
Quantizing deep convolutional networks for
efficient inference: A whitepaper

Raghuraman Krishnamoorthi
raghuramank@google.com

June 2018

Contents
1 Introduction 3

2 Quantizer Design 4
2.1 Uniform Affine Quantizer . 4
2.2 Uniform symmetric quantizer . 5
2.3 Stochastic quantizer . 6
2.4 Modeling simulated quantization in the backward pass 6
2.5 Determining Quantizer parameters 8
2.6 Granularity of quantization . 8

3 Quantized Inference: Performance and Accuracy 8
3.1 Post Training Quantization . 8

3.1.1 Weight only quantization . 8
3.1.2 Quantizing weights and activations 10
3.1.3 Experiments . 10

3.2 Quantization Aware Training . 13
3.2.1 Operation Transformations for Quantization 15
3.2.2 Batch Normalization . 15
3.2.3 Experiments . 20
3.2.4 Lower Precision Networks 22

4 Training best practices 23

5 Model Architecture Recommendations 25

6 Run-time measurements 28

7 Neural network accelerator recommendations 30

8 Conclusions and further work 30

1

ar
X

iv
:1

80
6.

08
34

2v
1

 [
cs

.L
G

]
 2

1
Ju

n
20

18

9 Acknowledgements 31

A Impact of Batch Normalization on Quantization 35

2

Abstract

We present an overview of techniques for quantizing convolutional neural net-
works for inference with integer weights and activations.

1. Per-channel quantization of weights and per-layer quantization of activations
to 8-bits of precision post-training produces classification accuracies within
2% of floating point networks for a wide variety of CNN architectures (sec-
tion 3.1).

2. Model sizes can be reduced by a factor of 4 by quantizing weights to 8-
bits, even when 8-bit arithmetic is not supported. This can be achieved with
simple, post training quantization of weights (section 3.1).

3. We benchmark latencies of quantized networks on CPUs and DSPs and ob-
serve a speedup of 2x-3x for quantized implementations compared to float-
ing point on CPUs. Speedups of up to 10x are observed on specialized pro-
cessors with fixed point SIMD capabilities, like the Qualcomm QDSPs with
HVX (section 6).

4. Quantization-aware training can provide further improvements, reducing the
gap to floating point to 1% at 8-bit precision. Quantization-aware training
also allows for reducing the precision of weights to four bits with accuracy
losses ranging from 2% to 10%, with higher accuracy drop for smaller net-
works (section 3.2).

5. We introduce tools in TensorFlow and TensorFlowLite for quantizing con-
volutional networks (Section 3).

6. We review best practices for quantization-aware training to obtain high ac-
curacy with quantized weights and activations (section 4).

7. We recommend that per-channel quantization of weights and per-layer quan-
tization of activations be the preferred quantization scheme for hardware ac-
celeration and kernel optimization. We also propose that future processors
and hardware accelerators for optimized inference support precisions of 4, 8
and 16 bits (section 7).

1 Introduction
Deep networks are increasingly used for applications at the edge. Devices at the edge
typically have lower compute capabilities and are constrained in memory and power
consumption. It is also necessary to reduce the amount of communication to the cloud
for transferring models to the device to save on power and reduce network connectivity
requirements. Therefore, there is a pressing need for techniques to optimize models for
reduced model size, faster inference and lower power consumption.

There is extensive research on this topic with several approaches being considered:
One approach is to build efficient models from the ground up [1],[2] and [3]. Another
technique is to reduce the model size by applying quantization, pruning and compres-
sion techniques [4], [5] and [6]. Faster inference has been achieved by having efficient
kernels for computation in reduced precision like GEMMLOWP [7], Intel MKL-DNN
[8] , ARM CMSIS [9], Qualcomm SNPE [10], Nvidia TensorRT [11] and custom hard-
ware for fast inference [12], [13] and [14].

3

One of the simpler ways to reduce complexity of any model is to reduce the preci-
sion requirements for the weights and activations. This approach has many advantages:

• It is broadly applicable across a range of models and use cases. One does not
need to develop a new model architecture for improved speed. In many cases,
one can start with an existing floating point model and quickly quantize it to ob-
tain a fixed point quantized model with almost no accuracy loss, without needing
to re-train the model. Multiple hardware platforms and libraries support fast in-
ference with quantized weights and activations, so there is no need to wait for
new hardware development.

• Smaller Model footprint: With 8-bit quantization, one can reduce the model size
a factor of 4, with negligible accuracy loss. This can be done without needing
any data as only the weights are quantized. This also leads to faster download
times for model updates.

• Less working memory and cache for activations: Intermediate computations are
typically stored in cache for reuse by later layers of a deep network and reducing
the precision at which this data is stored leads to less working memory needed.
Having lower precision weights and activations allows for better cache reuse.

• Faster computation: Most processors allow for faster processing of 8-bit data.

• Lower Power: Moving 8-bit data is 4 times more efficient than moving 32-bit
floating point data. In many deep architectures, memory access can dominate
power consumption [2]. Therefore reduction in amount of data movement can
have a significant impact on the power consumption.

All the factors above translate into faster inference, with a typical speedup of 2-3x
due to the reduced precision for both memory accesses and computations. Further
improvements in speed and power consumption are possible with processors and hard-
ware accelerators optimized for low precision vector arithmetic.

2 Quantizer Design
In this section, we review different design choices for uniform quantization.

2.1 Uniform Affine Quantizer
Consider a floating point variable with range (xmin, xmax) that needs to be quantized
to the range (0, Nlevels − 1) where Nlevels = 256 for 8-bits of precision. We derive
two parameters: Scale (∆) and Zero-point(z) which map the floating point values to
integers (See [15]). The scale specifies the step size of the quantizer and floating point
zero maps to zero-point [4]. Zero-point is an integer, ensuring that zero is quantized
with no error. This is important to ensure that common operations like zero padding do
not cause quantization error.

For one sided distributions, therefore, the range (xmin, xmax) is relaxed to include
zero. For example, a floating point variable with the range (2.1,3.5) will be relaxed to

4

the range (0,3.5) and then quantized. Note that this can cause a loss of precision in the
case of extreme one-sided distributions.

Once the scale and zero-point are defined, quantization proceeds as follows:

xint = round
(x

∆

)
+ z (1)

xQ = clamp(0, Nlevels − 1, xint) (2)

where

clamp(a, b, x) = a x ≤ a

= x a ≤ x ≤ b

= b x ≥ b

The de-quantization operation is:

xfloat = (xQ − z)∆ (3)

While the uniform affine quantizer allows for storing weights and activations at
8-bits of precision, there is an additional cost due to the zero-point. Consider a 2D
convolution between a weight and an activation:

y(k, l, n) = ∆w∆xconv(wQ(k, l,m;n) − zw, xQ(k, l,m) − zx) (4)

y(k, l, n) = conv(wQ(k, l,m;n), xQ(k, l,m)) − zw

K−1∑
k=0

K−1∑
l=0

N−1∑
m=0

xQ(k, l,m) (5)

− zx

K−1∑
k=0

K−1∑
l=0

N−1∑
m=0

wQ(k, l,m;n) + zxzw (6)

A naive implementation of convolution, by performing the addition of zero-point
prior to the convolution, leads to a 2x to 4x reduction in the throughput due to wider
(16/32-bit) operands. One can do better by using the equation above and noting that
the last term is a constant and each of the other terms requires N multiplies, which is 3x
more operations than the 8-bit dot product. This can be further improved by noting that
the weights are constant at inference and by noting that the sum over activations is iden-
tical for all convolutional kernels of the same size. However, this requires optimizing
convolution kernels. For an indepth discussion, please see [16].

2.2 Uniform symmetric quantizer
A simplified version of the affine quantizer is the symmetric quantizer, which restricts
zero-point to 0. With the symmetric quantizer, the conversion operations simplify to:

xint = round
(x

∆

)
(7)

xQ = clamp(−Nlevels/2, Nlevels/2 − 1, xint) if signed (8)
xQ = clamp(0, Nlevels − 1, xint) if un-signed (9)

5

For faster SIMD implementation, we further restrict the ranges of the weights. In
this case, the clamping is modified to:

xQ = clamp(−(Nlevels/2 − 1), Nlevels/2 − 1, xint) if signed (10)
xQ = clamp(0, Nlevels − 2, xint) if un-signed (11)

Please see [4], Appendix B for more details.
The de-quantization operation is:

xout = xQ∆

2.3 Stochastic quantizer
Stochastic quantization models the quantizer as an additive noise, followed by round-
ing. The stochastic quantizer is given by:

xint = round
(x+ ε

∆

)
+ z, ε ∼ Unif(−1

2
,

1

2
)

xQ = clamp(0, Nlevels − 1, xint)

The de-quantization operation is given by equation 3. Note that in expectation,
the stochastic quantizer reduces to a pass-through of the floating point weights, with
saturation for values outside the range. Therefore, this function is well behaved for pur-
poses of calculating gradients. We do not consider stochastic quantization for inference
as most inference hardware does not support it.

2.4 Modeling simulated quantization in the backward pass
For Quantization-aware training, we model the effect of quantization using simulated
quantization operations, which consist of a quantizer followed by a de-quantizer, i.e,

xout = SimQuant(x) (12)

= ∆ clamp
(
0, Nlevels − 1, round(

x

∆
) − z

)
(13)

Since the derivative of a simulated uniform quantizer function is zero almost every-
where, approximations are required to model a quantizer in the backward pass. An
approximation that has worked well in practice (see [5]) is to model the quantizer as
specified in equation 14 for purposes of defining its derivative (See figure 1).

xout = clamp(xmin, xmax, x) (14)

The backward pass is modeled as a ”straight through estimator” (see [5]). Specifi-
cally,

δout = δinIx∈SS : x : xmin ≤ x ≤ xmax (15)

where δin = ∂L
∂wout

is the backpropagation error of the loss with respect to the
simulated quantizer output.

6

Figure 1: Simulated Quantizer (top), showing the quantization of output values. Ap-
proximation for purposes of derivative calculation (bottom).

7

2.5 Determining Quantizer parameters
The quantizer parameters can be determined using several criteria. For example, Ten-
sorRT [11] minimizes the KL divergence between the original and quantized distribu-
tions to determine the step size. In this work, we adopt simpler methods. For weights,
we use the actual minimum and maximum values to determine the quantizer parame-
ters. For activations, we use the moving average of the minimum and maximum values
across batches to determine the quantizer parameters. For post training quantization
approaches, one can improve the accuracy of quantized models by careful selection of
quantizer parameters.

2.6 Granularity of quantization
We can specify a single quantizer (defined by the scale and zero-point) for an entire
tensor, referred to as per-layer quantization. Improved accuracy can be obtained by
adapting the quantizer parameters to each kernel within the tensor [17]. For example,
the weight tensor is 4 dimensional and is a collection of 3 dimensional convolutional
kernels, each responsible for producing one output feature map. per-channel quantiza-
tion has a different scale and offset for each convolutional kernel. We do not consider
per-channel quantization for activations as this would complicate the inner product
computations at the core of conv and matmul operations. Both per-layer and per-
channel quantization allow for efficient dot product and convolution implementation
as the quantizer parameters are fixed per kernel in both cases.

3 Quantized Inference: Performance and Accuracy
Quantizing a model can provide multiple benefits as discussed in section 1. We discuss
multiple approaches for model quantization and show the performance impact for each
of these approaches.

3.1 Post Training Quantization
In many cases, it is desirable to reduce the model size by compressing weights and/or
quantize both weights and activations for faster inference, without requiring to re-train
the model. Post Training quantization techniques are simpler to use and allow for
quantization with limited data. In this section, we study different quantization schemes
for weight only quantization and for quantization of both weights and activations. We
show that per-channel quantization with asymmetric ranges produces accuracies close
to floating point across a wide range of networks.

3.1.1 Weight only quantization

A simple approach is to only reduce the precision of the weights of the network to 8-
bits from float. Since only the weights are quantized, this can be done without requiring
any validation data (See figure 2). A simple command line tool can convert the weights
from float to 8-bit precision. This setup is useful if one only wants to reduce the model

8

Figure 2: Overview of schemes for model quantization: One can quantize weights
post training (left) or quantize weights and activations post training (middle). It is also
possible to perform quantization aware training for improved accuracy

9

size for transmission and storage and does not mind the cost of performing inference
in floating point.

3.1.2 Quantizing weights and activations

One can quantize a floating point model to 8-bit precision by calculating the quantizer
parameters for all the quantities to be quantized. Since activations need to be quantized,
one needs calibration data and needs to calculate the dynamic ranges of activations.
(See figure 2) Typically, about 100 mini-batches are sufficient for the estimates of the
ranges of the activation to converge.

3.1.3 Experiments

For evaluating the tradeoffs with different quantization schemes, we study the follow-
ing popular networks and evaluate the top-1 classification accuracy. Table 1 shows
the wide variation in model size and accuracy across these networks. We note that
Mobilenet-v1 [2] and Mobilenet-v2[1] architectures use separable depthwise and point-
wise convolutions with Mobilenet-v2 also using skip connections. Inception-v3 [18]
and NasNet [19] use network in network building blocks with NasNet determining the
architecture via reinforcement learning techniques. Resnets [20] pioneered the idea of
skip connections and consist of multiple blocks each making residual corrections to
the main path with no transformations. Resnet-v2 [21] is an enhancement to the resnet
architecture using pre-activation layers for improved accuracy. Note that all results are
obtained using simulated quantization of weights and activations.

Network Model Param-
eters

Top-1 Accu-
racy on Ima-
geNet (fp32)

Mobilenet V1 0.25 128 0.47M 0.415
Mobilenet V2 1 224 3.54M 0.719
Mobilenet V1 1 224 4.25M 0.709
Nasnet Mobile 5.3M 0.74
Mobilenet V2 1.4 224 6.06M 0.749
Inception V3 23.9M 0.78
Resnet v1 50 25.6M 0.752
Resnet v2 50 25.6M 0.756
Resnet v1 152 60.4M 0.768
Resnet v2 152 60.4M 0.778

Table 1: Deep Convolutional networks: Model size and accuracy

Weight only quantization: We first quantize only the weights post training and leave
the activations un-quantized. From figure 2, we note that per-channel quantization is

10

required to ensure that the accuracy drop due to quantization is small, with asymmetric,
per-layer quantization providing the best accuracy.

Network Asymmetric,
per-layer

Symmetric ,
per-channel

Asymmetric,
per-channel

Floating Point

Mobilenetv1 1 224 0.001 0.591 0.704 0.709
Mobilenetv2 1 224 0.001 0.698 0.698 0.719
NasnetMobile 0.722 0.721 0.74 0.74
Mobilenetv2 1.4 224 0.004 0.74 0.74 0.749
Inceptionv3 0.78 0.78 0.78 0.78
Resnet v1 50 0.75 0.751 0.752 0.752
Resnet v2 50 0.75 0.75 0.75 0.756
Resnet v1 152 0.766 0.763 0.762 0.768
Resnet v2 152 0.761 0.76 0.77 0.778

Table 2: Weight only quantization: per-channel quantization provides good accuracy,
with asymmetric quantization providing close to floating point accuracy.

Weight and Activation Quantization: Next, we quantize weights and activations
to 8-bits, with per-layer quantization for activations. For weights we consider both
symmetric and asymmetric quantizers at granularities of both a layer and a channel. We
first show results for Mobilenetv1 networks and then tabulate results across a broader
range of networks.

We also compare the post training quantization accuracies of popular convolutional
networks: Inception-V3, Mobilenet-V2, Resnet-v1-50, Resnet-v1-152, Resnet-v2-50,
Resnet-v2-152 and Nasnet-mobile on ImageNet in figure 4.

Network Asymmetric,
per-layer

Symmetric ,
per-channel

Asymmetric,
per-channel

Activation
Only

Floating Point

Mobilenet-v1 1 224 0.001 0.591 0.703 0.708 0.709
Mobilenet-v2 1 224 0.001 0.698 0.697 0.7 0.719
Nasnet-Mobile 0.722 0.721 0.74 0.74 0.74
Mobilenet-v2 1.4 224 0.004 0.74 0.74 0.742 0.749
Inception-v3 0.78 0.78 0.78 0.78 0.78
Resnet-v1 50 0.75 0.751 0.751 0.751 0.752
Resnet-v2 50 0.75 0.75 0.75 0.75 0.756
Resnet-v1 152 0.766 0.762 0.767 0.761 0.768
Resnet-v2 152 0.761 0.76 0.76 0.76 0.778

Table 3: Post training quantization of weights and activations: per-channel quantization
of weights and per-layer quantization of activations works well for all the networks
considered, with asymmetric quantization providing slightly better accuracies.

11

Figure 3: Comparison of post training weight and activation quantization
schemes:Mobilenet-v1

Figure 4: Comparison of post training quantization schemes

12

We make the following observations:

1. Per-channel quantization can provide good accuracy and can be a good base-
line for post training quantization of weights and activations, with asymmetric
quantization providing close to floating point accuracy for all networks.

2. Activations can be quantized to 8-bits with almost no loss in accuracy. The
dynamic ranges of the activations are low due to a combination of:

(a) Batch normalization with no scaling: Used in Inception-V3, which ensures
that the activations of all feature maps have zero mean and unit variance.

(b) ReLU6: Used in Mobilenet-V1, which restricts the activations to be in
a fixed range (0,6) for all feature maps, thereby removing large dynamic
range variations.

3. Networks with more parameters like Resnets and Inception-v3 are more robust
to quantization compared to Mobilenets which have fewer parameters.

4. There is a large drop when weights are quantized at the granularity of a layer,
particularly for Mobilenet architectures.

5. Almost all the accuracy loss due to quantization is due to weight quantization.

Weight quantization at the granularity of a layer causes large accuracy drops pri-
marily due to batch normalization, which causes extreme variation in dynamic range
across convolution kernels in a single layer. Appendix A has more details on the impact
of batch normalization. Per-channel quantization side-steps this problem by quantizing
at the granularity of a kernel, which makes the accuracy of per-channel quantization in-
dependent of the batch-norm scaling. However, the activations are still quantized with
per-layer symmetric quantization.

Note that other approaches like weight regularization can also improve the accuracy
of quantization post training, please see [22].

3.2 Quantization Aware Training
Quantization aware training models quantization during training and can provide higher
accuracies than post quantization training schemes. In this section, we describe how
quantization is modeled during training and describe how this can be easily done us-
ing automatic quantization tools in TensorFlow. We also evaluate the accuracies ob-
tained for different quantization schemes with quantization aware training and show
that even per-layer quantization schemes show high accuracies post training at 8-bits
of precision. We also show that at 4 bit precision, quantization aware training provides
significant improvements over post training quantization schemes.

We model the effect of quantization using simulated quantization operations on
both weights and activations. For the backward pass, we use the straight through es-
timator (see section 2.4) to model quantization. Note that we use simulated quantized
weights and activations for both forward and backward pass calculations. However,
we maintain weights in floating point and update them with the gradient updates. This

13

ensures that minor gradient updates gradually update the weights instead of underflow-
ing. The updated weights are quantized and used for subsequent forward and backward
pass computation. For SGD, the updates are given by:

wfloat = wfloat − η
∂L

∂wout
.Iwout∈(wmin,wmax) (16)

wout = SimQuant(wfloat) (17)

Quantization aware training is achieved by automatically inserting simulated quan-
tization operations in the graph at both training and inference times using the quantiza-
tion library at [23] for Tensorflow [24]. We follow the approach outlined in [4] closely,
with additional enhancements on handling batch normalization and in modeling quan-
tization in the backward pass. A simple one-line change to the training or evaluation
code automatically inserts simulated quantization operations into the training or eval
graph.

For training, the code snippet is:

Build forward pass of model.
...
loss = tf.losses.get_total_loss()

Call the training rewrite which rewrites the graph in-place
with FakeQuantization nodes and folds batchnorm for training.
One can either fine tune an existing floating point model
or train from scratch. quant_delay controls the onset
of quantized training.

tf.contrib.quantize.create_training_graph(quant_delay=2000000)

Call backward pass optimizer as usual.
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
optimizer.minimize(loss)

For evaluation, the code snippet is given below:

Build eval model
...
logits, end_points = network_model(inputs,...)

Call the eval rewrite which rewrites the graph in-place
with FakeQuantization nodes and fold batchnorm for eval.
tf.contrib.quantize.create_eval_graph()

14

The high level conversion process is shown in figure 2.
The steps involved in training a quantized model are:

1. (Recommended): Fine tune from a floating point saved model: Start with a float-
ing point pre-trained model or alternately train from scratch

2. Modify Estimator to add quantization operations: Add fake quantization opera-
tions to the model using the quantization rewriter at tf.contrib.quantize

3. Train model: At the end of this process, we have a savedmodel with quantization
information (scale, zero-point) for all the quantities of interest. (weights and
activations)

4. Convert model: The savedmodel with range information is transformed into a
flatbuffer file using the tensorflow converter (TOCO) at: tf.contrib.lite.toco convert.
This step creates a flatbuffer file that converts the weights into integers and also
contains information for quantized arithmetic with activations

5. Execute model: The converted model with integer weights can now be executed
using the TFLite interpreter which can optionally execute the model in custom
accelerators using the NN-API. One can also run the model on the CPU.

A simple example showing the graph transformation for a convolutional layer is shown
in figure 5.

3.2.1 Operation Transformations for Quantization

It is important to ensure that all quantization related artifacts are faithfully modeled
at training time. This can make trivial operations like addition, figure 6 and concate-
nation , figure 7 non-trivial due to the need to rescale the fixed point values so that
addition/concatenation can occur correctly.

In addition, it is important to ensure that fusion of operations at inference time is
modeled correctly during training. For example, consider an add followed by a ReLU
operation. In this case, one can fuse the addition and the ReLU operation at inference
time in most platforms. To match this, fake quantization operations should not be
placed between the addition and the ReLU operations.

3.2.2 Batch Normalization

In this section, we describe several strategies for quantizing batch normalization layers.
In section 4 and show that batch normalization with correction and freezing provides
the best accuracy.

Batch normalization [25], is a popular technique that normalizes the activation
statistics at the output of every layer, reducing dependencies across layers while signif-
icantly improving model accuracy.

Batch normalization is defined by the following equations:

xbn = γ

(
x− µB

σB

)
+ β (18)

15

(a) Floating Point

(b) Fixed Point

Figure 5: Convolutional layer: Before and After Graph Transformation

16

Figure 6: Fixed point transformation of element-wise add

Figure 7: Fixed point transformation of concat

17

for training and

xbn = γ

(
x− µ

σ

)
+ β (19)

for inference.
Where µB and σB are the batch mean and standard deviations. µ and σ are the

long term mean and standard deviations and are computed as moving averages of batch
statistic during training.

For inference, we fold the batch normalization into the weights as defined by equa-
tions 20 and 21. Therefore, at inference there is no explicit batch normalization. The
weights and biases are modified to account for batch normalization instead:

Winf =
γW

σ
(20)

Biasinf = β − γµ

σ
(21)

Figure 8: Baseline approach for folding batch norms for quantized inference

For quantized inference, we first consider folding batch norms and training them
as shown in figure 8. We note that batch normalization uses batch statistics during

18

training, but uses long term statistics during inference. Since the batch statistics vary
every batch, this introduces undesired jitter in the quantized weights and degrades the
accuracy of quantized models. (green curve in 14 and 15) A simple solution would be
to switch to using long term moving averages during training, however, this eliminates
batch normalization (i.e the mean and variance used do not correspond to the batch
statistics) and causes instability in training. The graph rewriter implements a solution
that eliminates the mismatch between training and inference with batch normalization
(see figure 9):

Figure 9: Folding Batch normalization layers for improved performance

1. We always scale the weights with a correction factor to the long term statistics
prior to quantization. This ensures that there is no jitter in the quantized weights

19

due to batch to batch variation.

c =
σB
σ

(22)

wcorrected = c× γW

σB
(23)

2. During the initial phase of training, we undo the scaling of the weights so that
outputs are identical to regular batch normalization. We also modify the bias
terms correspondingly.

y = conv(Q(wcorrected), x) (24)
ycorrected = y/c (25)

bias = β − γµB/σB (26)
biascorrected = 0 (27)

3. After sufficient training, switch from using batch statistics to long term moving
averages for batch normalization, using the optional parameter freeze bn delay
in create_experimental_training_graph() (about 300000 steps in
figure 15 and 200000 in figure 14). Note that the long term averages are frozen
to avoid instability in training. This corresponds to the normalization parameters
used at inference and provides stable performance.

y = conv(Q(wcorrected), x) (28)
ycorrected = y (29)

bias = β − γµB/σB (30)
biascorrection = γ(µB/σB − µ/σ) (31)

3.2.3 Experiments

Quantization aware training closes the gap to floating point accuracy, even for per-
layer quantization of weights. We repeat the same experiments for quantized weights
and activations with training, starting from a floating point check-point and with batch
normalization freezing and obtain the results shown in figures 11 and 10 and Table 4.

All the experiments have the following settings:

• Fine tune from a floating point checkpoint, we used the models in [26].

• Use Stochastic Gradient Descent for fine tuning, with a step size of 1e-5.

We note that:

1. Training closes the gap between symmetric and asymmetric quantization.

2. Training allows for simpler quantization schemes to provide close to floating
point accuracy. Even per-layer quantization shows close to floating point accu-
racy (see column 4 in Table 4)

20

Figure 10: Comparison of quantization-aware training schemes:Mobilenet-v1

Network Asymmetric,
per-layer
(Post Training
Quantization)

Symmetric ,
per-channel
(Post Training
Quantization)

Asymmetric,
per-layer
(Quantiza-
tion Aware
Training)

Symmetric,
per-channel
(Quantiza-
tion Aware
Training)

Floating Point

Mobilenet-v1 1 224 0.001 0.591 0.70 0.707 0.709
Mobilenet-v2 1 224 0.001 0.698 0.709 0.711 0.719
Nasnet-Mobile 0.722 0.721 0.73 0.73 0.74
Mobilenet-v2 1.4 224 0.004 0.74 0.735 0.745 0.749
Inception-v3 0.78 0.78 0.78 0.78 0.78
Resnet-v1 50 0.75 0.751 0.75 0.75 0.752
Resnet-v2 50 0.75 0.75 0.75 0.75 0.756
Resnet-v1 152 0.766 0.762 0.765 0.762 0.768
Resnet-v2 152 0.761 0.76 0.76 0.76 0.778

Table 4: Quantization aware training provides the best accuracy and allows for simpler
quantization schemes

21

Figure 11: Comparison of quantization-aware training schemes

3.2.4 Lower Precision Networks

We note that at 8-bits of precision, post training quantization schemes provide close
to floating point accuracy. In order to better understand the benefits of quantization
aware training, we perform experiments to assess performance at 4 bit quantization for
weights and activations.

We perform the following experiments:

• Experiment 1: Per-channel quantization is significantly better than per-
layer quantization at 4 bits. We show that per-channel quantization provides
big gains over per-layer quantization for all networks. At 8-bits, the gains were
not significant as there were sufficient levels to represent the weights with high
fidelity. At four bits, the benefits of per-channel quantization are apparent, even
for post training quantization (columns 2 and 3 of Table 5).

• Experiment 2: Fine tuning can provide substantial accuracy improvements
at lower bitwidths. It is interesting to see that for most networks, one can obtain
accuracies within 5% of 8-bit quantization with fine tuning 4 bit weights (column
4 of Table 5). The improvements due to fine tuning are also more apparent at 4
bits. Note that activations are quantized to 8-bits in these experiments.

• Experiment 3: Lower precision activations: We investigate the accuracies ob-
tained with 4-bit activations for all layers with and without fine tuning. Note that
activations are quantized on a per-layer basis. The weights are quantized at 8-
bits of precision with per-channel granularity. We note that fine tuning improves
accuracy in this case also. The losses due to activation quantization are more
severe than that of weight quantization (see Table 6). Note that the quantization
granularity is different for activations and weights, so this is not a fair compar-
ison of the impact of quantization. We hypothesize that quantizing activations

22

Network
QuantizationType

Asymmetric,
per-layer
(Post Training
Quantization)

Symmetric,per-
channel (Post
Training
Quantization)

Symmetric,
per-channel
(Quantiza-
tion Aware
Training)

Floating Point

Mobilenet v1 1 224 0.02 0.001 0.65 0.709
Mobilenet v2 1 224 0.001 0.001 0.62 0.719
Nasnet Mobile 0.001 0.36 0.7 0.74
Mobilenet v2 1.4 224 0.001 0.001 0.704 0.749
Inception-v3 0.5 0.71 0.76 0.78
Resnet v1 50 0.002 0.54 0.732 0.752
Resnet v1 152 0.001 0.64 0.725 0.768
Resnet v2 50 0.18 0.72 0.73 0.756
Resnet v2 152 0.18 0.74 0.74 0.778

Table 5: 4 bit Weight Quantization: per-channel quantization outperforms per-layer
quantization, with fine tuning providing big improvements.

introduces random errors as the activation patterns vary from image to image,
while weight quantization is deterministic. This allows for the network to learn
weight values to better compensate for the deterministic distortion introduced by
weight quantization.

Network
QuantizationType

Post Training
Quantization
(8,4)

Quantization
Aware Train-
ing (8,4)

Quantization
Aware Train-
ing (4,8)

Floating Point

Mobilenet v1 1 224 0.48 0.64 0.65 0.709
Mobilenet v2 1 224 0.07 0.58 0.62 0.719
Resnet v1 50 0.36 0.58 0.732 0.752
Nasnet Mobile 0.04 0.4 0.7 0.74
Inception v3 0.59 0.74 0.76 0.78

Table 6: 4 bit Activation Quantization with and without fine tuning. Note that weights
are quantized with symmetric per-channel quantization at 8-bits. We also show results
for 4-bit per-channel quantization of weights with 8-bit activations to compare with
8-bit weights and 4-bit activations

4 Training best practices
We experiment with several configurations for training quantized models: Our first
experiment compares stochastic quantization with deterministic quantization. Subse-

23

quently, we study if training a quantized model from scratch provides higher accuracies
than fine tuning from a floating point model. We also evaluate different methods for
quantizing batch normalization layers and show that batch normalization with correc-
tions provides the best accuracy. We also compare schemes that average weights during
training with no averaging.

1. Stochastic Quantization does not improve accuracy: Stochastic quantization
determines floating point weights that provide robust performance under stochas-
tic quantization, which causes the quantized weights to vary from mini-batch to
mini-batch. At inference, quantization is deterministic, causing a mismatch with
training. We observe that due to this mis-match, stochastic quantization under-
performs determinstic quantization (figure 12), which can be compensated better
during training.

Figure 12: Comparison of stochastic quantization vs deterministic quantization during
training

2. Quantizing a model from a floating point checkpoint provides better accu-
racy: The question arises as to whether it is better to train a quantized model
from scratch or from a floating point model. In agreement with other work [27],
we notice better accuracy when we fine tune a floating point model as shown in
figure 13. This is consistent with the general observation that it is better to train
a model with more degrees of freedom and then use that as a teacher to produce
a smaller model ([28]).

3. Matching Batch normalization with inference reduces jitter and improves
accuracy. We show results for two networks. In the first experiment (see figure

24

Figure 13: Fine tuning a floating point checkpoint provides better fixed point accuracy

14), we compare training with naive batch norm folding, batch renormalization
and batch normalization with correction and freezing for Mobilenet-v1 1 224.
We note stable eval accuracy and higher accuracy with our proposed approach.
In the second experiment, we compare naive batch norm folding and batch nor-
malization with correction and freezing for Mobilenet v2 1 224. We note that
corrections stabilize training and freezing batch norms provides additional accu-
racy gain, seen after step 400000 in figure 15.

4. Use Exponential moving averaging for quantization with caution. Moving
averages of weights [29] are commonly used in floating point training to provide
improved accuracy [30]. Since we use quantized weights and activations during
the back-propagation, the floating point weights converge to the quantization de-
cision boundaries. Even minor variations in the floating point weights, between
the instantaneous and moving averages can cause the quantized weights to be
significantly different, hurting performance, see drop in accuracy for the EMA
curve in figure 15.

5 Model Architecture Recommendations
In this section, we explore choices of activation functions and tradeoffs between preci-
sion and width of a network.

• Do not constrain activation ranges: One can get slightly better accuracy by
replacing ReLU6 non-linearity with a ReLU and let the training determine the

25

Figure 14: Mobilenet v1 1 224: Comparison of Batch normalization quantization
schemes: Batch normalization without corrections (green) shows a lot of jitter due
to the changing scaling of weights from batch to batch. Batch renormalization (red)
improves the jitter, but does not eliminate it. Quantizing the weights using moving
average statistics reduces jitter, but does not eliminate it (orange). Freezing the moving
mean and variance updates after step 200000 allows for quantized weights to adapt to
the batch norm induced scaling and provides the best accuracy with minimal jitter (blue
curve).

26

Figure 15: Mobilenet v2 1 224: Impact of batch normalization corrections and freez-
ing on accuracy. Quantizing without corrections shows high jitter (green curve). Cor-
rection with freezing show good accuracy (blue and red curves). The jitter in the eval
accuracy drops significantly after moving averages are frozen (400000 steps). Note
under performance of EMA weights (red curve) after sufficient training.

27

activation ranges (see figure 16)

Figure 16: Accuracy improvement of training with ReLU over ReLU6 for floating
point and quantized mobilenet-v1 networks.

• Explore tradeoff of width vs quantization: An over-parameterized model is
more amenable to quantization. Even for leaner architectures like mobilenet,
one can tradeoff the depth multiplier with the precisions of the weights. We
compare the accuracies obtained with 4 bit per-channel quantization of weights
with 8-bit quantization across different depth multipliers in figure 17. Note that
this comparison allows us to evaluate a depth vs quantization tradeoff (see [31]).
It is interesting to see that one can obtain a further 25% reduction in the model
size for almost the same accuracy by moving to 4 bit precision for the weights.

6 Run-time measurements
We measure the run-times (Table 7) on a single large core of the Google Pixel 2 device
for both floating point and quantized models. We also measure run-times using the
Android NN-API on Qualcomm’s DSPs. We see a speedup of 2x to 3x for quantized
inference compared to float, with almost 10x speedup with Qualcomm DSPs.

28

Figure 17: Width vs Precision tradeoff, illustrated for Mobilenet-v1 0.25 128, per-
channel quantization of weights

Network
Inference Platform

Floating
point(CPU)

Fixed point
(CPU)

Fixed point
(HVX, NN-
API)

Mobilenet v1 1 224 155 68 16
Mobilenet v2 1 224 105 63 15.5
Mobilenet v1 1 224 SSD 312 152
Inception v3 1391 536
Resnet v1 50 874 440
Resnet v2 50 1667 1145
Resnet v1 152 2581 1274
Resnet v2 152 4885 3240

Table 7: Inference time measurements on Pixel2 phone in milliseconds on a single
large core.

29

7 Neural network accelerator recommendations
In order to fully realize the gains of quantized networks, we recommend that neural
network accelerators consider the following enhancements:

1. Aggressive operator fusion: Performing as many operations as possible in a
single pass can lower the cost of memory accesses and provide significant im-
provements in run-time and power consumption.

2. Compressed memory access: One can optimize memory bandwidth by sup-
porting on the fly de-compression of weights (and activations). A simple way to
do that is to support lower precision storage of weights and possibly activations.

3. Lower precision arithmetic: One can obtain further acceleration by supporting
a range of precisions for arithmetic. Our recommendation is to support 4,8 and
16-bit weights and activations. While 4 and 8-bit precisions are sufficient for
classification, higher precision support is likely needed for regression applica-
tions, like super-resolution and HDR image processing.

4. Per-layer selection of bitwidths: We expect that many layers of a network can
be processed at lower precision. Having this flexibility can further reduce model
size and processing time.

5. Per-channel quantization: Support for per-channel quantization of weights is
critical to allow for:

(a) Easier deployment of models in hardware, requiring no hardware specific
fine tuning.

(b) Lower precision computation.

8 Conclusions and further work
Based on our experiments, we make the following conclusions:

• Quantizing models

1. Use symmetric-per-channel quantization of weights with post training quan-
tization as a starting point. Optionally fine tune if there is an accuracy drop.

2. Quantization aware training can narrow the gap to floating point accuracy
and in our experiments, reduce the gap to within 5% of 8-bit quantized
weights, even when all layers are quantized to 4 bits of precision.

• Performance

1. Quantized inference at 8-bits can provide 2x-3x speed-up on a CPU and
close to 10x speedup compared to floating point inference on specialized
processors optimized for low precision wide vector arithmetic, like the
Qualcomm DSP with HVX.

30

2. One can obtain a model size reduction of 4x with no accuracy loss with uni-
form quantization. Higher compression can be obtained with non-uniform
quantization techniques like K-means ([6]).

• Training Techniques

1. Quantization aware training can substantially improve the accuracy of mod-
els by modeling quantized weights and activations during the training pro-
cess.

2. It is critical to match quantized inference with the forward pass of training.

3. Special handling of batch normalization is required to obtain improved ac-
curacy with quantized models.

4. Stochastic quantization during training underperforms deterministic quan-
tization.

5. Exponential Moving Averages of weights may under-perform instantaneous
estimates during quantization aware training and must be used with caution.

• Model architectures for quantization

1. There is a clear tradeoff between model size and compressibility. Larger
models are more tolerant of quantization error.

2. Within a single architecture, one can tradeoff feature-maps and quantiza-
tion, with more feature maps allowing for lower bitwidth kernels.

3. One can obtain improved accuracy by not constraining the ranges of the
activations during training and then quantizing them, instead of restricting
the range to a fixed value. In our experiments, it was better to use a ReLU
than a ReLU6 for the activations.

Going forward, we plan to enhance our automated quantization tool to enable better
quantization of networks by investigating the following areas:

1. Regularization techniques to better control the dynamic ranges of weights and
activations can provide further improvements.

2. Distilled training to further improve the accuracy of quantized models [32].

3. Per-layer quantization of weights and activations to provide further compression
and performance gains on hardware accelerators. Reinforcement learning has
been applied successfully towards this problem in [33].

9 Acknowledgements
This work builds on the quantization scheme first introduced in [4]. Suharsh Sivakumar
developed the [23] tool used for the quantization experiments, which extend the capa-
bilities first described in [4]. Rocky Rhodes provided the performance measurement
numbers for the models. We would also like to thank Cliff Young, Song Han, Rocky

31

Rhodes and Skirmantas Kligys for their useful comments. Pete Warden provided use-
ful input on the scope of the paper and suggested several experiments included in this
document.

References
[1] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted resid-

uals and linear bottlenecks: Mobile networks for classification, detection and seg-
mentation,” 2018.

[2] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” Apr. 2017.

[3] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size,” CoRR, vol. abs/1602.07360, 2016.

[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” Dec. 2017.

[5] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” 2015.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral network with pruning, trained quantization and huffman coding,” CoRR,
vol. abs/1510.00149, 2015.

[7] GEMMLOWP, “Gemmlowp: a small self-contained low-precision GEMM li-
brary.” https://github.com/google/gemmlowp.

[8] Intel(R) MKL-DNN, “Intel(R) Math Kernel Library for Deep Neural Networks.”
https://intel.github.io/mkl-dnn/index.html.

[9] ARM, “Arm cmsis nn software library.”
http://arm-software.github.io/CMSIS 5/NN/html/index.html.

[10] Qualcomm onQ blog, “How can Snapdragon 845’s new AI boost your smart-
phone’s IQ?.”
https://www.qualcomm.com/news/onq/2018/02/01/how-can-snapdragon-845s-
new-ai-boost-your-smartphones-iq.

[11] Nvidia, “8 bit inference with TensorRT.”
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-
with-tensorrt.pdf.

[12] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” CoRR, vol. abs/1703.09039, 2017.

32

[13] Nvidia, “The nvidia deep learning accelerator.” http://nvdla.org/.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:
efficient inference engine on compressed deep neural network,” 2016.

[15] “Android Neural Network API.”
https://developer.android.com/ndk/guides/neuralnetworks/#quantized tensors.

[16] “Gemmlowp:building a quantization paradigm from first principles.”
https://github.com/google/gemmlowp/blob/master/doc/quantization.md#implementation-
of-quantized-matrix-multiplication.

[17] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and
quantization,” 2018.

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
Inception Architecture for Computer Vision,” Dec. 2015.

[19] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architec-
tures for scalable image recognition,” 2017.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-
works,” 2016.

[22] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, and M. Aleksic, “A quantization-
friendly separable convolution for mobilenets,” 2018.

[23] “Tensorflow quantization library.”
https://www.tensorflow.org/api docs/python/tf/contrib/quantize.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-scale machine learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” 2015.

[26] “Slim model repository.”
https://github.com/tensorflow/models/tree/master/research/slim.

[27] A. K. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques
to improve low-precision network accuracy,” 2017.

33

[28] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Net-
work,” Mar. 2015.

[29] B. Polyak, “New stochastic approximation type procedures,” Jan 1990.

[30] “Exponential moving average.”
https://www.tensorflow.org/api docs/python/tf/train/ExponentialMovingAverage.

[31] A. K. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: wide reduced-
precision networks,” CoRR, vol. abs/1709.01134, 2017.

[32] A. K. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques
to improve low-precision network accuracy,” 2017.

[33] Y. He and S. Han, “ADC: automated deep compression and acceleration with
reinforcement learning,” CoRR, vol. abs/1802.03494, 2018.

34

A Impact of Batch Normalization on Quantization
To understand the impact of batch normalization on the dynamic range of the folded
weights (W), we consider the following metrics:

1. SQNR: We calculate the Signal to quantization noise ratio defined as:

SQNR = 10log10

∑
W 2∑

(W − SimQuant(W))2

for different quantization schemes. We note that per-channel quantization pro-
vides significant improvement in SQNR over per-layer quantization, even if only
symmetric quantization is used in the per-channel case.

(a) Asymmetric, per-layer Quant (b) Symmetric, per-channel Quant

Figure 18: Histogram of the SQNR per output feature map (in dB on the x-axis),
showing the number of kernels for each SQNR bin for different weight quantization
schemes for layer:Conv2d 1 depthwise, Mobilenet v1 0.25 128. The total number of
kernels is 8.

2. Weight Power Distribution: We also plot the distribution of the sample weights,
normalized by the average power, i.e we plot

histogram
(W 2

E[W 2]

)
for the weights before and after folding. We note that after folding, there are
much larger outliers which severely degrade performance.

35

(a) Asymmetric, per-layer Quant (b) Symmetric, per-channel Quant

Figure 19: Histogram of the SQNR per output feature map (in dB on the x-axis),
showing the number of kernels for each SQNR bin for different weight quantization
schemes for layer:Conv2d 9 pointwise, Mobilenet v1 0.25 128. The total number of
kernels is 128.

Figure 20: Weight histograms with and without folding: Mobilenet V1 1 224,
conv2d 2 depthwise, note the long tails of the distribution for folded weights.

36

	1 Introduction
	2 Quantizer Design
	2.1 Uniform Affine Quantizer
	2.2 Uniform symmetric quantizer
	2.3 Stochastic quantizer
	2.4 Modeling simulated quantization in the backward pass
	2.5 Determining Quantizer parameters
	2.6 Granularity of quantization

	3 Quantized Inference: Performance and Accuracy
	3.1 Post Training Quantization
	3.1.1 Weight only quantization
	3.1.2 Quantizing weights and activations
	3.1.3 Experiments

	3.2 Quantization Aware Training
	3.2.1 Operation Transformations for Quantization
	3.2.2 Batch Normalization
	3.2.3 Experiments
	3.2.4 Lower Precision Networks

	4 Training best practices
	5 Model Architecture Recommendations
	6 Run-time measurements
	7 Neural network accelerator recommendations
	8 Conclusions and further work
	9 Acknowledgements
	A Impact of Batch Normalization on Quantization

