010

1.01010 0.11000 1.11010 0.10010

1.01011 0.11000 1.11011 0.10001

1.01100 0.10111 1.11100 0.10001

1.01101 0.10111 1.11101 0.10001

1.01110 0.10110 1.11110 0.10000

1.01111 0.10110 1.11111 0.10000

Exercise 7.9

(a) With full multiplier (55× 55→ 55, rounded)

– Rounding error of multiplication: ±2
−56

(±1/2 ulp)

– Error due to ones’ complement: 2
−55

(1 ulp)

We now determine the bound on the generated error εG[j] by incorporating

the bounds of errors associated with each iteration:

R[j + 1] = R[j](2− (R[j]d± 2
−56

)− 2
−55

)± 2
−56

= R[j](2−R[j]d)∓R[j]2−56 −R[j]2−55 ± 2
−56

= R[j](2−R[j]d)− εG[j]

We assume that R[j] < 1 resulting in

−2
−56

+ 2
−55 − 2

−56 < εG[j] < 2
−56

+ 2
−55

+ 2
−56

That is,

0 < εG[j] < 2
−54

To get the final error, we use εT [j] = εT [j − 1] + εG[j]
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−2
−8 < εT [0] < 2

8

εT [1] < εT [0]
2

+ εG[0] = 2
−16

+ 2
−54

εT [2] < (2
−16

+ 2
−54

)
2

+ 2
−54

εT [3] < ((2
−16

+ 2
−54

)
2

+ 2
−54

)
2

+ 2
−54

= (2
−32

+ 2
−108

+ 2
−69

+ 2
−54

)
2

+ 2
−54

=

= 2
−54

+ 2
−64

+ O(2
−86

)

(b) With rectangular multiplier (55× 16→ 55, rounded)

j=0

R[1] = R[0](2− (R[0]d∓ 2
−56

)− 2
−55

)± 2
−16

|εG[0]| ≤ 2
−56

+ 2
−55

+ 2
−16

εT [1] = εT [0]
2

+ εG[0] = (2
−8

)
2

+ (2
−56

+ 2
−55

+ 2
−16

)

= 2
−15

+ 2
−55

+ 2
−56

j=1

R[2] = R[1](2− (R[1]d∓ 2
−56

)− 2
−55

)± 2
−32

|εG[1]| ≤ 2
−56

+ 2
−55

+ 2
−32

εT [2] = εT [1]
2

+ εG[1] = (2
−15

+ 2
−55

+ 2
−56

)
2

+ 2
−56

+ 2
−55

+ 2
−32

j=2

R[3] = R[2](2− (R[2]d∓ 2× 2
−56

)− 2
−55

)± 2× 2
−32

|εG[2]| ≤ 2× 2
−56

+ 2
−55

+ 2× 2
−56

= 2
−54

+ 2
−55

εT [3] = εT [2]
2

+ εG[2] = [(2
−15

+ 2
−55

+ 2
−56

)
2

+ 2
−56

+ 2
−55

+ 2
−32

]
2

+ 2
−54

+ 2
−55

= 2
−54

+ 2
−55

+ 2
−60

+ O(2
−64

)
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Exercise 7.13

x = 1310/4096 = 0.010100011110, d = 2883/4096 = 0.101101000011

The initial value: R[0] = 2.98− d = 1.100100101000. As indicated on p.373,

the maximum relative error is about 10
−1

. For an error of 2
−12

, two iterations

are sufficient.

a) Using Newton-Raphson method (results truncated to 12 fractional bits):

j R[j] ε[j]

0 1.100100101000 -0.107

1 1.011001111001 0.011

2 1.011010111010 1.3× 10
−4

The error in the computed quotient q = x × R[2] = 0.011101000100 is

smaller than 6× 10
−5

which is less than 2
−12

.

b) Using multiplicative method: P [0] = 2.98−2d = 1.5722 = 1.100100101000

(Results truncated to 12 bits)

– Step 1:

d[0] = d · P [0] = 1.000110110100; q[0] = x · P [0] = 0.100000001011

– Step 2:

P [1] = 2− d[0] = 0.111001001011

d[1] = d[0]·P [1] = 0.1111111010001; q[1] = q[0]·P [1] = 0.011100110000

– Step 3:

P [2] = 2− d[1] = 1.000000101110;

d[2] = d[1]·P [2] = 0.111111111111; q[2] = q[1]·P [2] = 0.011101000100

Again, the error in the computed quotient is less than 2
−12

.

The error in the quotient is 5.9× 10
−5

.
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Exercise 7.17

The algorithm to implement is:

X[0] = x, S[0] = x, P [0] = A

where A is an approximation to 1/
√

x with an error less than 2
−8

.

for j = 0 to 3

P [j] = 1 +
1
2 (1−X[j])

P2[j] = P [j]P [j]

X[j + 1] = X[j]P2[j]

S[j + 1] = S[j]P [j]

(a) Alternative with a full 55× 55 multiplier, a 3-stage pipeline.

– P [0] = A – one cycle;

– Scheduling of an iteration in the pipelined multiplier is shown in

Figure E7.17. It takes 4 cycles to obtain S[j + 1]. An iteration takes

6 cycles.

– Latency:

1 cycle for initial approximation

3 full iterations, each 6 cycles for a total of 18 cycles

partial iteration to obtain S[4] in 4 cycles

total: 23 cycles

R[j]P[j]

1 2 3

1 2 3

R[j+1]

X[j+1]

P[j]P[j] P2[j]

X[j]P2[j]

1 2 3

Figure E7.17: Scheduling of one iteration

(b) With 55× 16 rectangular multipliers (single stage)

– P [0] = A, a 9-bit approximation; 1 cycle

– First iteration:

x[1] = x[0] · P [0]; (55× 9); 1 cycle

x[1] = x[1] · P [0]; (55× 9); 1 cycle

S[1] = S[0] · P [0]; (55× 9); 1 cycle

– Second iteration:
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P [1] = 1 +
1
2 (1− x[1]); rounded to 16 bits

x[2] = x[1] · P [1]; (55× 16); 1 cycle

x[2] = x[2] · P [1]; (55× 16); 1 cycle

S[2] = S[1] · P [1]; (55× 16); 1 cycle

– Third iteration:

P [2] = 1 +
1
2 (1− x[2]); rounded to 32 bits

x[3] = x[2] · P [2]; (55× 32); 2 cycles

x[3] = x[3] · P [2]; (55× 32); 2 cycles

S[3] = S[2] · P [2]; (55× 32); 2 cycles

– Termination:

P [3] = 1 +
1
2 (1− x[3]); rounded to 55 bits

S[4] = S[3] · P [3]; (55× 55); 4 cycles

– Latency: 1+3+3+6+4 = 17 cycles. This can be reduced to 13 cycles

if two rectangular multipliers are used.
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DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
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Chapter 8: Solutions to Exercises

– with contributions by Fabrizio Lamberti –

Exercise 8.1

• Fixed-point representation

Planck’s constant:

6.63× 10
−27 → 0. 00000000000000000000000000663

︸ ︷︷ ︸

29

Avogadro’s number:

6.02× 10
23 → 602000000000000000000000

︸ ︷︷ ︸

24

.0

To represent the approximation of Planck’s constant 6.63×10
−27

, 29 radix-

10 fractional digit are needed, while representing the approximation of

Avogadro’s number 6.02 × 10
23

requires 24 integer digits. In conclusion,

to represent the approximations of both Planck’s constant and Avogadro’s

number in a fixed-point number format, 29 + 54 = 53 radix-10 digits are

needed.

• Floating-point representation

In the considered radix-10 base-10 biased representation for the exponent

(such that Ebiased = E + 50), the exponent of both Planck’s constant

6.63×10
−27

and Avogadro’s number 6.02×10
23

can be represented using 2

digits, since −27+50 = 23 and 23+50 = 73. To represent the significands,

3 radix-10 digits are needed. Therefore, to represent the approximations of

both Planck’s constant and Avogadro’s number in a floating-point radix-

10 base-10 number format, 3 + 2 = 5 digits are needed.

Exercise 8.4

Since in a normalized representation the most significant digit of the signif-

icand is always different from zero, if we assume a floating point representation

with f digits for the significand and e digits for the exponent, the number of

values for the first digit of the significand depends on the base that is being con-

sidered. For instance, the first four bits (one hexadecimal digit) have 8 values
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for radix 2, 12 values for radix 4 and 15 values for radix 16. The values that can

be represented using the remaining f − 4 digits of the significand and e digits

of the exponent remain unchanged for different bases. Therefore we have

(a) System A has base 16 and system B has base 2

Since the number of normalized significands for system A is 15 × 2
f−4

and the number of normalized significands for system B is 8 × 2
f−4

, the

ratio between the number of floating-point numbers that are represented

by systems A and B is
15
8 .

(b) System A has base 16 and system B has base 4

Since the number of normalized significands for system A is 15 × 2
f−4

and the number of normalized significands for system B is 12× 2
f−4

, the

ratio between the number of floating-point numbers that are represented

by systems A and B is
15
12 .

Exercise 8.7

In a normalized base-64 floating-point representation, the number of values

that can be represented with the first digit is limited to 63. Therefore the

number of different significands that can be represented with 48-bit significands

is 63× 2
48−6

= 63× 2
42

.

Exercise 8.10

Notice that for rounding toward zero only f fractional bits are required.

For rounding to nearest, one additional bit is required to take into account all

discarded bits (since the sticky bit T is not provided, we assume T = 0 for ties).

For rounding toward plus infinity it is necessary to know the sign as well as

when all the bits to be discarded are zero.

s exp fraction guard round mode

0 00011111 1111111111111 1

0 00100000 0000000000000 RNE

0 00011111 1111111111111 RNO

0 00011111 1111111111111 RZ

0 00100000 0000000000000 RPINF

s exp fraction guard round mode

0 11111110 1111111111111 1

0 11111111 0000000000000 RNE

0 11111110 1111111111111 RNO

0 11111110 1111111111111 RZ

0 11111111 0000000000000 RPINF

s exp fraction guard round mode

1 11111110 1111111111111 1

1 11111111 0000000000000 RNE

1 11111110 1111111111111 RNO

1 11111110 1111111111111 RZ

1 11111110 1111111111111 RPINF
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Exercise 8.12

Hex-vector Value

00000000 0.0

80000000 −0.0

A73FF801 (1.01111111111100000000001)2 × 2
−51

A6800000 −1.0× 2
48

7F7FFFFF
(

2− 2
−23

)

× 2
127

00800000 1.0× 2
−126

7F800000 +∞
FF800000 −∞
7FC00000 NAN

Exercise 8.16

Operation X Y

A Add 000110001001111000 000110011100011101

B Add 000110001001111000 100110011100011101

C Sub 000110001001111000 000110001001110111

D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2

OUTPUTMUX 00110011

INPUTR−SHIFTER 1.001111000

OUTPUTR−SHIFTER 0.01001111000

OUTPUTSM−ADD/SUB 1.11011101100

OUTPUTL/R1−SHIFTER 1.11011101100

OUTPUTROUND(RNE) 1.110111011

OUTPUTEXPONENT UPDATE(RNE) 00110011

OUTPUTROUND(RZ) 1.110111011

OUTPUTEXPONENT UPDATE(RZ) 00110011

OUTPUTROUND(RPINF ) 1.110111011

OUTPUTEXPONENT UPDATE(RPINF ) 00110011

OUTPUTROUND(RMINF ) 1.110111011

OUTPUTEXPONENT UPDATE(RMINF ) 00110011

OUTPUTSIGN 0
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(B) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2

OUTPUTMUX 00110011

INPUTR−SHIFTER 1.001111000

OUTPUTR−SHIFTER 0.01001111000

OUTPUTSM−ADD/SUB 1.00111111100

OUTPUTL/R1−SHIFTER 1.00111111100

OUTPUTROUND(RNE) 1.001111111

OUTPUTEXPONENT UPDATE(RNE) 00110011

OUTPUTROUND(RZ) 1.001111111

OUTPUTEXPONENT UPDATE(RZ) 00110011

OUTPUTROUND(RPINF ) 1.001111111

OUTPUTEXPONENT UPDATE(RPINF ) 00110011

OUTPUTROUND(RMINF ) 1.001111111

OUTPUTEXPONENT UPDATE(RMINF ) 00110011

OUTPUTSIGN 1

(C) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 0

OUTPUTMUX 00110001

INPUTR−SHIFTER 1.001110111

OUTPUTR−SHIFTER 1.001110111

OUTPUTSM−ADD/SUB 0.000000111

OUTPUTL/R1−SHIFTER 1.110000000

OUTPUTROUND(RNE) 1.110000000

OUTPUTEXPONENT UPDATE(RNE) 00101010

OUTPUTROUND(RZ) 1.110000000

OUTPUTEXPONENT UPDATE(RZ) 00101010

OUTPUTROUND(RPINF ) 1.110000000

OUTPUTEXPONENT UPDATE(RPINF ) 00101010

OUTPUTROUND(RMINF ) 1.110000000

OUTPUTEXPONENT UPDATE(RMINF ) 00101010

OUTPUTSIGN 0
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(D) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2

OUTPUTMUX 11111110

INPUTR−SHIFTER 1.001010101

OUTPUTR−SHIFTER 0.01001010101

OUTPUTSM−ADD/SUB 10.00111100001

OUTPUTL/R1−SHIFTER 1.000111100001

OUTPUTROUND(RNE) 1.000111100

OUTPUTEXPONENT UPDATE(RNE) 11111110

OUTPUTROUND(RZ) 1.000111100

OUTPUTEXPONENT UPDATE(RZ) 11111110

OUTPUTROUND(RPINF ) 1.000111101

OUTPUTEXPONENT UPDATE(RPINF ) 11111110

OUTPUTROUND(RMINF ) 1.000111100

OUTPUTEXPONENT UPDATE(RMINF ) 11111110

OUTPUTSIGN 0

Exercise 8.20

(a) Determine the delay of the floating-point adder in Fig. 8.5 for single and

double precision

Module Delay for Delay for

Single precision Double precision

Exponent difference 1.4 ns 1.7 ns

Swap (incl. buffer for control) 0.5 ns 0.5 ns

Right shift 1.0 ns 1.2 ns

Add significands (s+m) 2.5 ns 2.8 ns

LOD 1.5 ns 1.8 ns

Left shift (includes buffer) 1.7 ns 2 ns

Round 1.0 ns 1.2 ns

Right shift (one pos., incl. buf.) 0.5 ns 0.5 ns

Special cases 0.8 ns 0.8 ns

Delay 10.9 ns 12.5 ns

(b) Pipeline the floating-point adder (for single and double precision) for a

clock rate of 200 Mhz (stage delay should not be larger than 80% of the

clock cycle)

Since a clock rate of 200Mhz correspond to a clock cycle of 5 ns, stage

delay should not be larger that 4 ns. The floating-point adder for single

precision could be pipelined as follows (3 stages):

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises



6

EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL 
CASES

exponent overflow/underflow,
zero, inexact, NAN

LOD

L/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.2: Pipelined implementation of the floating-point adder in

Figure 8.5 for single precision.

The floating-point adder for double precision could be pipelined as follows

(4 stages):
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EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL 
CASES

exponent overflow/underflow,
zero, inexact, NAN

LODL/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.3: Pipelined implementation of the floating-point adder in

Figure 8.5 for double precision.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises



8

Exercise 8.23

Operation X Y

A Add 000110001001111000 001001100100011101

B Sub 000110001001111000 101001100100011101

C Sub 000110001001111000 000110001001110111

D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27

OUTPUTMUX 01001100

INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000

OUTPUTR−SHIFTER 0.000000000 001

OUTPUTCOND.BIT INV ERT 0.000000000 001

OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001

RNE(Sum) 1.100011101

RNE(Sum + one)

Normalized 1.100011101

OUTPUTMUX 1.100011101

OUTPUTEXPONENT UPDATE 01001100

OUTPUTSIGN 0

(B) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27

OUTPUTMUX 01001100

INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000

OUTPUTR−SHIFTER 0.000000000 001

OUTPUTCOND.BIT INV ERT 1.111111111 001

OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001

RNE(Sum) 1.100011101

RNE(Sum + one)

Normalized 1.100011101

OUTPUTMUX 1.100011101

OUTPUTEXPONENT UPDATE 01001100

OUTPUTSIGN 1
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(C) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 0

OUTPUTMUX 00110001

INPUTR1−SHIFTER 1.001110111

OUTPUTR1−SHIFTER 1.001110111

INPUTR−SHIFTER

OUTPUTR−SHIFTER

OUTPUTCOND.BIT INV ERT

OUTPUTINV ERT,ADD,ROUND&INV ERT 0.000000001

OUTPUTL−SHIFTER 1.000000000

OUTPUTADD,ROUND&NORMALIZE

RNE(Sum)

RNE(Sum + one)

Normalized

OUTPUTMUX 1.000000000

OUTPUTEXPONENT UPDATE 00101000

OUTPUTSIGN 0

(D) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 2

OUTPUTMUX 11111110

INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001010101

OUTPUTR−SHIFTER 0.010010101 010

OUTPUTCOND.BIT INV ERT 0.010010101

OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 10.001111000

RNE(Sum) 10.001111000

RNE(Sum + one)

Normalized 1.000111100

Ez = 255→Mz = 0

(overflow)

OUTPUTMUX 1.000111100

Ez = 255→Mz = 0

(overflow)

OUTPUTEXPONENT UPDATE 11111111

OUTPUTSIGN 0
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Exercise 8.25

Operation X Y

A 001010101010110011 101111111101110011

B 110011110101110010 111000111011111100

(A) Sz = 1

OUTPUTEXP. BIASED ADDITION : 01010101

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.010101000000110001

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-

mented by one).

OUTPUTNORMALIZE : 1.00101010 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round down),

RMINF(round up).

OUTPUTEXPONENT UPDATE : 01010110

(B) Sz = 0

OUTPUTEXP. BIASED ADDITION : 11100110

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.100100100000111000

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-

mented by one).

OUTPUTNORMALIZE : 1.01001001 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round up),

RMINF(round down).

OUTPUTEXPONENT UPDATE : 11100111

Exercise 8.29

Operation X Y

A 001010101010111000 001010101010010000

B 010000000001100000 001010101011000000

(A) Performing the computation of the multiplication using the basic imple-

mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]

= 01.101111011110000000. Since P [−1] = 0, T = 1. To determine the

value of the sticky bit directly from the operands of the multiplier we have

to compute the sum of the number of trailing zeros of X and Y (that is,

3 + 4 = 7). Since no normalization is required, we can say that not all

the discarded bits are zeros and, as a consequence, T = 1, as expected.

If we want to compute the value of the sticky bit using the carry-save

representation of the second half of the product, we need

PC[−1 : 2m− 3] = 00.10111100000000000 and

PS[−1 : 2m− 2] = 01.000000011110000000.

PC[m + 1 : 2m− 3] = 0000000 and

PS[m + 1 : 2m− 2] = 10000000.
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10000000 s

00000000 c

01111111 z

0000000 t

0111111 w

Therefore, T = NAND(wi) = 1 as expected.

(B) Performing the computation of the multiplication using the basic imple-

mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]

=01.101000100000000000. Since P [−1] = 0, T = 0. To determine the

value of the sticky bit directly from the operands of the multiplier we

have to compute the sum of the number of trailing zeros of X and Y (that

is, 5 + 6 = 11). Since no normalization is required, we can say that all

the discarded bits are zeros and, as a consequence, T = 0, as expected.

If we want to compute the value of the sticky bit using the carry-save

reresentation of the second half of the product, we need

PC[−1 : 2m− 3] = 00.01001000000000000 and

PS[−1 : 2m− 2] = 01010110100000000000.

PC[m + 1 : 2m− 3] = 0000000 and

PS[m + 1 : 2m− 2] = 00000000.

00000000 s

00000000 c

11111111 z

0000000 t

1111111 w

Therefore, T = NAND(wi) = 0 as expected.

Exercise 8.31

(a) Round to zero

For rounding to zero, the result is simply truncated to m bits and no

additional operation is required.

(b) Round to plus infinity

Rpinf =

�

Mf + r−f
if Md > 0 and S = 0

Mf if Md = 0 or S = 1

In this case, a 1 should be added to position R (bit m) if S = 0 (where

S is the sign of the result) and Md > 0 (that is if the sticky bit T = 1).

However, the result can be either normalized or unnormalized, while the

rounding if performed before knowing whether the result is normalized.

Therefore, the following quantities have to be calculated:
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P0 = PM +
(

cm + S̄ · T
)

× 2
−m

P1 = PM +
(

cm + S̄ · T + 1
)

× 2
−m

up to position L (bit m− 1).

The rounded result is obtained by selecting

P =

�

P0 if P0[−1] = 0

2
−1P1 if P0[−1] = 1

that is if there is no overflow, select P0, while if there is overflow, select

P1, shift right and truncate at resulting bit L.

Proof

In all cases cm needs to be added to position R (bit m). In case there is

no overflow the result is truncated at position L. In the following cases a

1 needs to be added to position L:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position R = 1

Both cases are accounted for by adding S̄ ·T +1 in position R. In case there

is overflow the result is truncated at bit L − 1 and shifted one bit right.

Before shifting a 1 needs to be added to position L − 1 in the following

situations:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position L or R = 1

All cases are accounted for by adding S̄ ·T +1 in position R and selection

P0+1 in case of overflow. This is because if S̄ ·T = 1 adding 2 to position

R corresponds to adding 1 to position L, so selection P0 + 1 corresponds

to adding 2 to position L or 1 to L − 1. On the contrary, if S̄ · T = 0,

if R = 1 then when 1 is added to R there is a carry to position L, so 1

is added to L, while if R = 0 and L = 1 then adding 1 to P0 produces

a carry to bit L− 1 so that P0 + 1 truncated to bit l − 1 corresponds to

adding 1 to bit L− 1.

The implementation consists of an array of HAs and FAs, which adds 1 to

3 to position R (that is, add
(

cm ⊕ S̄ · T
)

to bit R and
(

cm + S̄ · T
)

to bit

L), a compound adder producing P0 and P0 + 1, The complete process

then requires a row of HAs and FAs, a compound adder that computes

the sum P0 and the sum plus 1 and a multiplexer which selects P0 or the

normalized (shifted) P1 depending whether P0 overflows or not.
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MUX

rounded & normalized
fraction of the result significand

COMPOUND ADDER

FA FAm Half Adders

PS[-1..m-2]

PC[-1..m-2]

L G

P1[1..m] P0[1..m]

P[1..m]

m+2 m+2

PC[m-1] PC[m]

PS[m-1] PS[m]

m m

m-1

(shifted)

PC* PS*

Fz [1..m-1]

P0[-1] P0[0]
P1[0]

(cm+S T+1) 2-m

Figure E8.6: Alternative implementation modified to perform round to

plus infinity.

(c) Round to minus infinity

Rminf =

�

Mf + r−f
if Md > 0 and S = 1

Mf if Md = 0 or S = 0

The algorithm for rounding to minus infinity is therefore the same used

for rounding to plus infinity, except that S should be substituted with S.

Exercise 8.34

X Y W

001010101010110011 101111111101110011 110011110101110010

Output of the m by m MULTIPLIER CS :

PS 01.101000001101101001

PC 00.101100110000000000

Computing d = −42 + 0 − 31 + m + 3 we get d = −60 (since m = 10).

Therefore no right shift is needed and the output of the RIGHT SHIFTER

block is 1.101110010.
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PS 01.101000001101101001

PC 00.101100110000000000

Addend 1.101110010 00

----------------------------------------------------

S 1.101110010 00 01 000100111101101001

C 0.000000000 00 01 010000000000000000

Adder output 1.101110010 00 10 010100111101101001

L GR T

The output of the adder does not require any realignement/normalization

left shift since it is already normalized (leading 1 in the left most position).

Rounding mode

RNE Round down

RZ Round down

RPINF Round down

RMINF Round up

The output of the EXPONENT UPDATE block is max(Ex + Ey, Ew) =

Ew. Finally, the result is negative (Sz = 1).

Exercise 8.38

X Y

A 001010101011010011 101111111110110011

B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1

Eq = Ex − Ed + 127 = 01010101

The significand of the result is then calculated as

Mq =
Mx

Md

=
1.011010011

1.110110011
=

0.1011010011

0.1110110011

The last conversion is necessary in order to be able to use the quotient-

digit selection function of the implementation presented in Section 5.3.1.

Since n = 10, the number of iterations to be performed is n+2 = 12. The

initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2
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2WS[0] 000.1011010011

2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1

−q1d 111.0001001100

2WS[1] 111.0100111100

2WC[1] 000.0100000100 ŷ[1]=-1/2 q2 = 0

−q2d 000.0000000000

2WS[2] 110.0001110000

2WC[2] 001.0000010000 ŷ[2]=-1 q3 = −1

−q3d 000.1110110011

2WS[3] 111.1110100110

2WC[3] 000.0011000001 ŷ[3]=0 q4 = 1

−q4d 111.0001001100

2WS[4] 001.1001010110

2WC[4] 100.1100010000 ŷ[4]=-1 q5 = −1

−q5d 000.1110110011

2WS[5] 011.0111101010

2WC[5] 011.0001001000 ŷ[5]=-2 q6 = −1

−q6d 000.1110110011

2WS[6] 001.0000100010

2WC[6] 101.1110101000 ŷ[6]=-1 q7 = −1

−q7d 000.1110110011

2WS[7] 000.0001110010

2WC[7] 111.1010001000 ŷ[7]=-1/2 q8 = 0

−q8d 000.0000000000

2WS[8] 111.0111110100

2WC[8] 000.0000000000 ŷ[8]=-1/2 q9 = 0

−q9d 000.0000000000

2WS[9] 110.1111101000

2WC[9] 000.0000000000 ŷ[9]=-3/2 q10 = −1

−q10d 000.1110110011

2WS[10] 100.0010110110

2WC[10] 011.1010000000 ŷ[10]=-1/2 q11 = 0

−q11d 000.0000000000

WS[11] 111.1000110110

WC[11] 000.0100000000 ŷ[11]=-1/2 q12 = 0

Since the last residual is negative, the last bit has to be corrected, therefore

q12 = −1. The computed result is then, which however has to be shifted

left 1 position since the computed result is q/2. The significand before

normalization and rounding is then Mq=0.11000011011.

After normalization (Mq=1.1000011011 and Eq=01010100) the result has

f +1 fractional bits. For round-to-nearest, 2
−(f+1)

has to be added to the

result; therefore the rounded significand is

1.1000011011 +

0.0000000001

------------

1.1000011100
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The final result expressed in the IEEE Standard format is

Q = 0|01010100|1000011100

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0

Eq = Ex − Ed + 127 = 11010110

The significand of the result is then calculated as

Mq =
Mx

Md

=
1.001011010

1.101011101
=

0.1001011010

0.1101011101

The last conversion is necessary in order to be able to use the quotient-

digit selection function of the implementation presented in Section 5.3.1.

Since n = 10, the number of iterations to be performed is n+2 = 12. The

initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2
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2WS[0] 000.1001011010

2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1

−q1d 111.0010100010

2WS[1] 111.0111110010

2WC[1] 000.0000001000 ŷ[1]=-1/2 q2 = 0

−q2d 000.0000000000

2WS[2] 110.1111110100

2WC[2] 000.0000000000 ŷ[2]=-1 q3 = −1

−q3d 000.1101011101

2WS[3] 100.0101010010

2WC[3] 011.0101010000 ŷ[3]=-1/2 q4 = 0

−q4d 000.0000000000

2WS[4] 110.0000000100

2WC[4] 001.0101000000 ŷ[4]=-1/2 q5 = 0

−q5d 000.0000000000

2WS[5] 110.1010001000

2WC[5] 000.0000000000 ŷ[5]=-1 q6 = −1

−q6d 000.1101011101

2WS[6] 100.1110101010

2WC[6] 010.0000100000 ŷ[6]=-1 q7 = −1

−q7d 000.1101011101

2WS[7] 100.0110101110

2WC[7] 011.0010100000 ŷ[7]=-1/2 q8 = 0

−q8d 000.0000000000

2WS[8] 110.1000011100

2WC[8] 000.1010000000 ŷ[8]=-1/2 q9 = 0

−q9d 000.0000000000

2WS[9] 100.0100111000

2WC[9] 010.0000000000 ŷ[9]=-1 q10 = −1

−q10d 000.1101011101

2WS[10] 101.0011001010

2WC[10] 001.0001100000 ŷ[10]=-1 q11 = −1

−q11d 000.1101011101

WS[11] = 100.1111110111

WC[11] = 010.0010010000 ŷ[11]=-1 q12 = −1

The computed result is then

q = .101̄001̄1̄001̄1̄1̄ = .010110011001

which has to be corrected by subtracting one in the last position since the

last residual is negative and thus

q = .010110011000

Moreover, the result has to be shifted left 1 position since the computed

result is q/2. The significand before normalization and rounding is then

Mq = 0.10110011000. After normalization (Mq = 1.0110011000 and Eq =

11010101) the result has f+1 fractional bits. For round-to-nearest,2
−(f+1)

has to be added to the result; therefore the rounded significand is
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1.0110011000 +

0.0000000001

------------

1.0110011001

The final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.41

X Y

A 001010101011010011 101111111110110011

B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1

Eq = Ex − Ed + 127 = 10011111

The significand of the result is then calculated as

Mq =
Mx

Md

=
1.011010011

1.110110011

The method requires the calculation of an initial approximation of the

reciprocal of the divisor (of 4 bits in this case), which can be obtained, for

instance, by means of a lookup table. The initial approximation is 0.1000.

The number of iterations to be performed is then

m =

⌈

log2

(n

k

)⌉

=

⌈

log2

(

9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed

using a 16 bits multiplier. The algorithm is as follows (assuming that mul-

tiplications are performed using a floating-point multiplier with rounding

to nearest):

1. P [0] = 0.1000 (initial approximation of 1/d)

2. d[0] = d× P [0] = 1.110110011000000× 2
−1

R[0] = x× P [0] = 1.011010011000000× 2
−1

3. P [1] = 2− d[0] = 1.000100110100000× 2
0

d[1] = d[0]× P [1] = 1.111111010001101× 2
−1

R[1] = R[0]× P [1] = 1.100001001010111× 2
−1

4. P [2] = 2− d[1] = 1.000000010111010× 2
0

R[2] = R[1]× P [2] = 1.100001101110001× 2
−1
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The final q, rounded to the final number of bit, is then 1.100001110. The

final result expressed in the IEEE Standard format is

Q = 0|01010100|100001110

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0

Eq = Ex − Ed + 127 = 01111100

The significand of the result is then calculated as

Mq =
Mx

Md

=
1.001011010

1.101011101

The method requires the calculation of an initial approximation of the

reciprocal of the divisor (of 4 bits in this case), which can be obtained, for

instance, by means of a lookup table. The initial approximation is 0.1001.

The number of iterations to be performed is then

m =

⌈

log2

(n

k

)⌉

=

⌈

log2

(

9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed

using a 16 bits multiplier. he algorithm is as follows (assuming that mul-

tiplications are performed using a floating-point multiplier with rounding

to nearest):

1. P [0] = 0.1001 (initial approximation of 1/d)

2. d[0] = d× P [0] = 1.111001000101000× 2
−1

R[0] = x× P [0] = 1.010100101010000× 2
−1

3. P [1] = 2− d[0] = 1.000011011101100× 2
0

d[1] = d[0]× P [1] = 1.111111101000000× 2
−1

R[1] = R[0]× P [1] = 1.011001001111000× 2
−1

4. P [2] = 2− d[1] = 1.000000001100000× 2
0

R[2] = R[1]× P [2] = 1.011001011111110× 2
−1

The final q, rounded to the final number of bit, is then 1.011001100. The

final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.44

Round to nearest is performed by adding 2
−(f+1)

and truncating to f bit.

Overflow can occur if q + 2
−(f+1) ≥ 2.

Since the normalized significand is in the range 1 ≤ 1.F ≤ 2 − 2
−f

, the

quotient is comprised in the range
1

2−2−f ≤ q ≤ 2−2−f

1 .

Therefore we obtain q ≤ 2 − 2
−f ⇒ q + 2

−(f+1) ≤ 2 − 2
−f

+ 2
−(f+1)

=

2−2
−(f+1) < 2. Since q +2

−(f+1) < 2, the overflow condition is never satisfied.
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Miloš D. Ercegovac and Tomás Lang

Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

– Updated: December 20, 2003 –

Chapter 11: Solutions to Exercises

Exercise 11.1

Compute sin(30
o
) and cos(30

o
) to a precision of seven bits 7 using the

CORDIC algorithm.

The number of iterations performed depends on the datapath width, so that

the angle becomes 0 for that width.

a) Datapath width of 7 fractional bits. We perform 7 iterations.

j z[j] σj αj x[j] y[j]

0 0.1000011 1 0.1100100 0.1001101 0.0000000

1 -0.0100001 -1 0.0111011 0.1001101 0.1001101

2 0.0011010 1 0.0011111 0.1110011 0.0100111

3 -0.0000101 -1 0.0001111 0.1101010 0.1000011

4 0.0001010 1 0.0000111 0.1110010 0.0110110

5 0.0000011 1 0.0000011 0.1101111 0.0111101

6 0.0000000 1 0.0000001 0.1101110 0.1000000

7 0.1101101 0.1000001

The angle decomposition is in radians. Values given in sign and magnitude.

The errors are | coso
(30) − x[7]| = |0.866 − 0.852| = 0.014 and | sin(30

o
) −

y[7]| = |0.5− 0.508| = 0.008

b) Datapath width of 10 fractional bits:

j z[j] σj αj x[j] y[j]

0 0.1000011000 1 0.1100100100 0.1001101101 0.0000000000

1 -0.0100001100 -1 0.0111011010 0.1001101101 0.1001101101

2 0.0011000111 1 0.0011111010 0.1110100011 0.0100110111

3 -0.0000101100 -1 0.0001111111 0.1101010110 0.1000011111

4 0.0001010011 1 0.0000111111 0.1110011001 0.0110110101

5 0.0000010100 1 0.0000011111 0.1101111111 0.0111101111

6 -0.0000001011 -1 0.0000001111 0.1101101111 0.1000001001

7 0.0000000100 1 0.0000000111 0.1101110111 0.0111111100

8 -0.0000000011 -1 0.0000000011 0.1101110100 0.1000000010

9 0.0000000000 1 0.0000000001 0.1101110110 0.0111111111

10 0.1101110101 0.1000000000

The result truncated to 7 fractional bits is

x[10] = 0.1101110 = 0.8594 y[10] = 0.1000000 = 0.5
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The errors are | cos(30o
) − x[10]| = |0.866 − 0.859| = 0.007 and | sin(30

o
) −

y[10]| = |0.5− 0.5| = 0

c) we have not found a systematic solution method.

Exercise 11.3

The number of iterations performed depends on the datapath width, so that

the last αi becomes 0 for that width.

a) Datapath width of 7 fractional bits. We perform 7 iterations.

j y[j] σj αj z[j] x[j]

0 10.0010000 -1 0.1100100 0.0000000 11.0100000

1 -01.0010000 1 0.0111011 0.1100100 101.0110000

2 01.1001000 -1 0.0011111 0.0101001 101.1111000

3 00.0001010 -1 0.0001111 0.1001000 110.0101010

4 -00.1011011 1 0.0000111 0.1010111 110.0101011

5 -00.0101001 1 0.0000011 0.1010000 110.0110000

6 -00.0010000 1 0.0000001 0.1001101 110.0110001

7 -00.0000100 0.1001100 110.0110001

The angle decomposition is in radians. Values given in sign and magnitude.

The result values are z[7] = 0.101100 = 0.580 and x[7] = 110.0110001 =

6.3828.The compensated value is xR = x[7]×1/K[7] = 6.3828×0.6072 = 3.876.

The errors are | tan−1
(2.13/3.25) − z[7]| = |0.580 − 0.594| = 0.014 and

modulus(2.13, 3.25)− xR = 3.8856− 3.876 = 0.009

b) Datapath width of 10 fractional bits. We perform 10 iterations.

j y[j] σj αj z[j] x[j]

0 10.0010000101 -1 0.1100100100 0.0000000000 11.0100000000

1 -01.0001111011 1 0.0111011010 0.1100100100 101.0110000101

2 01.1001000111 -1 0.0011111010 0.0101001010 101.1111000010

3 00.0001010111 -1 0.0001111111 0.1001000100 110.0101010011

4 -00.1011010011 1 0.0000111111 0.1011000011 110.0101011101

5 -00.0100111110 1 0.0000011111 0.1010000100 110.0110001010

6 -00.0001110010 1 0.0000001111 0.1001100101 110.0110010011

7 -00.0000001100 1 0.0000000111 0.1001010110 110.0110010100

8 00.0000100111 -1 0.0000000011 0.1001001111 110.0110010100

9 00.0000001110 -1 0.0000000001 0.1001010010 110.0110010100

10 00.0000000010 0.1001010011 110.0110010100

The result truncated to 7 fractional bits is

z[10] = 0.1001010 = 0.578 x[10] = 110.0110010 = 6.391

We compensate xR = x[10]× 1/K[10] = 6.391× 0.6072 = 3.8806

The errors are | tan−1
(2.13/3.25 − z[10]| = |0.580 − 0.578| = 0.002 and

|modulus(2.13, 3.25)− x[10]| = 3.8856− 3.8806 = 0.005.

c) we have not found a systematic method to get a solution.

Exercise 11.4

Note that the sequence of α’s should be decreasing. That is,

αi+1 < αi ≤ 2αi+1

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 11: Solutions to Exercises



3

From the definition of A and the values of si, we obtain that the range of A

is

0 ≤ A ≤ Amax =

∞
∑

i=0

αi (1)

The recurrent algorithm using si ∈ {0, 1} converges iff for all j the residual

value

W [j] = A−
j

∑

i=0

siαi

is bounded by

0 ≤W [j] ≤
∞
∑

i=j+1

αi (2)

From (1) and (2) we see that the algorithm converges while the values of si are

all 1. Consider therefore the value i = k for which the first si = 0 is selected.

In the iteration

W [k + 1] = W [k]− skαk

to have a non-negative residual W [k + 1], we need to make sj+1 = 0 when

W [k] ≤ αk − ulp. For the largest value (αk − ulp) we get W [k + 1] = αk − ulp.

Moreover, to have convergence, from (2) we have

αk − ulp ≤
∞
∑

j=k+1

αj = αk+1 +

∞
∑

j=k+2

αj (3)

Now from the hypothesis αi ≤ 2αi+1 we obtain

αi ≤
∞
∑

j=i+1

αj (4)

This results from the well-known fact that if ai = 2ai+1 then ai =
∑

∞

j=i+1 aj .

Introducing (4) in (3) we conclude that the algorithm converges.

For si{−1, 1} we apply the same technique. Now the convergence condition

is

|W [j]| ≤
∞
∑

i=j+1

αi

Again, the algorithm converges while sj = 1. We choose sj = −1 when W [j] <

0. The most negative value of W [j] occurs when W [j − 1] = 0. Consequently,

W [j] ≥ −αj−1

So, for convergence,

αj−1 ≤
∞
∑

i=j

αi

and the same proof as before follows.
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Exercise 11.9

The Taylor series expansion of tan
−1

(2
−j

) is

tan
−1

(2
−j

) = 2
−j − 2

−3j

3
+

2
−5j

5
− ...

Consequently,

| tan−1
(2

−j
)− 2

−j | = 2
−3j

3
− 2

−5j

5
+ ... ≤ 2

−n

results in

j ≥ J =
n− 1

3

This implies that for j ≥ J there is no need to store the value of tan
−1

(2
−j

) in

the table, since the value 2
−j

can be used.

Exercise 11.12

According to Table 11.5 we perform hyperbolic CORDIC in vectoring mode

with initial conditions xin = 1.17, yin = −0.83, and zin = 0. Performing eight

iterations with a datapath width of 8 bits, we obtain

j y[j] σj αj z[j] x[j]

1 -0.11010100 1 0.10001100 0.00000000 1.00101011

2 -0.00111111 1 0.01000001 -0.10001100 0.11000001

3 -0.00001111 1 0.00100000 -0.11001101 0.10110010

4 0.00000111 -1 0.00010000 -0.11101101 0.10110001

4 -0.00000100 1 0.00010000 -0.11011101 0.10110001

5 0.00000111 -1 0.00001000 -0.11101101 0.10110001

6 0.00000010 -1 0.00000100 -0.11100101 0.10110001

7 0.00000000 -1 0.00000010 -0.11100001 0.10110001

8 -0.00000001 1 0.00000001 -0.11011111 0.10110001

9 -0.00000001 - 0.00000000 -0.11100000 0.10110001

The result is 2z[10] = −1.11000000 = −1.75. The error is | ln(0.17) −
2z[10]| = | − 1.772 + 1.75| = 0.022
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