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About This Reverberation Business 

James A. Moorer 
IRCAM 

31, Rue St. Merri 
75004 Paris, France 

Introduction 

When music is performed in a concert hall, a torrent of 
echos from the various different surfaces in the room strikes 
the ear, producing the impression of space to the listener. This 
effect can vary in evoked subjective response from great 
annoyance or even incomprehensibility, in the case of speech 
presented in a highly reverberant auditorium, to sheer ecstasy, 
in the case of late romantic music in the Vienna Grosser 
Musikvereinsaal. Most music is heard these days either in the 
comfort of one's home (or car), or in a university auditorium, 
both of which have generally short reverberation times. For 
this reason, most recordings of music already have some 
amount of reverberation added before distribution either by 
a natural process (i.e. recordings made in concert halls) or by 
artificial processes (plate or spring reverberators). Computer 
music is an especially fertile ground for artificial reverberation 
in that it is rarely, if ever, performed in highly reverberant 
concert halls. The use of the computer for the simulation 
of this reverberation also allows the composer another degree 
of freedom, namely to "tailor" the reverberation to the 
particular aural effect he wishes to present, allowing, for 
instance, each individual sound in the piece to carry an 
entirely different spatial aspect, if desired. In this paper, we 
review some of the work that has been done in the production 
of artificial reverberation by computer, and we present the 
fruits of our own labors along this line, both in the attempted 
simulation of the concert hall environment by computer and 
in the proliferation of different circuits for the realization 
of simulated room reverberation. 

Historical Review 

Although the study of acoustics may have started as 
early as the sixth century B.C. with Pythagoras' inquiries upon 
the discovery that halving the length of a string seemed to 
double its pitch, our own treatment will begin with the first 
published computer simulations of room reverberation b) 
Schroeder (1961, 1962). We will not have time to discuss 
directly the first published study of room reverberation by 

Sabine (published originally in 1900, reprinted in 1972). The 
two systems proposed by Schroeder are combinations of two 
unit reverberators, shown in canonical form in Figure 1. The 
first one is the all-pass filter, shown in Figure 1 a in the one- 
multiply form. The second is the comb filter in Figure Ib. 

Z-m 

y(n) (a) 

g 

X(n) * ^ - -(Y(n) 

(b) 

Figure 1. The simplest unit reverberators: (a) one-mul- 
tiply all-pass; (b) comb filter. The magnitude of g must 
be less than 1 for stability. 

We should say a quick word about our use of signal 
flow graphs to represent filter structures. In our formulation, 
X always represents the input to a filter and Y always repre- 
sents the output. An arc of a graph which is not labeled is a 
unity gain arc. Sometimes we insert extra nodes for supposed 
clarity. If more than one arc comes together at a node, they 
are to be summed. When several arcs leave a node, the same 
signal is supplied to all of the arcs. An arc can be a gain (a 
multiply), a delay (denoted by Z, the unit advance operator, 
raised to a negative power), or another filter, usually repre- 
sented by a capital letter as a function of z. 
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To continue with our exposition, the unit reverberators 
shown in Figure 1 have, by themselves, the following transfer 
functions: 

-m 
g + z 

T(z) = 

1 + gz 
-m 

z 

T(z) = 
-m 

1 - gz 

(1) 

(2) 

It is simple to show that the transfer function in Equation (1) 
is indeed that of an all-pass filter, in that the coefficients in 
the numerator are in reverse order of those in the denomi- 
nator, thus forcing the zeros to be the reciprocals of the poles. 
This is sufficient for the filter to be an all-pass. We must 
remember, however, that the all-pass nature is more of a 
theoretical nature than a perceptual one. We should not 
assume, simply because the frequency response is absolutely 
uniform, that the filter is perceptually transparent. In fact, 
the phase response of the all-pass filter can be quite complex. 
The all-pass nature only implies that in the long run, with 
steady-state sounds, the spectral balance will not be changed. 
This implies nothing of the sort in the short-term, transient 
regions. In fact, both the all-pass and the comb filter have very 
definite and distinct "sounds" that to the experienced ear can 
be immediately recognised. 

To use these as a reverberation generator, we must 
combine them in some manner. Schroeder suggested two 
different combinations, shown in Figures 2a and 2b. In these 
figures, Ai represents an all-pass filter and Ci represents a 
comb filter. Figure 2a thus shows a series connection of all- 
pass filters with a final addition of some proportion of the 
original signal. With the all-pass, there is also a feed-through 
of the original signal scaled by the gain g of the all-pass, so 
with the circuit of Figure 2a we will find a total direct signal 
contribution of k plus the product of the gains of the individ- 
ual all-passes. In Figure 2b, we see a parallel connection 
of four comb filters followed by two all-passes, again with a 
feed-forward connection of a proportion of the original signal. 
The idea with both of these is to use the unit reverberators to 
simulate the effect of wall reflections and transit time of the 
wave front as it passes from one wall to the other. The addi- 
tion of the direct signal simulates the proximity of the source 
to the destination. As the destination listener moves away 
from the sound source, the perceived reverberation remains at 
about the same amplitude, but the direct sound intensity 
decreases by the usual reciprocal distance squared term; thus 
there is a distance at which the direct and reverberant sounds 
are equal in amplitude, such that at larger distances than this, 
the reverberant sound field dominates. In these circuits, we 
attempt to simulate the wall reflections with the feedback 
paths and the transit time between reflections with the delay 
lengths. We shall see later that this is a somewhat crude way to 
simulate actual rooms. Both Schroeder and this author have 
proposed refinements (with corresponding increases in com- 
puter time required). 

In any case, the use of the reverberators in Figures 2a 
and 2b implies that the various parameters (gains and delay 
lengths) of all the unit reverberators must be chosen somehow. 

k 

X Y 
A1 A2 A3 A4 A5 

(a) 

Ci 

Al A2 X Y 

x 

(b) 

Figure 2. Combinations of unit reverberators to make a 
functioning reverberator. In each combination, the direct 
signal is added in with a scaling of k. (a) Series connection of 
all-pass networks. The functional dependence on z has been 
dropped in the illustration. (b) Parallel combination of comb 
filters followed by series combination of all-pass filters. 

It is generally thought important to make all the delay lengths 
mutually prime, in that this reduces the effect of many peaks 
piling up on the same sample, thus leading to a more dense and 
uniform decay. 

More recently, Schroeder (1970) reported on a way of 
simulating room reverberation while taking into account the 
exact geometry of the room. This study involves the simula- 
tion of the source as an omnidirectional pulsating circle (the 
study was done in two dimensions), following the paths of 
some 300 individual rays that are cast at equally spaced 
angles about the source. The presumptive linearity of the air 
and walls makes it possible to transmit a single ideal impulse, 
thus obtaining the impulse response of the simulated room. 
The impulse response can then be convolved with musical 
sound to produce the sound of that music in that room. 
Following this, he suggested that a new reverberator could be 
made that simulates exactly the first few echos, then simulates 

X 
-m Z-m2 

z-m3 Z-4 

Y 
Figure 3. Form suggested by Schroeder (1970) for simula- 
tion of early echos by direct summation, using a standard 
reverberator as shown in figure 2a or 2b for the late echos. 
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the reverberator does not seem to be simply related to tt 
quantities that one usually derives from transfer function 
such as group delay or root locus. 

Although the reverberator of Figure 2b did not shc 
exactly these same problems, it shows other problems, 
namely: 1) Any attempt to reverberate very short, impulsi 
sounds, such as drum strokes, gave distinct patterns of ech 
rather than smooth reverberant sounds. The sound was sor 
what like flutter echo in rooms with parallel walls. 2) Th 
decay continued to show a metallic sound, especially wit 
longer reverberation times. 

Our first thought to help this situation was to tr3 
the oscillatory networks sh,wn in Figures 4a and 4b. Th 
transfer functions of these two unit reverberators are the 
as follows: 

H(z) 

-rm -2m 
gl + g2(l+ gl) Z + z2 

1 + g2(l+ gl) Z + gl Z 

z-2m 

H(z) 
1 - gz - gz 

-2m 

Both these units can be described completely by tf 
decay rate of the exponential envelope and the frequency 
the oscillation. The decay rate r is the factor by which tl 
amplitude is diminished every m samples (in the impulse r 
sponse). The frequency 0 is that of the sinusoidal part of 
decay. In the case of the oscillatory comb, we can comput 
the coefficients g, and g2 from the frequency and decay ] 
as follows: 

0 
gl = 2rcos ( ) 

m 

g2 = -r2 

he 
is, 

)W 

ve 
OS 
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le 
th 
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In the case of the all-all-pass reverberator (or series- 
all-pass, Ed.), such as is shown in Figure 2a, the use of the 
oscillatory all-pass made little or no perceptible difference, 
even when all units were so modified. There was a slight dif- 
ference in the tail end of the decay in that the dominance 
of one pitch over another kept shifting so that we heard the 
pitch of one delay for a short while, then the pitch of another 
delay, and so on. 

With the combination comb-all-pass reverberator, such 
as is shown in Figure 2b, the use of oscillatory combs did 
help the decay a bit in the same way as with the all-all-pass 
case, but did not correct the principal problem, which was 

e the response to short, impulsive sounds. The improvement is 
&n enough, however, to say that short of placing a filter in the 

loop, which will be discussed subsequently, the comb-all- 
pass reverberator with oscillatory combs was the best-sound- 
ing reverberator up to this point. 

(3) Figures 4c and 4d show unit reverberators with filters 
in the loops. Figure 4c shows a comb-type, and Figure 4d 
can be made an all-pass if the loop filters H(z) and S(z) are 
complex conjugates of each other. This implies that their 
impulse responses are the time reverse of each other. Since 
the feed-forward filter H(z) passes directly into the out- 

(4) put, it should be unconditionally stable. This gives us the 
entertaining result that either H(z) and S(z) must be FIR 
filters, or S(z) must be an unstable filter when viewed in 
isolation. Strangely enough, if the magnitude of S(z) when 
evaluated on the unit circle is everywhere less than unity, 

ie the unit reverberator as a whole will be stable (see below). 
of This notwithstanding, we consider it a somewhat bad idea to 
he 
e- 
the 
e 
rate 

(5) 

(6) 

Negative decay rates can also be used, making each pulse 
of the impulse response alternate in sign. The condition for 
stability is that the magnitude of r must be less than one. We 
can now design with the oscillatory comb just the way we 
have with the simple comb, with r taking the logical place of 
g, and with one more parameter to choose. The frequency 0 
is divided by m in the equation because of the delay in m 
samples between each pulse in the impulse response. 

We can likewise compute the coefficients of the oscilla- 
tory all- pass from the desired decay rate and frequency as 
follows: 

g = r2 

r 0 
g2 = - 2 cos( ) 

1+ r2 m 

(7) 

(8) 

Table 1. Dependence of absorption coefficients on humid- 
ity and frequency. 

Frequency in Hertz 
Relative 1000 2000 3000 4000 

Humidity 

40 .0013 .0037 .0069 .0242 

50 .0013 .0027 .0060 .0207 

60 .0013 .0027 .0055 .0169 

70 .0013 .0027 .0050 .0145 

(Above) Attenuation Constant mof air at 20? C and normal 
atmospheric pressure in units of meter-1. (Below) The 
same table in units of dB per meter. 

Frequency in Hertz 
Relative 1000 2000 3000 4000 

Humidity 

40 .0056 .0161 .0300 .1051 

50 .0056 .0117 .0261 .0899 

60 .0056 .0117 .0239 .0734 

70 .0056 .0117 .0217 .0630 
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the later echos by means of a reverberator such as has been 
shown above. This design is shown in Figure 3. The first delays 
and gains are chosen following the geometry of the room; 
then the reverberator R (z) is chosen to simulate the decay 
of the room reverberation after the density has reached the 
level where the individual pulses cannot be separated. We will 
come back to this idea later. 

Some New Unit Reverberators 

In the course of studying the art of making artificial 
reverberation, we have explored several new unit generators. 
These include the oscillatory all -pass in Figure 4a and the 
oscillatory comb in Figure 4b. In addition, we may also 
replace the gain terms with filters to produce decays, the 
lengths of which depend upon the frequency. For the non- 
oscillatory case, these are shown in general form in Figure 
4d for the all-pass and in Figure 4c for the comb. There 
exist straightforward extensions to the oscillatory cases of 
comb and allpass for these configurations also. What must 
be discussed now is what the general utility of these units 
is and when they should be used. In fact, we have found 
that the only really useful one is the comb form in Figure 4c, 
but we include a discussion of the others for completeness 
and additional insight as to the problems involved. These 
reverberators are all modifications of Schroeder's original 
designs (Schroeder, 1961, 1962), and can all be described 
as various forms of recirculating delays, since they all use 
delays with feedback and sometimes feedforward. We should 
point out that these units were known as early as 1966 when 
H. Date and Y. Tozuka simulated these units using analog 
filters and variable-speed multi-head tape recorder delay. 
Needless to say, the filter realizations were somewhat 
complex. 

The reverberators in Figures 2a and 2b have been used 
extensively at Stanford University, at IRCAM, and many 
other sites around the world in varying different configura- 
tions. With the all-pass reverberator of Figure 2a, several 
problems were noticed by this author along with L. Rush, 
D.G. Loy, K. Shoemake, J. Chowning and others: 
1) The decay did not start with a dense sound and die out 

slowly in an exponential manner. In fact, the higher the 
order, the longer it took for the density to build up to 
a pleasing level. This produces the effect of a lag in 
the reverberation, as if the reverberation followed 
the sound by some hundreds of milliseconds. 

2) The smoothness of the decay seemed to be critically 
dependent on the choice of the parameters involved: 
the gains and delay lengths of the individual unit 
reverberators. Just changing one of the delay lengths 
from its prime number length to the next larger prime 
number, which could be a change as small as 2 samples, 
has been noticed to occasionally make the difference 
between a smooth-sounding decay and a ragged- 
sounding decay. 

3) The tail of the decay showed an annoying ringing, 
typically related to the frequencies implied by some 
of the delays. This produced a somewhat metallic 
sound that was generally found objectionable. 

It would be nice if we could somehow derive these subjective 
properties directly from the transfer functions of the filters. 
In this way, we would be able to lift the evaluation of these 
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4(a) 
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-g 
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X Y 
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Figure 4. Some new unit reverberators. (a) is an oscillatory 
all-pass. (b) is an oscillatory comb. The impulse response 
of the oscillatory units is a train of pulses the amplitudes of 
which correspond to a decaying sinusoid. (c) is a comb 
filter with another filter inside the loop, identified by its 
transfer function T(z). (d) is an all-pass with filters in the 
loops identified by their transfer functions: H(z) in the 
feed-forward path, and S(z) in the feed-back path. For 
this to remain all-pass, these filters must be complex con- 
jugates of each other. 

out of the domain of empirical study and to design entirely 
on paper what should be reverberators which sound good. 
Unfortunately, there does not seem to be any viable way 
to do this at this time. Our perception of the quality of 
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put an unstable filter in the loop because the delay of m 
samples prevents any annihilation of the response of S(z) 
for a certain time, during which the response of S(z) may well 
have exceeded the bounds of the computer on which it is 
being run. For this reason, we consider it more reasonable to 
use FIR filters for H(z) and S(z). To make the circuit real- 
izable, we must insert a delay after the node where the feed- 
forward path breaks from the original signal and before the 
node where the feedback path adds into the original signal, 
a delay equal to the total delay of the feedforward filter H(z). 
Some additional efficiency can be obtained by the use of 
linear phase filters here. 

The purpose of placing a filter in the loop is to simulate 
the effect of the attenuation of the higher frequencies by the 
air. This attenuation is due "partly to the effects of viscosity 
and heat conduction in the gas and partly from the effects of 
molecular absorption and dispersion in polyatomic gases in- 
volving an exchange of translational and vibrational energy 
between colliding molecules" (this description lifted with 
minor paraphrasing from Beranek (1954)). Unfortunately, 
we have found much disagreement in the literature as to 
exactly what these constants are. The reported values vary by 
as much as a factor of five in the decay rate. In any case, the 
intensity of the sound is generally thought to vary, for any 
given frequency, according to the following formula: 

1 --mx 
I(x) = 1 I e- 2- 0 

x 

where Io is the intensity at the source, x is the distance from 
the source in meters, and m is the attenuation constant which 
depends on frequency, humidity, pressure, and temperature. 
Table 1 was taken from Kuttruff (1973) who claims to have 
taken it from Harris (1963) and Harris and Tempest (1964). 
The absorption seems to go up even higher at lower values 
of humidity and at higher frequencies. These absorption 
coefficients may not seem very high, but in a large concert 
hall such as the Boston Symphony Hall, the reverberation 
time of more than 1.7 seconds implies that the sound has 
traveled more than 600 meters in traveling between the 
various walls. This would mean (at 40 percent relative humi- 
dity, a typical figure in the Boston area during the concert 
season) that the 4 KHz signals would have been attenuated 
upwards of 60 dB more than the 1 KHz signals. This just 
shows that this process is significant and cannot help but 
have a substantial effect on the resulting spectrum of the late 
decay. 

Now we can approach the question of modifying the 
unit reverberators to simulate this facet of sound transmission. 
We must keep in mind, however, certain perceptual relations 
in reverberation that have been noticed over the years. During 
the performance of a passage of music, only the first 10 to 
20 dB of the decay of the reverberation is typically audible 
because of the changing nature of the music. It is only in 
pauses or at ends of movements that the entire decay of the 
reverberant sound will be audible. It is not clear what this 
fact implies except perhaps that we must concentrate equally 
on the early decay and the late decay for a comprehensive 
simulation. 

Since one problem that arises immediately with the new 
unit generators is that of the stability of the resulting unit 
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when one inserts a filter into the feedback loop, it is important 
to take a closer look at the stability conditions for such filters. 
We can compute the stability of the comb by carrying the 
transfer function of the filter that has been inserted in the 
loop along explicitly, then separating it into its magnitude and 
phase functions as follows: 

-m 
z 

G(z) = 

1 - gT(z)z 
(9) 

This then has as magnitude function, evaluated on the unit 
circle: 

G (ejwPs) = 

1 

I+g TI- 2gITlIcos(O (wc)- mwoP,) 
(10) 

where ITI is the magnitude of T(ejIPs) and 0(o) is the 

angle of T(ejiPs). co is the radian frequency around the unit 
circle and Ps the sampling period in seconds. 

Ignoring for a moment the angular term, we can see that 
ITI follows g around at each point in the formula. This implies 
that we can consider the effect of the filter separately on the 
radii of the roots and on their angular placement. Without the 
filter, the roots are placed evenly at multiples of the frequency 
(l/m)JP and at a uniform radius of the mth root ofg. With 
the filter, the radii have been changed to g I T, which depends 
on the input frequency co, and the angular position has been 
distorted to the following: 

21ri + 0(o) 
Ci = 

mPs 
fori=0,1,2,... (11) 

For stability, all we need to do is assure that the radius never 
reaches 1.0, so the condition for stability becomes this: 

g < (12) 
max ITI 

<Oo?<2 7 

Thus knowing the absolute maximum value of ITI, we can 
easily scale g to be unconditionally less than the reciprocal of 
this. This guarantees stability. 

To test this idea, the filter shown in Figure 5 was incor- 
porated into a reverberator of the form shown in Figure 2b. 
The loop filter is a simple first-order filter. For stability, the 
magnitude of g should be less than one. If we insist that the 
loop filter be strictly low-pass, then gl should be positive, and 
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g1( )z-i 

X z_ m - Y 

Figure 5. One form of the comb with a filter in the loop as 
shown in Figure 4c. Here we have chosen a simple one-pole 
filter. If g1 is positive, it will be a low-pass filter. For stability, 
g2/ (1 -g ) must be of magnitude less than one. (Note: 
if g1 and g2 are positive, this reduces to the condition that 
91 +92 <1.) 

the maximum of IT I will occur at o = 0, as is shown by its 
transfer function: 

T(z) = - (1 
1 - g,l 

and its maximum value at o = 0 will be: 

1 
T(1)= (1 

1-g1 

Thus if we set g2 to g(l - g, ), where g is now between zero 
and one as before, the resulting filter is unconditionally stable 
and has the side benefit of giving us a parameter in the familiar 
zero to one range. 

Again, the idea of inserting such a filter in the loop is to 
simulate the absorption of the high frequencies by the air. The 
frequency response of such a simple low-pass filter as that 
shown in Figure 5 can never conform to the spectral modifica- 
tion necessary to exactly simulate this property, but was 
chosen as a compromise with efficiency, since it only adds one 
multiplication. There is a question, however, of how to set this 
parameter g, which controls the roll-off of the filter. To this 
end, a series of optimizations was done using the Marquardt 
algorithm (Marquardt, 1963) to match the frequency response 
of this low-pass filter in a least-magnitude-squared manner to 
the actual data reported in the literature. The results are sum- 
marized in Table 2. The resulting optimal values of g, are 
shown in Figure 6. Unfortunately the values are strongly 
dependent on sampling frequency and somewhat dependent 
on humidity, temperature and pressure. The figures are given 
here for sampling rates of 10 KHz, 25 KHz, and 50 KHz at 
four different values of humidity. Again, the weakness of the 
first-order filter as a low-pass means that these can only be 
considered very vague approximations of the actual sound 
absorption of air, so the exact value of this coefficient should 
not be taken too seriously. These should only be considered 
guideline values. 

Following these guidelines, we can choose a value for the 
low-pass filter coefficient that represents the attenuation that 
a specific delay will produce. Whatever delay that we choose 
for this comb, we can convert that delay into meters by multi- 
plying by the speed of sound in air, which is generally taken to 
be 344.8 meters per second at 22 degrees Centigrade and 
standard pressure of 751 millimeters of mercury. For the ap- 
propriate value of humidity and sampling rate we can read off 
directly the value of g, from the graphs of Figure 6. For inter- 
mediate sampling rates, an interpolation can be done. 

Following this procedure does in fact produce a rever- 
beration such that the decay of the higher frequencies is some- 
what faster than that of the lower frequencies, and the 
resulting sound is indeed somewhat more realistic. Several 
other benefits immediately occur also, such as the loss of 
sensitivity to the exact delay length and a more robust treat- 
ment of short, impulsive sounds. The configuration we have 
been favoring is that with six comb filters, each with low-pass 
filters in the loop, and a single all-pass filter. 

Beranek (1962) reports that for "good" bass quality in 
a concert hall, it should have a ratio of the reverberation time 
at 125 Hz and the mid-frequency reverberation time (average 
of the 500 and 1000 Hz reverberation times) of somewhat 
greater than unity. The comb of Figure 5 exhibits exactly this 
property for any positive value ofgy. Specifically, for the 
values of g in Figure 6, the ratio is around 1.02, which is 
designated by Beranek as customary in a "good" concert 
hall. This point is actually somewhat moot in the computer 
music domain, in that the reason that bass is to be emphasized 
in concert halls is that string basses are somewhat weak, es- 
pecially when one considers the lack of sensitivity of the ear 
to lower frequencies, such that they must be amplified by the 
room itself if possible to balance properly with the orchestra. 

We have found that in the use of the six-comb rever- 
berator, certain distributions of values make more sense than 
others. For instance, with more than six combs or more than 
one all-pass, the difference in sound quality is largely unnotice- 
able. The delays seem to work well when distributed linearly 
over a ratio of 1:1.5 with all the g2 terms set to a constant 
number g times (1 - g1). The all-pass seems to work well 
at about a 6 millisecond delay and a gain of 0.7 or so. As a 
concrete example, Table 2 shows the values of delays and 
low-pass filter gains for such a reverberator at 25 KHz samp- 

Table 2. Examples of parameters for actual reverberators 
of the type shown in Figure 2b, using six comb filters with 
the low-pass filters in the loop, such as shown in Figure 5, 
and one standard all-pass following, as shown in Figure la. 
In each of these cases, the all - pass should be set to a 6 milli - 
second delay with a gain of 0.7 or so. 

25 Khz 50 Khz 
Delay (in ms.) gl 91 

COMB 1 50 0.24 0.46 
COMB 2 56 0.26 0.48 
COMB 3 61 0.28 0.50 
COMB 4 68 0.29 0.52 
COMB 5 72 0.30 0.53 
COMB 6 78 0.32 0.55 
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ling rate, and at 50 KHz. Again, the loop gains g should be 
set to a number g times (1 - g) for each comb. Each comb 
will have a different value of g, but should have all the same 
value for g. This number g determines the overall reverber- 
ation time. For example, values around 0.83 seem to give a 
reverberation time of about 2.0 seconds with these delays. 

The distribution of these numbers g for the combs de- 
termines the dominance of one comb over another in the 
decay. If one notices that a particular comb's pitch is domi- 
nating the decay, the value of g for that comb can be reduced. 
With less than six combs, one can never arrive at a set of 
values of g that mask entirely the dominance of a particular 
comb. 

Additionally, the all-pass seems to be a somewhat 
sensitive subject too, in that too short a delay for the all-pass 
gives an annoying "puff-puff" response to background noise. 
If there are any clicks or pops in the sound being reverberated, 
a short all-pass will surround each click with a "puff' 
consisting of its own impulse response, sounding not unlike a 
very quiet cymbal crash. To eliminate this kind of sensi- 
tivity, shorter delays should be avoided. A further compli- 
cation, however, is that any delay longer than six milliseconds 
seems to produce an audible repetition period; thus, the delay 
of the all-pass is pretty well limited to six milliseconds. 

Turning now to the reverberator as a whole, we have 
tested this formulation with delays as short as 10 to 15 milli- 
seconds for the combs with the result that the sound is still 
good, and that long reverberation times can still be obtained 
even with such short delays. The subjective impression of 
the simulated concert hall changes in this case such that 
at the shorter delay values, one might well imagine that 
one were inside a garbage can rather than the Symphony 
Hall, but the density and "naturalness" are still good, although 
one might quarrel with the subjective impression of the 
timbre. 

Indeed, this seems to be about as good as one can do 
with the recirculating delay system of reverberation. It does 
not seem to add anything by putting more complicated filters 
in the loop, except that one can then simulate other archi- 
tectural decisions, such as the compositions of the walls 
or the absorption of an audience. The low-pass filter in the 
loop seems to help the response to short, impulsive sounds 
by smearing out the echos. Each echo is no longer a discrete 
impulse, but is lengthened by the simulated transmission 
characteristics of the air itself, so that even in the early 
reverberation period with its correspondingly lower density, 
the discrete echos seem to be effectively masked. It likewise 
did not seem to add anything to use the all-pass network with 
filters in the loop (Figure 4d), so this unit does not appear 
useful. 

Figure 6. Graphs of the optimal gain, gl, of the low pass 
filter in the feedback loop of a comb filter as shown in Figure 
5 for simulating as well as possible the natural high-frequency 
attenuation of the air. Figure 6a is for a sampling rate of 10 
KHz., Figure 6b, for 25 KHz., and Figure 6c, for 50 KHz. 
The delay length must be converted to meters, then for the 
appropriate humidity (higher on the east coast), the value of 
the coefficient can be read off directly. For intermediate 
sampling rates or humidities, an interpolation must be done. 
Since this value is not highly critical, no special care must be 
taken with such an interpolation. 

James A. Moorer: About this Reverberation Business 

We might mention here that it is not absolutely neces- 
sary to set the values of gl from the optimal values shown 
in Figure 6. One can just set the values arbitrarily to produce 
different kinds of sounds that have little or no relation to 
physical reality. Larger values of g, produce a reverberation 
with a very bright beginning and a very muffled decay. Small 
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values of g tend toward the case where there is no filter in 
the loop. The use of different values of g, for different combs 2 

produces no particularly different sound, but can cause domi- 2 
nance of one comb over the others. 

We should add here a quick word about implemen- " 2 
tation. Normally, these reverberation schemes will be imple- 
mented either on special-purpose digital hardware or on / 
general-purpose computers. In either case, one should pay 
special attention to the error characteristics of these 2, 
reverberators, as this is important with all types of filters. 
Following the formulation of Oppenheim (Oppenheim and 
Weinstein, 1972; Oppenheim and Shafer, 1975), we can 2 
approximate the error amplification of the reverberator of 
Figure 5 as l/(l--g). Likewise, the signal itself can be ampli- 
fied by that same factor. For example, if g = .75, then we 
can expect the quantization error of the input signal to be 2 
increased by about a factor of four. This would imply that 
we should keep two or more extra low-order bits in the (a) 
computation so that this error would be truncated at the 
output. Likewise, we would have to keep two extra high- 
order bits to assure that the total dynamic range did not 
exceed the word length of the machine. This implies that, for . . 
instance, to get 12 good bits of output, one would have to do ' . 
the intermediate computations with 14 to 16 bits, or more. . * * ? 
Likewise, to get 16 good bits of output, one would need even 
more bits internally. This is improved a little when we consider 
that generally the reverberated signal will be attenuated before . . . 
it is added into the output, but in any case, one cannot afford . , 
to ignore the effects of finite register length in the implemen- 

. 

* 

tation. . 
If this were not enough, there is a further phenomenon . * .. - .. . 

that occurs with fixed-point implementation of digital filters: ' 
.. 

that of limit cycles. Depending on the type of arithmetic used * * : 
(rounding, truncation, etc.), the output of the filter (rever- . 
berator) may not descend exactly to zero even after the input 
has vanished. Output values of 1 in the last bit, or sequences 
of +1 and -1, are quite common in fixed point. This last case 
of alternating sign is especially annoying, because in 2's 
complement arithmetic, truncating the low-order bits does 
not cure the problem. Again, it is not a particularly disastrous 
effect, but one should not be surprised when it happens. (b) 

Figure 8. Patterns of phantom sources for two room 
shapes. (a) First and second bounce phantom sources with 

WA LL the perpendiculars of construction shown. (b) Pattern of 
PHANTOM SOURCE i phantoms up to the fifth bounce. Note that even though 

there are no parallel walls, the phantom sources show very 
"',\~~~~~~~~~ |i|regular patterns. 

DESTINATION 

SOURCE But What About Real Rooms? 

Figure 7. Diagram of a sound ray going from a sound The only problem with these systems of recirculating 
source to a destination listener via a wall reflection. Just as delays is that they can never correspond to the room reflection 
in the case of light, we can think of the reflected sound pattern in a real room. This is because the reflections in a 
as originating from a "phantom" source which is behind room, even a square one, do not typically come in regular 
the wall, located on a line from the source that is perpen- sequences separated by equal amounts of time. To see why 
dicular to the wall. this should be so, we have to take a brief look at the science 

of room acoustics. Since we do not have room here to 
expound at length on the subject (the interested and brave 
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Figure 9. The phantom sources in a corner fall in a circle 
the center of which is the vertex of the corner. In (a) we 
can trace five phantoms which start with the first reflec- 
tion off the upper wall, which are labeled la, 2a, 3a, 4a, 
and 5a. Likewise, there are five phantoms starting with an 
initial reflection off the bottom wall, which are labeled 
lb, 2b, 3b, 4b, and 5b. (b) shows a rectangular corner, 
wherein the phantom sources number only three, one 
of which is a superposition of the two-bounce sources from 
each wall. 

reader is referred to one of the many introductory texts on 
the subject, such as Beranek (1954) and Kuttruff (1973)), 
we will only describe a small corer of what is called geo - 
metric acoustics. 

This entire section is largely tutorial in nature and 
presents a somewhat naive view of acoustics that will 
subsequently be shown to be useless for simulating the sounds 
of real rooms. The more advanced or impatient reader might 
want to skip right away to the conclusions in the next section. 

Much as in the study of light, we can keep track of the 
reflections in a manner that depends only on the position of 

James A. Moorer: About this Reverberation Business 

the source and not on the position of the destination listener. 
To compute the actual impulse response of the room, we must 
specify the position of the destination listener; but by using 
the method of phantom sources, we can keep track of the 
reflections independent of the position of the listener up until 
the last moment. To see how this works, let us turn to 
Figure 7, wherein we see a simplified case consisting of one 
wall, one source, and one destination. In the case shown, 
direct sound omitted, the wave reflects off the wall and strikes 
the destination. This is equivalent in effect to the case where 
the wall does not exist and there is another identical source 
that spoke at the same time as the true source. This 
"phantom" source is located on a line connecting the 
destination point and the reflection point. We may also locate 
the phantom source by drawing a line from the source that is 
perpendicular an equal distance on the other side of the wall. 
Thus if we now consider a room with three walls, shown in 
Figure 8a,we can trace the various phantom sources given only 
the position of the source and the room geometry. In doing 
this for a two-dimensional room, we are assuming that the 
floor and ceiling are infinitely absorbing and thus do not reflect. 
We see that the phantom sources are represented by their 
bounce number. Each first bounce phantom source reflects 
off the other two walls to make six "second-bounce" sources. 
Figure 8b shows an ensemble of phantom sources up to the 
fifth bounce. 

To give some slight additional insight into how these 
phantom sources work, we can consider the case of a corner 
in isolation such as shown in Figure 9a. In this case, all the 
phantom sources will be located on a circle the radius of 
which is the distance from the source to the vertex. In a 
corner, there will only be a finite number of reflections. 
A phantom source cannot reflect off a wall which it is behind 
(obviously!). Thus, as we follow the reflections in Figure 9a 
starting with the reflection off the upper wall, we find 
phantom sources at positions la, 2a, 3a, 4a, and 5a, the 
number corresponding to the number of bounces. Likewise, 
starting with the lower wall, we find the phantom sources 
lb, 2b, 3b, 4b, and Sb, after which the phantom source 
is behind the wall which it would reflect off of, thus termi- 
nating the sequence. We can also see, in Figure 9b, the well- 
known case of a right angle where there are exactly three 
phantom sources, of which two are first bounce sources 
and the third is a second bounce source which receives contri- 
butions from both the first bounce sources. With any angle 
greater than 90?, any given comer will create only two phan- 
tom sources. 

We can easily write a computer program to keep track 
of these phantom sources. To do so, at least for rooms which 
are convex polygons, we only need to keep track of the 
locations of the phantom sources, and be able to determine 
whether the phantom source is in front of or behind a given 
wall when we are computing new phantom sources. To review 
our coordinate geometry a bit, let us recall that the normal 
form for a line in the Euclidian plane is the following: 

Ycos(O)-Xsin(O) = p (15) 

where 0 is the inclination of the line and p is the perpendicular 
distance from the line to the origin. Given the endpoints of a 
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(16) 

line as (Xo,Yo) and (X ,Y1 ), we can determine the equation 
for the line as follows: 

letd = (Y- Yo)2 + (X-Xo)2 

YI- Yo 
sin() = 

d 

X1- Xo 

cos(O) = 
d 

p = Yo cos(0) - Xo sin(0) 

Y1 cos(0) - XI sin(O) 

YoX1 - XoYl 

d 

Now that the line is in normal form, we can test any given 
point (Xt, Yt) to determine which side of the line it is on. 
That is, 

Ytcos(O) - Xtsin(0) >p 

means that (Xt, Yt) is on one side of the line, whereas 

Yt cos() - Xtsin(0) < p 

means that (Xt, Yt) is on the other. 
We notice that with the normal equations for a line, 

there is always an ambiguity. We can always add ir to the angle 
and negate p, giving a different equation for the same line. 
This is less of an ambiguity than a fortunate extra degree 
of freedom, for we can use this to orient the wall equations 
in a standard way such that for any point (Xt, Yt) that is 
inside the polygon (again, assuming convexity), with N walls 
whose equations are determined by Oi and pi, the following 
will be true: 

Ytcos(Oi)-Xtsin(Oi)>pi fori= 1,2,...,N (19) 

All we need to do to allow us to use this simple test is to go 
through the wall equations with any one point (Xd, Yd) 
that is known to be inside the polygon and flip any equation 
for which the above does not hold. For a convex polygon, 
we can construct such an "internal" point by averaging the 
X and Y coordinates (separately, thank you) of all the vertices. 
Given the normal equations for the wall lines, we can now 
decide whether a given source will reflect off a given wall 
just by verifying that the above condition is satisfied for the 
appropriate value of i. 

Continuing in this manner, we can compute the position 
of the new phantom source just by taking the equation of a 
line going through the originating source (phantom or not) 
that is perpendicular to the wall. If the equation of the wall 
is as shown in Equation (15), then such a line is given by 
the following equation: 

Ysin() +Xcos(0)= Y sin ()+ X cos(8)=p, 

where (Xs, Ys) are the coordinates of the originating source. 
(17) If we then intersect this with the wall line, we can find the co- 

ordinates of the intersection (Xx, Yx) as the following: 

(18) Xx = -psin(0) + pscos(8) 
(18) 

Yx = pcos(0) + ps sin() 

Thus the differences in the coordinates are simply: 

A X = Xx - Xs 

AY = Y - Y 

and the coordinates of the new phantom source on the other 
side of the wall are just the following: 

Xn = Xx + AX= -2p sin (0) + Ys sin (20) +Xs cos (20) 

Y,= Y + A Y=2psin(0)- Yscos(20)+Xssin(20) 

Now that we know how to keep track of the sources, 
we must see how this affects the listener. There are three main 
sources of attenuation of the sound from a phantom source. 
The first is that each bounce presumably reduces the 
amplitude a bit. Wall reflection characteristics are actually 
very complex, depending on both the frequency and the 
angle of incidence of the wave front. We will brush aside 
this nasty intrusion of nature and for the time being represent 
the attenuation of each wall by a single number, the reflection 
coefficient. Another source of attenuation is just the fact that 
any spherical wave is diminished over some distance at a rate 
proportional to the reciprocal of the distance it has travelled. 
(Note that we are working in amplitude here, and not 
intensity. For intensity, it is the reciprocal of the distance 
squared.) The last source of attenuation is that of the air 
itself, which we have already discussed in the previous section. 

If we ignore for a moment the frequency dependence of 
everything, then we see that it should be quite straightforward 
to compute the contribution to the listener from each 
phantom source. We must only assure ourselves that the 
ray from the phantom source to the listener crosses the wall 
that produced the phantom source. Otherwise, the listener 
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would not be able to "see" that phantom source. Thus at each 
step we can compute the effect at the listener by adding up 
the contributions of all the phantom sources. 

A program was written here at IRCAM for examining 
two-dimensional convex polygonal rooms using this simpli- 
fied phantom source model. The procedure was to first 
construct the impulse response of the room and then later to 
convolve this directly with the desired signal to produce the 
effect of that sound in this ficticious room. When we started 
making trials with this program, we found that the pattern 
of echos very quickly got extremely dense, so that after a 
certain time, every sample in the computed impulse response 
was non-zero. Visually, it greatly resembled white noise in 
the decay. One of many surprises was that although the 
strength of each phantom source diminished exponentially 
with each bounce, the overall contribution of all the phantom 
sources did not diminish nearly as rapidly because of the 
fact that the number of phantom sources grows exponen- 
tially also, thus helping to counteract the decreasing strength. 
Thus even though the strength of a given source was down 
by 120 dB, it might not be negligible because there happen 
to be 10,000 of them of roughly that same strength and 
same distance, thus raising the total contribution to only 
40 dB down. This implies that the results of ray simulations 
of room reverberation (Schroeder 1970) should be carefully 
examined since they cannot take this effect into account. 
With ray simulations, one arrives at a total reverberation 
time that can be somewhat shorter than those calculated 
using the phantom source model we have described here. 

Having written this program, we are now in a position 
to use it to gain some insight into how reverberation works. 
The first case we will discuss, however, is the classical example 
that needs no program: the rectangular room. This is one case 
where so many of the phantom sources fall on top of each 
other that they form a rectangular array, as is shown in Figure 
10. This is similar to the barbershop mirror phenomenon, 
where one sees an endless array of phantom sources stretching 
off to infinity in both directions, some facing forward and 
some facing backward. The point of discussing this case, 
however, is to show that no artificial reverberator based on 
recirculating delays can ever be identical to even this geo- 
metrically simple case. This is immediately clear from putting 
a listener into the room. The contributions from just the row 
that crosses the room are at distances that are related by the 
square root of the sum of the squares of the vertical and 
horizontal distances. If it is granted that the vertical distance 
increases in regular increments of multiples of the room 
height, the resulting distances are not integer multiples of 
anything. In the limit as the sources get further and further 
away, the distances become almost equally spaced, implying 
that although the early response could never be simulated 
exactly by recirculating delays, it may be possible to approxi- 
mate the late response. This also gives us some insight as to 
why typical artificial reverberation is always easily 
distinguishable from natural reverberation. We should take 
care to note that the case of the rectangular room is a very 
special one and we choose it as an example here just to show 
that the echo pattern will be different from anything we can 
produce using any of the usual combinations of recirculating 
delays. 

Following an idea reported by Schroeder (1970), we 
may directly simulate the early response by a finite impulse 
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Figure 10. Phantom source patterns for a rectangular 
room form perfectly regular patterns of rows and columns. 
Any room shape which tesselates a surface by reflecting 
across each of its edges will have such a repeating pattern 
of sources. Such figures include equilateral triangles, for 
instance, and regular hexagons. 

response filter, and simulate the late response with a standard 
reverberator such as is shown in Figure 3. Here we choose to 
simulate the first n delays separately with separate gains, 
then to send the delayed signal into a standard reverberator 
R(z) with its own gain of g. We must then ask what are the 
design requirements of this reverberator and how do they 
differ from stand-alone reverberators. Our experience is, 
sadly enough, that they do not differ from stand-alone 
reverberators, in that they need all the usual complexity. 
Again, the most pleasing and natural-sounding system we have 
tried is the comb-all-pass combination with six comb filters, 
with low-pass in the feedback loops, and one all-pass. It is 
not necessary, however, to use the very long delays (for 
instance, the ten to fifteen millisecond range). All the design 
guides described in previous sections apply for these reverber- 
ators, including considerations of total reverberation time, 
ratio of minimum delay to maximum, etc., etc. 

The rationale for simulating just the early echos is 
based on the various perceptual phenomena that ensue with 
the spacing of echos. With the case of two impulses spaced 
closely in time, the separation of these two impulses deter- 
mines a wide range of perceptual effects. Certainly if the two 
pulses are more than 30 to 50 milliseconds apart, they will 
be heard as two separate and distinct pulses. Between this 
figure and one or two milliseconds, they will not be heard 
as distinct pulses, but the timbre of the combination will 
change (Green 1971). At less than one millisecond separation, 
the timbre of the ensemble does not change any further, 
but if presented binaurally, localization effects still occur 
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disconnected from physical reality in the use of recirculating 
delays to simulate the echo patterns of concert halls. The 
other approach is a computer simulation of the actual 
reflection pattern of a concert hall based upon its geometry. 

The only problem with simulating room reverberation 
in this way, that is with direct geometrical simulation of the 
room acoustics, is that it doesn't sound at all like real rooms. 
This somewhat startling fact means that one or more of our 
assumptions does not hold water. To follow this up further, 
we obtained copies of the responses of many natural concert 
halls which were taken by Shroeder et al. (1974) and Gottlob 
(1975). Careful examination of these impulse responses 
made it quite clear that a very important consideration that 

0 10 20 30 40 50 60 70 

time in milliseconds 

Figure 11. Doublet response (echogram) of the New York 
Philharmonic Hall before reconstruction. This response 
was collected by D. Gottlob. Note that even though certain 
distance reflections are clear, there is a great deal of activity 
throughout the response. 

down to a spacing of tens of microseconds. With this in 
mind, it is clear that if we simulate the discrete echos down 
to a limit of one millisecond before switching to a recircu- 
lating delay reverberator, we can capture much of the effect 
of a specific concert hall, except possibly for localization 
effects. 

Before we leave the topic of computer simulation of 
geometric acoustics, we should mention at least two other 
interesting results of these simulations. First of all, one might 
criticize the approach for being two-dimensional. However, the 
formulas do not get terribly more complex when three-dimen- 
sional geometry is used, so one could write the simulation 
program entirely in three dimensions. The winged-edge poly- 
hedra model of Baumgart (see References) seems almost 
ideally suited to this in that the faces are canonically ordered, 
making inside/outside determination simple, and that local 
connectedness is represented simply. 

Another interesting result is that non-parallel walls 
do not necessarily imply uniform echo patterns. Figure 8b, 
for instance, shows a simulated hall with non-parallel walls 
that exhibits a highly regular impulse response, regardless of 
source placement. The phantom sources cluster in circles 
about the source of radii roughly twice the length of the 
hall. Likewise, the fact that the best-liked concert halls are 
exactly rectangular in shape (Vienna Grosser Musikvereinsaal, 
Boston Symphony Hall, Amsterdam Concertgebouw) leads 
one to wonder indeed if parallel walls really do have anything 
to do with the subjective characteristics of the halls. It would 
seem that the detailed structure and composition of the walls 
are perceptually more important than the overall shape. 

So Now What's Wrong? 

We have described several different approaches to 
simulating concert hall reverberation. One approach is largely 

Table 3. Tap times (in seconds) and gains for a reason- 
able-sounding seven-tap FIR section for reverberation. 
Tap number corresponds to the subscript of the coeffi- 
cient (ai) and delay (mi) shown in Figure 12. 

TAP 

0 
1 
2 
3 
4 
5 
6 

TIME 

0 
.0199 
.0354 
.0389 
.0414 
.0699 
.0796 

GAIN 

1.00 
1.02 
.818 
.635 
.719 
.267 
.242 

Tap times (in seconds) and gains for a reasonable-sounding 
19-tap FIR section for reverberation. These were taken 
from a highly idealized geometric simulation of the Boston 
Symphony Hall. 

TAP 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

TIME 

0 
.0043 
.0215 
.0225 
.0268 
.0270 
.0298 
.0458 
.0485 
.0572 
.0587 
.0595 
.0612 
.0707 
.0708 
.0726 
.0741 
.0753 
.0797 

GAIN 

1.0 
.841 
.504 
.491 
.379 
.380 
.346 
.289 
.272 
.192 
.193 
.217 
.181 
.180 
.181 
.176 
.142 
.167 
.134 
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we have been ignoring is the effect of diffusion. This comes 
about when walls are not in fact flat but are irregular. This 
is, of course, true in all respected concert halls. Boston 
Symphony Hall has fluted side walls and a box well ceiling, 
each of which furnishes a plethora of new phantom sources. 
Figure 11 shows the doublet response of the old New York 
Philharmonic Hall before reconstruction, obtained by placing 
a powerful spark gap device on stage and an omnidirectional 
microphone in a particular seat in the audience. We notice 
immediately that some distinct echos are visible, but a great 
confusion soon follows with virtually no silent portions. 
This confusion is clearly the result of the infinite multiplicity 
of diffused sources caused by every little irregularity in the 
hall. The rough surfaces completely wash out all but the 
first few images, making any use of geometric acoustical 
modeling, either with phantom sources or ray models, useless 
for determining the actual sound of a concert hall. These 
simulations may still be useful for determining reverberation 
time and other more gross qualities of a given room, but not 
for the detailed calculation of the impulse response. We can, 
of course, convolve our music directly with the recorded 
response (corrected for the spectrum of the spark gap itself) 
to produce the sound of that concert hall, but even with a 
25 KHz sampling rate and a 2.0 second reverberation time, 

X 

this comes out to 50,000 multiplications and additions per 
output sample. This is clearly only in the domain of very 
patient researchers with great quantities of computer time 
available. Even with fast Fourier transform techniques 
(Stockham 1966), we consumed about 6 minutes of computer 
time (PDP-10) for every second of sound time thus processed. 
We might then ask if there is any way that we can simulate 
at least some of these effects without such an obese expendi- 
ture of computer time. Indeed, it would appear that a 
modification of the Schroeder design of Figure 3 can give 
somewhat improved results at only a moderate increase in 
computation time. 

Figure 12 shows our new formulation. As before, we 
have N delays which simulate the first N reflections plus 
the direct signal. This presumably takes care of the first 
40 to 80 milliseconds of the decay. This entire signal is now 
forwarded to the reverberator, R (z), which is then added 
into the early decay with a gain of g. What this provides 
is that all the density of the first N reflections is then repeated 
many many times by the recirculating delays of the rever- 
berator. The delays DI and D2 are set such that the first 
echo from the reverberator coincides with the end of the 
last echo from the early response. This means that either 
D1 or D2 will be zero, depending on whether the total delay 
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Figure 12. Signal flow diagram of reverberator using FIR 
portion to simulate early echos and an IIR portion, de- 
noted by R(z), to simulate the late portion. Delays DI and 
D2 are adjusted so that the last pulse from the FIR section 
corresponds roughly in time with the first pulse to exit from 
the IIR section. One or the other of D1 and D2 will be zero 
for any given diagram. 
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of the early echo is longer or shorter than the shortest delay 
in the reverberator. 

Adding this separate discrete early echo makes a sub- 
stantial difference in the sound, and in fact, if the actual 
room response is used for the early delays, the sound does 
begin to approach the sound of a real concert hall. Since using 
the first 80 milliseconds of the actual room impulse response 
is still well beyond the bounds of sanity, except in certain 
restricted circumstances for research purposes, we may then 
ask how simple can this early response be and still give a rich, 
life-like sound. 

Various ways were tried to synthesize a suitable early 
response, from using the results of the geometric simulation 
of a room, real or fictitious, to choosing random numbers 
to determine the positions and amplitudes. Many problems 
became clear while attempting to do this. It would seem that 
one cannot just compute a bunch of impulses at random and 
expect the result to sound good, in that there is always the 
possibility that a very strong comb filter effect will be formed. 
Even if the positions are chosen to be prime numbers of 
samples from the origin, the differences among them in 
time may well be highly composite. This is easy to see when 
one realizes that the sum or difference of two prime numbers 
is always divisible by two. As a result, we cannot give at this 
time any general method for finding different early responses 
that will sound good. We have, essentially by trial and error, 
determined at least two that sound reasonable without too 
much coloration of the sound. These are given in Table 3. 
There is a seven-tap section and a nineteen-tap section. The 
first tap is the direct signal and can be changed to provide 
more or less reverberation if desired. 

Thus, we are now in a position to give a systematic 
technique for designing a reasonably good-sounding rever- 
berator, albeit not one that corresponds to any particular 
concert hall in existence today. The formulation of Figure 12 
with the nineteen-tap model is preferred, although the seven- 
tap section can be used, or even a no-tap system if computer 
time is at a premium. The recirculating part, as mentioned 
before, should consist of six combs in parallel, each with a 
first-order lowpass filter in the loop. The outputs of the six 
combs should be summed and forwarded to a single all-pass 
network with a gain of 0.7 and a delay of about six milli- 
seconds. The gains of the low-pass filters in the feedback loops 
of the combs should be set to the values from Figure 6 for 
the delay used. The delays should be linearly distributed over 
a ratio of 1:1.5 with the shortest delay being about 50 milli- 
seconds. Again, if computer memory is at a premium, this can 
be reduced to as low as ten milliseconds without gross de- 
gradation. The delay lengths in samples should be set to the 
closest prime numbers to prevent exactly overlapping pulses, 
although with higher values of g in the feedback filters, the 
sensitivity to the exact length of the delay becomes negligible. 
The gains g2 of each comb should be set to g(l-gl) where 
g now determines the overall reverberation time. Figure 13 
shows the relation between total reverberation time as a 
function of g, computed at a sampling rate of 25 KHz. 

We originally computed the reverberation time both 
as twice the time to fall from 5 to 35 dB, and as the time to 
fall from 0 to 60 dB, but these numbers were quite similar 
(within 10%) at most values of g except very small or very 
large ones. The reverberation time of this system can be 
estimated without use of Figure 13 as .366/(1-g) to an error 

of about 10%. Likewise, the gain can be computed for a given 
value of reverberation time as 1 -.366/T where T is the desired 
reverberation time in seconds. Note that this will change with 
sampling rate, but the deviation should not be too drastic. 
Likewise, this time will scale directly with the delay lengths, 
as long as the 1: .5 ratio is maintained between the shortest 
comb delay and the longest. 

We should note here one somewhat striking discovery 
we made in simulating natural sounding impulse responses. 
While digitizing the impulse responses from concert halls 
around the world, we kept noticing that the responses in the 
finest concert halls sounded remarkably similar to white noise 
with an exponential amplitude envelope. To test this obser- 
vation, we generated synthetic impulse responses by shaping 
unit-variance Gaussian pseudo-random sequences with an 
exponential of the desired length. The direct sound was 
added by including an impulse at the beginning. The balance 
between the impulse height and the strength of the decay was 
determined empirically to be about 12:1 for a natural sound. 
We then convolved this synthetic impulse response with a 
variety of unreverberated musical sources and compared the 
results with the sounds of actual concert halls. The results 
were astonishing. Although the synthetic impulse response 
did not produce a sound that could be identified with a 
specific concert hall, the sound was clearly a very natural- 
sounding response. With this method of creating synthetic 
impulse responses, one can "tailor" the characteristics to 
one's needs. By selectively filtering the impulse response 
before convolution, we can get any desired rolloff rates at 
various frequencies. It was the most natural-sounding of all 
the techniques we have tried, outside of using the measured 
impulse response of a concert hall. Stereo can then be 
produced by simply generating two synthetic impulse response 
sequences and calculating the left and right ears separately. 
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Figure 13. Reverberation time of the six-comb, one-allpass 
reverberator, assuming that the low-pass filter gain, gl, is 
set according to the guides of Figure 6 and the delays are 
set according to Table 2. In this case, the gain g will deter- 
mine the reverberation time. This curve can be approxi- 
mated by the function .366/(1-g). Conversely, g can be 
estimated as 1 - .366/T where T is the reverberation time 
desired (in seconds). 
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This gives perfectly uncorrelated binaural reverberation. 
Frequency dependence in the decay can easily be introduced 
by filtering the synthetic impulse response before doing the 
convolution. Again, the only problem with this is the enor- 
mous amount of computation involved for direct convolution. 
The fast Fourier transform can help ease the computational 
burden, but real-time operation is still more than a factor 
of ten away for even the fastest commercially available signal 
processors. One observation that we can offer is that the 
impulse response decays fairly rapidly such that less than 30% 
of the points need more than twelve bits of precision. Another 
30% need between eight and eleven bits, and around 10% can 
be specified in four bits or less. This all assumes a sixteen-bit 
sample width. 

Conclusions and Suggestions for Further Work 

In the course of this work, it became quite clear that all 
the geometric simulations of concert hall acoustics that have 
been done to date result in a simulated room reverberation 
that does not sound at all like real rooms. This is probably due 
to the effect of diffusion of echos due to irregularities in 
the reflecting surfaces, and to the fact that the spectrum of 
the echo is modified by the reflection in a manner that de- 
pends strongly on the angle of incidence. 

Despite these facts, we have been able to achieve a good- 
sounding, smooth artificial reverberation system that, regard- 
less of the fact that it does not sound like actual concert 
halls, does sound good enough to be used everywhere that arti- 
ficial reverberation is desired, and does eliminate some of the 
problems that plagued earlier reverberation schemes, such as 
"fluttery" response to short, impulsive sounds and metallic- 
sounding decay. We also found a much larger number of non- 
useful unit generators than useful new unit generators. 

There are several topics that were revealed in the course 
of this study that would make excellent material for further 
study, and excellent doctoral dissertation topics. These might 
include the following: 

1) Improve the computer modeling of concert halls by 
geometry. This would require a leap of insight to 
figure out a reasonable way of dealing with the effects 
of diffusion, or even a way of describing the diffus- 
ing properties of reflecting surfaces. 

2) Figure out what gives recirculating delay reverbera- 
tors their characteristic "sound." This would be an 
acoustic/psychoacoustic study in timbre. One would 
have to vary the physical characteristics of the impulse 
response and attempt to correlate this with the subjec- 
tive perception, possibly involving the use of multi- 
dimensional scaling or factor analysis to help decompose 
the perceptual dimensions. 

3) Make up some new unit reverberators and see what they 
sound like. Try putting more complex filters in the loop 
and see if that has any substantial effect (it might!). 

4) Figure out some clever way to do all this with less com- 
puter time, possibly using the whatsit transform, or the 
whoosit decomposition. 
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