) B HER H 1] [,
L2 L NOH O] <
M1 L = H R
T H [T L ==
1O B LTS [
TH N H M T -
) [L = MR H = U
)LD O WM -
IRV S0 M
A H AT U0
TNESE U
2= OB H < 66
ImoZ2mb<< Wy
iFAMNOZF =
) HCHU ] = T
1O AN
O2H<CO H -
OMLBEHO
AL 2L O
><C O M [ O

_J | |

Compression

27 October 2023

Sebastian Wild

COMP526 (Fall 2023)

University of Liverpool

version 2023-11-02 14:41



Learning Outcomes

1. Understand the necessity for encodings
and know ASCII and UTF-8 character Unit 5: Compression
encodings.

2. Understand (qualitatively) the limits of
compressibility.

3. Know and understand the algorithms
(encoding and decoding) for Huffman
codes, RLE, Elias codes, LZW, MTF, and
BWT, including their properties like
running time complexity.

4. Select and adapt (slightly) a compression
pipeline for specific type of data.



Outline

5 Compression

5.1 Context

5.2 Character Encodings chew (:,;7_

5.3 Huffman Codes

5.4 Entropy

5.5 Run-Length Encoding

56 L . -\-aé Pc: P(M
.6 Lempel-Ziv-Welch T

5.7 Lempel-Ziv-Welch Decoding

5.8 Move-to-Front Transformation

5.9 Burrows-Wheeler Transform
5.10 Inverse BWT



5.1 Context



Overview

» Unit 4 &8: How to work with strings
» finding substrings
» finding approximate matches ~- Unit8
» finding repeated parts ~» Unit8
>
| 4

assumed character array (random access)!

» Unit 5&6: How to store/transmit strings
> computer memory: must be binary
»> how to compress strings (save space)

» how to robustly transmit over noisy channels ~+ Unit 6



Clicker Question

What compression methods do you know?

o

D - sli.do/comp526



Terminology

> source text: string S € LY to be stored / transmitted
Ys is some alphabet

> coded text: encoded data C € LF that is actually stored / transmitted
usually use Z¢ = {0, 1}

> encoding: algorithm mapping source texts to coded texts S~ C

> decoding: algorithm mapping coded texts back to original source text C — <



Terminology

> source text: string S € LY to be stored / transmitted
Ys is some alphabet

> coded text: encoded data C € LF that is actually stored / transmitted
usually use Z¢ = {0, 1}

> encoding: algorithm mapping source texts to coded texts

> decoding: algorithm mapping coded texts back to original source text

> Lossy vs. Lossless
> lossy compression can only decode approximately; S =C —» g <.< ! Sl
the exact source text S is lost ‘ =

> lossless compression always decodes S exactly
» For media files, lossy, logical compression is useful (e. g. JPEG, MPEG)
Stk

» We will concentrate on lossless compression algorithms.
These techniques can be used for any application.



What is a good encoding scheme?

» Depending on the application, goals can be

> efficiency of encoding/decoding

resilience to errors/noise in transmission

security (encryption)

integrity (detect modifications made by third parties)

size
—



What is a good encoding scheme?

» Depending on the application, goals can be

efficiency of encoding/decoding

resilience to errors/noise in transmission

security (encryption)

integrity (detect modifications made by third parties)

size

» Focus in this unit: size of coded text

S22 gl‘» [ Ss—v\'vs 7—
n
S (<3 Z ~> \/\7

Z_C: Zb\ C:S

Encoding schemes that (try to) minimize the size of coded texts perform data
compression.

> We will measure the compression ratio:

IC|-1g|=c|
IS -1g |Zs]

< 1 means successful compression

= 1 means no compression

> 1 means “compression” made it bigger!?

IC]
IS]-1g |Zs|

(yes, that happens . ..)



Clicker Question

( Do you know what uncomputable problems (halting problem, Post’s
correspondence problem, . ..) are?
Sure, I could explain what it is.
Heard that in a lecture, but don’t quite remember
L o No, never heard of it

D - sli.do/comp526




Limits of algorithmic compression

Is this image compressible?




Limits of algorithmic compression

Is this image compressible?

visualization of Mandelbrot set
» Clearly a complex shape!
» Will not compress (too) well using, say, PNG.
> but:

» completely defined by mathematical formula

~+ can be generated by a very small program!



Limits of algorithmic compression

Is this image compressible?

visualization of Mandelbrot set
» Clearly a complex shape!
» Will not compress (too) well using, say, PNG.
> but:

» completely defined by mathematical formula

~+ can be generated by a very small program!

~+ Kolmogorov complexity
> C = any progmn{ that outputs S

self-extracting archives!

»> Kolmogorov complexity = length of smallest such program



Limits of algorithmic compression

Is this image compressible?
visualization of Mandelbrot set
» Clearly a complex shape!
» Will not compress (too) well using, say, PNG.

> but:
» completely defined by mathematical formula

~+ can be generated by a very small program!

~+ Kolmogorov complexity
> C = any progmn{ that outputs S

self-extracting archives!
»> Kolmogorov complexity = length of smallest such program

v

Problem: finding smallest such program is uncomputable.

~+ No optimal encoding algorithm is possible!

~+ must be inventive to get efficient methods



What makes data compressible?

» Lossless compression methods mainly exploit
two types of redundancies in source texts:

1. uneven character frequencies
some characters occur more often than others — Part I

2. repetitive texts
different parts in the text are (almost) identical — Part II



What makes data compressible?

» Lossless compression methods mainly exploit
two types of redundancies in source texts:

1. uneven character frequencies
some characters occur more often than others — Part I

2. repetitive texts
different parts in the text are (almost) identical — Part II

There is no such thing as a free lunch!

Not everything is compressible (— tutorials)
~ focus on versatile methods that often work



Part 1

Exploiting character frequencies



5.2 Character Encodings



Character encodings

» Simplest form of encoding: Encode each source character individually

~ encoding function E : g — X
—-7> “7Cc
» typically, [Xgs| > [Z¢|, so need several bits per character

» for ¢ € Lg, we call E(c) the codeword of ¢

> fixed-length code: |E(c)|is the same forall ¢ € X

» variable-length code: not all codewords of same length



Fixed-length codes

> fixed-length codes are the simplest type of character encodings

> Example: ASCII (American Standard Code for Information Interchange, 1963)

0000000
0000001
0000010
0000011
0000100
0000101
0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111

00106000
0016001
0010010
0016011
0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111

» 7 bit per character

0100000
0100001
0100010
0100011
0100160
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101

- R . =

+ *

0101110 .

0101111

~

0110000
0110001
0110010
0110011
0110100
01160101
01160110
0116111
0111600
0111601

©ONOU A WNR O

0111010 :

0111011
0111100
0111101
0111110
0111111

oA -

~ Vv

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111

» just enough for English letters and a few symbols

1010000
1010001
1010010
1010011
1010100
16010101
1010110
16010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110

OZErAUHIOTMTMOO®>B

)= s m N<XX=ZT<CcCcHwxInoOo T

1011111 _

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111

(plus control characters)

033 A X H TQ -0 Q0T

1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

!l Y — A N< X £ <c+w0v 35090

o
m
it



Fixed-length codes — Discussion

[ﬁ Encoding & Decoding as fast as it gets

E@ Unless all characters equally likely, it wastes a lot of space

EG) inflexible (how to support adding a new character?)



Variable-length codes

> to gain more flexibility, have to allow different lengths for codewords

» actually an old idea: Morse Code

Z;: EA(——.Z(OL"(C?,;

International Morse Code ZC = ia g ! PO““K

1. The length of a dot is one unit

2. Adash is three units,

3. The space between parts of the same letter is one unit
4. The space between letters is three units.

VIO UVOZErA——IOTMMUOT>

4
1

e e e e
Dot Dash

O g @
® @ ® @ ®@® © @
OYO) CLOY PIOY @@w\

- v
. BOCBOHOD COSOOOOD OB OO0

https://commons.wikimedia.org/wiki/File:Morse- code- tree.svg

DNOUTAWN =

https://commons.wikimedia.org/wiki/File:
International Morse Code.svg

10



Clicker Question

How many characters are there in the alphabet of the coded text in
Morse Code, i.e., what is |X¢|?

(A) 1 (E) 26

(B) 2 (F) 36

o (c) s (G) 256
N (o) ¢

D - sli.do/comp526




Clicker Question

How many characters are there in the alphabet of the coded text in
Morse Code, i.e., what is |X¢|?

(A) = (E) 26

(&) 2 (F) 36

(o) (0) 3y (G) 286
N ()i

D - sli.do/comp526




Variable-length codes — UTF-8

——
» Modern example: UTE-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009
Encodes any Unicode character (!-1557?59235 of May 2019, and counting)
uses 1-4 bytes  (codeword lengths: 8, 16, 24, or 32 bits) -
Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII

Non-ASCII charactters start with 1-4 1s indicating the total number of bytes,
followed by a 0 and 3-5 bits.
The remaining bytes each start with 10 followed by 6 bits.

vyVVvVvYyyYy

Char. number range UTF-8 octet sequence
(hexadecimal) (binary)
0000 0000 — 0000 OO7F [ OXXXXXXX

0000 0080 — 0000 O7FF | 11OxXxXXX LOXXXXXX
0000 0800 — 0000 FFFF | 1110xxxX LOXXXXXX L1OXXXXXX
0001 0000 — 0010 FFFF [ 11110xxX LOXXXXXX LOXXXXXX L1OXXXXXX

[ﬁ] For English text, most characters use only 8 bit,
but we can include any Unicode character, as well.

11



Pitfall in variable-length codes

c|a|n|b|s

> Suppose we have the following code:

E(c) | o | 10 | 110 | 100

» Happily encode text S = banana with the coded text C = 1100100100

b anana

12



Pitfall in variable-length codes
c | a | n | b | s
E(c) | o | 10 | 110 | 100

> Suppose we have the following code:

» Happily encode text S = banana with the coded text C = 1100100100

b anana

? C = 1100100100 decodes both to banana and to bass: 1100100100

b a s s

~ not a valid code.. .. (cannot tolerate ambiguity)

but how should we have known?

12



Pitfall in variable-length codes
c | a | n | b | s
E(c) | o | 10 | 110 | 100

> Suppose we have the following code:

» Happily encode text S = banana with the coded text C = 1100100100

b anana

? C = 1100100100 decodes both to banana and to bass: 1100100100

b a s s

~ not a valid code.. .. (cannot tolerate ambiguity)
but how should we have known?

A

& : ,
—= E(n) = 10is a (proper) prefix of E(s) = 100
~~ Leaves decoder wondering whether to stop after reading 16 or continue!

~+ Require a Mfz code: | No codeword is a prefix of another.

prefix-free = instantaneously decodable = uniquely decodable

12



o VO e g Q WL"’“\ (@)
Code tries f ~

w = (o)
9
» From now on only consider prefix-free codes E: N A
Q

E(c) is not a prefix of E(c’) for any c, ¢’ € Xs.

A|E|N|0|T|uj<

c
» Example: E(c) | 01 | 101 | 001 | 100 | 11 | 000

Any prefix-free code corresponds to a (code) trie:
» binary tree see also Unit 8
» one leaf for each characters of Xg

» path from root to leave = codeword
left child = 0; right child =1

» Example for using the code trie:
» Encode AN_ANT OOl OB Dt ool (1
> Decode 111100 0@101p1\11 Te L EAT
13



Code tries

> From now on only consider prefix-free codes E:
E(c) is not a prefix of E(c’) for any c, ¢’ € Xs.

AJE|NJOT] .,

c
» Example: E(c) | 01 | 101 | 001 | 100 | 11 | 000

Any prefix-free code corresponds to a (code) trze

/’\

> binary tree see alsn Unit S/ 5\
» one leaf for each characters of Xg o 1

. 'T
» path from root to leave = codeword /< /< T

!
left child = @; right child = 1 \IE @/

» Example for using the code trie:

» Encode AN_ANT — 010010000100111
» Decode 111000001010111 — TO_EAT

13



Who decodes the decoder?

» Depending on the application, we have to store/transmit the used code!
> We distinguish:
> fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)

> static coding: code depends on message, but stays same for entire message;
it must be transmitted (e. g., Huffman codes — next)
i

» adaptive coding: code depends on message and changes during encoding;
implicitly stored withing the message (e. g., LZW — below)

14



N 6

Aascs s

s A

Lren lc




5.3 Huffman Codes



Character frequencies
» Goal: Find character encoding that produces short coded text

» Convention here: fixiiO,i};(binary codes), abbreviate ©. = Xg,

» Observation: Some letters occur more often than others.

Typical English prose:
e 12.70%  n— d 425% mwm p 193% =
t  9.06% - —— 1 403% mm b 149% =
a  817% c 278% m v 098% 1
o 751% u 276% m k 077% 1
i 6.97% = m 241% m j 015% |
n  675% = w 236% m x 015% |
s  6.33% f 223% m q 010% !
h 609% = g 202% m z 0.07% |
r 599% === y 197% =

~ Want shorter codes for more frequent characters!
15



Huffman coding

e.g. frequencies / probabilities

> Given: X and weightsw : X — Rxg
> Goal: prefix-free code E (= code trie) for X that minimizes coded text length

i.e., a code trie minimizing Z w(c) - |E(c)|

\Q:QUASU,\ m(' :m&h‘sré QDVC

U‘*“’S[’\& eg C

16



Huffman coding

e.g. frequencies / probabilities

> Given: X and weightsw : X — Rxg
> Goal: prefix-free code E (= code trie) for X that minimizes coded text length

i.e., a code trie minimizing Z w(c) - |E(c)|

ceX

» Let’s abbreviate |S|. = #occurrences of ¢ in S

» If we use w(c) = |S|.,
this is the character encoding with smallest possible |C|

~ best possibliiharacter—wise encoding
em‘g\k'g“')‘

> Quite ambitious! Is this efficiently possible?

16



Huffman’s algorithm

> Actually, yes! A greedy/myopic approach succeeds here.
{Om /A

1Z(=2 ElL)y=o E(laN=I
Huffman’s algorithm: /

1. Find two characters a, b with lowest weights.
» We will encode them with the same prefix, plus one distinguishing bit,
i.e., E(a) = u0 and E(b) = u1 for a bitstring u € {0, 1}* (u to be determined)

2. (Conceptually) replace a and b by a single character “ab”
with w(@p) = w(a) + w(b).

3. Recursively apply Huffman’s algorithm on the smaller alphabet.
This in particular determines 1 = E(&b).

17



Huffman’s algorithm

> Actually, yes! A greedy/myopic approach succeeds here.

Huffman’s algorithm:

1. Find two characters a, b with lowest weights.

» We will encode them with the same prefix, plus one distinguishing bit,
i.e., E(a) = u0 and E(b) = u1 for a bitstring u € {0, 1}* (u to be determined)
sz urand =) mH- o

2. (Conceptually) replace a and b by a single character “ab”
with w(@p) = w(a) + w(b).

3. Recursively apply Huffman’s algorithm on the smaller alphabet.
This in particular determines 1 = E(&b).

> efficient implementation using a (min—oriented)_;ﬁ'i_oritﬂ_ﬂ_e,_
» start by inserting all characters with their weight as key
> step 1 uses two deleteMin calls
> step 2 inserts a new character with the sum of old weights as key

17



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}

» Character frequencies: E: 1, L:

BROXONS

18



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}

» Character frequencies: E: 1, L:2, 0:1, S:4

18



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}

» Character frequencies: E: 1, L:2, 0:1, S:4

18



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}
» Character frequencies: E: 1, L:2, 0:1, S:4

8

N
x

il

A E .
o

T
0
~
wn

18



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}

» Character frequencies: E: 1, L:2, 0:1, S:4

A
o

~>  Huffman tree (code trie for Huffman code)

18



Huffman’s algorithm — Example

»> Example text: S = LOSSLESS ~ XYs=1{EL,0,S}

» Character frequencies: E: 1, L:2, 0:1, S:4

A
o

~>  Huffman tree (code trie for Huffman code)

LOSSLESS —_01001,110100011 compression ratio: gyooy = ¢ ~ 88%

Uﬂ\} MA&V[ o “’&\

18



Huffman tree — tie breaking

» The above procedure is ambiguous:

» which characters to choose when weights are equal?

» which subtree goes left, which goes right?

» For COMP 526: always use the following rule:

1. To break ties when selecting the two characters,
first use the smallest letter according to the alphabetical order,
or the tree containing the smallest alphabetical letter.

2. When combining two trees of different values,

3. When combining trees of equal value,
place the one containing the smallest letter to the left.

place the lower-valued tree on the left (corresponding to a 0-bit).

~» practice in tutorials

19



Encoding with Huffman code

» The overall encoding procedure is as follows:

» Pass 1: Count character frequencies in S
» Construct Huffman code E (as above) cemmedealkan
» Store the Huffman code in C (details omitted)

» Pass 2: Encode each character in S using E and append result to C

» Decoding works as follows:
» Decode the Huffman code E from C. (details omitted)

» Decode S character by character from C using the code trie.

» Note: Decoding is much simpler/faster!

20



Huffman code — Optimality

Theorem 5.1 (Optimality of Huffman’s Algorithm)

Given X and w : © — R, Huffman’s Algorithm computes codewords E : © — {0, 1}* with

minimal expected codeword length ¢(E) = .y w(c) - |E(c)| among all prefix-free codes
for X.

<

21



Huffman code — Optimality

Theorem 5.1 (Optimality of Huffman’s Algorithm)

Given X and w : © — R, Huffman’s Algorithm computes codewords E : © — {0, 1}* with
minimal expected codeword length ¢(E) = Y’ .y w(c) - |[E(c)| among all prefix-free codes
for X.

Te. g2 6y Oce PQ,S;('{;Q( ﬁ({;) 2
Proof sketch: by induction over o = [X|

TS: 62> 3 PN
» Given any optimal prefix-free code E* (as its code trie). S 6 \-\ —
Flei D

» codetrie ~» dtwo sibling leaves x, y at largest depth D

» swap characters in leaves to have two lowest-weight characters a, b in x, y ®

(that can only make ¢ smaller, so still optimal) /\
=X ("6)
> any optimal code for X’ = X\ {a, b} U {@D} yields optimal code for X
by replacing leaf @b by internal node with children a and b. ®
~ recursive call yields optimal code for X’ by @w | (a8

so Huffman'’s algorithm finds optimal code for X.

21



5.4 Entropy



Entropy

Definition 5.2 (Entropy)

Given probabilities p1, . . .

distribution js defined as
e Lo\l

O < H

n n 1
H(p1,---,pn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

, Pn (for outcomes 1, ..., n of a random variable), the entropy of the

(P b € 5 n

22



Entropy

Definition 5.2 (Entropy)

Given probabilities p1, . .
distribution is defined as

n n 1
H(p1,--ovpn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution

., Pn (for outcomes 1, ..., n of a random variable), the entropy of the

> “20 Questions on [0,1)”: Land inside my interval by halving.

22



Entropy

Definition 5.2 (Entropy)

Given probabilities p1, . .
distribution is defined as

n n 1
H(p1,--ovpn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution

., Pn (for outcomes 1, ..., n of a random variable), the entropy of the

> “20 Questions on [0,1)”: Land inside my interval by halving.

22



Entropy

Definition 5.2 (Entropy)

Given probabilities pq, ..
distribution is defined as

n n 1
H(p1, - pn) = —Zpilgpz = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution

., Pn (for outcomes 1, ..., n of a random variable), the entropy of the

» “20 Questions on [0,1)”: Land inside my interval by halving.

22



Entropy

Definition 5.2 (Entropy)
Given probabilities pq, ..
distribution is defined as

n n 1
H(p1,---,pn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
» “20 Questions on [0,1)”: Land inside my interval by halving.

., Pn (for outcomes 1, ..., n of a random variable), the entropy of the

ol 4

22



Entropy
Definition 5.2 (Entropy)

Given probabilities p1, ..., p, (for outcomes 1, ..., n of a random variable), the entropy of the
distribution is defined as

n n 1
H(p1,---,pn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
» “20 Questions on [0,1)”: Land inside my interval by halving.

—
1 3
2 4
e R LT LT TP 11
Fommmmmmmeaea i 2

22



Entropy
Definition 5.2 (Entropy)

Given probabilities p1, ..., p, (for outcomes 1, ..., n of a random variable), the entropy of the
distribution is defined as

n n 1
H(p1,---,pn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
> “20 Questions on [0,1)”: Land inside my interval by halving.

——t
5 3
8 4

L LT T T T T R 11

Fommmmmmmeaea i 2
Fommme- I 3

22



Entropy
Definition 5.2 (Entropy)

Given probabilities p1, ..., p, (for outcomes 1, ..., n of a random variable), the entropy of the
distribution is defined as

n n 1
H(p1,---,pn) = —Zpilgpi = Zpilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
> “20 Questions on [0,1)”: Land inside my interval by halving.

+—t

n 3

16 4
Fmmmmmmmmm b 11
[possooosossoos i 2
[po=sinoe | 3
[P=e=d] 4

22



Entropy

Definition 5.2 (Entropy)
Given probabilities p1, ..., p, (for outcomes 1, ..., n of a random variable), the entropy of the
distribution is defined as Qs = Qg

n n 1
H(pr,...,pn) = —Zpilgpi = Zlﬂilg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
> “20 Questions on [0,1)”: Land inside my interval by halving.

22



Entropy
Definition 5.2 (Entropy)

Given probabilities p1, ..., p, (for outcomes 1, ..., n of a random variable), the entropy of the
distribution is defined as

n n 1
H(pr,...,pn) = —Zpilgpi = Zp,-lg(;)
i=1 i=1 !

> entropy is a measure of information content of a distribution
> “20 Questions on [0,1)”: Land inside my interval by halving.

L 1 1 3
T T T L 1 pl_i_ﬁzl
1 5 11 3
0 2 8 16 4 ! ~ lg(1/pi) =
LR e e e e L L LR 1
L L L L L i1
L e L i 2
F====-- 1 3
[Peea] 4

~ Need to cut [0, 1) in half 1g(1/p;) times

» more precisely: the expected number of bits (Yes/No questions) required
to nail down the random value

22



Entropy and Huffman codes

. X . . not as length of single codeword that is;
» would ideally encode value i using Ig(1/p;) bits but can be possible o average!

not always possible; cannot use codeword of 1.5 bits . ..

23



Entropy and Huffman codes

not as length of single codeword that is;
but can be possible on average!

» would ideally encode value i using Ig(1/p;) bits

not always possible; cannot use codeword of 1.5 bits ... but:

Theorem 5.3 (Entropy bounds for Huffman codes)
For any probabilities p1, ..., p, for X = {a1, ..., a,}, the Huffman code E for © with weights
p(a;) = p; satisfies [9—( < {E) < H+1 ] where H = H(p1, ..., po).

|

23



Entropy and Huffman codes

» would ideally encode value i using Ig(1/p;) bits

not as length of single codeword that is;
but can be possible on average!

not always possible; cannot use codeword of 1.5 bits ... but:

Theorem 5.3 (Entropy bounds for Huffman codes)

For any probabilities p1, ..., p, for X = {a1, ...,

Proof sketch:

a,}, the Huffman code E for X with weights
p(a;) = p; satisfies [J-C < {E) < H+1 ] where H = H(p1, ..., po).
§

oa b

» ((E) > K —;ff\bfl\o
Any prefix-free code E induces weights q; = 2~ |E@il { ? o/ n
By Kraft’s Inequality, we have g1 + - - - + g, =+ 5 b Vs

1

Hence we can apply Gibb’s Inequality to get
ALl ala A

((E).



Entropy and Huffman codes [2]

Proof sketch (continued): e bot maxt sealles Zﬁk
> ((E) <H+1 :
Set g; = 2-1180/p)1 We have i1 ( ) = iMg(1/pi)] < H+1.
tq; =2 180N, ZP glo;) = Lpllep)l < 3+l

ISR AV NTS¢
We construct a code E’ for % w1th |E’(a;)| <1g(1/q;) as tollows;

w.l.o.g. assume g1 < gp < -+ < g, R s
—_— = 1< ?d o3 1S
» If 0 = 2, E’ uses a single bit each. A/ W
Here, q; < 1/2,s01g(1/q;) > 1 = |E'(a;)| v o (
> If ¢ > 3, we merge a1 and a; to [@7ay), assign it weight 2¢, and recurse.
If g1 = g, this is like Huffman; otherwise, g1 is a unique smallest value and
Ga+tqa+---+qs <1
1 1
By the inductive hypothesis, we have |E'(@iag)| < 1g(ﬁ) = lg(q—) =1,
2 2
By construction, |E’(a1)| = |E'(a2)| = |E’(m)| +1,s0 |E'(a71)] < lg(q%) and |E’(ap)| < lg(qlfz).

By optimality of E, we have ((E) < €(E) < Zp,lg(q ) < H+1.

Z’P Ea)

24



Clicker Question

-~

When does Huffman coding yield more efficient compression than a

fixed-length character encoding?
JeeTeet CllaTdetet €

always

when 3 =~ 1g(0)
when H < Ig(o)

when H < Ig(o) -1

(=) (5} (o) (=)

when H ~ 1

D - sli.do/comp526




Clicker Question

-~

When does Huffman coding yield more efficient compression than a
fixed-length character encoding?

always \/
PENNETINE VAN
when-S—tate)

o (D) when3t <1g(0) -1y

(E) whenaiat

D - sli.do/comp526




Empirical Entropy

» Theorem 5.3 works for any character probabilities p1, . . .

... but we only have a string S! (nothing random about it!)

/Po

25



Empirical Entropy

» Theorem 5.3 works for any character probabilities p1, ..., ps

. but we only have a string S! (nothing random about it!)

(] g a
0)- . ) ISls;  #occurences of a; in string S
A/ use relative frequencies: p; = =

= LTS T length of S

» Recall: For S[0..n) over X = {ay,...,a.},

length of Huffman-coded text is
=p;

a - o |S|a,- -
;|5|ﬂi-|E<al>| : ”;T |E@)] = nt(E)

~» Theorem 5.3 tells us rather precisely how well Huffman compresses:
Ho(S)-n < |C] < (Ho(S)+1)n

zero-th order empirical entropy

S
|Sla, ) Z |S|a,1 gz( . ) is called the empirical entropy of S

S
> Ho(S) = 9{(%

25



Huffman coding — Discussion

> running time complexity: O(olog o) to construct code
» build PQ + o - (2 deleteMins and 1 insert)
» can do ©(o) time when characters already sorted by weight

» time for encoding text (after Huffman code done): O(n + |C|)

» many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, . ..

)

26



Huffman coding — Discussion

> running time complexity: O(olog o) to construct code
» build PQ + o - (2 deleteMins and 1 insert)
» can do ©(o) time when characters already sorted by weight

» time for encoding text (after Huffman code done): O(n + |C|)

» many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, . ..

[ﬁ optimal prefix-free character encoding
[ﬁ)] very fast decoding

needs 2 passes over source text for encoding
» one-pass variants possible, but more complicated

[(;_) have to store code alongside with coded text

)

26



Part 11

Compressing repetitive texts



Beyond Character Encoding

» Many “natural” texts show repetitive redundancy

All work and no play makes Jack a dull boy.

boy. All work and no play makes Jack a dull
a dull boy. All work and no play makes Jack
Jack a dull boy. All work and no play makes
makes Jack a dull boy. All work and no play
play makes Jack a dull boy. All work and no
no play makes Jack a dull boy. All work and
and no play makes Jack a dull boy. All work
work and no play makes Jack a dull boy. All

All work and no play makes Jack a dull
boy. All work and no play makes Jack

a dull boy. All work and no play makes
Jack a dull boy. All work and no play
makes Jack a dull boy. All work and no
play makes Jack a dull boy. All work and
no play makes Jack a dull boy. All work
and no play makes Jack a dull boy. All
work and no play makes Jack a dull boy.

» character-by-character encoding will not capture such repetitions

~» Huffman won't compression this very much

27



Beyond Character Encoding

» Many “natural” texts show repetitive redundancy

All work and no play makes Jack a dull boy.

boy. All work and no play makes Jack a dull
a dull boy. All work and no play makes Jack
Jack a dull boy. All work and no play makes
makes Jack a dull boy. All work and no play
play makes Jack a dull boy. All work and no
no play makes Jack a dull boy. All work and
and no play makes Jack a dull boy. All work
work and no play makes Jack a dull boy. All

All work and no play makes Jack a dull
boy. All work and no play makes Jack

a dull boy. All work and no play makes
Jack a dull boy. All work and no play
makes Jack a dull boy. All work and no
play makes Jack a dull boy. All work and
no play makes Jack a dull boy. All work
and no play makes Jack a dull boy. All
work and no play makes Jack a dull boy.

» character-by-character encoding will not capture such repetitions

~» Huffman won't compression this very much

~~ Have to encode whole phrases of S by a single codeword

27



5.5 Run-Length Encoding



Run-Length encoding

000101100100000111111000000000011111000
001111111110001111111110000001111111000
e T SepoeEs

0n1|

00119110090009@909900111001100111110090
11100

BBl110111110090909091116901111100111190

000101100000001010011001000000100100000

» simplest form of repetition: runs of characters

same character repeated

» here: only consider Zg = {0,1}

(work on a binary representation)

> can be extended for larger alphabets

28



Run-Length encoding

» simplest form of repetition: runs of characters

same character repeated

000101100100000111111000000000011111000

oo1111111110001111111110000001111113000 B> here: only consider Xg = {0,1}  (work on a binary representation)

001111011010001110001111000011100000000
0011 1110001111

0011

> can be extended for larger alphabets

011 1100111
001101100000000000000111001100111110000
01111111 0111111111100

001110111110000000001110001111100111100
©0000000001110000000111000011100000011160
©000000000111000000011000001110000001100 1 th di RLE
©00000000011000000110000000110000001110 A~} = ( ):
3000000000110000011100000011 10000001100 EUILEenSURENCUCN g 5
©0000000001110001110000000001100000011160

001101111110001111011101000011111111000 use runs as phrases: S = 00000 111 0000
©11111111100011111111111100001111110000 ——— —— ——

000101100000001010011001000000100100000

SxO Tl 4y



Run-Length encoding

» simplest form of repetition: runs of characters

same character repeated

000101100100000111111000000000011111000

oo1111111110001111111110000001111113000 B> here: only consider Xg = {0,1}  (work on a binary representation)

e T SepoeEs
1nn1

eo1|

> can be extended for larger alphabets

emmlwaeoeoeaeaeaemlwmwauuwaeo
111111110¢

eul1101luwaeaeueaanmemu1109111190

eegneeeeeouaemeneueeeeoammeneeen?g ~ run-length encoding (RLE):
10

060000000111000111000000000110000001110 h S = 00000 111 0660
000000000110000111000000000111000011100 . =
001161111110001111611101000011111111000 U2 AT Gl [Pl e
©11111111100011111111111100001111110000 ——— —— ——

000101100000001010011001000000100100000

~> We have to store
» the first bit of S (either 0 or 1)
» the length of each subsequent run

»> Note: don’t have to store bit for later runs since they must alternate.

» Example becomes: 0,5, 3,4 Zc =l
1



Run-Length encoding

» simplest form of repetition: runs of characters

same character repeated

000101100100000111111000000000011111000

oo1111111110001111111110000001111113000 B> here: only consider Xg = {0,1}  (work on a binary representation)

001111011010001110001111000011100000000
0011 1110001111

0011 1100111

> can be extended for larger alphabets

0011 1100111
001101100000000000000111001100111110000
1111111 0111111111100

001110111110000000001110001111100111100
©0000000001110000000111000011100000011160
©000000000111000000011000001110000001 1

060000000011000000110000000110000001110  ~~> run-length encoding (RLE):
10

060000000111000111000000000110000001110 h S = 00000 111 0660
000000000110000111000000000111000011100 . =
001161111110001111611101000011111111000 U2 AT Gl [Pl e
©11111111100011111111111100001111110000 ——— —— ——

000101100000001010011001000000100100000

~> We have to store
» the first bit of S (either 0 or 1)
» the length of each subsequent run

»> Note: don’t have to store bit for later runs since they must alternate.

» Example becomes: 0,5, 3,4

> Question: How to encode a run length k in binary? (k can be arbitrarily large!)



Clicker Question

How would you encode a string that can we arbitrarily long?

o ) st abh ol f oy waey choes
& vl —bereriooled  coiee '\No'

D - sli.do/comp526




Elias codes

» Need a prefix-free encoding for N = {1,2,3, ...

»> must allow arbitrarily large integers

» must know when to stop reading

29



Elias codes
» Need a prefix-free encoding for N = {1,2,3,...,}

»> must allow arbitrarily large integers

» must know when to stop reading

» But that’s simple! Just use unary encoding!
7 — 00000001 3 0001 01 30 — 0000000000000000000000000000001

29



Elias codes
» Need a prefix-free encoding for N = {1,2,3,...,}

»> must allow arbitrarily large integers

» must know when to stop reading

» But that’s simple! Just use unary encoding!
7 — 00000001 3+ 0001 O—1 30 — 0000000000000000000000000000001

[@ Much too long
> (wasn’t the whole point of RLE to get rid of long runs??)

29



Elias codes
» Need a prefix-free encoding for N = {1,2,3,...,}

»> must allow arbitrarily large integers

» must know when to stop reading

» But that’s simple! Just use unary encoding!
7 — 00000001 3+ 0001 O—1 30 — 0000000000000000000000000000001

[@ Much too long
> (wasn’t the whole point of RLE to get rid of long runs??)

> Refinement: Elias gamma code
> Store the length ( of the binary representation in unary

» Followed by the binary digits themselves

29



Elias codes
» Need a prefix-free encoding for N = {1,2,3,...,}

»> must allow arbitrarily large integers

» must know when to stop reading

» But that’s simple! Just use unary encoding!
7 — 00000001 3+ 0001 O—1 30 — 0000000000000000000000000000001

[@ Much too long
> (wasn’t the whole point of RLE to get rid of long runs??)
ST 000

» Refinement: Elias gamma code 0-=

» Store the length ( of the binary representation in unary
» Followed by the binary digits themselves
> little tricks:
> always have ¢ > 1, so store £ — 1 instead
> binary representation always starts with 1 ~» don’t need terminating 1 in unary

~ Elias gamma code = { — 1 zeros, followed by binary representation

Examples: 1 — 1, 3+ 011, 5~ 00101, 30+ 000011110

-

29



Clicker Question

( Decode the first number in Elias gamma code (at the beginning) of
the following bitstream:
o 000110111011160110.
5
S

D - sli.do/comp526




Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C=1

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111110016000000000000000000011111111111
k=7
C =100111

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
S5 =11111116016000000000000000000011111111111
k=2
C =100111010

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111
k=1
C =1001110101

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
S5 =11111116016000000000000000000011111111111
k =20
C =1001110101000010100

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111
k=11
C =10011101010000101000001011

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=0

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=0
{=3+1

S =

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=0
{=3+1
k=13
S = 0000000000000

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=1
{=2+1
k =
S = 0000000000000

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=1
{=2+1
k=4
S = 00000000000001111

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=0
{=0+1
k =
S = 00000000000001111

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=0
{=0+1
k=1
S = 000000000000011116

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=1
{=1+1
k =
S = 000000000000011110

30



Run-length encoding — Examples

» Encoding:
5 =11111116016000000000000000000011111111111

C =10011101010000101000001011

Compression ratio: 26/41 =~ 63%

» Decoding:
C =00001101001001010
b=1
{=1+1
k=2
S = 000000000000011116011

30



Run-length encoding — Discussion

> extensions to larger alphabets possible  (must store next character then)

> used in some image formats (e. g. TIFF)

31



Run-length encoding — Discussion

> extensions to larger alphabets possible  (must store next character then)

> used in some image formats (e. g. TIFF)

[b fairly simple and fast
lﬁ can compress 7 bits to O(logn)!

for extreme case of constant number of runs
E(;) negligible compression for many common types of data

»> No compression until run lengths k > 6

» expansion for run length k =2 or 6
-

31



5.6 Lempel-Ziv-Welch



Warmup

— 1]

['PEGS[ porl idg | K,
&

l()&@g,( = peas

<

S.
=
=AY
®

o

—Nine days J

'Some Iﬂk?‘l’ :

https://www.flickr.com/photos/quintanaroo/2742726346

https://classic. csunplugged.org/text- compression/

2,




Clicker Question

-~

a id EE:

cold;
; |lin the g
Nine days [ {—

Some like [ 1,
A |

Jo

i |

What is the second-to-last
line of the poem to the left?

D ‘ - sli.do/comp526




Lempel-Ziv Compression

» Huffman and RLE mostly take advantage of frequent or repeated single characters.

»> Observation: Certain substrings are much more frequent than others.
» in English text: the, be, to, of, and, a, in, that, have, I
» in HTML: “<a href”, “<img src”, “<br/>"

33



Lempel-Ziv Compression

» Huffman and RLE mostly take advantage of frequent or repeated single characters.

»> Observation: Certain substrings are much more frequent than others.
» in English text: the, be, to, of, and, a, in, that, have, I
» in HTML: “<a href”, “<img src”, “<br/>"

» Lempel-Ziv stands for family of adaptive compression algorithms.

> Idea: store repeated parts by reference!
~~ each codeword refers to
» either a single character in Xg,
» or a substr ing of S (that both encoder and decoder have seen before).

33



Lempel-Ziv Compression

» Huffman and RLE mostly take advantage of frequent or repeated single characters.

»> Observation: Certain substrings are much more frequent than others.
» in English text: the, be, to, of, and, a, in, that, have, I
» in HTML: “<a href”, “<img src”, “<br/>"

» Lempel-Ziv stands for family of adaptive compression algorithms.

> Idea: store repeated parts by reference!
~ each codeword refers to

» either a single character in Xg,
» or a substr ing of S (that both encoder and decoder have seen before).

» Variants of Lempel-Ziv compression
» “LZ77” Original version (sliding window, overlapping phrases)
Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . ..
DEFLATE used in (pk)zip, gzip, PNG
» “LZ78” Second version (whole-phrase references)
Derivatives: LZW, LZMW, LZAP, LZY, ...
LZW used in compress, GIF

33



Lempel-Ziv-Welch
» here: Lempel-Ziv-Welch (LZW) (arguably the “cleanest” variant of Lempel-Ziv)

» variable-to-fixed encoding
» all codewords have k bits (typical: k =12) ~» fixed-length
» but they represent a variable portion of the source text!

34



Lempel-Ziv-Welch
» here: Lempel-Ziv-Welch (LZW) (arguably the “cleanest” variant of Lempel-Ziv)

» variable-to-fixed encoding
» all codewords have k bits (typical: k =12) ~» fixed-length
» but they represent a variable portion of the source text!

> maintain a dictionary D with 2F entries ~» codewords = indices in dictionary
» initially, first |Zg| entries encode single characters (rest is empty)
> add a new entry to D after each step:

» Encoding: after encoding a substring x of S,
add xc to D where c is the character that follows x in S.

encode x = ban

5) hannahlbanls][b
already encoded (
add

—_—
Q

—
=}
Q
w

n

=

a
X
¢ = bana to dictionary

~~ new codeword in D

» D actually stores codewords for x and c, not the expanded string
34



LZW encoding — Example

Input:

C=

Y.s = ASCII character set (0-127)

| Code | String |

| Code | String

.. 128
32 o 129

33 ! 130

.. 131

79 | o 132

D = .. 133

82 | R 134

... 135

85 | u 136

encode x = ban o 137

s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded X T 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: Y Y.s = ASCII character set (0-127)
Y
C=89
| Code | String | | Code | String

e 128

32 u 129

33 ! 130

131

79 | o 132

D= 133

82 | R 134

e 135

85 | u 136

encode x = ban . 137

s [hannahlbanf[s|banfa]nas (ngl Y 138

already encoded X c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO Y.s = ASCII character set (0-127)
Y
C=89
| Code | String | | Code | String
. 128 YO

32 u 129

33 ! 130

131

79 | o 132

D= 133

=Y =0 82 | R 134

e 135

85 | u 136

encode x = ban . 137

s [hannahlbanf[s|banfa]nas 89 | Y 138

already encoded X c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: Y0 Y.s = ASCII character set (0-127)
Y 0
C=8 79
| Code | String | | Code | String
. 128 YO

32 u 129

33 ! 130

. 131

(l 79 | o) 132

D= 133

82 | R 134

e 135

85 | u 136

encode x = ban . 137

s [hannahlbanf[s|banfa]nas 89 | Y 138

already encoded g c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO Y.s = ASCII character set (0-127)
Y 0
cC=8 79
| Code | String | | Code | String
. 128 YO
32 u 129 0!
33 ! 130
131
79 | o 132
D= 133
82 | R 134
e 135
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded X c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! Y.s = ASCII character set (0-127)

Y 0 !
cC=8 79 33

| Code | String | | Code | String

128 YO

32 u 129 0!
(335 ! 130
131
79 | o 132
D = 133
82 | R 134
135
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! Y.s = ASCII character set (0-127)

Y 0 !
cC=8 79 33

| Code | String | | Code | String

128 YO

32 u 129 0!

33 ! 130 I
131
79 | o 132
D = 133
82 | R 134
135
85 | u 136
encode x = ban T 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! , Y.s = ASCII character set (0-127)

Y o !
C=8 79 33 32

| Code | String | | Code | String

128 YO

32 u 129 0!

33 ! 130 N
131
79 | o 132
D = 133
82 | R 134
135
85 | u 136
encode x = ban T 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! , Y.s = ASCII character set (0-127)

Y o !
C=8 79 33 32

| Code | String | | Code | String

128 YO

32 u 129 0!

33 ! 130 N

131 LY
79 | o 132
D = 133
82 | R 134
135
85 | u 136
encode x = ban T 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YO Y.s = ASCII character set (0-127)

Y o0 ! . Y0
C=8 79 33 32 128

| Code | String | | Code | String |
128 )| (¥o)

32 u 129 0!

33 ! 130 N

131 LY
79 | o 132
D = 133
82 | R 134
135
85 | u 136
encode x = ban T 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example
Input: YO!,_,LQ\
Y 0 J YO

u

cC=8 79 33 32 128

Y.s = ASCII character set (0-127)

| Code | String |

| Code | String

... 128 YO
32 i 129 0!
33 ! 130 N
... 131 LY
79 | o 132 You
D = .. 133
82 | R 134
135
85 | u 136
encode x = ban o 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded X T 139

—
add xc = bana to dictionary

35



LZW encoding — Example
Input: YO! YOU
Y 0 J YO U

u

cC=8 79 33 32 128 85

Y.s = ASCII character set (0-127)

| Code | String |

| Code | String

.. 128 YO
32 o 129 0!
33 ! 130 ',
.. 131 LY
79 | o 132 [ vou
D = .. 133
82 | R 134
... 135
85 | u 136
encode x = ban o 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded X T 139

—
add xc = bana to dictionary

35



LZW encoding — Example
Input: YO! YOU
Y 0 J YO U

u

cC=8 79 33 32 128 85

Y.s = ASCII character set (0-127)

| Code | String |

| Code | String

.. 128 YO
32 o 129 0!
33 ! 130 ',
.. 131 LY
79 | o 132 [ vou
D = .. 133 u!
82 | R 134
... 135
85 | u 136
encode x = ban o 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded X T 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: YO! YOU!,, Y.s = ASCII character set (0-127)
Y 0 ! YO U !

u u

C=8 79 33 32 128 85 130

| Code | String | | Code | String
128 YO
32 u 129 | 0!
33 ! 130 S
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134
135
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU!,, Y.s = ASCII character set (0-127)
Y 0 ! YO U !

u u

C=8 79 33 32 128 85 130

| Code | String | | Code | String

128 YO

32 u 129 0!

33 ! 130 N

131 LY

79 | o 132 [ vou

D= 133 u!

82 | R 134 LY
135
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU! YOU Y.s = ASCII character set (0-127)
Y 0 ! YO U ! YOou

u u

C=8 79 33 32 128 85 130 132

| Code | String | | Code | String

128 YO

32 u 129 0!

33 ! 130 N

131 LY

79 | o 132 [ vou |&—

D= 133 u!

82 | R 134 LY
135
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU! YOU Y.s = ASCII character set (0-127)
Y 0 ! YO U ! You

u u

C=8 79 33 32 128 85 130 132

| Code | String | | Code | String
128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU! YOUR Y.s = ASCII character set (0-127)
Y 0 ! YO U ! You R

u u

cC=8 79 33 32 128 8 130 132 82

| Code | String | | Code | String
128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU! YOUR Y.s = ASCII character set (0-127)
Y 0 ! YO U ! You R

u u

cC=8 79 33 32 128 8 130 132 82

| Code | String | | Code | String
soq 128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
.. 135 YOUR
85 | u 136 R,
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary



LZW encoding — Example

Input: YO! YOU! YOUR, Y Y.s = ASCII character set (0-127)
Y 0 ! YO U ! You R

u u uY

cC=8 79 33 32 128 8 130 132 82 131

| Code | String | | Code | String
128 YO
32 u 129 0!
8] ! 1 =il
11 2
79 | o —You
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136 R,
encode x = ban . 137
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded g c . 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: YO! YOU! YOUR, Y Y.s = ASCII character set (0-127)
Y 0 ! YO U ! You R

u u uY

cC=8 79 33 32 128 85 130 132 82 131

| Code | String | | Code | String
soq 128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136 R,
encode x = ban L 137 Yo
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: YO! YOU! YOUR,YO Y.s = ASCII character set (0-127)

Y o ! , YO U !, YU R _ ©

cC=8 79 33 32 128 8 130 132 82 131 79

| Code | String | | Code | String
128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136 R,
encode x = ban L 137 Yo
s [hannahlbanf[s|banfa]nas 89 | Y 138
already encoded x c . 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: YO! YOU! YOUR,YO Y.s = ASCII character set (0-127)

Y o ! , YO U !, YU R _ O

cC=8 79 33 32 128 8 130 132 82 131 79

| Code | String | | Code | String
128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136 R,
encode x = ban L 137 Yo
s [hannahlbanf[s|banfa]nas 89 | Y 138 oY
already encoded x c . 139

—
add xc = bana to dictionary

35



LZW encoding — Example

Input: YO! YOU! YOUR,YOYO Y.s = ASCII character set (0-127)

Y o ! , YO U !, YU R Y 0 Y0

C=8 79 33 32 128 8 130 132 82 131 79 128

| Code | String | Code | String |

128 YO

32 u 1290

33 ! 130 N

131 LY

79 | o 132 [ vou

D= 133 u!

82 | R 134 LY
135 YOUR

85 | u 136 R,

encode x = ban L 137 Yo

s [hannahlbanf[s|banfa]nas 89 | Y 138 oY

already encoded x c . 139

—
add xc = bana to dictionary

35



LZW encoding — Example
Input: YO! YOU! YOUR,YOYO Y.s = ASCII character set (0-127)

Y o ! , YO U !, YoU R Y 0 Y0

cC=8 79 33 32 128 8 130 132 82 131 79 128

| Code | String | | Code | String
128 YO
32 u 129 0!
33 ! 130 N
131 LY
79 | o 132 [ vou
D= 133 u!
82 | R 134 LY
135 YOUR
85 | u 136 R,
encode x = ban L 137 Yo
s [hannahlbanf[s|banfa]nas 89 | Y 138 oY
already encoded x c . 139 YO!

—
add xc = bana to dictionary

35



LZW encoding — Example
Input: YO! YOU! YOUR,YOYO! Y.s = ASCII character set (0-127)

Y o ! , YO U !, YU R Y 0 Yo !

cC=8 79 33 32 128 8 130 132 82 131 79 128 33

| Code | String | | Code | String |

128 YO

32 u 129 0!

33 ! 130 N

131 LY

79 | o 132 [ vou

D= 133 u!

82 | R 134 LY
135 YOUR

85 | u 136 R,

encode x = ban L 137 Yo

s [hannahlbanf[s|banfa]nas 89 | Y 138 oY
already encoded x c . 139 YO!

—
add xc = bana to dictionary

35



LZW encoding — Code

1 procedure LZWencode(S[0..1))
2 x = ¢ // previous phrase, initially empty
3 C := & // output, initially empty

4 D := dictionary, initialized with codes for c € X // stored as trie (~ Unit 8)

5 k := |Zs| // next free codeword
6 fori :=0,...,n—1do

7 Ch:= S[l]

8 if Mthen

0 7 = e

10 else

1 C := C - D.get(x) // append codeword for x

1 D.put(xc, k) // add xc to D, assigning next free codeword
13 k=k+1, x :=c

14 end for

15 C := C-D.get(x)

1 return C

36



5.7 Lempel-Ziv-Welch Decoding



LZW decoding

» Decoder has to replay the process of growing the dictionary!

~» Decoding:
after decoding a substring y of S, add xc to D,
where x is previously encoded/decoded substring of S,
and ¢ = y[0] (first character of y)

decode y = an

—A
¥ c)
S |h]a n|nahbans|banEn]a s |
already decoded X Y

add xc = bana to dictionary

~~ Note: only start adding to D after second substring of S is decoded

37



LZW decoding — Example

» Same idea: build dictionary while reading string.

> Example:
L decodes String String

32 | u input to Code # | (human) | (computer)
65 A

D = 66 B
67 C
78 [ N
8 | s

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67

L decodes String String
32 | u input to Code # | (human) | (computer)
67 C
65 A
D = 66 B
o7 | <)
78 [ N
8 | s

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 65

32

65

decodes String String
input to Code # | (human) | (computer)
67 C
65 128 CA 67, A

67

78

83

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 6578

32

65

66

decodes String String
input to Code # | (human) | (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65,N

67

78

83

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 6578 32

32

65

66

67

decodes String String
input to Code # | (human) | (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65, N
32 o 130 N, 78, L

78

83

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 6578 32 66

decodes String String
52 | u input to Code # | (human) | (computer)
67 C
— 65 A 128 CA 67,A
65 A
D= 03 5 78 N 129 AN 65,N
o z 32 " 130 N, 78,
66 B 131 .B 32,B
78 [ N
8 | s

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 6578 32 66 129

L decodes String String
32 | u input to Code # | (human) | (computer)
67 C
o5 — A 65 A 128 CA 67, A
D=[¢ 5 78 N (1295 AN 65,N
o z 32 " 130 N, 78,
66 B 131 B 32,B
— 12 AN 132 BA A
7 ] W 9 3 66,
8 | s




LZW decoding — Example

» Same idea: build dictionary while reading string.

»> Example: 67 6578 32 66 129 133

L decodes String String
32 | u input to Code # | (human) | (computer)
67 C
— 65 A 128 CA 67, A
65 A
D= 03 5 78 N 129 AN 65,N
o z 32 " 130 N, 78,
66 B 131 B 32,B
78 . | m 129 AN 132 BA 66, A
133 2?7? (133
8 | s

38



LZW decoding — Example

» Same idea: build dictionary while reading string.

» Example: 67 6578 32 66 129 133

decodes St

input to Code # | (hul
67 C
65 A 128 CA 67, A
78 N 129 AN 65,N
32 o 130 N, 78, .
66 B 131 .B 32,B
129 AN 132 BA 66, A
133 7? 133

[ Code# [ String |
# | w
65 A
D= 66 B
67 C
78 | N
8 | s

38



LZW decoding — Bootstrapping

» example: Want to decode 133, but not yet in dictionary!

A decoder is “one step behind” in creating dictionary

39



LZW decoding — Bootstrapping

» example: Want to decode 133, but not yet in dictionary!

A decoder is “one step behind” in creating dictionary

~+ problem occurs if we want to use a code that we are just about to build.

39



LZW decoding — Bootstrapping

> example: Want to decode 133, but not yet in dictionary!
A decoder is “one step behind” in creating dictionary

~+ problem occurs if we want to use a code that we are just about to build.

» But then we actually know what is going on!
» Situation: decode using k in the step that will define k.
» decoder knows last phrase x, needs phrase y = D[k] = xc.
laststep cy=D[k]

C AN, B|aA N[AJN A]S]| 1. en/decode x.

2. store D[k] := xc
D[k]:=xc

) 3. next phrase y equals D[k]
~ DIlk] =xc=x-x[0] (all known)

x c

done X I
~———F

39



LZW decoding — Code

1 procedure LZWdecode(C|0..11))

2 D := dictionary [0..29) — ¥, initialized with codes for ¢ € Xg //stored as array
3 k := |Zg| // next unused codeword

4 q := CI[0] //first codeword

5 y = DIq] // lookup meaning of q in D

6 S = y // output, initially first phrase

7 forj:=1,...,m—1do

8 x =y // remember last decoded phrase
9 q := Cl[j] // next codeword

10 if g == k then

11 y := x - x[0] // bootstrap case
12 else

13 y = qu]

14 S := S -y // append decoded phrase
15 D[k] := x - y[0] // store new phrase
16 k:=k+1

17 end for

18 return S

40



LZW decoding — Example continued

N
» Example: 67 65 78 32 66 129 133 83 f\, A
[Code# [ Siring |
decodes String String
52 | u input to Code # | (human) | (computer)
67 9
& — A 65 A 128 CA 67, A
78 N 129 AN 65, N
D= 66 B
& 5 32 " 130 N, 78, L
66 B 131 B 32,B
73 | T 129 AN 132 BA 66, A
133 ANA (133) ANA 129, A
8 | s
laststep CY=D[k]

C AN, B[a NJaA)N A]S]
done X

~——
D[k]:=xc

A N|[A]

x c

1. en/decode x.

2. store D[k] := xc

3. next phrase y equals D[k]

~ D[k] =xc=x-x[0]

(all known)

41



LZW decoding — Example continued

» Example: 67 65 78 32 66 129 133 83

[[Code # | Sting |
decodes String String
52 | u input to Code # | (human) | (computer)
67 9
— 65 A 128 CA 67, A
65 A
78 N 129 AN 65, N
D= 66 B
o 5 32 " 130 N, 78, L
66 B 131 B 32,B
73 - | T 129 AN 132 BA 66, A
133 ANA 133 ANA 129, A
— 83 S 134 ANAS 133, s
8 | s
laststep CY=D[k]

C AN, B[a NJaA)N A]S]
done X

~——
D[k]:=xc

A N|[A]

x c

1. en/decode x.

2. store D[k] := xc

3. next phrase y equals D[k]
~ D[k] =xc=x-x[0] (all known)

41



Clicker Question

-~
How many phrases will LZW create on S = a”, a run of 7 copies of as?
~n O(logn)
~n/2 O(loglogn)

~n/4 @ 2
@ O(n/logn) @ 1
L (E) ewm

D - sli.do/comp526




k F\r\r«u e )

i i te k(e
Clicker Question G oo ooacsoamasa T a;m
~ &%/2
( . . s of as? )
How many phrases will LZW create on S = a”, a run of n copies of as? | 2 !
= =
2
— e
k= Q@)

(8) —~ (G) Somtons
(€] —wi (H) 2
(D) Sespenss (1) =+
L (8) e(vm) v )

D - sli.do/comp526




LZW - Discussion

> As presented, LZW uses coded alphabet ¢ = [0..29).
~ use another encoding for code numbers — binary, e.g., Huffman
» need a rule when dictionary is full; different options:

» incrementd ~-» longer codewords
< > “flush” dictionary and start from scratch ~+ limits extra space usage

» often: reserve a codeword to trigger flush at any time

> encoding and decoding both run in linear time (assuming |Zs| constant)

42



LZW - Discussion
> As presented, LZW uses coded alphabet ¢ = [0..29).
~ use another encoding for code numbers — binary, e.g., Huffman

» need a rule when dictionary is full; different options:

» incrementd ~-» longer codewords
> “flush” dictionary and start from scratch ~+ limits extra space usage

» often: reserve a codeword to trigger flush at any time

> encoding and decoding both run in linear time (assuming |Zs| constant)

[fb fast encoding & decoding
[ﬁ works in streaming model (no random access, no backtrack on input needed)

[fb significant compression for many types of data

E@ captures only local repetitions (with bounded dictionary)

42



Compression summary

Huffman codes

Run-length encoding

Lempel-Ziv-Welch

fixed-to-variable

variable-to-variable

variable-to-fixed

2-pass 1-pass 1-pass
must send dictionary can be worse than ASCII can be worse than ASCII
60% compression bad on text 45% compression

on English text

optimal binary
character encopding

rarely used directly

part of pkzip, JPEG, MP3

good on long runs
(e.g., pictures)

rarely used directly

fax machines, old picture-formats

on English text

good on English text

frequently used

GIF, part of PDF, Unix compress

43



Part 111

Text Transforms



Text transformations

> compression is effective if we have one the following:
» Jong runs ~» RLE
» frequently used characters ~» Huffman

» many (locally) repeated substrings ~» LZW



Text transformations

> compression is effective if we have one the following:
» Jong runs ~» RLE
» frequently used characters ~» Huffman

» many (locally) repeated substrings ~» LZW

> but methods can be frustratingly “blind” to other “obvious” redundancies

> LZW: repetition too distant % dictionary already flushed
» Huffman: changing probabilities (local clusters) ¥ averaged out globally

» RLE: run of alternating pairs of characters # notarun



Text transformations

> compression is effective if we have one the following:
» Jong runs ~» RLE
» frequently used characters ~» Huffman

» many (locally) repeated substrings ~» LZW

> but methods can be frustratingly “blind” to other “obvious” redundancies
> LZW: repetition too distant % dictionary already flushed
» Huffman: changing probabilities (local clusters) ¥ averaged out globally

» RLE: run of alternating pairs of characters # notarun

> Enter: text transformations
» invertible functions of text
» do not by themselves reduce the space usage
» but help compressors “see” existing redundancy

~~ use as pre-/postprocessing in compression pipeline



5.8 Move-to-Front Transformation



Move to Front

» Move to Front (MTF) is a heuristic for self-adjusting linked lists

» unsorted linked list of objects

» whenever an element is accessed, it is moved to the front of the list
(leaving the relative order of other elements unchanged)

~» list “learns” probabilities of access to objects
makes access to frequently requested ones cheaper

S| x| = () J = (=]

- Jo

45



Move to Front

» Move to Front (MTF) is a heuristic for self-adjusting linked lists

» unsorted linked list of objects

» whenever an element is accessed, it is moved to the front of the list
(leaving the relative order of other elements unchanged)

~ list “learns” probabilities of access to objects
makes access to frequently requested ones cheaper

» Here: use such a list for storing source alphabet Xs
-—
» to encode c, access it in list
» encode ¢ using its (old) position in list
» then apply MTF to the list

~ codewords are integers, i.e., ¢ = [0..0)

45



Move to Front

» Move to Front (MTF) is a heuristic for self-adjusting linked lists

» unsorted linked list of objects

» whenever an element is accessed, it is moved to the front of the list
(leaving the relative order of other elements unchanged)

~» list “learns” probabilities of access to objects
makes access to frequently requested ones cheaper

» Here: use such a list for storing source alphabet Xg

» to encode c, access it in list
» encode ¢ using its (old) position in list
» then apply MTF to the list

~ codewords are integers, i.e., ¢ = [0..0)

~> clusters of few characters ~» many small numbers

45



Clicker Question

TR

Assume a MTF list currently contains the items XY ZAB C, and we now
access A. What is the list content after the MTF rule has been applied?

o

DA T HE——BHD)

D - sli.do/comp526’




MTF - Code

» Transform (encode): » Inverse transform (decode):
1 procedure MTF—encode(S[0..17)) 1 procedure MTF—decode(C[0..m))
2 L := list containing X.g (sorted order) 2 L := list containing Xg (sorted order)
3 C:=¢ 3 S:=¢
4 fori :=0,...,n—1do 4 forj:=0,...,m—1do
5 ¢ = S[i] 5 p = C[j]
6 p := position of ¢ in L 6 c := character at position p in L
7 C=C-p 7 S:=65-c
8 Move c to front of L 8 Move c to front of L
9 end for 9 end for
10 return C 10 return S

» Important: encoding and decoding produce same accesses to list

46



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[alefclofefrla[nfrfafkf]m|n]ofr[af[r]s|T]ulv]w][x[v[7]

S=INEFFICIENCTIES
C =

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[alefclofelrle[n[a]afxf]m|n]ofraf[r]s|T]ulvw][x[v[z]

NEFFICIENC CTITES

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| tfalefclofelrlcufafxf]mfnfofr[af[r]s|T]ulvw][x[v[7]

S=INEFFICIENCTITES
C= 813

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[v[r]alefclofEfr[c[n]af[t]m[ofraf[r]s|T]ufv]w]x[v[z]

S=INEFFICIENCTIES
C=8136

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[E[n]rfalsfclofEfc[n]afx[t]m[ofr[af[r]s|T]ufvw][x[v[z]

S=INEFFICIENCTIES
C=81367

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Elefnfrfafelclofef[n]af[t]mfofrfaf[r]s|T]ulvw][x[v[z]

S=INEFFICIENCTIES
C=8136 70

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
LFle[wfelalelcofef[n]af[t]mfofraf[r]s|T]ufvw][x[v[z]

S=INEFFICIENCTIES
C=8136 70 3

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Le[rlefnfalefefofc[n]af[t]mfofraf[r]s|T]ulvw][x[v[z]

S=INEFFICIENCTIES
C=8136 70 3 6

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Lclalrlelnfalalofcu]af[timufofraf[r]s|T]ufvw][x[v[z]

=

ENCTITES

FICTI
0361

O »n
Il
o H
—
(6V)
o m
NI

47



MTF - Example

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[s[efrfc[n[rlafafofc[n]sfx]r[ufofr[afr]T]ufv]w][x[v[7]

S=1INEIJFF CIES

ICIEN
C:81367036134333818

» What does a run in S encode to in C? Os ofle Qﬂ( 2l a{ PO

» What does a run in C mean about the source S?

47



MTF - Discussion

» MTF itself does not compress text (if we store codewords with fixed length)

~ used as part of longer pipeline

> Intuitively effect:
MTF converts locally low empirical entropy to globally low empirical entropy(!) h

~» makes Huffman coding much more effective!
» cheaper option: Elias gamma code
AN

smaller numbers gets shorter codewords
works well for text with small “local effective” alphabet

[@ many natural texts do not have locally low empirical entropy

[ﬁ but we can often make it so . . . stay tuned (— BWT)

48



5.9 Burrows-Wheeler Transform



Burrows-Wheeler Transform

» Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

> coded text has same letters as source, just in a different order

» But: coded text is (typically) more compressible (local char frequencies)

49



Burrows-Wheeler Transform

» Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

> coded text has same letters as source, just in a different order

» But: coded text is (typically) more compressible (local char frequencies)

» Encoding algorithm needs all of S (no streaming possible).

~ BWT is a block compression method.

49



Burrows-Wheeler Transform

» Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

> coded text has same letters as source, just in a different order

» But: coded text is (typically) more compressible (local char frequencies)

» Encoding algorithm needs all of S (no streaming possible).

~ BWT is a block compression method.

» BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program.

achieves best compression on English text of any algorithm we have seen:

4047392 bible
1191071 bible

632634 bible.

.txt # original

.txt.gz # gzip (0.2s)
888604 bible.
845635 bible.

txt.7z # 7z (2s)
txt.bz2 # bzip2 (0.3s)

txt.paq8l # pagq8l -8 (6min)

49



BWT - Definitions

» cyclic shift of a string:

T = time, flies,quickly,
\.
- 7
feusg ~~ cyclic shift
i m

flies, quickly time,

fue
i ! I

50



BWT - Definitions

» cyclic shift of a string:

» add end-of-word
character $ to S
(as in Unit &)

224

~» can recover

original string

T = time, flies,quickly, flies,quickly time,
1*fuve ~~ cyclic shift 1-flu-e
i m i m
e i i
S t
q y
1 1
= i-c-k = i-c-k

50



BWT - Definitions

. . T = time, flies quickly, flies,quickly time,
» cyclic shift of a string: a / a Y
feu ~~ cyclic shift flo
» add end-of-word i B = i L Con
character $t0 S e i e i
(as in Unit 6) s o s t
~+ can recover q y q y
o : u. . 1 u. . 1
original string imcek i-c-k

$ Sunalen T JFLQBZ{ fice. ce

» The Burrows-Wheeler Transform proceeds in three steps:
1. Place all cyclic shifts of S in a list L
2. Sort the strings in L lexicographically

3. Bis the list of trailing characters (last column, top-down) of each string in L



BWT - Example

S =alf_eats  alfalfa$

1. Take all cyclic shifts of S

alf _eats alfalfa$
1f eats alfalfas$a
f_eats alfalfas$al
Leats alfalfasalf
eats alfalfas$alf,
ats_alfalfas$alf e
ts alfalfagsalf _ea
s,alfalfasalf eat
palfalfasalf eats
alfalfasalf eats,
lfalfasalf _eats a
falfasalf eats al
alfas$alf eats alf
lfagsalf eats alfa
fasalf eats alfal
a$alf_eats alfalf
$alf_eats,alfalfa

sort

51



BWT - Example

S = alf_eats, alfalfas

1. Take all cyclic shifts of S

2. Sort cyclic shifts

alf_eats alfalfa$
1f_eats alfalfasa
foeats alfalfasal
Leats alfalfasalf
eats alfalfas$alf,
ats_alfalfas$alf e
ts alfalfagsalf ea
s,alfalfa$alf eat
palfalfasalf eats
alfalfasalf eats,
lfalfasalf eats a
falfagsalf eats, al
alfas$alf eats alf
lfagsalf eats alfa
fasalf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

sort

$alf_eats alfalfa
palfalfasalf eats
.eats alfalfagalf
a$alf eats alfalf
alf eats alfalfa$
alfagsalf_eats alf
alfalfagsalf eats,
ats alfalfasalf_e
eats alfalfasalf,
f_eats alfalfasal
fasalf eats alfal
falfagalf eats, al
1f_eats alfalfas$a
lfasalf eats alfa
lfalfasalf eats a
s alfalfasalf eat
ts_ alfalfasgalf _ea

51



BWT - Example

S = alf_eats, alfalfas

1. Take all cyclic shifts of S
2. Sort cyclic shifts

3. Extract last column

B = asff$f e, 11laaata

alf_eats alfalfa$
1f_eats alfalfasa
foeats alfalfasal
Leats alfalfasalf
eats alfalfasalf,,
ats_alfalfas$alf e
ts,alfalfasalf ea
s,alfalfa$alf eat
palfalfasalf eats
alfalfagsalf_eats,
lfalfasalf eats a
falfasalf eats al
alfas$alf eats alf
1fagalf eats alfa
fasalf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

sort

BWT
l

$alf_eats alfalfa
Lalfalfasalf eats
.eats alfalfas$alf
as$alf_eats alfalf
alf eats alfalfa$
alfa$alf eats alf
alfalfagsalf eats,
ats alfalfagsalf_e
eats alfalfasalf,,
f_eats alfalfasal
fasalf eats alfal
falfagalf eats, al
1f_eats alfalfas$a
lfasalf eats alfa
lfalfasalf eats a
s, alfalfagsalf eat
ts alfalfas$alf _ea

51



BWT - Example

S =alf_eats  alfalfa$

1. Take all cyclic shifts of S
2. Sort cyclic shifts

3. Extract last column

B = asff$f e, 11laaata

alf_eats alfalfa$
1f_eats alfalfasa
foeats alfalfasal
Leats alfalfasalf
eats alfalfasalf,,
ats_alfalfas$alf e
ts alfalfagsalf ea
s,alfalfa$alf eat
palfalfasalf eats
alfalfagsalf_eats,
lfalfasalf eats a
falfasalf eats al
alfas$alf eats alf
1fagalf eats alfa
fasalf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

» BWT can be computed in O(n) time!

sort

BWT
l

$alf_eats alfalfa
Lalfalfasalf eats
.eats alfalfas$alf
as$alf_eats alfalf
alf eats alfalfa$
alfa$alf eats alf
alfalfagsalf eats,
ats alfalfagsalf_e
eats alfalfasalf,,
f_eats alfalfasal
fasalf eats alfal
falfagalf eats, al
1f_eats alfalfas$a
lfasalf eats alfa
lfalfasalf eats a
s, alfalfagsalf eat
ts alfalfas$alf _ea

ﬂ("z eéé"")

» totally non-obvious from definition (naive sorting could take (%) time in worst case!)

» will use one of the most sophisticated algorithms we cover ~» Unit 8!



BWT - Properties

Why does BWT help for compression?
» sorting groups characters by what follows

» Example: 1f always preceded by a
-

> more generally: BWT can be partitioned
into letters following a given context

~ repeated substringin S ~» runsin B

» Example: alf ~» runofas
» picked up by RLE

(formally: low higher-order empirical entropy)

~ If S allows predicting symbols from context, B
has locally low entropy of characters.

» that makes MTF effective!

alf _eats alfalfa$
Tf eats_ alfalfas$a
feats alfalfasal
oeats alfalfasalf
eats alfalfagsalf,,
ats alfalfasalf e
ts alfalfagalf ea
s,alfalfagalf eat
palfalfasalf eats
alfalfasalf eats,,
lfalfasalf eats a
falfagalf eats al
alfasalf eats alf
1fagalf eats alfa
fagalf eats alfal
a$alf_eats alfalf
$alf_eats alfalfa

r 1 L[r]
0 $alf_eats_alfalfa 16
1 _alfalfagalf eats 8
2 _eats alfalfasalf 3
3 a$alf eats alfalf 15
4 Jalf_eats alfalfa$ o
5 {Elfa$alfueatsualf 12
6 | alfalfasalf eats, 9
7 ats,alfalfagalf_e 5
8 eats,alfalfagalf, 4
9 f_eats alfalfasal 2
10 fagsalf eats alfal 14
11 falfagalf eatsal 11
12 [lf eats alfalfasal 1
13 1fa$a1fueatsualfa) 13
14 [lfalfag$alf eats_al 10
15 s, alfalfagalf eat 7
16 ts,alfalfasalf,ea 6

52



A Bigger Example

have _had hadnt hasnt_havent has_what$
ave, had _hadnt hasnt_havent _has what$h
ve,had hadnt, hasnt_havent _has what$ha
e had hadnt_hasnt _havent _has_what$hav
ohad hadnt hasnt _havent has what$have
had _hadnt hasnt havent has what$have ,
ad,hadnt, hasnt havent has what$have h
d_hadnt _hasnt havent has what$have_ha
whadnt,_hasnt _havent _has whatshave had
hadnt _hasnt _havent has what$have had,,
adnt _hasnt, havent, has, what$have_had h
dnt, hasnt_havent _has what$have had ha
nt,hasnt_havent, has what$have had, had
t,hasnt_havent has_what$have had hadn
ohasnt_havent, has, what$have _had hadnt
hasnt, havent has what$have had_hadnt,,
asnt, havent _has what$have_had_hadnt h
snt_havent _has_what$have had_hadnt ha
nt_havent has, what$have had, hadnt_has
t, havent _has what$have had_hadnt _hasn
uhavent has what$have had_hadnt hasnt
havent _has what$have had hadnt_hasnt
avent, has, whatshave, had hadnt_hasnt h
vent has whatshave had, hadnt_hasnt ha
ent, has _what$have _had hadnt_hasnt_hav
nt_has_what$have had hadnt_hasnt have
t,has what$have had_hadnt _hasnt haven
whas_whatshave, had, hadnt_hasnt havent
has _whats$have had, hadnt hasnt_havent,
as whats$have _had hadnt_hasnt_havent h
s, what$have _had, hadnt_hasnt _havent ha
wwhats$have_had_hadnt_hasnt_havent has
what$have had _hadnt hasnt havent has,,
hats$have _had, hadnt_hasnt havent_has_w
atshave _had,_hadnt hasnt havent has wh
t$have, had, hadnt hasnt havent has, wha
$have _had_hadnt hasnt havent, has what

$have, had_hadnt hasnt havent has what
whad hadnt _hasnt havent has what$have
ohadnt, hasnt, havent has what$have had
uhas, what$have _had, hadnt hasnt havent
ohasnt havent, has _what$have had hadnt
uwhavent has what$have had_hadnt hasnt
wwhats$have had hadnt hasnt havent has
ad,_hadnt_hasnt havent has what$have h
adnt hasnt, havent, has what$have_had, h
as, what$have _had, hadnt hasnt havent h
asnt havent has what$have had hadnt, h
at$have had hadnt _hasnt havent has_wh
ave had hadnt _hasnt,havent has what$h
avent, has what$have had hadnt hasnt_ h
d,hadnt hasnt_havent, has what$have ha
dnt, hasnt_havent has_what$have had_ha
e had hadnt_hasnt _havent has_what$hav
ent, has what$have had hadnt_hasnt hav
had, hadnt _hasnt havent has what$have
hadnt, hasnt, havent, has what$have had,,
has, what$have _had, hadnt hasnt havent,,
hasnt havent has what$have had hadnt,
hatshave had hadnt,hasnt havent, has, w
have had hadnt hasnt havent has_what$
havent,has what$have had hadnt hasnt,
nt has what$have had hadnt hasnt_have
nt_hasnt_havent has_what$have had had
nt_havent, has whats$have_had_hadnt has
s what$have had hadnt hasnt havent ha
snt_havent, has whats$have had_hadnt ha
t$have, had_hadnt hasnt havent has wha
t_has what$have had, hadnt hasnt haven
t, hasnt havent, has _what$have had, hadn
t_havent has _whats$have had_hadnt hasn
ve had hadnt hasnt havent has what$ha
vent, has what$have had hadnt hasnt_ha
what$have _had_hadnt hasnt_havent has,,

T= have_,had_ hadnt_hasnt_ ,havent_ jhas_ whats$

B= tedtttshhhhhhhaavv,_ ,,ow$,edsaaannnaa,

MTF(B)

855200870000007090800010929987001000105

53



A Bigger Example

For T some English text,
MTF(B) has typically
around 50% zeroes!

have _had hadnt hasnt_havent has_what$
ave, had _hadnt hasnt_havent _has what$h
ve,had hadnt, hasnt_havent _has what$ha
e had hadnt_hasnt _havent _has_what$hav
ohad hadnt hasnt _havent has what$have
had _hadnt hasnt havent has what$have ,
ad,hadnt, hasnt havent has what$have h
d_hadnt _hasnt havent has what$have_ha
whadnt,_hasnt _havent _has whatshave had
hadnt _hasnt _havent has what$have had,,
adnt _hasnt, havent, has, what$have_had h
dnt, hasnt_havent _has what$have had ha
nt,hasnt_havent, has what$have had, had
t,hasnt_havent has_what$have had hadn
ohasnt_havent, has, what$have _had hadnt
hasnt, havent has what$have had_hadnt,,
asnt, havent _has what$have_had_hadnt h
snt_havent _has_what$have had_hadnt ha
nt_havent has, what$have had, hadnt_has
t, havent _has what$have had_hadnt _hasn
uhavent has what$have had_hadnt hasnt
havent _has what$have had hadnt_hasnt
avent, has, whatshave, had hadnt_hasnt h
vent has whatshave had, hadnt_hasnt ha
ent, has _what$have _had hadnt_hasnt_hav
nt_has_what$have had hadnt_hasnt have
t,has what$have had_hadnt _hasnt haven
whas_whatshave, had, hadnt_hasnt havent
has _whats$have had, hadnt hasnt_havent,
as whats$have _had hadnt_hasnt_havent h
s, what$have _had, hadnt_hasnt _havent ha
wwhats$have_had_hadnt_hasnt_havent has
what$have had _hadnt hasnt havent has,,
hats$have _had, hadnt_hasnt havent_has_w
atshave _had,_hadnt hasnt havent has wh
t$have, had, hadnt hasnt havent has, wha
$have _had_hadnt hasnt havent, has what

$have, had_hadnt hasnt havent has what
whad hadnt _hasnt havent has what$have
ohadnt, hasnt, havent has what$have had
uhas, what$have _had, hadnt hasnt havent
ohasnt havent, has _what$have had hadnt
uwhavent has what$have had_hadnt hasnt
o whats$have had,hadnt hasnt havent has
ad_hadnt_hasnt, havent has what$have_ h
adnt,hasnt, havent, has what$have_had, h
as, what$have had, hadnt hasnt havent, h
asnt havent has what$have had hadnt, h
at$have had hadnt _hasnt havent has_wh
ave had hadnt _hasnt,havent has what$h
avent, has whats$have had hadnt hasnt_ h
hadnt = Shas whats$have,
dnt, hasnt_havent has_what$have had_ha
e had hadnt_hasnt _havent has_what$hav
ent, has what$have had hadnt_hasnt hav
had, hadnt _hasnt havent has what$have
hadnt, hasnt, havent, has what$have had,,
has, what$have _had, hadnt hasnt havent,,
hasnt havent has what$have had hadnt,
hatshave had hadnt,hasnt havent, has, w

have had hadnt hasnt havent has _what$ "™

havent,has what$have had hadnt hasnt,
nt has what$have had hadnt hasnt_have
nt_hasnt_havent has_what$have had had
nt_havent, has whats$have_had_hadnt has
s what$have had hadnt hasnt havent ha
snt_havent, has whats$have had_hadnt ha
t$have, had_hadnt hasnt havent has wha
t_has what$have had, hadnt hasnt haven
t, hasnt havent, has _what$have had, hadn
t_havent has _whats$have had_hadnt hasn
ve had hadnt hasnt havent has what$ha
vent, has what$have had hadnt hasnt_ha
what$have _had_hadnt hasnt_havent has,,

= haveuhaduhadntuhasnt,_,havent,_,has,_,what$

B= tedtttshhhhhhhaavv,_ ,,ow$,edsaaannnaa,

MTF(B)

855200870000007090800010929987001000105

53



Clicker Question

-

Consider T = have had_hadnt_hasnt_havent _has_what$.
The BWT is B = tedtttshhhhhhhaavv,,,, . w$, edsaaannnaa,,.
How can we explain the long run of hs in B?

. h is the most frequent character

h always appears at the beginning of a word
almost all words start with h

@ h is always followed by a

@ all as are preceded by h

h is the 4th character in the alphabet

D - sli.do/comp526




Clicker Question

-

Consider T = have had_hadnt_hasnt_havent _has_what$.
The BWT is B = tedtttshhhhhhhaavv,,,,  w$, edsaaannnaa
How can we explain the long run of hs in B?

hris-the-moestfrequent-chasacter
1) | b teoloneod
(E) all as are preceded by h /"

e

D ‘—» sli.do/comp526’




Run-length BWT Compression

> amazingly, just run-length compressing the BWT is already powerful!
» r = number of runs in BWT

» r=0(z logz(n)), z number of LZ77 phrases
proven in 2020(!)

Example:
S = alf_eats, alfalfas
B = asff$f e lllaaata
RL®) = (351G ] ST BRG]

~ r=|RL(B)|=12; n=17

54



5.10 Inverse BWT



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that
it is at all invertible!

55



Inverse BWT

> Great, can compute BWT efficiently and it helps compression.

> “Magic” solution:
1. Create array D|[0..1] of pairs:
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

But how can we decode it?

not even obvious that

it is at all invertible!

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:

1. Create array D|[0..1] of pairs: 1
DI[r] = (Blr], 1). .

2. Sort D stably with 3
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb 8
S= °

10

na

D

(a, 0)
(r, 1)
(d, 2)
($, 3)
(r, 4)
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@, 9)
(b, 10)
(b, 11)

not even obvious that
it is at all invertible!

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

6
Example: !
B = ard$rcaaaabb 8
S= °

10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

10

11

sorted D

char next
(5, 3D
(a, 0)
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)
(c, 5)
, 2
(r, 1)
(r, 4)

not even obvious that
it is at all invertible!

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

6
Example: !
B = ard$rcaaaabb 8
S=a e

10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

10

11

sorted D

char next

($, 3)

(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)
(c, 5
(d, 2)
(r, 1)
(r, 4

not even obvious that
it is at all invertible!

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that

D sorted D it is at all invertible!

char next

> “Magic” solution: o (a, 0) o (3, 3)

1. Create array D|[0..1] of pairs: 1 (r, 1) 1 (a, 0)

DI[r] = (B[r], 7). 2 (d, 2) 2 (a, 6)

2. Sort D stably with 3 ($, 3) 3 (a, 7)
respect to first entry. 4 (r, 4) (a
3. Use D as linked list with . (C/ 5 .

(char, next entry) . (a’ 6)

7 (a, 7) (b, 11)

Example: s (a, 8) 5 (2, 5)
B = ard$rcaaaabb ’ ’

o o 5 (@ 9) 5 (@ 2)

10 (b, 10) 10 (r, 1)

1 (b,11) u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that

D sorted D it is at all invertible!
char next

> “Magic” solution: o (a, 0) o (5, 3)

1. Create array D|[0..1] of pairs: 1 (r, 1) 1 (a, 0)

D[r] = (B[r], 7). 2 (d, 2) 2 (a, 6)

2. Sort D stably with 3 (3, 3) s (@, 7)

respect to first entry. o (r, 4) s (a 8)

3. Use D as linked list with ) s (a, 9)

(char, next entry) s (@ 6) . (5.10)

Example: 7 (a, 7) 7 (b, 11)

B = ard$rcaaaabb s (a, 8) s (c,

S =abr o (a, 9)
10 (b,10)

1 (b, 11) u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

6
Example: !
B = ard$rcaaaabb 8
S =abra e

10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

not even obvious that
sorted D itis at all invertible!

char next
o (3, 3)
1 (a, 0)
2 (a, 6)
3 (a, 7)
4+ (a, 8)
(a, 9)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

6
Example: !
B = ard$rcaaaabb 8
S = abrac e

10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

sorted D

char next
o ($, 3)
1 (a, 0)
2 (a, 6)
3 (a, 7)

4+ (a, 8)

5 (a,

8 (c, 5)
9 (d, 2)
10 (r, 1)
u (r, 4)

not even obvious that
it is at all invertible!

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that

D sorted D it is at all invertible!
char next
> “Magic” solution: o (a, 0) o (5, 3)
1. Create array D|[0..1] of pairs: 1 (r, 1) 1 (a, 0)
D[r] = (B[r], 7). 2 (4 2) . @ 6)
2. Sort D stably with 3 (3, 3) 3 (a, 7)
respect to first entry. o (r, 4) s (a 8)
3. Use D as linked list with ) (C’ 5 (a’ 9

(char, next entry)

6 (a, 6)

Example: 7 (a, 7)

B = ard$rcaaaabb s (a, 8) s (c, 5)

S = abraca s (a, 9) 9 (d, 2)
10 (b, 10) 10 (r, 1)
1 (b, 11) u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb

S = abracad
10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

not even obvious that

sorted D itis at all invertible!

char next
($, 3)
(a, 0)
(a, 6)
(a, 7)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs:
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abracada

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

not even obvious that
it is at all invertible!

sorted D

char next
o ($, 3)
1 (a, 0)
2 (a, 6)
(a, 7)
8)

10 (r, 1)
u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that

D sorted D it is at all invertible!
char next
> “Magic” solution: o (a, 0) o (3, 3)
1. Create array D|[0..1] of pairs: 1 (r, 1) 1 (a, 0)
D[r] = (B[r], 7). 2 (d, 2) 2 (a, 6)
2. Sort D stably with 3 (5, 3) 3 (a,
respect to first entry. o (r, &)
3. Use D as linked list with s ( C’ 5
(char, next entry) s (a, 6) s (b,10)
7 (a, 7) 7 (b, 11)
Example: : (@ 8) s (c. 5)
B = ard$rcaaaabb ’ ’
S = abracadab 9 (a, 9) s (d, 2)
10 (b, 10) 10 (r, 1)
1 (b,11) u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that

D sorted D it is at all invertible!
char next

> “Magic” solution: o (a, 0) o (5, 3)

1. Create array D|[0..1] of pairs: 1 (r, 1) 1 (a, 0)

D[r] = (B[r], r). 2 (4 2) . @ 6)

2. Sort D stably with 3 (3, 3) 3 (a, 7)

respect to first entry. o (r, 4) s (a 8)

3. Use D as linked list with ) (C’ 5 . (a’ 9

(char, next entry) . (a’ 6) !

Example: 7 (& 2
B = ard$rcaaaabb s (a, 8)
S = abracadabr o (a, 9)
10 (b, 10)
1 (b, 11)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs:
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abracadabra

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

not even obvious that
it is at all invertible!

sorted D

char next
o ($, 3)
1 (a, 0)
2 (a, 6)
(a, 7)
8)

10 (r, 1)
u (r, 4)

55



Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But how can we decode it?

> “Magic” solution:
1. Create array D|[0..1] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb

S = abracadabra$
10

na

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4
(c, 5)
(a, 6)
(@ 7)
(a, 8)
(@ 9)
(b, 10)
(b, 11)

sorted D

char next
o (3, 3)
2 (a, 6)
3 (a, 7)
4+ (a, 8)
5 (a, 9)
6 (b,10)
7 (b, 11)
8 (c, 5)
9 (d, 2)
10 (r, 1)
u (r, 4)

not even obvious that
it is at all invertible!

55



Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?

56



Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?

» decode char by char

» can find unique $§ ~» starting row

> to get next char, we need
(i) char in first column of current row
(ii) find row with that char’s copy in BWT

~ then we can walk through and decode

56



Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?

» decode char by char

» can find unique $§ ~» starting row

> to get next char, we need

(i) char in first column of current row
(ii) find row with that char’s copy in BWT

~ then we can walk through and decode

» for (i): first column = characters of B in sorted order \/

56



Inverse BWT — The magic revealed

>

v v

v

v

Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

but why does this work!?

decode char by char

» can find unique $§ ~» starting row

to get next char, we need
(i) char in first column of current row
(ii) find row with that char’s copy in BWT

~ then we can walk through and decode
for (i): first column = characters of B in sorted order \/

for (ii): relative order of same character stays same:
ith a in first column = ith a in BWT

~» stably sorting (B[], r) by first entry enough \/

-

O 0 N O Ul R W N = O

—

—
=

=

[M]»[e]e]o][w][~]n]e]

Trrp Blr]

$bananaban
aban$banan
ans$bananab
anaban$han
ananaban$ b
ban$banana <«
b_a—ﬁanaban$

_n$bananaba<—

naban$bana «—
nanaban$ba <«——

56



BWT - Discussion

» Running time: ©(1n)
> encoding uses suffix sorting

» decoding only needs counting sort

~+ decoding much simpler & faster

(but same O-class)

57



BWT - Discussion

» Running time: ©(1n)
> encoding uses suffix sorting
» decoding only needs counting sort

~+ decoding much simpler & faster (but same ©-class)

[(;_) typically slower than other methods

[@ need access to entire text  (or apply to blocks independently)

[ﬁ BWT-MTF-RLE-Huffman (bzip2) pipeline tends to have best compression

BT ferws  basts e& T Ll

57



Summary of Compression Methods

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

58



