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ABSTRACT
Recurrent Neural Networks (RNNs) are used for sequence recognition tasks such as Automatic
Speech Recognition (ASR) and Handwritten Text Recognition (HTR). The output of such a
RNN is a matrix containing label probabilities for each time-step. To decode these per-frame
predictions into a final labeling multiple Connectionist Temporal Classification (CTC) decoding
algorithms exist. Two algorithms are presented and compared in this paper. The first one is
beam search decoding, which is an approximation of a breadth-first search through the tree
of possible labelings. A character-level Language Model (LM) can be integrated. The second
algorithm is token passing. The recognized text is constrained to a sequence of dictionary words.
A word-level LM can be integrated to score consecutive words. This paper compares the concepts
the algorithms are based on. Different types of LMs are presented and the integration into the
CTC algorithms is discussed. A quantitative comparison is given for the Bentham handwriting
dataset. A trained HTR system is coupled with both algorithms and the error rates are compared.
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1 Introduction

Sequence recognition is the task of transcribing
sequences of data with sequences of labels [2].
The focus of this paper lies on two well-known
use-cases: HTR and ASR. RNNs are promising
models to handle sequential data, however they
suffer from the fact that training needs an error
signal for each sequence element [3]. Graves [3]
introduces the CTC operation which enables neu-
ral network training from pairs of data and target
labelings. The RNN is trained to output the tar-
get sequence in a specific coding schema. Two se-
lected decoding algorithms are analyzed and com-
pared in this paper. Graves [4] proposes the token
passing algorithm which outputs the most prob-
able sequence of dictionary words. Hwang [5] in-

troduces beam search decoding which iteratively
searches the labeling with highest score. Both al-
gorithms can be extended by a LM to incorporate
information about language structure.

The objective of this paper is to compare
beam search decoding and token passing and to
give suggestions which algorithm to use for spe-
cific use-cases. The comparison is done regarding
the concepts the algorithms are based on, time-
complexity, issues arising in practice and the per-
formance on a HTR task.

This paper is structured as follows: first
the foundations of sequence recognition are pre-
sented. The coding schema used by the CTC
operation is explained and both word-level and
character-level LMs are introduced. Afterwards,
the two mentioned CTC decoding algorithms are



discussed. A theoretical comparison between
both of them is given and the evaluation is done
with the Bentham HTR dataset. Finally, the con-
clusion highlights the advantages and disadvan-
tages of the algorithms and gives suggestions on
when to use them.

2 Sequence Recognition

Sequential data occurs in the form of handwrit-
ten text, speech and gestures among others [3].
Hidden Markov Models (HMMs) show good per-
formance on tasks such as HTR and ASR [4].
However, RNNs are also capable of modeling se-
quences and have advantages over HMMs from a
theoretical and from a practical point of view [4].
When using RNNs without CTC, there are two
disadvantages: the first one is that the training
data must be annotated for each time-step and
the second one is that the per-frame predictions
must be postprocessed to yield the final label-
ing, i.e. the text in the case of HTR and ASR.
When using the CTC, dataset creation does not
require specifying the exact position of the char-
acters in the input as shown in Figure 1. The an-
notation “The evidence” is assigned to the image
as a whole. While training, the neural network
figures out on its own where the text lies in the
image, the same applies for the speech signal.

Figure 1: Two common sequence recognition
problems. Top: part of a speech signal and its
annotation. Bottom: an image of handwritten
text and its annotation [7].

3 CTC Coding Schema

To understand the loss and decoding algorithms,
it is essential to understand the coding schema
used by the CTC operation. A RNN outputs a se-
quence of length T with C+1 character probabil-
ities per sequence element, where C denotes the
number of characters [4]. An additional character
is added to the RNN output which is called blank
and is denoted by “-” in this paper. For each
sequence element the character probabilities sum
to 1 [4]. Picking one character for each time-step
from the RNN output and concatenating these
characters form a path π [4]. A single character

from a labeling is encoded by one or multiply ad-
jacent occurrences of this character on the path,
possibly followed by a sequence of blank labels [4].
A way to model this encoding is by using a Finite
State Machine (FSM) [5]. The FSM is created
as follows: the labeling is extended by adding a
blank label in between all characters and at the
beginning and at the end of the labeling. For
each character (and blank) in the labeling, a state
is inserted into the FSM. A self-loop is added to
each state to allow repeated labels on a path. For
consecutive characters, a direct transition and a
transition through a blank is added. The only ex-
ception is the case of repeated characters (like in
pizza), then only a transition through the blank is
allowed to avoid ambiguousness. Figure 2 shows a
FSM which produces valid paths for the labeling
“ab”: this is achieved by proceeding from a start
state through arbitrary transitions and states to
the final state and outputting the label of a state
each time a state is reached. A valid path for
“ab” is “ - a a - - b - -”, another one is “a b”.

Figure 2: FSM which produces valid paths (en-
codings) for the labeling “ab”. The two left-most
states are the initial states while the right-most
state is the final state.

To decode a path into a labeling, the en-
coding operation implemented by the FSM has
to be inverted. This is done by the collapsing
function B [5]. It is applied to a path π and
yields a labeling l by first removing repeated la-
bels and then removing blanks on the path. To
give an example, the path “a - b b - -” is col-
lapsed to B(“a - b b - -”)=“ab”. The loss is cal-
culated by taking all paths yielding the target
labeling (i.e. all paths π for which B(π) = l
holds) and summing over their probabilities. This
enables training the RNN without knowing the
character-positions of the target labeling in the
input.

After the RNN is trained by the CTC loss,
new samples are presented to the neural network
to recognize the handwritten or spoken text. A
first approximation of decoding the RNN output
is to take the most probable label per time-step
forming the so called best path and then apply the
collapsing function B to this path [4]. This ap-
proximation algorithm is called best path decod-
ing [4]. However, there are situations for which
this yields the wrong result as illustrated in Fig-
ure 3. The given RNN output has a length of 2



Figure 3: An example of a RNN output. The
sequence has a length of 2 with time-steps t0 and
t1. For each time-step a probability distribution
over the possible characters (“a” and “b” and the
blank character “-”) is outputted by the RNN.
Lines indicate four different paths through the
RNN output: the dashed line indicates the best
path yielding the labeling “” while the thin lines
indicate paths yielding the labeling “a”.

and has 2 possible characters “a” and “b” and
further the blank “-”. Taking the most prob-
able characters yields the best path “- -” and
therefore the empty labeling B(“- -”)=“” with
probability 0.6 · 0.6 = 0.36. However, the cor-
rect answer is “a”, this can be seen by summing
up the probabilities of all paths yielding this la-
beling: “a -”, “- a” and “a a” with probability
2 · 0.6 · 0.4 + 0.4 · 0.4 = 0.64. In contrast to best
path decoding, both beam search decoding and
token passing are able to tackle such situations.

4 Language Model

A LM can be used to guide the CTC decoding
algorithms by incorporating information about
the language structure. The language is modeled
on character-level or on word-level, but the basic
ideas are the same for both. For simplicity only a
word-level LM is discussed. A LM is able to pre-
dict upcoming words given previous words and
it is also able to assign probabilities to given se-
quences of words [6]. For example, a well trained
LM should assign a higher probability to the sen-
tence “There are ...” than to “Their are ...”. A
LM can be queried to give the probability P (w|h)
that a word sequence (history) h is followed by the
word w. Such a model is trained from a text by
counting how often w follows h. The probability
of a sequence is then P (h) = P (w1) · P (w2|w1) ·

P (w3|w1, w2) · ... · P (wn|w1, w2, ..., wn−1) [6].
It is not feasible to learn all possible word

sequences, therefore an approximation called N-
gram is used [6]. Instead of using the com-
plete history, only a few words from the past
are used to predict the next word. N-grams
with N=2 are called bigrams. Bigrams only take
the last word into account, that means they ap-
proximate P (wn|h) by P (wn|wn−1). The prob-
ability of a sequence is then given by P (h) =∏|h|

n=2 P (wn|wn−1). Another special case is the
unigram LM, which does not consider the history
at all but only the relative frequency of a word in

the training text, i.e. P (h) =
∏|h|

n=1 P (wn).
If a word is contained in the test text but not

in the training text, it is called Out Of Vocabu-
lary (OOV) word. In this case a zero probability
is assigned to the sequence, even if only one OOV
word occurs. To overcome this problem smooth-
ing can be applied to the N-gram distribution,
more details are available in Jurafsky [6].

5 Decoding Algorithms

This section presents beam search decoding and
token passing. For both algorithms pseudo-code
is shown and explained. Further, the time-
complexity is derived based on the pseudo-code.

5.1 Beam Search Decoding

The following text is based on the paper from
Hwang [5]. Hwang introduces beam search de-
coding in the context of ASR. A simplified ver-
sion of Hwang’s algorithm is shown in Algorithm
1 which ignores depth-pruning. The labelings (or
beams) y are created by iterating through time.
The genesis beam is the empty labeling and is
denoted by ∅. At each time-step, the beams in
the set Beams are extended by all possible char-
acters c from the alphabet C. The extensions
are weighted by a character-level LM which scores
seeing the new character c and the last character
y[−1] in the beam y next to each other. Besides
the LM score, also the score according the the
RNN output is incorporated. Extending all label-
ings by all possible characters for each time-step
creates a tree of labelings as shown in Figure 4.
Further, one instance of the original beam from
the last time-step is kept: this accounts for paths
extended by a blank or by the last character of
the beam. As the number of vertices (represent-
ing labelings) of this tree grows exponentially in
time, only the bw best-scoring labelings from the
set Beams are kept (where the parameter bw is
called beam width) to keep the algorithm feasi-
ble. A labelings score holds one LM weight per
character, that means the longer the labeling, the



more LM weights get multiplied. This yields low
scores for long labelings, therefore a normaliza-
tion step is needed at the end of the algorithm.
Finally, the best labeling according to the scores
at the final time-step T is returned by the algo-
rithm.

Figure 4: Iteratively extending labelings (from
top to bottom) forms this tree of labelings. Only
the two best-scoring beams are kept per time-step
(i.e. bw = 2), all others are removed (red). Equal
labelings get merged (blue).

The time-complexity is not specified in the
paper from Hwang [5], however it can be derived
from the presented pseudo-code. At each time-
step, the beams are sorted according to their
score. In the previous time-step, each of the
bw beams is extended by C characters, therefore
bw · C beams have to be sorted which accounts
for O(bw · C · log(bw · C)). As this sorting hap-
pens for each of the T time-steps, the overall time-
complexity is O(T · bw ·C · log(bw ·C)). The two
inner loops are ignored because they only account
for O(bw · C).

5.2 Token Passing

This algorithm is proposed by Graves [4], how-
ever the following discussion is based on another
publication from Graves [2]. A dictionary W con-
taining words is given and the output of the algo-
rithm is constrained to a sequence of these words.
For each word a word-model is created, which es-
sentially is a state machine connecting consecu-
tive characters with regard to the CTC coding
schema: a character of a word is represented by a
path on which the character occurs one or multi-
ply times and is optionally followed by one or mul-
tiply blanks (see CTC coding schema). A word
sequence is modeled by putting multiple word-
models in parallel, connecting all end-states with
all begin-states. The information flow is imple-
mented by tokens, which are passed from state to
state. Each token holds the score and the history

Algorithm 1: CTC Beam Search

Data: RNN output, beam width bw and LM
P

Result: most probable labeling
1 Beams = {∅};
2 Score(∅, 0) = 1;
3 for t = 1...T do

4 B̂ = sort(Beams)[0 : bw];
5 Beams={};
6 for y ∈ B̂ do
7 calculate Score(y, t) by incorporating

RNN output;
8 add y to Beams;
9 for c ∈ C do

10 y′ = y + c;
11 calculate Score(y′, t) by

incorporating RNN output and
P (c|y[−1]);

12 add y′ to Beams;

13 end

14 end

15 end
16 normalize Score(y, T ) according to |y|;
17 return y with highest Score(y, T );

of already visited words. Figure 5 shows three
word-models which are put in parallel.

Pseudo-code is shown in Algorithm 2. The
algorithm iterates through all time steps t. At
each time-step t, a loop goes through all dictio-
nary words w. For each word w starting at the
current time-step, the most probable word w∗

ending at the previous time-step is searched. This
accounts for leaving a word-model and entering
another word-model. The new score is calculated
by using the score of the ending word w∗ mul-
tiplied by the LM score of seeing both words w
and w∗ next to each other. A new token hold-
ing the calculated score and the word history ex-
tended by the word w is added. Afterwards, the
most probable alignment of the extended word w′

(corresponding to the mentioned word-model) is
calculated and a token is added which accounts
for the end-state of the new word. The extended
word w′ has a blank label at the beginning, the
end and in between all characters and accounts
for possible alignments of the word. Finally, the
algorithms looks for the best scoring token at the
final time-step T . The word history stored in this
token is returned as a result.

The time-complexity of this algorithm is
O(T ·W 2), where T denotes the sequence length
and W the dictionary size [2]. This can easily
be checked by looking at the pseudo-code: for T
time-steps and W words, the most likely preced-
ing word is searched which needs another loop



Figure 5: Three word models (blue) are put in
parallel. Information flow is implemented by to-
kens (red) which are passed through the states
and between the words.

over the W dictionary words.

Algorithm 2: CTC Token Passing

Data: output of RNN, dictionary W and
LM P

Result: most probable word sequence
1 Initialize all tokens for all words at time-step

t = 1;
2 for t = 2...T do
3 for w ∈W do
4 get w∗ ∈W for which end-token tok

at time t− 1 exists and for which
tok.score · P (w|w∗) is maximal;

5 calculate score by incorporating LM
and add w to history of new token;

6 add token;
7 w′ = extend(w);
8 for s = 1...length(w′) do
9 find best alignment of w′ by

incorporating RNN output and
calculate score;

10 add token;

11 end
12 add end-token representing end of

this word;

13 end

14 end
15 get end-token tok at time-step T with

maximum tok.score;
16 return tok.history;

6 Results

First, the concepts of the algorithms are com-
pared from a theoretical point of view. After-
wards, a HTR dataset and a trained neural net-
work are used to evaluate the performance of both
algorithms.

6.1 Conceptual Comparison

Token passing constraints its output to dictio-
nary words. The larger the dictionary, the more
words can be recognized, however increasing the
dictionary size quadratically increases the run-
ning time. OOV words are not handled by to-
ken passing, therefore the behavior in this case
is undefined (a similar word may be detected at
the position of the OOV word). The problem
of OOV words also includes numbers (e.g. de-
tecting numbers from 1 to 10000 requires adding
these 10000 numbers to the dictionary) and hy-
phenation. Beam search decoding on the other
hand allows arbitrary output texts.

The word-level (character-level) bigram LM
is trained by sampling the frequency of two words
(characters) next to each other in a training text.
At least W 2 words (characters) are needed in the
training text such that each possible pair of W
unique words (characters) is encountered at least
once. Character-level LMs require less training
text than word-level LMs if the number of unique
characters is lower than the number of unique
words as it is the case with the Bentham dataset:
there are 93 unique characters and 8274 unique
words.

Regarding the running times, both algo-
rithms depend linearly on the sequence length of
the RNN output. As already stated, the possi-
ble dictionary size of token passing is limited due
to its quadratic influence on the runtime. Beam
search decoding depends quasi-linearly on the al-
phabet size (fixed for a given dataset) and on the
beam width (tunable parameter). Decreasing the
beam width may yield lower accuracy, however it
also decreases the running time.

Both algorithms can be implemented using
log-likelihood. This avoids numerical problems
when using the limited precision floating point
arithmetic of a computer.

6.2 Evaluation

To evaluate the performance of the algorithms,
Character Error Rate (CER) and Word Error
Rate (WER) are used as error measures. The
CER is the Levenshtein distance between the
ground truth text and the recognized text, nor-
malized by the length of the ground truth text
[1]. The same applies for WER, but on word-
level. Equation 1 shows how the CER is calcu-
lated, calculating the WER goes accordingly: the
minimal number of edit operations (insert, delete,
substitute) is divided by the length of the ground
truth text GT . Values greater than 100% occur
when the length of the ground truth text is less
than the edit distance.



Type Description
Input gray-value line-image

Conv+Pool kernel 5× 5, pool 2× 2
Conv kernel 5× 5

Conv+Pool+BN kernel 3× 3, pool 2× 2
Conv kernel 3× 3
Conv kernel 3× 3

Conv+BN kernel 3× 3
Conv+Pool kernel 3× 3, pool 2× 2
MDLSTM bidir., 512 hidden cells

Mean avg. along vert. dim.
Collapse remove dimension
Project project onto C classes
CTC decode or loss

Table 1: Architecture of the neural network. Ab-
breviations: average (avg), bidirectional (bidir),
vertical (vert), dimension (dim), batch normal-
ization (BN), convolutional layer (Conv).

CER =
#ins+ #del + #sub

length(GT )
(1)

The algorithms are compared using the Ben-
tham HTR dataset, a sample is shown in Figure
6. It is written by Jeremy Bentham (1748-1832)
and his secretarial staff [7]. It contains 433 pages
and is mostly written in English, some parts are
Greek or French [7]. Data is annotated on line-
level and partly on word-level. For this paper a
neural network using the TensorFlow framework
is implemented and trained. It consists of three
main parts: first, the convolutional layers, then
the recurrent layers and finally the decoding layer.
The recurrent layers use a RNN type called Mul-
tidimensional Long Short Term Memory (MDL-
STM). MDLSTM essentially propagates informa-
tion through both dimensions (vertical and hor-
izontal) of the image. An overview of the archi-
tecture is given in Table 1. The input image has
a size of 800× 64 pixels and the output text has
a length of at most 100 characters.

Evaluation is done by combining the algo-
rithms presented with this neural network. A
baseline result is obtained by best path decod-
ing. The results are shown in Table 2, where
each result is given in the format CER/WER. As
can be seen, beam search decoding outperforms
best path decoding for both CER and WER. This
is due to correctly incorporating multiple paths
into the result and due to the help of the LM.
Token passing outperforms beam search decod-
ing regarding the WER. This makes sense as to-
ken passing constraints its output to dictionary
words. However, if token passing makes a wrong
word prediction, the word usually differs by many
characters, which explains the high CER.

Figure 6: A sample from the Bentham HTR
dataset [7].

Dataset Path Beam Token
Bentham 5.72/16.74 5.55/16.18 8.24/9.34

Table 2: Result for the Bentham HTR dataset.
The results are given in the format CER/WER.
Columns: best path decoding (Path), beam
search decoding (Beam) and token passing (To-
ken).

7 Conclusion

This paper first gave an introduction to sequence
recognition and afterwards presented two decod-
ing algorithms for RNNs trained with the CTC
loss function. Best path decoding is a simple
approximation and produces the correct labeling
if the per-frame predictions are sharply peaked.
Beam search decoding uses a character-level LM
and achieves the best results regarding CER on
the Bentham dataset. In contrast to word-level
LMs, character-level LMs have the advantage
that they do not suffer from OOV words. To-
ken passing constrains its output to a sequence
of dictionary words. The following list helps to
decide which algorithm to use:

• If (nearly) all words to be recognized are
known in advance, token passing achieves
better results than the other algorithms re-
garding WER.

• If speed matters, best path decoding is the
way to go.

• In all other cases, beam search decoding is
recommended.
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