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Since the 1970’s, microprocessor-based digital platforms have been riding Moore’s law, allowing for 
doubling of density for the same area roughly every two years. However, whereas microprocessor 
fabrication has focused on increasing instruction execution rate, memory fabrication technologies 
have focused primarily on an increase in capacity with negligible increase in speed. This divergent 
trend in performance between the processors and memory has led to a phenomenon referred to as 
the “Memory Wall.” 

To overcome the memory wall, designers have resorted to a hierarchy of cache memory levels, 
which rely on the principal of memory access locality to reduce the observed memory access time 
and the performance gap between processors and memory. Unfortunately, important workload class-
es exhibit adverse memory access patterns that baffle the simple policies built into modern cache 
hierarchies to move instructions and data across cache levels.  As such, processors often spend much 
time idling upon a demand fetch of memory blocks that miss in higher cache levels.

Prefetching—predicting future memory accesses and issuing requests for the corresponding mem-
ory blocks in advance of explicit accesses—is an effective approach to hide memory access latency. 
There have been a myriad of proposed prefetching techniques, and nearly every modern processor 
includes some hardware prefetching mechanisms targeting simple and regular memory access pat-
terns. This primer offers an overview of the various classes of hardware prefetchers for instructions 
and data proposed in the research literature, and presents examples of techniques incorporated into 
modern microprocessors. 
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ABSTRACT
Since the 1970’s, microprocessor-based digital platforms have been riding Moore’s law, allowing for 
doubling of density for the same area roughly every two years. However, whereas microprocessor 
fabrication has focused on increasing instruction execution rate, memory fabrication technologies 
have focused primarily on an increase in capacity with negligible increase in speed. This divergent 
trend in performance between the processors and memory has led to a phenomenon referred to as 
the “Memory Wall.” 

To overcome the memory wall, designers have resorted to a hierarchy of cache memory levels, 
which rely on the principal of memory access locality to reduce the observed memory access time 
and the performance gap between processors and memory. Unfortunately, important workload 
classes exhibit adverse memory access patterns that baffle the simple policies built into modern 
cache hierarchies to move instructions and data across cache levels.  As such, processors often spend 
much time idling upon a demand fetch of memory blocks that miss in higher cache levels.

Prefetching—predicting future memory accesses and issuing requests for the corresponding 
memory blocks in advance of explicit accesses—is an effective approach to hide memory access 
latency. There have been a myriad of proposed prefetching techniques, and nearly every modern 
processor includes some hardware prefetching mechanisms targeting simple and regular memory 
access patterns. This primer offers an overview of the various classes of hardware prefetchers for 
instructions and data proposed in the research literature, and presents examples of techniques in-
corporated into modern microprocessors. 

KEYWORDS
hardware prefetching, next-line prefetching, branch-directed prefetching, discontinuity 
prefetching, stride prefetching, address-correlated prefetching, Markov prefetcher, global history 
buffer, temporal memory streaming, spatial memory streaming, execution-based prefetching
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Preface
Since their inception in the 1970’s, microprocessor-based digital platforms have been riding Moore’s 
law, allowing for doubling of density for the same area roughly every two years. Microprocessors 
and memory fabrication technologies, however, have been exploiting this increase in density in two 
somewhat opposing ways.  Whereas microprocessor fabrication has focused on increasing the rate 
at which machine instructions execute, memory fabrication technologies have focused primarily on 
an increase in capacity with negligible increase in speed. This divergent trend in performance be-
tween the processors and memory has led to a phenomenon referred to as the “Memory Wall” [1].

To overcome the memory wall, designers have resorted to a hierarchy of cache memory levels 
where at each level access latency is traded off for capacity. Caches rely on the principal of mem-
ory access locality to reduce the observed memory access time and the performance gap between 
processors and memory. Unfortunately, there are a number of important classes of workloads that 
exhibit adverse memory access patterns that baffle the simple policies built into modern cache 
hierarchies to move instructions and data across the cache levels.  As such, processors often spend 
much time idling upon a demand fetch of memory blocks that miss in higher cache levels.

Prefetching—predicting future memory accesses and issuing requests for the corresponding 
memory blocks in advance of explicit accesses by a processor—is quite promising as an approach 
to hide memory access latency. There have been a myriad of hardware and software approaches to 
prefetching. A number of effective hardware prefetching mechanisms targeting simple and regular 
memory access patterns have been incorporated into modern microprocessors to prefetch instruc-
tions and data. 

This primer offers an overview of the various classes of hardware prefetchers for instructions 
and data that have been proposed over the years, and presents examples of techniques incorporated 
into modern microprocessors. Although the techniques covered in this book are by no means 
comprehensive, they cover important instances of techniques from each class and as such the book 
serves as a suitable survey for those who plan to familiarize themselves with the domain. We cover 
prefetching for instruction and data caches, but many of the techniques we discuss may also be 
applicable to prefetching memory translations into translation lookaside buffers (see, e.g., [2]).

This primer is broken down into four chapters.  In Chapter 1, we present an introduction to 
the memory hierarchy and general prefetching concepts. In Chapter 2, we describe techniques to 
prefetch instructions.  Chapter 3 covers techniques to prefetch data, and we give concluding remarks 
in Chapter 4. The instruction prefetching techniques cover next-line prefetchers, branch-directed 
prefetching, discontinuity prefetchers, and temporal instruction streaming. The data prefetchers in-



xiv

clude stride and stream-based data prefetchers, address-correlated prefetching, spatially correlated 
prefetching, and execution-based prefetching. 

We assume the reader is familiar with the basics of processor architecture and caches and 
has some familiarity with more advanced topics like out of order execution.  This book enumerates 
the key issues in designing hardware prefetchers and provides high-level descriptions of a variety of 
prefetching techniques.  We refer the reader to the cited publications for more complete microar-
chitectural details and performance evaluations of the prefetching schemes.

We would like to acknowledge those who helped contribute to this book.  Thanks to Mark 
Hill for shepherding us through the writing and editorial process. Thanks to Cansu Kaynak and 
Michael Ferdman for providing figures and comments on drafts of this book.  Thanks to Margaret 
Martonosi, Calvin Lin, and other anonymous reviewers for their detailed feedback that helped to 
improve this book.
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CHAPTER 1

Introduction

1.1 THE MEMORY WALL
Figure 1.1 depicts the growing disparity between processor and memory performance in the past 
four decades. Innovations in microarchitecture, circuits, and fabrication technologies have led to an 
exponential increase in processor performance over this period. Meanwhile, DRAM has primarily 
benefitted from increases in density and DRAM speeds have improved only nominally. While 
future projections indicate that processor performance improvement may not continue at the same 
rate, the current gap in performance will necessitate techniques to mitigate long memory access 
latencies for years to come.

Figure 1.1: The growing disparity between processor and memory performance. From [3].

Computer architects have historically attempted to bridge this performance gap using a hier-
archy of cache memories. Figure 1.2 depicts the anatomy of a modern computer’s cache hierarchy. 
The hierarchy consists of cache memories that trade off capacity for lower latency at each level. The 
purpose of the hierarchy is to improve the apparent average memory access time by frequently han-
dling a memory request at the cache, avoiding the comparatively long access latency of DRAM. The 
cache levels closer to the cores are smaller but faster. Each level provides a temporary repository for 
recently accessed memory blocks to reduce the effective memory access latency. The more frequently 
memory blocks are found in levels closer to the cores, the lower the access latency. We refer to the 
cache(s) closest to the core as the L1 caches and then number cache levels successively, referring to 
the final cache as the last level cache (LLC).
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2 1. INTRODUCTION

Figure 1.2: A modern memory hierarchy.

The hierarchy relies on two types of memory reference locality. Temporal locality refers to 
memory that has been recently accessed and is likely to be accessed again. Spatial locality refers to 
memory in physical proximity that is likely to be accessed because near-neighbor instructions and 
data are often related. 

While locality is extremely powerful as a concept to exploit and reduce the effective mem-
ory access latency, it relies on two basic premises that do not necessarily hold for all workloads, 
particularly as the cache hierarchies grow deeper. The first premise is that one cache size fits all 
workloads and access patterns. In fact, the capacity demands of modern workloads vary drastically, 
and differing workloads benefit from different trade-offs in the capacity and speed of cache hier-
archy levels. The second premise is that a single strategy for allocating and replacing cache entries 
(typically allocating on demand and replacing entries that have not been recently used) is suitable 
for all workloads. However, again, there is enormous variation in memory access patterns for which 
a simple strategy for deciding which blocks to cache may fare poorly.

There are a myriad of techniques that have been proposed from the algorithmic, compil-
er-level, and system software level all the way down to hardware to overcome the Memory Wall. 
These techniques include cache-oblivious algorithms, code and data layout optimizations at the 
compiler level, to hardware-centric approaches. Moreover, many software-based techniques have 
been proposed for prefetching. In this book, we focus on hardware-based techniques for prefetching 
instructions and data. For a more comprehensive treatment of the memory system, we refer the 
reader to the synthesis lecture by Jacob [4]. 
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1.2 PREFETCHING
One way to hide memory access latency is to prefetch. Prefetching refers to the act of predicting 
a subsequent memory access and fetching the required values ahead of the memory access to hide 
any potential long latency. In the limit, a memory access does not incur any additional overhead 
and memory appears to have a performance equal to a processor register. In practice, however, 
prefetching may not always be timely or accurate. Late or inaccurate prefetches waste energy and, 
in the worst case, can hurt performance.

To hide latency effectively, a prefetching mechanism must: (1) predict the address of a mem-
ory access (i.e., be accurate), (2) predict when to issue a prefetch (i.e., be timely), and (3) choose 
where to place prefetched data (and, potentially, which other data to replace).

1.2.1 PREDICTING ADDRESSES

Predicting the correct memory addresses is a key challenge for prefetching mechanisms. If ad-
dresses are predicted correctly, the prefetching mechanism will have the opportunity to fetch them 
in advance and hide the memory access latency. If addresses are not predicted accurately, prefetch-
ing may cause pollution in the cache hierarchy (i.e., prefetched cache blocks would evict potentially 
useful cache blocks) and generate excessive traffic and contention in the memory system.

Predicting memory addresses may not be so simple. A data reference may be an access to a 
standalone variable or an element of a data structure and the nature of the reference depends on 
what the program is doing at a particular instance of execution. There are algorithms and data struc-
ture traversals that lend themselves well to both repetitive and predictable patterns (e.g., reading 
every element of an array sequentially). There are also a number of ways in which memory addresses 
can be hard to predict. These include, but are not limited to, interleaving of accesses to variables, 
multiple data structures, and control-flow dependent traversals (e.g., searching a binary tree). 

Similarly, an instruction reference will depend on whether the program is executing sequen-
tially or it is taking a branch (i.e., following a discontinuity). While sequential instruction fetch is 
straightforward, the control-flow behavior and its predictability in the program can impact how 
effective instruction prefetching can be. 

Predicting addresses accurately also depends on the level of the cache hierarchy at which the 
prefetching is performed. At the highest level, the interface between the processor and level-one 
cache (Figure 1.2) contains all memory reference information that could enable highly accurate 
prefetch, but could also lead to a waste of resources recording prefetch information for accesses 
that will hit in the first level cache anyway, and thus do not require prefetch. Conversely, at lower 
hierarchy levels, the access sequence is filtered, observing only the misses from higher levels. Thus, 
otherwise effective prefetching algorithms may be confused by access-sequence perturbations from 
effects like cache placement and replacement policy.

1.2. PREFETCHING
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Finally, there is typically a trade-off between the aggressiveness of a prefetch strategy and 
its accuracy; more aggressive prefetching will predict a higher fraction of the addresses actually 
requested by the processor at the cost of also fetching many more addresses erroneously. For this 
reason, many evaluation studies of prefetchers report two key metrics that jointly characterize 
the prefetcher’s effectiveness at predicting addresses. Coverage measures the fraction of explicit 
processor requests for which a prefetch is successful (i.e., fraction of demand misses eliminated 
by prefetching). Accuracy measures the fraction of accesses issued by the prefetcher that turn out 
to be useful (i.e., fraction of correct prefetches over all prefetches). Many simple prefetchers can 
improve coverage at the expense of accuracy, whereas an ideal prefetcher provides both high 
accuracy and coverage.

1.2.2 PREFETCH LOOKAHEAD

Ideally, a prefetching mechanism issues a prefetch well in advance and provides enough storage for 
prefetched data so as to hide all memory access latency. Predicting precisely when to prefetch in 
practice, however, is a major challenge. Even if addresses are predicted correctly, a prefetcher that is-
sues prefetches too early may not be able to hold all prefetched memory close to the processor long 
enough prior to access. In the best case, prefetching too early will be useless because the prefetched 
information will be evicted away from the processor prior to use. In the worst case, it may evict 
other useful information (e.g., other prefetched memory or useful blocks in higher-level caches). 
If memory is prefetched late, then it will diminish the effectiveness of prefetching by exposing the 
memory access latency upon the memory access. In the limit, late prefetches may lead to perfor-
mance degradation due to additional memory system traffic and poor interaction with mechanisms 
designed to prioritize time-critical demand accesses. 

1.2.3 PLACING PREFETCHED VALUES

The simplest and perhaps oldest software strategy for prefeching data is to load it into a processor 
register much like any other explicit load operation. Many architectures, in particular modern out-
of-order processors, do not stall execution when a load is issued, but rather stall dependent instruc-
tions only when the value of a load is consumed by another instruction. Such a prefetch strategy is 
often called a binding prefetch because the value of subsequent uses of the data is bound at the time 
the prefetch is issued. This approach comes with a number of drawbacks: (1) it consumes precious 
processor registers, (2) it obligates the hardware to perform the prefetch, even if the memory system 
is heavily loaded, (3) it leads to semantic difficulties in the case the prefetch address is erroneous 
(e.g., should a prefetch of an invalid address result in a memory protection fault?), and (4) it is 
unclear how to apply this strategy to instructions.
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Instead, most hardware prefetching techniques place prefetched values either directly into 
the cache hierarchy, or into supplemental buffers that augment the cache hierarchy, and are accessed 
concurrently. In multicore and multiprocessor systems, these caches and buffers participate in the 
cache coherence protocol, and hence the value of a prefetched memory location may change during 
the interval between the prefetch and a subsequent access; it is the hardware’s responsibility to 
ensure the access sees the up-to-date value. Such prefetching strategies are referred to as non-bind-
ing. In these schemes, prefetching is purely a performance optimization and does not affect the 
semantics of a program. 

All the hardware prefetchers we consider in this book fall into this latter, non-binding cat-
egory. They differ in precisely where they place prefetched values and what they replaced to make 
room for newly prefetched memory.

1.2. PREFETCHING
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CHAPTER 2 

Instruction Prefetching
Instruction fetch stalls are detrimental to performance for workloads with large instruction working 
sets; when instruction supply slows down, the processor pipeline’s execution resources (no matter 
how abundant) will be wasted. Whereas desktop and scientific workloads often exhibit small in-
struction working sets, conventional server workloads and emerging cloud workloads exhibit pri-
mary instruction working sets often far beyond what upper-level caches can accommodate. With 
trends towards fast software development, scripting paradigms, and virtualized environments with 
increasing software stack depth, primary instruction working sets are also growing fast. Modern 
hardware instruction scheduling techniques, such as out-of-order execution, are often effective in 
hiding some or all of the stalls due to data accesses and other long latency instructions. However, 
out-of-order execution generally cannot hide instruction fetch latency. As such, instruction stalls 
often account for a large fraction of overall memory stalls in servers.

2.1 NEXT-LINE PREFETCHING
Next-line prefetching [5] is the simplest form of instruction prefetching, which is prevalent in most 
modern processor designs. Because code is laid out sequentially in memory at consecutive memory 
addresses, often over half of lookups in the instruction cache are for sequential addresses. The logic 
needed to generate sequential addresses and fetch them is minimal and fairly easy to incorporate 
into a processor and cache hierarchy. 

Figure 2.1: A next-line prefetcher.
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Figure 2.1 depicts the anatomy of the next-line prefetcher in a modern processor pipeline. 
An instruction prefetch buffer or stream buffer, a small associative buffer, stores prefetched instruc-
tion cache blocks retrieved from lower cache hierarchy levels. Each time a block from the prefetch 
buffer is explicitly requested by the processor, it is transferred to the cache and the next consecutive 
block is prefetched from memory.

One of the first implementations of sequential instruction prefetching appeared in the IBM 
System/360 Model 91 in the late 1960’s [6]. There are a number of research results pointing out 
the importance of next-line prefetching in server workloads [7, 8]. Many have also extended simple 
next-line prefetching schemes to arbitrary-length sequences of contiguous basic blocks [9, 10].

2.2 FETCH-DIRECTED PREFETCHING
Next-line prefetchers are quite effective and efficient but only half of instruction lookups are se-
quential. Control flow instructions break the sequential fetch and create discontinuities in fetch, 
and as such require predictability of future control flow and lookahead. 

Figure 2.2: Examples of instruction fetch: (a) sequential fetch, (b) discontinuity due to an if-statement 
and a loop, and (c) discontinuities due to function calls. From [7].

Figure 2.2 compares examples of sequential fetch and discontinuities created by control flow. 
Figure 2.2(a) depicts sequential fetch of instruction cache blocks. Sequential fetch can be covered 
effectively with next-line prefetching. Figure 2.2(b) depicts two different types of discontinuity, one 
due to an if-statement that is false and as such requires a fetch around one or more cache blocks, 
and the other due to a loop. Figure 2.2(c) depicts discontinuities due to function calls.
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Branch-predictor-directed prefetchers [11, 12, 13, 14, 15] reuse existing branch predictors 
to explore future control flow. These techniques use the branch predictor to recursively make future 
predictions to find instruction-block addresses for prefetch. Because branch predictors are, to the 
first order, decoupled from the rest of the pipeline, predictors can theoretically advance ahead of 
execution to an arbitrary extent to predict future control flow.

Figure 2.3: Fetch-directed instruction prefetching. From [12].

Fetch-directed instruction prefetching (FDIP) [12] is one of the best branch-predictor-directed 
techniques. Figure 2.3 shows the anatomy of FDIP. FDIP decouples the branch predictor from 
stalls in the L1 instruction fetch unit, introducing the fetch target queue (FTQ) between these two 
structures. The prefetcher uses the addresses in the FTQ to fetch instruction blocks from the L2 
cache and place them in a small, fully associative buffer, overlapping prefetches with other L1 in-
struction fetches. The buffer is accessed by the instruction fetch unit in parallel with the L1 cache. 
To avoid redundancy between the buffer and L1, FDIP uses idle L1 instruction cache ports to 
probe the cache for the addresses in the FTQ to see if they are already present, and only enqueues 
missing addresses in the prefetch instruction queue (PIQ) for prefetch. Figure 2.4 illustrates the effec-
tiveness of FDIP-like mechanisms for prefetching in commercial server applications, which incur 
substantial stalls due to instruction cache misses.

2.2. FETCH-DIRECTED PREFETCHING
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Figure 2.4: Effectiveness of an FDIP-like prefetcher on commercial server applications as compared to 
next-line prefetching and a perfect L1 cache. Data from [7].

Although effective at reducing instruction-fetch stalls, FDIP is fundamentally limited due 
to its limited prefetch look-ahead. Figure 2.5 quantifies the relationship between branch prediction 
bandwidth and prefetch lookahead. Nearly half of all instruction cache misses require in excess of 
16 consecutive correct branch predictions (excluding inner-loop branches) before the candidate 
prefetch address can be generated.

Figure 2.5: Correct branch predictions required to achieve 4-miss lookahead. Data from [7].

2.3 DISCONTINUITY PREFETCHING
A greater challenge lies in prefetching at fetch discontinuities—interruptions in the sequen-

tial instruction fetch sequence from function calls, taken branches, and traps. 
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There are a myriad of solutions to address control flow discontinuities. Wrong-path 
prefetching [16] is a simple approach to address the fundamental problem with FDIP by using 
the branch predictor, but predicting the opposite path. Although limited in its effectiveness, 
predicting the wrong path prefetches past data-dependent branches and through the exit of 
backward loop branches can prefetch instructions that FDIP cannot. 

The branch-history guided prefetcher [17], execution-history guided prefetcher [18], mul-
tiple-stream predictor [10], next-trace predictors [19], and call graph prefetching [20] predict 
discontinuities keyed by earlier instructions, tracked independently from the branch predictor. 
Following the observation that server applications have deep call stacks of repeating functions, call 
graph prefetching [20] makes an effort to simultaneously predict the upcoming call stack rather 
just the next discontinuity. 

One recent example of this approach is the discontinuity predictor [21], depicted in Figure 
2.6, which maintains a table of fetch discontinuities mapping the PC of the block containing 
the taken branch to the branch target. Similar implementations are rumored to exist in some 
commercial processor products. As a next-line instruction prefetcher explores ahead of the fetch 
unit, it consults the discontinuity table with each block address and, upon a match, prefetches the 
discontinuous path in addition to the sequential one. Although it is simple and requires minimal 
hardware, the discontinuity predictor can bridge only a single fetch discontinuity; recursive lookups 
to explore additional paths result in an exponential growth in the number of prefetched blocks. The 
restriction to traverse at most one discontinuity limits the lookahead of the prefetcher. Furthermore, 
coverage is limited because the table will record only a single discontinuity per cache block, whereas 
there are cases where multiple taken branches occur within an instruction block. 

Figure 2.6: A discontinuity predictor.

2.3. DISCONTINUITY PREFETCHING



12 2. INTSTRUCTION PREFETCHING

2.4 PRESCIENT FETCH 
Using idle or parallel resources has been proposed for instruction prefetching. Prescient fetch 
techniques [22, 23, 24, 25] use helper threads to identify critical computation and control trans-
fers and perform them early, assisting the main thread that runs slower and in parallel with the 
helper thread. Although these approaches can be used for instruction prefetching beyond loops 
and function calls, only prescient instruction fetch [22] was specifically designed for this purpose. 
Speculative threading techniques identify the key execution information necessary and use it to 
forge ahead of the primary thread to issue instruction prefetches. Although speculative threading 
techniques can traverse multiple fetch discontinuities, their lookahead remains limited because they 
traverse the future instruction stream at the granularity of individual instructions, and hence often 
must traverse numerous instructions to discover a new cache block for prefetch.

2.5 TEMPORAL INSTRUCTION FETCH STREAMING
Temporal instruction fetch streaming (TIFS) [7] is designed to address the lookahead limitations of 
helper-thread and fetch/discontinuity-based mechanisms. Rather than explore a program's control 
flow graph, TIFS predicts future instruction-cache misses directly, through recording and replaying 
recurring L1 instruction miss sequences. 

Figure 2.7: Temporal instruction fetch streaming. From [7].

Figure 2.7 (from [7]) illustrates the design of TIFS. L1 instruction cache misses are recorded 
in an instruction miss log, a circular buffer maintained either in dedicated storage or within the L2 
cache. A separate index table keeps a mapping from instruction block addresses to the location that 
address was last recorded in the log. An L1-I miss to address C consults the index table (1), which 
points to an instruction miss log entry (2). The stream of addresses following C is read from the log 
and cache block addresses are sent to a streamed value buffer (3). The streamed value buffer requests 
the blocks in the stream from L2 (4), which returns the contents (5). Later, on a subsequent L1-I 
miss to D, the buffer returns the contents to the L1-I (6). 
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TIFS subsumes the sequential access predictions of next-line prefetchers. However, its per-
formance benefit is greater because the predictions are more accurate and more timely. Increased 
accuracy comes from the fact that TIFS uses history to determine how many of the upcoming 
consecutive blocks should be prefetched. 

TIFS improves lookahead in several ways. First, it operates at the granularity of cache blocks 
rather than individual instructions, addressing a key limitation of helper-thread approaches. Be-
cause of this, it skips over local loops and minor control flow within a cache block. TIFS is able to 
support any number of discontinuous branches and indirect branch targets by separately recording 
the discontinuities as part of the instruction stream. Furthermore, because it records extended se-
quences of instruction cache misses, it can quickly predict far into the future, providing substantially 
higher lookahead. For example, a next-line predictor is able to correctly prefetch a function body 
only after the first instruction block of that function is accessed. However, TIFS is able to predict 
and prefetch the same blocks earlier by predicting the function call and its sequential accesses prior 
to entering the function itself, while the caller is still executing code leading up to the call.

2.6 RETURN-ADDRESS STACK-DIRECTED INSTRUCTION 
PREFETCHING

Fetch-directed instruction prefetchers are limited due to the inability to predict past loop return 
branches and unpredictable conditional branches. Discontinuity prefetchers address these lim-
itations, but rely on only a single PC value to predict an upcoming fetch discontinuity. Similarly, 
although TIFS increases lookahead, it still maintains only a single pointer from a cache block to 
a location in its log. As a result, both of these mechanisms lose accuracy when there are multiple 
control flow paths out of a particular cache block. Some common idioms, such as return instructions 
and switch statements, lead to multiple paths.

Return-address stack-directed instruction prefetching (RDIP) [26] uses additional program 
context information to enhance prediction accuracy and lookahead. RDIP is based on two obser-
vations: (1) program context as captured in the call stack correlates strongly with L1 instruction 
misses and (2) the return address stack (RAS), already present in all high performance processors, 
succinctly summarizes program context. RDIP associates prefetch operations with signatures 
formed from the contents of the RAS. It stores signatures and the associated prefetch addresses 
in a ~64 KB signature table, which is consulted upon each call and return operation to trigger 
prefetching. RDIP achieves 70% of the potential speedup of an ideal L1 cache, outperforming a 
prefetcherless baseline by 11.5% over a suite of server workloads. 

2.7. PROACTIVE INSTRUCTION FETCH
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2.7 PROACTIVE INSTRUCTION FETCH
In addition to its inability to distinguish program contexts, TIFS prediction accuracy is also ham-
pered by other sources of control irregularity that cause slight differences in the sequence of L1 
instruction cache misses. In particular, otherwise-repetitive instruction streams may be fragmented 
or filtered by small differences in cache replacements, the effects of instruction fetch along mis-
predicted branch paths, and the effects of asynchronous interrupts and operating system traps. 
Proactive instruction fetch [27] modifies the TIFS design to (1) record the sequence of cache blocks 
accessed by the committed instruction sequence (rather than instruction fetches that miss in the 
cache) and (2) separately record streams that execute in the context of interrupt/trap handlers. A 
key innovation of the design is a compressed representation of the instruction sequence that uses bit 
vectors to efficiently encode spatial locality among prefetch addresses. Follow-on work [28] central-
izes the prefetcher metadata in a structure shared across cores, which substantially reduces storage 
cost in homogeneous designs where metadata is shared among many cores. Centralization reduces 
the per-core metadata to a minimal capacity, making the prefetcher practical even for many-core 
designs with small cores (e.g., cores used in mobile/embedded platforms).

Table 2.1: Summary of instruction prefetching techniques
Technique Line of Attack Lookahead Accuracy Cost/Complexity
Next-line Sequential addresses A few cache blocks 50% < 1 KB
Fetch-directed Follows the path of 

predicted control flow
Dependent on 
branch prediction 
accuracy

> 50% < 1 KB

Discontinuity Predicts discontinuities 
in control flow

Typically one 
branch ahead

> 50% > 1 KB

Prescient Fetch Helper threads Limited by helper-
thread execution 
bandwidth

> 50% > 1 KB

Temporal 
streaming

Uses a single L1 miss to 
predict a sequence of L1 
misses

An arbitrary 
number of cache 
blocks

95% ~64 K/core

RAS-directed Context disambiguation 
for temporal streams

Same > 95% ~64 K/core

Proactive Fetch Uses L1 references to 
predict a stream of L1 
misses

Same > 99% ~256 K /chip
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CHAPTER 3

Data Prefetching
Data miss patterns arise from the inherent structure that algorithms and high-level programming 
constructs impose to organize and traverse data in memory. Whereas instruction miss patterns in 
conventional von Neumann computer systems tend to be quite simple, following either sequential 
patterns or repetitive control transfers in a well-structured control flow graph, data access patterns 
can be far more diverse, particularly in pointer-linked data structures that enable multiple travers-
als. Moreover, whereas code tends to be static and hence easy to prefetch (with the exception of 
recent virtualization and just-in-time compilation mechanisms, which tend to thwart instruction 
prefetching), data structures morph over the course of execution, causing traversal patterns to 
change. This greater complexity in access patterns has led to a rich and diverse design space for data 
prefetching schemes that is much broader than instruction prefetchers.

We divide the design space of data prefetchers into four broad categories. First are prefetch-
ers that rely on simple stride patterns, which directly generalize next-line instruction prefetching 
concepts to data. Second are those that rely on repetitive traversal sequences, often exploiting the 
pointer relationships among addresses. Third are those that rely on regular (yet potentially non-
strided) data structure layouts. Finally, are mechanisms that explore ahead of the conventional 
out-of-order instruction window, and hence do not rely on regularity or repetition in the memory 
access address stream.

3.1 STRIDE AND STREAM PREFETCHERS FOR DATA
The first category of data prefetchers we examine are stride and stream prefetchers, which are a 
direct evolution of the next-line and stream prefetching mechanisms that have been developed for 
instructions. These prefetchers capture access patterns for data that are either laid out contiguously 
in the virtual address space or are separated by a constant stride. This class of prefetcher tends to be 
highly effective for dense matrix and array access patterns, but generally provides little benefit for 
pointer-based data structures. Strided data prefetchers are widely deployed in industrial processor 
designs, from systems as old as the IBM System/370 series through modern high-performance 
processors. Until recently, it is believed that this class of hardware data prefetcher was the only class 
to be commercially deployed.

Sequential data prefetcher implementations, which are restricted to prefetch only blocks at 
consecutive addresses, were described as early as 1978 [5]. By the early 1990’s such prefetchers 
were extended to detect and prefetch sequences of accesses separated by a non-constant stride 
[29]. Such strided access patterns arise frequently when traversing multi-dimensional arrays or 



16 3. DATA PREFETCHING

when aggregate data types (e.g., structs in C) are stored in arrays. Strided accesses can also arise 
by happenstance even in pointer-based data structures when dynamic memory allocators lay out 
constant-sized objects consecutively in memory, a common case due to pool allocators. Dahlgren 
and Stenstrom study the relative merits and effectiveness of sequential and stride prefetching 
mechanisms in detail [30]. 

A key challenge in stride prefetcher implementations is to distinguish among multiple inter-
leaved strided sequences, for example, as may arise in a matrix-vector product. Figure 3.1 shows a 
diagram of Baer and Chen’s scheme to track strides on a per-load-instruction basis. Their reference 
prediction table is a tagged, set-associative structure that uses the load instruction PC as the lookup 
key. Each entry holds the last address referenced by that load and the difference in address (i.e., 
stride) between the last two preceding references. Whenever the same stride is observed twice 
consecutively, the last reference address and stride are used to compute one or more additional 
addresses for prefetch. Subsequent accesses that continue to match the recorded stride will trigger 
additional prefetches. A long sequence of such strided accesses is referred to as a stream, analogous 
to instruction stream prefetchers. Ishii and co-authors describe more sophisticated hardware struc-
tures that can compactly represent multiple strides [31], while Sair and co-authors extend stream 
prefetching to more irregular patterns by predicting stride lengths [32]. 

Figure 3.1: Baer and Chen’s reference prediction table. From [29].

A second key implementation issue is to decide how many blocks to prefetch when a strided 
stream is detected. This parameter, often referred to as the prefetch degree or prefetch depth, is ideally 
large enough that the prefetched data arrive before being referenced by the processor, but not so 
large that blocks are replaced before access or cause undue pollution for short streams. Hur and Lin 
propose simple state machines that track histograms of recent stream lengths and can adaptively 
determine the appropriate prefetch depth for each distinct stream, enabling stream prefetchers to 
be effective even for short streams of only a few addresses [33]. 

Conventionally, stride prefetchers place the data they fetch directly into the cache hierarchy. 
However, if stride prefetchers are aggressive, they may pollute the cache, displacing useful data. 
Jouppi [34] describes an alternative organization wherein stream prefetchers place data in separate 
buffers, called stream buffers, which are accessed immediately after or in parallel with the L1 cache. 
By placing data in a stream buffer, a low accuracy stream (where many data are fetched but not 
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used) does not displace useful data in the cache, reducing the risk of inaccurate prefetching. How-
ever, erroneous prefetches still consume energy and bandwidth. Palacharla and Kessler evaluate a 
memory system organization where stream buffers entirely replace the second-level data cache [35].

Each stream buffer holds cache blocks from a single stream. Accesses from the processor 
interrogate the stream buffer contents, typically in parallel with accesses to the L1 cache. A hit 
in a stream buffer typically causes the requested block to be transferred to the L1 cache and an 
additional block from the stream to be fetched. In some variants, stream buffers are strictly FIFO 
and only the head of each stream buffer may be accessed. In other variants, stream buffers are asso-
ciatively searched. When the stride detection mechanism observes a new stream, an entire stream 
buffer is cleared and re-allocated (discarding any unreferenced blocks from a stale stream), typically 
according to a round-robin or least-recently-used scheme. 

Additional implementation concerns and optimizations for stream prefetchers have been 
analyzed by Zhang and McKee [36] and Iacobovici and co-authors [37].

3.2 ADDRESS-CORRELATING PREFETCHERS
Whereas stride prefetchers are typically ineffective for pointer-based data structures, such as linked 
lists, the second class of prefetcher we consider is specifically designed to target the pointer-chas-
ing access patterns of such data structures. Instead of relying on regularity in the layout of data in 
memory, this class of prefetcher exploits the fact that algorithms tend to traverse data structures in 
the same way repeatedly, leading to recurring cache miss sequences. 

Correlation between accesses to pairs of memory locations was suggested as early as 1976 
[38]. Charney and Reeves first described hardware prefetchers that seek to exploit such pair-wise 
correlation relationships, coining the term “correlation-based prefetcher” [39, 40]. Later work gen-
eralizes the notion of address correlation from pairs to groups or sequences of accesses [41, 42]. 
Wenisch and co-authors introduce the term “temporal correlation” [42] to refer to the phenomenon 
that two addresses accessed near one another in time will tend to be accessed together again in the 
future. Temporal correlation is an analog to “temporal locality,” that a recently accessed address is 
likely to be accessed again in the near future. Whereas caches exploit temporal locality, address-cor-
relating prefetchers exploit temporal correlation.

3.2.1 JUMP POINTERS

Correlating prefetchers are a generalization of hardware and software mechanisms that specifically 
targeted pointer-chasing access patterns. These earlier mechanisms rely on the concept of a jump 
pointer [43, 44, 45, 46], a pointer that enables a large forward jump in a data structure traversal. For 
example, a node in a linked list may be augmented with a pointer ten nodes forward in the list; the 
prefetcher can follow the jump pointer to gain lookahead over the main traversal being carried out 

3.2. ADDRESS-CORRELATING PREFETCHERS
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by the CPU, enabling timely prefetch. Prefetchers relying on jump pointers often require software 
or compiler support to annotate pointers. Content directed prefetchers [47, 48] eschew annotation 
and attempt instead to dereference and prefetch any load value that appears to form a valid virtual 
address. While jump-pointer mechanisms can be quite effective for specific data structure traversals 
(e.g., linked list traversals), their key shortcoming is that the distance the jump pointer advances 
the traversal must be carefully balanced to provide sufficient lookahead without jumping over too 
many elements. Jump pointer distances are difficult to tune and the pointers themselves can be 
expensive to store.

3.2.2 PAIR-WISE CORRELATION

In essence, a correlation-based hardware prefetcher is a lookup table that maps from one address 
to another address that is likely to follow it in the access sequence. While such an association can 
capture sequential and stride relationships, it is far more general, capturing, for example, the re-
lationship between the address of a pointer and the address to which it points. It is the ability to 
capture pointer traversals that affords address-correlating prefetchers a far greater opportunity for 
performance improvement than stride prefetchers, as pointer-chasing access patterns are dispropor-
tionately slow on modern processors. However, address-correlating prefetchers rely on repetition; 
they are unable to prefetch addresses that have never previously been referenced (in contrast to 
stride prefetchers). Moreover, address correlation prefetchers require enormous state, as they need 
to store the successor for every address. Hence, their storage requirement grows proportionally to 
the working set of the application. Much of the innovation in address-correlating prefetcher design 
centers on managing this enormous state.

3.2.3 MARKOV PREFETCHER

The Markov prefetcher [49, 50] is the simplest prefetcher design to exploit pair-wise address 
correlation. It directly implements the notion of a look-up table mapping a trigger address to 
its immediate successor in the off-chip access sequence. However, because addresses—especially 
when considered at cache-block granularity—often participate in multiple traversals, storing 
only a single successor for each trigger address results in poor effectiveness. Instead, the Markov 
prefetcher stores several previously observed successors, all of which are prefetched when a miss to 
the trigger address is observed. By prefetching several possible successors, the Markov prefetcher 
sacrifices accuracy (fraction of correct prefetches over all prefetches) to improve coverage (fraction 
of demand misses for which a prefetch is successful)—only one of the addresses requested by the 
prefetcher is expected to be correct. The number of successors fetched is often referred to as the 
width of the prefetch.
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The Markov prefetcher is organized as an on-chip set-associative table indexed by trigger 
address (see Figure 3.2). An entry in the table contains the set of successor addresses to prefetch 
and optional confidence or replacement policy information; four successors is a typical width. The 
original study [49] proposed 1 MB lookup tables. However, the required lookup table size grows 
with applications’ data footprints, and follow-on studies have shown that modern workloads require 
far larger tables for effective prefetching [51].

Figure 3.2: Markov prefetcher, described in [49].

The Markov prefetcher design is inspired by conceptualizing a Markov model of the off-chip 
access sequence. Each state in the model corresponds to a trigger address, with possible successor 
states corresponding to subsequent miss addresses. Transition probabilities in the first-order Mar-
kov model correspond to the likelihood of each successor miss. The objective of the lookup table 
is to store the successors with the highest transition probabilities for the most frequently encoun-
tered triggers. However, existing hardware proposals do not explicitly calculate trigger or transition 
probabilities; both the trigger addresses and the successors for each are managed heuristically using 
least-recently used (LRU) replacement.

Two factors limit the effectiveness of Markov prefetchers: (1) lookahead and memory-lev-
el-parallelism are limited because the prefetcher attempts to predict only the next miss and (2) cov-
erage is limited by on-chip correlation table capacity. We next discuss several proposals to address 
each of these limitations.

3.2.4 IMPROVING LOOKAHEAD VIA PREFETCH DEPTH

The first key limitation of Markov prefetchers are their limited lookahead—that is, the time be-
tween the trigger address and the stall on the subsequent address is too short to hide the access 
latency of the prefetched data.

A straightforward approach to improve lookahead is to fetch more addresses, further ahead 
in the predicted global address sequence [41], analogous to increasing the depth of a stream 
prefetcher. With a Markov-like prefetcher organization, deeper prefetches can be issued by re-
cursively performing table lookups using the initial set of predicted addresses. However, such an 
approach incurs high lookup latency and drastically increases bandwidth demands on the Markov 
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table. Moreover, the number of possible prefetch candidates grows geometrically with prefetch 
depth, so an appropriate policy for limiting this growth is needed to maintain accuracy. 

Alternatively, rather than perform consecutive lookups, the prefetch table can be folded to 
store a short sequence (a.k.a. stream) of successors alongside each prefetch trigger [52, 53]. An 
appropriate policy is still needed to select which successor stream(s) to record, for example, the 
most recent or highest probability successors. This approach solves the lookup latency/bandwidth 
problem, but can complicate table update, since an address may need to be recorded in several en-
tries (e.g., for the immediate predecessor, its predecessor, etc.). However, a deeper problem is that 
such a table organization must fix the maximum prefetch depth to the storage provisioned in each 
table entry. If too little storage is provisioned, a stream will be truncated, sacrificing potential cov-
erage and lookahead. Alternatively, if the depth is too high, then storage is wasted or, even worse, 
accuracy may suffer as uncorrelated addresses are recorded at the tail of the stream. Several studies 
have shown that the length of repetitive streams varies over orders of magnitude, from as few as 
two to many thousands of misses [41, 42, 52, 54, 55]. We discuss alternative storage organizations 
to address this problem later.

Typically, the first few misses at the start of a stream are not timely—the trigger miss is sim-
ply too close in time to the accesses of the subsequent blocks to allow timely prefetch. Recording 
and prefetching these addresses wastes storage and delays prefetch of the useful blocks deeper in a 
stream. Hence, it makes sense to omit these first few addresses, and begin the stream with the first 
miss for which prefetching can provide a latency advantage. Chou and co-authors observe that, 
in out-of-order cores, the instruction window frequently causes several off-chip misses to issue 
concurrently [56]. Execution then stalls while this group of misses is serviced. Once these misses 
return, the instruction window can advance and dependent addresses can be calculated, allowing 
the next group of misses to issue in parallel. They refer to the average number of misses issued in 
each of these groups as the memory level parallelism of an application. Chou proposes an epoch-based 
correlation prefetching (EBCP) mechanism that exploits this observation [57]. In EBCP, the first 
miss within each parallel group (epoch) is used as a trigger address and is used to look up misses 
in the next (or subsequent) groups, thereby skipping over miss addresses that are likely already in 
flight when the trigger miss is encountered.

3.2.5 IMPROVING LOOKAHEAD VIA DEAD BLOCK PREDICTION

A second approach to address the lookahead limitation of the Markov prefetcher is to select an 
earlier trigger event for each prefetch operation. Dead block prediction [51, 54, 60, 61, 62] is based 
on the key observation that cache blocks spend a majority of their time in the cache dead [63, 64, 
65]—that is, they remain cached but will not be accessed again prior to invalidation or eviction. 
Dead cache blocks occupy storage space but will provide no further cache hits. As such, they present 
an opportunity: a prefetcher can replace the dead block with a prefetched block with no risk of 
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cache pollution. A dead block correlating prefetcher (DBCP) [51] seeks to predict the last access to 
a cache block (i.e., its death event) and then use this access as a trigger to prefetch the block that 
will replace the dead block. In one sense, DBCP maximizes lookahead, as it issues a prefetch at the 
earliest moment that storage in the cache becomes available to receive the prefetched block.

DBCP relies on two predictions. First, it must predict when a cache block becomes dead. 
Death events can be predicted based on code correlation [51, 54, 62], or time keeping [61]. Code-cor-
related dead block prediction seeks to recognize the last instruction to access a cache block prior to 
its eviction, i.e., the access upon which the block becomes dead. Code correlation relies on the ob-
servation that cache blocks tend to be accessed by the same sequence of loads and stores each time 
they enter the cache, from the initial miss that allocates the block, through a sequence of accesses, 
and ultimately to the last access when the block becomes dead. A key advantage of code correlation 
is that an access sequence learned for one cache block can be applied to predict death events for 
other addresses. We discuss code correlation in detail Section 3.3.3. 

Alternatively, time-keeping mechanisms seek to predict the time until a cache block dies 
rather than the specific access indicating its death [61]. The observation underling this approach 
is that the lifetime of a block (measured in clock cycles) tends to be similar each time it enters the 
cache. In such designs, the Markov prefetch table is augmented with an additional field indicating 
the lifetime of the block the last time it entered the cache. The block is then predicted as dead after 
some suitable safety margin (e.g., double the prior lifetime).

Once a death event has been predicted, a suitable prefetch candidate to replace it must be 
predicted. Early dead block prefetchers used Markov-like prediction tables for this purpose [51, 
61]. Later proposals [54] rely on more sophisticated temporal stream predictors, which we describe 
in Section 3.2.9.

3.2.6 ADDRESSING ON-CHIP STORAGE LIMITATIONS

The second key aspect of Markov prefetchers that limits their effectiveness is the limited on-chip 
storage capacity of the correlation table. Fundamentally, the size of the meta-data required for ad-
dress correlation grows with the working set of an application; ideally the correlation table captures 
correlations for all addresses within the working set. The required correlation table size is thus a 
constant factor smaller than the data set itself (i.e., since it stores addresses rather than data, the 
correlation table storage requirement is smaller than the working set by the ratio of cache block 
size to address size).

One approach to improve Markov prefetcher effectiveness is to improve the storage effi-
ciency of the on-chip correlation table. The tag correlating prefetcher [66] stores only the tag rather 
than the complete cache block address in correlation table entries. This modification reduces the 
storage requirement per entry, but still improves correlation table capacity by only a small constant 
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factor, which is insufficient to obtain high coverage for applications with large working sets (e.g., 
server applications).

A second approach is to relocate the correlation table to main memory, eliminating the ca-
pacity restrictions of an on-chip correlation table [42, 52, 54, 67, 72]. Off-chip correlation tables 
can achieve high coverage, even for workloads with large working sets [52]. However, shifting the 
correlation table off chip increases the access latency for prefetcher meta-data from a few clock 
cycles to the latency of an off-chip memory reference—accessing the prefetch meta-data thus may 
take as long as prefetching the desired cache block.

To be effective, off-chip correlation tables must provide sufficient lookahead to hide the long 
meta-data access latency. One approach, discussed in Section 3.2.4, is to design the prefetcher to re-
cord addresses for memory references that will occur in a future parallel group (epoch), as in EBCP 
[57]. A second approach is to increase prefetch depth [52]; even if the first block to be prefetched 
is not timely, later addresses will be successfully prefetched. A generalization of increasing prefetch 
depth is temporal streaming [42], discussed in Section 3.2.9, which amortizes off-chip meta-data 
references by targeting streams of arbitrary length (i.e., effectively unlimited prefetch depth) [67].

3.2.7 GLOBAL HISTORY BUFFER

The cache-like organization of a Markov prefetcher limits it to record only fixed length streams—a 
single table entry can store addresses for only a fixed prefetch depth. Narrow table entries sacrifice 
potential coverage and lookahead, while wide table entries are storage-inefficient for short streams. 
Entries can be chained together via pointers, however this increases lookup latency and is particu-
larly undesirable if correlation tables are located off chip. Wenisch and co-authors study repetitive 
temporally correlated streams in commercial server applications and demonstrate that stream 
lengths vary from two to many thousands of cache blocks [55, 67]. The most common stream length 
is only two misses, implying that a wide Markov table entry is storage inefficient. However, when 
weighted by the number of misses in the stream (i.e., the potential coverage that can be obtained 
by prefetching the stream), the median stream length is about ten cache blocks. 

A key advance, introduced by Nesbit and Smith in their global history buffer [68], is to split 
the correlation table into two structures: a history buffer, which logs the sequence of misses in a 
circular buffer in the order they occurred, and an index table, which provides a mapping from an 
address (or other prefetch trigger) to a location in the history buffer. The history buffer allows a 
single prefetch trigger to point to a stream of arbitrary length. Figure 3.3 (from [68]) illustrates the 
Global History Buffer organization.

The index table retains a set-associative storage organization similar to the original Mar-
kov prefetcher. However, rather than storing cache block addresses, the index table now stores 
pointers into the history buffer. When a miss occurs, the GHB references the index table to see if 
any information is associated with the miss address. If an entry is found, the pointer is followed 
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and the history buffer entry is checked to see if it still contains the miss address (the entry may 
since have been overwritten). If so, the next few entries in the history buffer contain the predicted 
stream. History buffer entries can also be augmented with link pointers to other history buffer 
locations, to enable history traversal according to more than one ordering (e.g., each link pointer 
may indicate a preceding occurrence of the same miss address, enabling increases to prefetch width 
as well as depth).

Figure 3.3: Address-correlating global history buffer (GHB G/AC). From [68].

By varying the key stored in the index table and the link pointers between history buffer 
entries, the GHB design can exploit a variety of properties that relate trigger events to predicted 
prefetch streams. Nesbit and Smith introduce a taxonomy of GHB variants of the form GHB X/Y, 
where X indicates how streams are localized (i.e., how link pointers connect history buffer entries 
that should be prefetched consecutively) and Y indicates the correlation method (i.e., how the 
lookup process locates a candidate stream) [68, 69]. Localization can be global (G) or per-PC (PC). 
Under global localization, consecutively recorded history buffer entries form a stream. The pointer 
associated with each history table entry either points to earlier occurrences of the same miss address 
(facilitating higher prefetch width as discussed above) or is unused. Under per-PC localization, 
both the index table and link pointers connect history buffer entries based on the PC of the trigger 
access; a stream is formed by following the link pointers connecting consecutive misses issued by 
the same trigger PC. The correlation method may be address correlating (AC) or delta correlating 
(DC). In this section, we discuss the global address correlating variant (GHB G/AC), where the 
index table maps miss addresses to history buffer locations. In Section 3.3.2, we discuss GHB PC/
DC (“program counter-localized delta correlation”), which instead locates entries and records his-
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tory based on the stride between consecutive misses and localizes miss histories on a per-PC basis. 
The literature discusses several other alternatives for localization and correlation [68, 69].

One challenge under the GHB organization is to determine when a stream ends, that is, 
when the prefetcher should no longer fetch additional addresses indicated in the history buffer. 
Many proposals that build on the GHB organization (e.g., [42]) make no effort to predict the end 
of a stream. Instead, they allocate a stream buffer [34] for each successful index table lookup and 
continue follow the stream while it continues to provide prefetch hits. Stream buffers allocated to 
streams that are no longer useful are recycled, for example, via least-recent-used replacement. We-
nisch discusses adaptively adjusting stream prefetch rate as a stream is followed [42].

3.2.8 STREAM CHAINING

A limitation of GHB is that it often discovers short streams, especially when localizing streams 
per-PC, for which it is difficult to achieve adequate lookahead. Streams can be extended by chaining 
separately stored streams together through an auxiliary lookup mechanism that predicts relation-
ships from one stream to the next [58, 59]. Stream chaining links together streams formed by differ-
ent PCs to create longer prefetch sequences [59]. Stream chaining relies on the insight that there is 
temporal correlation among consecutive PC-localized streams; that is, the same two streams tend 
to recur consecutively. More generally, one can imagine a directed graph among streams indicating 
which subsequent stream is most likely to follow each predecessor stream. Stream chaining extends 
each index table entry with a next stream pointer that indicates the index table entry that was used 
next after this stream, along with a confidence counter. By linking together individual PC-localized 
streams, stream chaining enables more correct prefetches from a single trigger access.

3.2.9 TEMPORAL MEMORY STREAMING

As originally proposed, the GHB index and history tables are small and located on chip, thus lim-
iting the effectiveness of the GHB/AC variant for workloads with large working sets. Temporal 
Memory Streaming [42] adopts the GHB storage organization, but places both the index table and 
history buffer off chip in main memory, allowing it to record and replay arbitrary length streams 
even for workloads with large working sets.

Off-chip tables introduce two challenges. We have discussed the meta-data access latency 
and prefetch lookahead challenges in Section 3.2.6. However, updating off-chip tables also presents 
a challenge. Since the tables must be updated on every miss, a naïve implementation would triple 
memory bandwidth (one memory access for the miss, and one each for the index table and history 
buffer updates).

History table update bandwidth is easily addressed by maintaining a small buffer on chip and 
coalescing consecutive history table appends into a single write. Index table updates do not benefit 
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from spatial locality and cannot exploit the same optimization. Wenisch and co-authors show, 
however, that index table update bandwidth can be managed by sampling the index table updates, 
performing only a random subset of history table writes [67, 70]. Their study shows that streams 
that account for the majority of coverage are either long or recur frequently. For long streams, an 
index table entry is recorded with high probability within a few accesses of the start of the stream, 
sacrificing negligible coverage relative to the long body of the stream. For frequent streams, even 
though an index table entry may not be recorded the first time the stream is traversed, the proba-
bility of recording the desired entry rapidly approaches one as the stream recurs. Figure 3.4 (from 
[67]) illustrates why sampling is effective. 

Figure 3.4: Sampling index table updates is effective for long and short, frequent streams. From [67].

IBM recently announced that the IBM Blue Gene/Q includes a new prefetching scheme, 
called list prefetching [71], that bears many similarities to temporal memory streaming and is, to our 
knowledge, the only publicly disclosed commercial implementation of such a prefetcher. The list 
prefetching engine can prefetch from a recorded miss stream located in main memory. The address 
list can either be provided via a software API or recorded automatically by hardware. However, 
the list prefetcher does not provide an off-chip index table; software must assist the prefetcher in 
recording, locating and initiating streams. Hardware then manages timeliness of prefetch and small 
deviations between the recorded stream and L1 misses. 

3.2.10 IRREGULAR STREAM BUFFER

Whereas sampling can reduce the overheads of maintaining stream meta-data off-chip, lookup 
latency remains high, limiting prefetch lookahead for short streams. Furthermore, off-chip storage 
precludes GHB-like PC-localization of address-correlated streams; following link pointers be-
tween entries in an off-chip history buffer is too slow (i.e., it is no faster than dereferencing a chain 
of dependent pointers, precisely the access pattern temporal streaming is designed to accelerate). 
To address these limitations, Jain and Lin introduce the irregular stream buffer (ISB) [72]. The ISB 
introduces a new conceptual address space, the structural address space, which is visible only to the 
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prefetcher. As cache blocks are accessed in the last-level cache, they are assigned consecutive struc-
tural addresses (potentially replacing a previous structural address assignment for a particular cache 
block). With this remapping, temporal correlation in the physical address space becomes spatial 
correlation in the structural address space. Thus, a temporal stream of physical addresses can be 
prefetched with a simple next-n-line stream prefetcher that issues requests to structural addresses. 
Two on-chip tables maintain a bidirectional mapping between physical and structural addresses. 
These mappings are shifted from the on-chip tables to an off-chip backing store in tandem with 
fills and replacements in the TLB, ensuring that the on-chip structures contain meta-data for the 
set of addresses the processor can presently access. 

3.3 SPATIALLY CORRELATED PREFETCHING
Spatially correlated prefetching mechanisms exploit regularity and repetition in data layout. 
Whereas temporal correlation relies on a sequence of misses to recur, irrespective of the particular 
miss addresses, spatial correlation relies on a pattern in the relative offsets of memory accesses that 
occur near one another in time. Strided access patterns are a special case of spatial correlation; the 
prefetchers discussed in this section generalize stride prefetching to more complex layout patterns.

Spatial correlation arises due to regularity in data structure layouts, as programs frequently 
use data structures with fixed layouts in memory (e.g., objects in object-oriented programming 
language, database records with fixed-size fields, stack frames). Many high-level programming lan-
guages align data structures to cache-line and page boundaries, further increasing layout regularity.

One of the strengths of spatial correlation is that the same layout patterns often recur for 
many objects in memory. Hence, once learned, a spatial correlation pattern can be used to prefetch 
many objects, making prefetchers that exploit spatial correlation highly storage efficient (i.e., a 
compact pattern can be reused frequently to prefetch many addresses). Furthermore, in contrast to 
address correlation, which relies on repetition of misses to particular addresses, spatial patterns can 
be applied to addresses that have never previously been referenced, and hence can eliminate cold 
cache misses. 

Like address correlating prefetchers, spatial correlating prefetchers must rely on a trigger 
event to initiate prefetch, which is usually a memory access or cache miss. The trigger event must 
(1) provide a key to lookup the relevant layout pattern describing the relative locations to prefetch 
and (2) provide the base address from which to calculate those relative addresses. The base address is 
usually obtained from the effective address of the triggering access. However, to be able to prefetch 
for previously unseen addresses, the lookup key for the layout pattern must be independent of the 
base address (if the lookup key is simply the base address, for example, as in GHB G/AC [68], then 
we would classify the prefetcher as address correlating). 
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3.3.1 DELTA-CORRELATED LOOKUP

Delta correlation builds directly on the notion of spatial correlation to exploit the repetition in the 
layout pattern itself as the lookup key—delta correlation uses the prefix of the layout pattern as the 
lookup key. That is, the stride between two or more consecutive accesses (or a signature summariz-
ing a sequence of such strides) is used as the lookup key for the layout pattern. Delta correlation 
(referred to as distance prefetching in early works) was originally proposed in the context of TLB 
prefetching [73].

3.3.2 GLOBAL HISTORY BUFFER PC-LOCALIZED/DELTA-
CORRELATING (GHB PC/DC)

One of the most effective known prefetchers from both a storage efficiency and coverage perspec-
tive is the program counter-localized delta-correlating variant of the global history buffer (GHB 
PC/DC) [68, 69]. The hardware organization of GHB PC/DC is the same as that of GHB G/AC 
(global address-correlating variant of GHB) discussed in Section 3.2.7, comprising an index table 
and a history table. The key stored in the GHB PC/DC index table is the program counter value of 
the missing memory access instruction. Consecutive misses by the same PC are linked together via 
link pointers stored in the history buffer. Upon a miss by a given PC, the history table is accessed 
to identify the preceding two misses from the same PC, navigating from one miss to the next via 
the link pointers. The deltas (strides) between the trigger and preceding two misses are calculated 
by subtracting the miss addresses, producing a two-stride sequence. The prefetcher then continues 
searching backwards in the history buffer following the PC link pointers to search for a preceding 
occurrence of the same two strides. If such a pattern is found, prefetch addresses are calculated by 
applying the subsequent delta sequence, starting at the match, to the base address of the trigger 
miss. This entire search process is implemented with a state machine that traverses the index and 
history tables. 

3.3. SPATIALLY CORRELATED PREFETCHING
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Figure 3.5: Delta-correlating global history buffer (GHB G/DC). From [68].

Although GHB PC/DC has demonstrated remarkable effectiveness with only limited stor-
age (256-entry index and history buffer tables) for SPEC benchmarks, to date, its effectiveness 
has not been studied with workloads that have large code and data footprints (such as commercial 
server or cloud computing applications) and its scaling behavior is unknown.

Several innovative variants of the GHB PC/DC prefetcher were evaluated in the First Data 
Prefetching Championship and described in a special issue of the Journal of Instruction Level Par-
allelism in 2011 [31, 74, 75, 76, 77, 78].

3.3.3 CODE-CORRELATED LOOKUP

PC-localized stride/stream predictors and the high effectiveness of the PC-localized GHB demon-
strate that the spatial relationships between particular memory accesses are often strongly correlated 
to the memory access instruction PC. For example, a particular load in the inner loop of a matrix 
multiply will frequently traverse memory with a constant stride. Code correlation generalizes the 
notion of PC-localized streams by observing that complex traversal patterns, often comprising sev-
eral memory access instructions, are also strongly correlated to the PCs of the issuing instructions. 
That is, a particular instruction sequence accesses memory with the same cookie-cutter-like offset 
pattern repeatedly at many different base addresses in memory. Such patterns arise because stack 
frames and objects in object-oriented programs have fixed layouts; executing the code that estab-
lishes the stack frame or invoking a particular method on the object is a reliable indication of the 
upcoming pattern of memory accesses to fields within the stack frame/object.

Code-correlated prediction was first explored in the context of mechanisms that predict 
cache coherence state machine transitions [60, 79, 80]. We previously introduced code correlation 
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in the context of dead-block prediction for improving address correlating prefetch lookahead in 
Section 3.2.5. 

Code-correlated spatial prefetchers associate spatial relationships with the program counter 
value of the trigger event (rather than the accessed data addresses or deltas among them). The gen-
eral architecture for such prefetching mechanisms is shown in Figure 3.6 (from [82]). The trigger 
event for prefetching is the first access or miss to a particular (usually fixed-size) region of memory. 
Region sizes vary across specific prefetcher designs and range from as small as 256 bytes [81] to as 
large as 8 KB [82]. 

Figure 3.6: Code-correlated spatial prefetching. From [82].

Upon a trigger event (e.g., an L1 cache miss), the prefetcher constructs a lookup key from 
the trigger event and searches for this key in a pattern history table, which associates the key with 
a spatial pattern, a representation of the relative offsets to prefetch. Trigger events, lookup keys, 
spatial pattern encoding, pattern history table organization, and the mechanisms used to train the 
prefetcher vary among specific prefetcher designs.

The lookup key typically includes some or all of the bits from the PC of the trigger access. 
Several studies [81, 82, 83] show that additionally including low-order bits of the data address, in 
particular, the offset within the region, improves prefetch accuracy. These low-order data address 
bits serve to distinguish among accesses to objects with similar layouts that are aligned differently 
with respect to region boundaries—separate entries are recorded in the predictor tables for each 
possible alignment. Alternatively, Ferdman and co-authors propose storing only a single pattern 
using the PC as the lookup key and instead use the low-order bits to rotate the pattern to the 
appropriate alignment [84, 85]. 

The simplest representation for spatial patterns is a bit vector representing which portions 
(e.g., cache lines) of the region should be prefetched. This bit vector, combined with the base ad-
dress of the region (taken from the data address requested by the trigger event), provides the list of 
addresses to prefetch. 

3.3. SPATIALLY CORRELATED PREFETCHING
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In the following subsections, we briefly summarize key aspects of specific code-correlated 
prefetcher designs.

3.3.4 SPATIAL FOOTPRINT PREDICTION

The earliest and simplest code-correlated spatial prefetcher is the spatial footprint predictor (SFP) 
of Kumar and Wilkerson [81]. They explore repetitive layouts of L1 data cache accesses in the 
context of a decoupled sectored cache [86], a tag organization that facilitates small line size with 
low overhead by breaking the one-to-one association of tags and data. The decoupled sectored 
cache is a storage-efficient implementation of a sectored (a.k.a sub-blocked) cache, which allows 
several entries in a large data array that lie near one another in memory to share tags in a smaller 
tag array. The memory block covered by a single tag is referred to as a sector, while the data array 
stores smaller lines within that sector each having their own valid bit. Thus, in this organization, the 
block size of the tag and data arrays differ, corresponding to the sector and line size, respectively. 

The objective of the SFP is to allow a decoupled sectored cache to exploit the same spatial 
locality as a conventional cache with a large block size, but gain the storage and bandwidth ad-
vantages of a small block size, by prefetching additional lines when a new sector is allocated. The 
authors study a system where the 16KB L1 data cache is a decoupled sectored cache with 128-byte 
sectors but 8-byte line size with storage for 2048 data array entries but only 512 tags. 

As in the generic architecture shown in Figure 3.6, the best-performing SFP variant stores 
its predictions in a set-associative pattern history table indexed and tagged with the PC and line 
number within the sector. The pattern history table is trained by extending each sector’s tag entry 
with additional storage for the PC of the miss that caused the sector to be allocated. When a sec-
tor is replaced, this PC and the valid bit vector of lines within the sector are stored in the pattern 
history table.

3.3.5 SPATIAL PATTERN PREDICTION

Chen and co-authors describe the spatial pattern predictor (SPP) [83] and show that it can be used 
to prefetch 64 B cache blocks within larger regions up to 1 KB in size in the context of a conven-
tional set-associative cache. A surprising result of this study is that spatial pattern prediction can 
be tuned to require remarkably little storage; a 256-entry tag-less predictor (well under 1 KB total 
storage) can provide 95% coverage with less than 20% erroneous prefetches for SPEC applications. 
The study further shows how spatial pattern prediction can be combined with circuit techniques 
[87] to reduce cache leakage energy for portions of a cache line that are unlikely to be accessed. 
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3.3.6 STEALTH PREFETCHING

Cantin and co-authors propose a spatial prefetching technique, stealth prefetching [88], that is 
specifically targeted for broadcast snooping bus-based multiprocessors. The objective of stealth 
prefetching is to design a spatial prefetcher that avoids the negative cache coherence implications of 
aggressively prefetching shared memory blocks. The technique relies on coarse-grain spatial track-
ing of shared and private memory regions and prefetches data from private regions into dedicated 
storage while skipping many of the costly operations involved in cache coherent loads; the coher-
ency of the prefetched blocks follows from the safety guarantees of the underlying region tracking 
tracking technique. The key advantage of stealth prefetching is that the prefetch operations do not 
cause disruptive snooping operations at other caches.

3.3.7 SPATIAL MEMORY STREAMING

Whereas SFP and SPP target only the L1 miss stream, fetching most data from L2, Somogyi and 
co-authors demonstrate that code-correlated spatial prefetching is also effective for off-chip misses 
[82]. Their study is also the first to demonstrate the effectiveness of spatially correlated prefetching 
in commercial server applications. 

The SMS design employs 8 KB region sizes, and includes critical optimizations to facilitate 
storage-efficient training of the pattern history table. This additional structure is required because 
SMS tracks spatial patterns for a much larger memory footprint (all on chip caches) than SFP or 
SPP (L1 cache only). Furthermore, whereas SPP and SFP track only a single spatial pattern for 
a group of adjacent cache frames, the high associativity of the L2 cache makes it important for 
SMS to be able to track multiple spatial regions that are concurrently resident in the cache. To 
this end, SMS introduces the notion of a spatial region generation that begins with the first miss 
to access a block within a region and ends with the eviction or invalidation of any block from that 
region. SMS’s training mechanism tracks spatial patterns over an entire generation. Patterns are 
accumulated in the active generation table, shown in Figure 3.7. A critical optimization of the active 
generation table is the use of the filter table to reduce storage requirements. When a miss initiates 
a new spatial region generation, the corresponding tag and trigger PC/offset are first placed in the 
filter table, which is managed with LRU replacement. Only upon a second miss to the region are 
filter table entries transferred to the accumulation table, which tracks the spatial region generation 
until eviction of any block, at which point the spatial pattern is recorded in the pattern history table 
common to all code-correlated prefetcher designs. The use of the filter table is important because 
the majority of spatial region generations are singleton misses, containing only the trigger miss; 
the filter table ameliorates the storage pressure these useless entries would otherwise cause in the 
accumulation table.

3.3. SPATIALLY CORRELATED PREFETCHING



32 3. DATA PREFETCHING

Figure 3.7: Structures for storage-efficient training in spatial memory streaming. From [82].

Whereas the active generation table is effective in reducing the storage requirements for 
training the SMS prefetcher, the required pattern history table size remains large, on the order of 
64KB, for maximum effectiveness. Hence, follow-on work by Burcea and co-authors proposed vir-
tualizing the pattern history table. Instead of a large dedicated table, the virtualized approach stores 
prefetcher meta-data in the last level cache, using a small, dedicated meta-data cache to accelerate 
access [89].

3.3.8 SPATIO-TEMPORAL MEMORY STREAMING

While effective for the targeted memory access patterns, spatial prefetchers are generally ineffective 
for pointer-based data structures with arbitrary memory layouts, and have shown limited effective-
ness for some workloads with many pointer-chasing access patterns, such as on-line transaction 
processing [90]. Conversely, address correlating prefetchers are ineffective when data structure 
traversals do not repeat frequently. For example, memory copy and scan access patterns are easily 
recognized by stride and spatial prefetchers, yet the scans may recur too infrequently for address 
correlating prefetchers to capture [55]. The latest prefetcher proposals hence seek to integrate both 
address correlating and spatial prefetching into a single unified design.

Spatio-temporal memory streaming [91] integrates TMS (see Section 3.2.9) and SMS (see 
Section 3.3.7). A straight-forward integration of the two mechanisms might use TMS to supply 
a predicted stream of future trigger accesses (base address and PC), which are then fed to SMS to 
predict the remaining prefetch addresses within each region. While this simple approach is effec-
tive in predicting future accesses, it overwhelms the memory system, providing enormous bursts 
of prefetch requests, as the natural ordering and throttling of the individual mechanisms are lost.

To address this deficiency, spatio-temporal memory streaming instead seeks to reconstruct 
the total order of prefetch requests from the addresses individually predicted by the spatial and tem-
poral mechanisms, respectively. SMS is enhanced to maintain miss ordering information by encod-



33

ing spatial patterns as ordered streams of offsets. Although less compact than the bit vectors used 
in SFP, SPP, and conventional SMS, the offset streams maintain ordering information required to 
properly interleave spatial and temporal streams. As in the naïve integration, the TMS mechanism 
provides a sequence of triggers—base address and PC pairs—for SMS lookups. However, entries in 
both spatial and temporal streams are further augmented with a delta, which indicates the number 
of prefetch addresses from some other stream that interleave between two consecutive addresses in 
a particular spatial or temporal stream. During prefetching, these deltas are used to reconstruct the 
total miss order by entering prefetch addresses from a temporal stream into a reconstruction buffer 
while leaving empty space to be filled in by addresses supplied from subsequent spatial streams. 
Details of the reconstruction mechanism appear in [91].

3.4 EXECUTION-BASED PREFETCHING
The final category of data prefetcher we briefly address relies neither on repetition in miss sequences 
nor in data layouts; rather execution-based prefetchers seek to explore the program’s instruction se-
quence ahead of instruction execution and retirement to discover address calculations and deref-
erence pointers. The key objective of such prefetchers is to run faster than instruction execution 
itself, to get ahead of the processor core, while still using the actual address calculation algorithm 
to identify prefetch candidates. As such, these mechanisms do not rely on repetition at all. Instead, 
they rely on mechanisms that either summarize address calculation while omitting other aspects 
of the computation, guess at values directly, or leverage stall cycles and idle processor resources to 
explore ahead of instruction retirement.

3.4.1 ALGORITHM SUMMARIZATION

Several prefetching techniques summarize the instruction sequence that traverses a data structure, 
such that the traversal pattern can be executed faster than the main thread to prefetch data structure 
elements. Roth and co-authors [44, 45] propose a mechanism that summarizes traversals entirely in 
hardware by identifying pointer loads (load instructions that dereference a pointer) and the depen-
dent chain of instructions that connect them. These dependence relationships are then encoded by 
hardware into a compact state machine, which can iterate through the sequence of dependent loads 
faster than instruction execution. Annavaram, Patel, and Davidson propose a general mechanism 
for extracting program dependence graphs—a subset of instructions that lead to missing loads—in 
hardware and then executing these graphs in dedicated precomputation engines [92]. 

3.4.2 HELPER-THREAD AND HELPER-CORE APPROACHES

Thread-based data prefetching techniques [93, 94, 95, 96, 97, 98, 99, 100, 101] use idle contexts on 
a multithreaded or multicore processor to run helper threads that overlap misses with speculative 

3.4. EXECUTION-BASED PREFETCHING
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execution. Individual techniques vary in whether they are automatic or require compiler/software 
support, whether they rely on simultaneous multithreading hardware and specific thread coordi-
nation mechanisms, whether they rely on additional cores, and whether they require additional 
mechanisms to insert blocks into remote caches. In nearly all cases, these techniques repurpose 
spare execution contexts to execute the prefetching code. However, the spare resources the helper 
threads require (e.g., idle cores or thread contexts; fetch and execution bandwidth) may not be 
available when the processor executes an application exhibiting high thread-level parallelism. The 
benefit of these techniques must be weighed against scaling up the number of application threads. 

3.4.3 RUN-AHEAD EXECUTION

Run-ahead execution uses the execution resources of a core that would otherwise be stalled on a 
long-latency event (e.g., off-chip cache miss) to explore ahead of the stalled execution in an effort 
to discover additional load misses and warm branch predictors. The idea in run-ahead is to cap-
ture a snapshot of execution state when the core would otherwise stall, then proceed past stalled 
instructions to continue to fetch and execute the predicted instruction stream. Instructions that 
are data-dependent on an incomplete instruction are not executed (e.g., a poison token is propa-
gated through the register renaming mechanism). When the long-latency event resolves (e.g., the 
original miss returns), execution state is recovered from the snapshot and the original execution 
continues, re-crossing the instructions that were explored during run-ahead. The primary benefit of 
this scheme is the prefetching effect for long-latency loads. Run-ahead was originally proposed in 
the context of in-order cores by Dundas and Mudge [102]. Mutlu and co-authors explore efficient 
implementations in the context of out-of-order processors [103, 104, 105, 106]. More recently, 
authors have explored non-blocking pipeline microarchitectures that speculate past long-latency 
loads without discarding speculative execution results when the loads return, instead re-executing 
only the dependent instructions [107, 108]. 

3.4.4 CONTEXT RESTORATION

With the increasing prevalence of virtualization and multiplexing of multiple applications on a sin-
gle server in cloud environments, an important special-case source of instruction cache misses arises 
due to context switches. Each time the operating system or hypervisor switches among multiplexed 
applications or virtual machines, the cache state of one application is overwritten by the other. These 
misses are particularly damaging when multiplexing a latency-sensitive serving application with 
background or batch tasks—a common practice to attempt to get value from otherwise-idle cycles 
when the serving application is blocked waiting for user requests. 

Context restoration prefetchers [109, 110, 111] seek to capture cache contents at the time of a 
context switch (or as blocks are replaced after a context switch) and then restore these blocks to the 
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cache when the context resumes execution. Unlike other prefetching techniques, these mechanisms 
do not need to make a prediction as to which addresses to prefetch, the objective is simply to re-
store what was previously in the cache. Instead, the design challenges center on associating cache 
state with a particular execution context, managing the timeliness of the prefetch and efficiently 
recording/storing the prefetcher metadata.

3.4.5 COMPUTATION SPREADING

An orthogonal approach to improve cache locality that bears some similarity to execution-based 
prefeching is computation spreading [112, 113]. Computation spreading uses thread migration to 
split the execution of a large computation across multiple cores, grouping similar execution frag-
ments on each core. Repeated execution of similar fragments has the effect of specializing core-pri-
vate instruction and data caches (as well as other structures, such as branch predictors) for each kind 
of fragment, improving locality. It has been demonstrated for separating application and OS code 
fragments [112] and for phases of online transaction processing threads [113]. 

3.5 PREFETCH MODULATION AND CONTROL
A variety of authors study prefetch modulation and control techniques and the interaction of 
prefetching with other aspects of the memory system, such as cache replacement policy. While 
most studies are performed in the context of strided stream prefetchers, these mechanisms are often 
applicable regardless of the particular algorithm used to generate candidate addresses for prefetch. 

Srinath and co-authors propose hardware for tracking the cache pollution that can be caused 
by aggressive prefetch and dynamically reducing prefetcher aggressiveness when accuracy and time-
liness are poor or when pollution substantially increases demand miss rates [114]. Ebrahimi and 
co-authors examine mechanisms to coordinate the aggressiveness of multiple per-core prefetchers 
in multi-core systems to address bandwidth contention [115]. Lee and colleagues examine the in-
teraction of prefetchers and DRAM bank contention, and propose re-ordering prefetch requests to 
try to improve DRAM bank-level parallelism, improving prefetch throughput [116]. Hur and Lin 
propose mechanisms to dynamically detect the end of streams, reducing cache pollution and wasted 
bandwidth due to overfetching from short streams [33]. Lin et al. propose inserting prefetched 
blocks at the least-recently-used position in associative caches to manage pollution and modulating 
prefetcher issue rate [117]. Wu and colleagues build on this theme and propose several dynamic 
methods for choosing where in the cache replacement stack a prefetched block should be inserted 
[118]. Finally, Verma, Koppelman, and Peng provide mechanisms for software control of prefetch 
aggressiveness [119]. 

3.5. PREFETCH MODULATION AND CONTROL
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3.6 SOFTWARE APPROACHES
Researchers have proposed a wide variety of other approaches for compiler- or programmer-in-
serted prefetch instructions (e.g., [41, 43, 120, 121, 122, 123]) or data forwarding operations [124, 
125]. More recently, researchers have developed architectures [126, 127] and programming lan-
guages [128, 129] that provide constructs for directly expressing and manipulating data streams. 
However, these studies have focused primarily on multimedia applications, where application 
inputs map naturally to data sequences. It remains unclear how to exploit these advances in other 
contexts, such as commercial server software. A thorough exploration of software and compiler data 
prefetching techniques is beyond the scope of this synthesis lecture.

Table 3.1: Summary of data prefetching techniques
Technique Line of Attack Lookahead Accuracy Cost/

Complexity
Stride/Stream Predicts cache miss strides 

using PCs or addresses
A few cache 
blocks

High for 
strides

< 1 KB

Simple address 
correlating 

Correlates one address to 
one or more distinct cache 
miss addresses

A single cache 
block

> 30% MBs

Linked-data 
correlating

Custom FSM that uses 
load-to-use dependencies 
in loops to fetch pointers 

A few cache 
blocks

High for 
specific data 
structures

< 1 KB

Dead-block 
correlating

Correlates up to two 
addresses and control flow 
to a subsequent address 

Time from 
death event to 
replacement

> 50% MBs

Temporal 
streaming

Correlates one or more 
addresses to a stream of 
cache misses

Many cache 
blocks

> 50% Off chip

Chained 
streaming

Chaining multiple address 
streams together using 
control flow or hierarchical 
address prediction

Many cache 
blocks

> 50% Off chip

Irregular 
stream buffer 

Adds a layer of address 
indirection to convert 
temporal to spatial 
correlation

Many cache 
blocks

> 50% < 32 KB
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Delta 
correlation

Records and correlates 
sequences of deltas between 
miss addresses

A few cache 
blocks

> 30% < 32 KB

Spatial 
streaming

Correlates a PC with an 
arbitrary sequence of cache 
miss address deltas

A few cache 
blocks

> 50% < 64 KB

Execution 
based

Helper threads or support 
for speculative execution 

Limited by 
execution 
bandwidth

varies --

 

3.6. SOFTWARE APPROACHES
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CHAPTER 4 

Concluding Remarks
Hardware prefetching has been a subject of academic research and industrial development for over 
40 years. Nevertheless, because of the scaling trends that continue to widen the gap between proces-
sor performance and memory access latency, the importance of hardware prefetching and the need 
to hide memory system latency has only grown—further innovation remains critical.

In this primer, we have surveyed the myriad of prefetching techniques that have been de-
veloped and highlighted the principle program behaviors on which these techniques are based. 
We hope this book serves as an introduction to the field, as an overview of the vast literature on 
hardware prefetching, and as a catalyst to spur new research efforts.

A number of challenges remain to be addressed in future work. Instruction fetch remains a 
fundamental bottleneck especially in servers with complex software stacks and ever-growing on-
chip instruction working sets. Although instruction footprints can often fit entirely on chip in large 
last-level caches, cycle time constraints place severe limits on the capacity of L1 instruction caches, 
and access latency to larger caches remains exposed. Advanced proposals for temporal instruction 
streaming have in recent years achieved phenomenal accuracies and coverage (> 99.5%) even in the 
presence of complex software stacks. The key to a wider adoption of these proposals are techniques 
to reduce on-chip meta-data storage to practical levels.

Another key challenge to instruction prefetching is due to developments in programming 
languages and software engineering often complicating or even thwarting the techniques we have 
discussed. Object-oriented programming practices, dynamic dispatch, and managed runtimes all 
lead to an increase in the use of frequent, short function calls, indirection through function pointers, 
register-indirect branches and multi-way control transfers. Dynamic code generation/optimization, 
interpreted languages, and just-in-time compilation lead to environments where the control struc-
ture of a program may be obscured and instruction addresses change meaning over time. Virtualiza-
tion and operating system layering similarly complicate and obscure control flow through frequent 
virtual-machine exits and traps to emulate privileged functionality. 

On the hardware front, processors are increasingly supporting multiple concurrent hard-
ware threads that must share already over-subscribed instruction cache capacity. Prefetchers must 
be enhanced to share limited capacity and bandwidth among threads, disambiguate instruction 
streams issuing from each thread, and consider the interaction of prefetching policies and thread 
prioritization/fetch policies. 

A key remaining challenge for data prefetching is low accuracy and coverage across a broad 
spectrum of workloads. While the emergence of data-intensive workloads and large-scale in-mem-
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ory data services is placing ever-growing demands on the need for effective data prefetching, the 
increase in memory capacity is dwarfing even the most advanced history-based prefetching tech-
niques we cover in this primer in terms of diminishing repetitive history patterns and prohibitive 
meta-data storage requirements. Future advances in data prefetching are required to capture repet-
itive access patterns with lower meta-data storage requirement and with a higher accuracy.

 Prefetching techniques are beginning to emerge for graphics processing units and other 
forms of specialized accelerators, which may have markedly different code and data access patterns 
than conventional processors. In the case of graphics processors, memory access stalls and thread/
warp scheduling interact in complex ways, creating new opportunities for synergistic designs. 

A fundamental challenge that has emerged in the past decade is that power has become a 
first-class constraint due to a slowdown in Dennard Scaling [130, 131] and leveling off of supply 
voltages. On the one hand, prefetchers eliminate stalls, which can lead to energy efficiency gains 
due to more efficient use of hardware resources. On the other hand, most prefetchers require aux-
iliary hardware structures, which require energy. Moreover, prefetchers often fetch incorrect blocks, 
which can waste substantial energy. Indeed, many of the simpler (but widely deployed) designs are 
wildly inaccurate; over half the blocks they retrieve may never be accessed. Advances in prefetching 
must target energy efficiency as a first-class constraint in conjunction with other key metrics such 
as accuracy and coverage in evaluating the effectiveness of a prefetcher design. 
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