

COMP526 (Fall 2023) University of Liverpool version 2023-10-20 10:45

Learning Outcomes

- 1. Know and use typical notions for *strings* (substring, prefix, suffix, etc.).
- **2.** Understand principles and implementation of the *KMP*, *BM*, and *RK* algorithms.
- **3.** Know the *performance characteristics* of the KMP, BM, and RK algorithms.
- **4.** Be able to solve simple *stringology problems* using the *KMP failure function*.

Unit 4: String Matching

Outline

4 String Matching

- 4.1 String Notation
- 4.2 Brute Force
- 4.3 String Matching with Finite Automata
- 4.4 Constructing String Matching Automata
- 4.5 The Knuth-Morris-Pratt algorithm
- 4.6 Beyond Optimal? The Boyer-Moore Algorithm
- 4.7 The Rabin-Karp Algorithm

4.1 String Notation

Ubiquitous strings

- *string* = sequence of characters
 - universal data type for ... everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
 - $\rightsquigarrow\,$ many different tasks and algorithms

Ubiquitous strings

- *string* = sequence of characters
 - universal data type for ... everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ... a computer's memory ~> ultimately any data is a string
 - $\rightsquigarrow\,$ many different tasks and algorithms
 - ► This unit: finding (exact) occurrences of a pattern text.
 - Ctrl+F
 - ► grep
 - computer forensics (e. g. find signature of file on disk)
 - virus scanner
 - basis for many advanced applications

Notations

- ▶ *alphabet* Σ: finite set of allowed **characters**; σ = |Σ| "*a string over alphabet* Σ"
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters \simeq 1304
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

comprehensive standard character set including emoji and all known symbols

Notations

- ▶ alphabet Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

comprehensive standard character set including emoji and all known symbols

- $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (*n*-tuples)
- $\blacktriangleright(\Sigma^{\star}) = \bigcup_{n>0} \Sigma^n$: set of **all** (finite) strings over Σ
- $(\Sigma^+) = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- $\triangleright \varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)

Notations

- ▶ alphabet Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

comprehensive standard character set including emoji and all known symbols

– zero-based (like arrays)!

- $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of length $n \in \mathbb{N}_0$ (*n*-tuples)
- $\blacktriangleright \Sigma^{\star} = \bigcup_{n \geq 0} \Sigma^{n}$: set of all (finite) strings over Σ
- $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)
- for $S \in \Sigma^n$, write S[i] (other sources: S_i) for *i*th character $(0 \le i < n)$
- for $S, T \in \Sigma^*$, write $ST = S \cdot T$ for concatenation of S and T
- ▶ for $S \in \Sigma^n$, write S[i..i] or $S_{i,i}$ for the substring $S[i] \cdot S[i+1] \cdots S[i]$ $(0 \le i \le j < n)$ \blacktriangleright S[0..*i*] is a prefix of S; S[*i*..*n* - 1] is a suffix of \overline{S}
 - S[i..j] = S[i..j-1] (endpoint exclusive) $\rightsquigarrow S = S[0..n)$

Clicker Question

Clicker Question

String matching – Definition

Search for a string (pattern) in a large body of text

► Input:

- ▶ $T \in \Sigma^n$: The *text* (haystack) being searched within
- ▶ $P \in \Sigma^m$: The *pattern* (needle) being searched for; typically $n \gg m$

► Output:

- the first occurrence (match) of P in T: $\min\{i \in [0..n m) : T[i..i + m] = P\}$
- or NO MATCH if there is no such i ("P does not occur in T")

▶ Variant: Find **all** occurrences of *P* in *T*.

 \rightsquigarrow Can do that iteratively (update *T* to T[i + 1..n) after match at *i*)

Example:

- \blacktriangleright *T* = "Where is he?"
- \blacktriangleright $P_1 = "he" \rightsquigarrow i = 1$
- \blacktriangleright $P_2 = "who" \rightsquigarrow NO MATCH$

string matching is implemented in Java in String.indexOf, in Python as str.find

Clicker Question

Clicker Question

Let $T = COMP526_{is_{u}}fun$. What is T[3..7)?

012<mark>3456</mark>78901234 COMP<mark>526</mark>_is_fun.

4.2 Brute Force

Abstract idea of algorithms

String matching algorithms typically use guesses and checks:

- A guess is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- A check of a guess is a comparison of T[i+j] to P[j].

Abstract idea of algorithms

String matching algorithms typically use guesses and checks:

- A guess is a position *i* such that *P* might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- A **check** of a guess is a comparison of T[i + j] to P[j].

- Note: need all *m* checks to verify a single *correct* guess *i*, but it may take (many) fewer checks to recognize an *incorrect* guess.
- Cost measure: #character comparisons
- \rightsquigarrow #checks $\leq n \cdot m$ (number of possible checks)

Brute-force method

1 procedure bruteForceSM(T[0..n), P[0..m)) 2 for i := 0, ..., n - m - 1 do 3 for j := 0, ..., m - 1 do 4 if $T[i + j] \neq P[j]$ then break inner loop 5 if j == m then return i6 return NO MATCH

- try all guesses i
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

Example: T = abbbababbab

P = abba

Brute-force method

1 procedure bruteForceSM(T[0..n), P[0..m)) 2 for i := 0, ..., n - m - 1 do 3 for j := 0, ..., m - 1 do 4 if $T[i + j] \neq P[j]$ then break inner loop 5 if j == m then return i6 return NO MATCH

- try all guesses i
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

Example:

T = abbbababbabP = abba

 \rightarrow 15 char cmps (vs $n \cdot m = 44$) not too bad!

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings

- Worst possible input: $P = a^{m-1}b$, $T = a^n$
- Worst-case performance: $(n m + 1) \cdot m$

$$\rightsquigarrow$$
 for $m \le n/2$ that is $\Theta(mn)$

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings

- Worst possible input: $P = a^{m-1}b$, $T = a^n$
- Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

- ▶ Bad input: lots of self-similarity in $T! \rightarrow$ can we exploit that?
- ► brute force does 'obviously' stupid repetitive comparisons 🛶 can we avoid that?

Roadmap

- Approach 1 (this week): Use *preprocessing* on the pattern P to eliminate guesses (avoid 'obvious' redundant work)
 - ► Deterministic finite automata (DFA)
 - Knuth-Morris-Pratt algorithm
 - **Boyer-Moore** algorithm
 - Rabin-Karp algorithm

 Approach 2 (~~ Unit Ø): Do *preprocessing* on the text T Can find matches in time *independent of text size(!*)

- inverted indices
- Suffix trees
- Suffix arrays

4.3 String Matching with Finite Automata

Clicker Question

Do you know what regular expressions, NFAs and DFAs are, and how to convert between them?

A Never heard of this; are these new emoji?
B Heard the terms, but don't remember conversion methods.
C Had that in my undergrad course (memories fading a bit).
D Sure, I could do that blindfolded!

- string matching = deciding whether $T \in \Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language

lousvoles (0)

C fritocuvrance ?

 $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$

 \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

Job done!

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

Job done!

WTF!?

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

Job done!

We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages . . .)
- Problem 1: existence alone does not give an algorithm!
- Problem 2: automaton could be very big!

String matching with DFA

• Assume first, we already have a deterministic automaton

String matching with DFA

- Assume first, we already have a deterministic automaton
- ► How does string matching work? fine to find first accurre

Example:

text:		а	а	b	а	с	а	а	b	а	b	а	С	а	а	5
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7	777

O(n)

String matching DFA – Intuition

Why does this work?

Main insight:

State *q* means: *"we have seen P*[0..*q*) *until here (but <u>not any longer prefix</u> of P)"*

text:		а	а	b	а	с	а	а	b	а	b	а	с	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

▶ If the next text character *c* does not match, we know:

- (i) text seen so far ends with $P[0...q) \cdot c$
- (ii) $P[0...q) \cdot c$ is not a prefix of P
- (iii) without reading *c*, *P*[0..*q*) was the *longest* prefix of *P* that ends here.

String matching DFA – Intuition

Why does this work?

Main insight:

State *q* means: *"we have seen P*[0..*q*) *until here (but not any longer prefix of P)"*

text:			а			с				а	b	а	С	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

▶ If the next text character *c* does not match, we know:

- (i) text seen so far ends with $P[0...q) \cdot c$
- (ii) $P[0...q) \cdot c$ is not a prefix of P
- (iii) without reading *c*, *P*[0..*q*) was the *longest* prefix of *P* that ends here.

- \rightsquigarrow New longest matched prefix will be (weakly) shorter than q
- → All information about the text needed to determine it is contained in $P[0...q) \cdot c!$

4.4 Constructing String Matching Automata

NFA instead of DFA?

It remains to *construct* the DFA.

NFA instead of DFA?

It remains to *construct* the DFA.

► trivial part:
$$\rightarrow 0$$
 $\xrightarrow{\Sigma}$ $\xrightarrow{\Sigma}$

• that actually is a *nondeterministic finite automaton* (NFA) for $\Sigma^* P \Sigma^*$

→ We *could* use the NFA directly for string matching:

- at any point in time, we are in a set of states
- accept when one of them is final state

Example:

text:		а	а	b	а	с	а	а	b	а	b	а	с	а	a
state:	0	0,1	0,1	0,2	0,1,3	0	0,1	0,1	0,2	0,1,3	0,2,4	0,1,3,5	0,6	0,1,7	0,1,7

But maintaining a whole set makes this slow
Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*: Suppose we add character P[j] to automaton A_{j-1} for P[0..j)

- \blacktriangleright add new state and matching transition \rightsquigarrow easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*: Suppose we add character P[j] to automaton A_{j-1} for P[0..j)

- \blacktriangleright add new state and matching transition \rightsquigarrow easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)
- $\delta(j, c) = \text{ length of the longest prefix of } P[\underline{0}..j)c \text{ that is a suffix of } P[\underline{1}..j)c$
 - = state of automaton after reading *P*[1..*j*)*c*
 - $\leq j \rightsquigarrow$ can use known automaton A_{j-1} for that!
- \rightsquigarrow can directly compute A_j from A_{j-1} !

 \square seems to require simulating automata $m \cdot \sigma$ times

State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"

Computing DFA efficiently

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightsquigarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

Computing DFA efficiently

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

```
<sup>1</sup> procedure constructDFA(P[0..m))
```

```
<sup>2</sup> // \delta[q][c] = target state when reading c in state q
```

```
\mathbf{for} \ c \in \Sigma \ \mathbf{do}
```

$$\delta[0][c] := 0$$

$$\delta[0][P[0]] := 1$$

$$x := 0$$

7 **for**
$$j = 1, \dots, m - 1$$
 do
8 **for** $c \in \Sigma$ **do** // comu tran

for
$$c \in \Sigma$$
 do // copy transitions
 $\delta[j][c] := \delta[x][c]$

$$\delta[j][P[j]] := j + 1 // match edge$$

$$x := \delta[x][P[j]] // update x$$

Example: P[0..6) = ababac

a 1 3 5 b 0 2 0 4 0 4 c 0 0 0 0 0 6	$\delta(c,q)$	0	1	2	3	4	5
	а	1	1	3	1	5	I
c 0 0 0 0 0 4	b	Ö	2	O	4	0	9
	С	0	0	C	0	Ο	6

 $\times = 3$

Computing DFA efficiently

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightsquigarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

```
<sup>1</sup> procedure constructDFA(P[0..m))
```

```
<sup>2</sup> // \delta[q][c] = target state when reading c in state q
```

```
\mathbf{for} \ c \in \Sigma \ \mathbf{do}
```

```
\delta[0][c] := 0
```

$$\delta[0][P[0]] := 1$$

$$x := 0$$

9

7 **for**
$$j = 1, ..., m - 1$$
 do

for $c \in \Sigma$ do // copy transitions

$$\delta[j][c] := \delta[x][c]$$

10 $\delta[j][P[j]] := j + 1 // match edge$ 11 $x := \delta[x][P[j]] // update x$ **Example:** P[0..6) = ababac

$\delta(c,q)$	0	1	2	3	4	5
а	1	1	3	1	5	1
b	0	2	0	4	0	4
С	0	0	0	0	0	6

String matching with DFA – Discussion

► Time:

- Matching: *n* table lookups for DFA transitions
- ▶ building DFA: $\Theta(m\sigma)$ time (constant time per transition edge).
- $\rightsquigarrow \Theta(m\sigma + n)$ time for string matching.

Oct 2022 Unicode 6 = 149.186

► Space:

• $\Theta(m\sigma)$ space for transition matrix.

fast matching time actually: hard to beat! total time asymptotically optimal for small alphabet (for $\sigma = O(n/m)$)

Substantial **space overhead**, in particular for large alphabets

4.5 The Knuth-Morris-Pratt algorithm

Failure Links

- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- → KMP's third insight: do this last step of simulation from state *x* during *matching*! ... but how?

Failure Links

- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- → KMP's third insight: do this last step of simulation from state *x* during *matching*! ... but how?
- Answer: Use a new type of transition, the *failure links*
 - Use this transition (only) if no other one fits.
 - ▶ × *does not consume a character.* → might follow several failure links

→ Computations are deterministic (but automaton is not a real DFA.)

Failure link automaton – Example

Example: T = abababaaaca, P = ababaca

Failure link automaton – Example

Example: T = abababaaaca, P = ababaca

(after reading this character)

Clicker Question

Clicker Question

The Knuth-Morris-Pratt Algorithm

¹ procedure KMP(T[0..n), P[0..m)) fail[0..m] := failureLinks(P)2 i := 0 // current position in T3 .q := 0 // current state of KMP automaton4 while i < n do 5 if T[i] == P[q] then 6 i := i + 1; q := q + 17 if q == m then 8 **return** i - q // occurrence found 9 else // *i.e.* $T[i] \neq P[q]$ 10 if $q \ge 1$ then 11 $q := fail[q] // follow one \times$ 12 else 13 i := i + 114 end while 15 return NO MATCH 16

- only need single array *fail* for failure links
- (procedure failureLinks later)

The Knuth-Morris-Pratt Algorithm

¹ procedure KMP(T[0..n), P[0..m)) fail[0..m] := failureLinks(P) 2 i := 0 // current position in T3 q := 0 // current state of KMP automaton4 while i < n do 5 if T[i] == P[a] then 6 i := i + 1; q := q + 1an 7 if q == m then 8 **return** i - q // occurrence found 9 else // *i.e.* $T[i] \neq P[q]$ 10 if $q \ge 1$ then 11 $q := fail[q] // follow one \times$ 12 else 13 i := i + 114 end while 15 return NO MATCH 16

- only need single array *fail* for failure links
- (procedure failureLinks later)

Analysis: (matching part)
always have fail[j] < j for j ≥ 1
→ in each iteration
either advance position in text (i := i + 1) ≤ ∽ ≤ lepts
or shift pattern forward (guess i - q) ≤ ⋈ ≤ lepts
each can happen at most n times

 $\rightsquigarrow \leq 2n$ symbol comparisons!

Computing failure links

▶ failure links point to error state *x* (from DFA construction)

 \rightarrow run same algorithm, but store *fail*[*j*] := *x* instead of copying all transitions

```
<sup>1</sup> procedure failureLinks(P[0..m))
      fail[0] := 0
2
      x := 0
3
      for i := 1, ..., m - 1 do
4
      fail[i] := x
5
      // update failure state using failure links:
6
       while P[x] \neq P[i]
7
               if x == 0 then
8
                    x := -1; break
9
               else
10
                    x := fail[x]
11
           end while
12
           x := x + 1
13
      end for
14
```

Computing failure links

▶ failure links point to error state *x* (from DFA construction)

 \rightsquigarrow run same algorithm, but store *fail*[*j*] := *x* instead of copying all transitions

```
<sup>1</sup> procedure failureLinks(P[0..m))
      fail[0] := 0
2
      x := 0
3
      for j := 1, ..., m - 1 do
4
           fail[i] := x
5
           // update failure state using failure links:
6
           while P[x] \neq P[i]
7
                if x == 0 then
8
                     x := -1; break
9
                else
10
                     x := fail[x] < \times
11
           end while
12
           x := x + 1
13
       end for
14
```

Analysis:

- ▶ *m* iterations of for loop
- while loop always decrements x
- x is incremented only once per iteration of for loop
- $\rightsquigarrow \leq m$ iterations of while loop *in total*
- $\rightsquigarrow \leq 2m$ symbol comparisons

Knuth-Morris-Pratt – Discussion

► Time:

- $\leq 2n + 2m = O(n + m)$ character comparisons
- clearly must at least read both T and P
- \rightsquigarrow KMP has optimal worst-case complexity!

Space:

• $\Theta(m)$ space for failure links

total time asymptotically optimal (for any alphabet size)
reasonable extra space

Clicker Question

What are the main advantages of the KMP string matching (using the failure-link automaton) over string matching with DFAs? Check all that apply.

- A) faster preprocessing on pattern
 -) faster matching in text
 - fewer character comparisons
 - uses less space
 -) makes running time independent of σ
- I don't have to do automata theory

Clicker Question

|→ sli.do/comp526

The KMP prefix function

▶ It turns out that the failure links are useful beyond KMP

▶ a slight variation is more widely used: (for historic reasons) the (KMP) *prefix function* $F : [1..m - 1] \rightarrow [0..m - 1]$:

F[j] is the length of the longest prefix of P[0..j] that is a suffix of P[1..j].

• Can show: fail[j] = F[j-1] for $j \ge 1$, and hence

fail[j] = length of the longest prefix of P[0.,j) that is a suffix of P[1.,j).

memorize this!

4.6 Beyond Optimal? The Boyer-Moore Algorithm

not part of exam material

Motivation

▶ KMP is an optimal algorithm, isn't it? What else could we hope for?

Motivation

- ▶ KMP is an optimal algorithm, isn't it? What else could we hope for?
- KMP is "only" optimal in the worst-case (and up to constant factors)
- how many comparisons do we need for the following instance? T = aaaaaaaaaaaaaaaaaaaaa, P = xxxxx
 - there are no matches
 - we can *certify* the correctness of that output with only 4 comparisons:

Т	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
					х											
										х						
															х	
																х

→ We did *not* even read most characters!

Boyer-Moore Algorithm

• Let's check guesses *from right to left*!

▶ If we are lucky, we can eliminate several shifts in one shot!

Boyer-Moore Algorithm

Let's check guesses from right to left!

▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for $T = a^n$, $P = ba^{m-1}$

- $\rightsquigarrow~$ New rules:
 - **Bad character jumps**: Upon mismatch at T[i] = c:
 - ▶ If *P* does not contain *c*, shift *P* entirely past *i*!
 - ▶ Otherwise, shift *P* to align the *last occurrence* of *c* in *P* with *T*[*i*].
 - Good suffix jumps:

Upon a mismatch, shift so that the already matched *suffix* of *P* aligns with a previous occurrence of that suffix (or part of it) in *P*. (Details follow; ideas similar to KMP failure links)

 $\rightsquigarrow\,$ two possible shifts (next guesses); use larger jump.

R' lail occurrence of a

in P

0

Boyer-Moore Algorithm – Code

```
<sup>1</sup> procedure boyerMoore(T[0..n), P[0..m))
       \lambda := \text{computeLastOccurrences}(P)
2
       \gamma := \text{computeGoodSuffixes}(P)
3
       i := 0 // current guess
4
       while i < n - m
5
            j := m - 1 // next position in P to check
6
            while j \ge 0 \land P[j] == T[i + j] do
7
                i := i - 1
8
            if j = -1 then
9
                 return i
10
            else
11
                 i := i + \max\{j - \lambda[T[i+j]], \gamma[j]\}
12
       return NO MATCH
13
```

- λ and γ explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

 \rightsquigarrow 6 characters not looked at

 \rightsquigarrow 6 characters not looked at

→ 4 characters not looked at

Last-Occurrence Function

- Preprocess pattern P and alphabet Σ
- last-occurrence function $\lambda[c]$ defined as
 - the largest index *i* such that P[i] = c or
 - \blacktriangleright -1 if no such index exists

Last-Occurrence Function

- Preprocess pattern P and alphabet Σ
- *last-occurrence function* $\lambda[c]$ defined as
 - the largest index *i* such that P[i] = c or
 - \blacktriangleright -1 if no such index exists
- Example: P = moore

С	m	0	r	е	all others
$\lambda[c]$	0	2	3	4	-1

P	=	m	0	0	r	е					
T	=	b	0	у	е	r	m	0	0	r	е
						е					
						<mark>e</mark> (r)	е				

$$i = 0, j = 4, T[i + j] = r, \lambda[r] = 3$$

 \rightsquigarrow shift by $j - \lambda[T[i+j]] = 1$

• λ easily computed in $O(m + \sigma)$ time.

• store as array $\lambda[0..\sigma)$.

1. $P = sells_shells$

s	h	е	i	ι	а	ц	S	е	ι	ι	S	ы	s	h	е	ι	ι	S

1. P = sells_shells

s	h	е	i	ι	а	ы	S	е	ι	ι	S	ы	s	h	е	ι	ι	S
							h	e	l	l	S							

1. $P = sells_{i}shells$

 s	h	е	i	ι	_					S	_		е	ι	ι	S
						h	е	l	ι	S						
							(e)	(1)	(1)	(s)						

1. $P = sells_shells$

S	h	е	i	ι	а	ы	s	е	ι	ι	s	ц	s	h	е	ι	ι	S
							h	е	l	ι	S							
								(e)	(1)	(1)	(s)							

2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	С	0
				0	f	0	0	d										

1. $P = sells_shells$

5	5	h	е	i	ι	а	ы	S	е	ι	ι	S	ц	S	h	е	ι	ι	S
								h	е	l	l	S							
									(e)	(l)	(l)	(s)							

2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	с	0
				0	f	0	0	d										
							(0)	(d)										

1. $P = sells_shells$

s	h	е	i	ι	а	ы	s	е	ι	ι	s	ц	s	h	е	ι	ι	S
							h	е	ι	ι	S							
								(e)	(l)	(l)	(s)							

2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	С	0
				0	f	0	0	d										
							(0)	(d)										

matched suffix

- ► **Crucial ingredient:** longest suffix of *P*[*j*+1..*m*) that occurs earlier in *P*.
- 2 cases (as illustrated above)
 - **1.** complete suffix occurs in $P \rightsquigarrow$ characters left of suffix are *not* known to match
 - 2. part of suffix occurs at beginning of *P*

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - ► At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

			h	е	ι	ι	S				
			×	(e)	(l)	(l)	(s)				

-OR-

• $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(0)	(d)					

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

			h	е	ι	ι	S				
			×	(e)	(l)	(l)	(s)				

-OR-

• $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(0)	(d)					

• Computable (similar to KMP failure function) in $\Theta(m)$ time.

Note: You do not need to know how to find the values γ[j] for the exam, but you should be able to find the next guess on examples.

Boyer-Moore algorithm – Discussion

Worst-case running time $\in O(n + m + \sigma)$ if *P* does *not* occur in *T*. (follows from not at all obvious analysis!)

As given, worst-case running time $\Theta(nm)$ if we want to report all occurrences

- To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of P)
- ▶ Note: KMP reports all matches in O(n + m) without modifications!

On typical *English text*, Boyer Moore probes only approx. 25% of the characters in *T*!

 $\rightsquigarrow~$ Faster than KMP on English text.

requires moderate extra space $\Theta(m + \sigma)$

Clicker Question

Clicker Question

4.7 The Rabin-Karp Algorithm

Space – The final frontier

- ▶ Knuth-Morris-Pratt has great worst case and real-time guarantees
- Boyer-Moore has great typical behavior
- ► What else to hope for?

Space – The final frontier

- ▶ Knuth-Morris-Pratt has great worst case and real-time guarantees
- Boyer-Moore has great typical behavior
- ► What else to hope for?
- All require Ω(m) extra space; can be substantial for large patterns!
- Can we avoid that?

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use *hashing* (but without explicit hash tables)

- Precompute & store only *hash* of pattern
- Compute hash for each guess
- ▶ If hashes agree, check characterwise

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use *hashing* (but without explicit hash tables)

- Precompute & store only *hash* of pattern
- Compute hash for each guess
- ▶ If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers) P = 59265 T = 3141592653589793238Hash function: $h(x) = x \mod 97$ $\implies h(P) = 95$.

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use *hashing* (but without explicit hash tables)

- Precompute & store only *hash* of pattern
- Compute hash for each guess
- ▶ If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers) P = 59265 T = 3141592653589793238Hash function: $h(x) = x \mod 97$ $\rightsquigarrow h(P) = 95.$

Rabin-Karp Fingerprint Algorithm – First Attempt

¹ **procedure** rabinKarpSimplistic(T[0..n), P[0..m)) M := suitable prime number 2 $h_P := \text{computeHash}(P[0..m), M)$ 3 **for** i := 0, ..., n - m **do** 4 $h_T := \text{computeHash}(T[i..i + m), M)$ 5 if $h_T == h_P$ then 6 if T[i..i + m] == P // m comparisons 7 then return *i* 8 return NO MATCH 9

• never misses a match since $h(S_1) \neq h(S_2)$ implies $S_1 \neq S_2$

▶ h(T[k..k+m) depends on *m* characters \rightsquigarrow naive computation takes $\Theta(m)$ time

 \rightsquigarrow Running time is $\Theta(mn)$ for search miss . . . can we improve this?

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- **Crucial insight:** We can update hashes in constant time.
 - Use previous hash to compute next hash
 - ► *O*(1) time per hash, except first one

for above hash function!

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- Crucial insight: We can update hashes in constant time.
 - Use previous hash to compute next hash
 - ► *O*(1) time per hash, except first one

Example:

- ▶ **Pre-compute:** 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- ▶ Next hash: 15926 mod 97 = ??

415926

for above hash function!

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- Crucial insight: We can update hashes in constant time.
 - Use previous hash to compute next hash
 - ► *O*(1) time per hash, except first one

Example:

- ▶ **Pre-compute:** 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- ▶ Next hash: 15926 mod 97 = ??

Observation:

$$15926 \mod 97 = (41592 - (4 \cdot 10000)) \cdot 10 + 6 \mod 97$$

= (76 - (4.9)) \cdot 10 + 6 \cdot 6 \cdot 97
= 406 \cdot 6 \cdot 97 = 18

for above hash function!

Rabin-Karp Fingerprint Algorithm – Code

• use a convenient radix $R \ge \sigma$ (R = 10 in our examples; $R = 2^k$ is faster)

Choose modulus *M* at *random* to be huge prime (randomization against worst-case inputs)

▶ all numbers remain $\leq 2R^2 \iff O(1)$ time arithmetic on word-RAM

¹ **procedure** rabinKarp(T[0..n), P[0..m), R) M := suitable prime number 2 $h_P := \text{computeHash}(P[0..m), M)$ 3 $h_T := \text{computeHash}(T[0..m), M)$ $s := R^{m-1} \mod M$ 5 **for** i := 0, ..., n - m **do** if $h_T == h_P$ then 7 if $T[i_i, i+m] \neq P$ // $\Theta(m)$ 8 return *i* 9 if i < n - m then 10 $h_T := ((h_T - T[i] \cdot s) \cdot R + T[i + m]) \mod M$ 11 return NO MATCH 12

Rabin-Karp – Discussion

 \bigcirc Expected running time is O(m + n)

Extends to 2D patterns and other generalizations

Only constant extra space!

Clicker Question

Suppose we apply only the hashing part of Rabin-Karp (drop the check if T[i..i + m] = P, and only return *i*). Check all correct statements about the resulting algorithm.

A The algorithm can miss occurrences of *P* in *T* (false negatives).

The algorithm can report positions that are not occurrences (false positives).

) The running time is $\Theta(nm)$ in the worst case.

) The running time is $\Theta(n + m)$ in the worst case.

) The running time is $\Theta(n)$ in the worst case.

→ sli.do/comp526

Clicker Question

→ sli.do/comp526

String Matching Conclusion

	Brute- Force	DFA	КМР	BM	RK	Suffix trees*
Preproc. time	—	$O(m\sigma)$	O(m)	$O(m + \sigma)$	O(m)	O(n)
Search time	O(nm)	O(n)	O(n)	O(n) (often better)	O(n + m) (expected)	O(m)
Extra space	—	$O(m\sigma)$	O(m)	$O(m + \sigma)$	<i>O</i> (1)	O(n)

* (see Unit 8)