

COMP526 (Fall 2023) University of Liverpool version 2023-09-30 16:40

Learning Outcomes

- 1. Understand the difference between empirical *running time* and algorithm *analysis*.
- 2. Understand *worst/best/average case* models for input data.
- 3. Know the *RAM machine* model.
- **4.** Know the definitions of *asymptotic notation* (Big-Oh classes and relatives).
- 5. Understand the reasons to make *asymptotic approximations*.
- 6. Be able to *analyze* simple *algorithms*.

Unit 1: Machines & Models

Outline

1 Machines & Models

- 1.1 Algorithm analysis
- 1.2 The RAM Model
- 1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions. $\sum_{\text{think: recipe}}^{1}$

More precisely:

e.g. Python script

- **1**. mechanically executable
 - \rightsquigarrow no "common sense" needed
- **2.** finite description *≠* finite computation!
- 3. solves a *problem*, i. e., a class of problem instances x + y, not only 17 + 4
- input-processing-output abstraction

Typical example: bubblesort

→ not a specific program but the underlying idea

What is a data structure?

A data structure is

- 1. a rule for encoding data (in computer memory), plus
- 2. algorithms to work with it (queries, updates, etc.)

typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means can be complicated in distributed systems

- fast running time
- moderate memory *space* usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiments

Why not simply run and time it?

- results only apply to
 - ► single *test* machine
 - tested inputs
 - tested implementation
 - ► ...
 - \neq universal truths

- instead: consider and analyze algorithms on an abstract machine
 - $\rightsquigarrow\,$ provable statements for model

survives Pentium 4

- \rightsquigarrow testable model hypotheses
- → Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

worst-case performance: consider the *worst* of all inputs as our cost metric

best-case performance:

consider the best of all inputs as our cost metric

average-case performance:

consider the average/expectation of a random input as our cost metric

Usually, we apply the above for *inputs of same size n*.

 \rightsquigarrow performance is only a **function of** *n*.

1.2 The RAM Model

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)

what an execution costs

Goal: Machine model should be

detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*
- Goal: Machine model should be

detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

 \rightsquigarrow usually some compromise is needed

Random Access Machines

Random access machine (RAM)

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[i] and registers R_i store *w*-bit integers, i. e., numbers in $[0..2^w 1]$ *w* is the word width/size; typically $w \propto \lg n \rightarrow 2^w \approx n$

/ we will see further models later

Instructions:

- ▶ load & store: R_i := MEM[R_j] MEM[R_j] := R_i
 ▶ operations on registers: R_k := R_i + R_j (arithmetic is modulo 2^w!) also R_i - R_j, R_i · R_j, R_i div R_j, R_i mod R_j C-style operations (bitwise and/or/xor, left/right shift)
- conditional and unconditional jumps
- cost: number of executed instructions

---- The RAM is the standard model for sequential computation.

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

Pseudocode

- ▶ Programs for the random-access machine are very low level and detailed
- \approx assembly/machine language

Typical simplifications when describing and analyzing algorithms:

code that humans understand (easily)

- more abstract pseudocode*
 - control flow using if, for, while, etc.
 - variable names instead of fixed registers and memory cells
 - memory management (next slide)
- count *dominant operations* (e.g. memory accesses) instead of all RAM instructions

In both cases: We can go to full detail where needed.

Memory management & Pointers

- A random-access machine is a bit like a bare CPU . . . without any operating system
 ~ cumbersome to use
- ▶ All high-level programming languages add *memory management* to that:
 - ▶ Instruction to *allocate* a contiguous piece of memory of a given size (like malloc).
 - used to allocate a new array (of a fixed size) or
 - a new object/record (with a known list of instance variables)
 - There's a similar instruction to free allocated memory again.
 - A *pointer* is a memory address (i. e., the *i* of MEM[*i*]).
 - Support for procedures (a.k.a. functions, methods) calls including recursive calls
 - (this internally requires maintaining call stack)

We will mostly ignore *how* all this works in COMP526.

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n\lfloor \log_2(n+1) \rfloor + 7n - 3\lfloor \log_2(n+1) \rfloor + 120$

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n \lfloor \log_2(n+1) \rfloor + 7n - 3 \lfloor \log_2(n+1) \rfloor + 120 \sim 2n^2$

Asymptotic tools – Formal & definitive definition

► "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ "f and g are asymptotically equivalent" Asymptotic tools – Formal & definitive definition if, and only if ▶ "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ "f and g are asymptotically equivalent" **"Big-Oh Notation":** $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist! $\inf \lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ **riants:** "Big-Omega" • $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ • $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ Variants:

Asymptotic tools – Formal & definitive definition if, and only if ▶ "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ "f and g are asymptotically equivalent" **"Big-Oh Notation":** $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist! $\inf \lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ **Variants:** "Big-Omega" $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ ► $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ "Big-Theta" ^{"Big-Theta"} $f(n) \in o(g(n))$ iff $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$ "Little-Oh Notation": $f(n) \in \omega(g(n))$ if $\lim = \infty$

Asymptotic tools – Intuition

► f(n) = O(g(n)): f(n) is at most g(n)up to constant factors and for sufficiently large n

► $f(n) = \Theta(g(n))$: f(n) is equal to g(n)up to constant factors and $f'(u) \neq \Im(u)$ for sufficiently large n

Example 🗗

Plots can be misleading!

$$f(u) \leq g(u) \leq (=) \int (u) \geq f(u)$$

Assume $f(n) \in O(g(n))$. What can we say about g(n)? A g(x) = O(f(x))B $g(n) = \Omega(f(n)) \checkmark$ C $g(x) = \Theta(f(x))$ D Nothing (it depends on f and g)

Use *wolframalpha* to compute/check limits.

Asymptotics – Frequently used facts

► Rules:

- $c \cdot f(n) = \Theta(f(n))$ for constant $c \neq 0$
- $\Theta(f + g) = \Theta(\max\{f, g\})$ largest summand determines Θ -class
- Frequently used orders of growth:
 - ► logarithmic $\Theta(\log n)$ Note: a, b > 0 constants $\rightsquigarrow \Theta(\log_a(n)) = \Theta(\log_b(n))$
 - linear $\Theta(n)$
 - linearithmic $\Theta(n \log n)$
 - quadratic $\Theta(n^2)$
 - polynomial $O(n^c)$ for constant c
 - exponential $O(c^n)$ for constant c Note: a > b > 0 constants $\rightsquigarrow b^n = o(a^n)$

Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- n =#bits in m
- ► *x* a floating-point number

1 def pow(x, m):
2 # compute binary representation of exponent
3 exponent_bits = bin(m)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result *= result
7 if bit == '1':
8 result *= x
9 return result

Cost: C = # multiplications

• C = n (line 4) + #one-bits binary representation of *m* (line 5) $\sim n \le C \le 2n$

We showed $n \le C(n) \le 2n$; what is the most precise asymptotic approximation for C(n) that we can make?

Write e.g. $O(n^2)$ for $O(n^2)$ or Theta(sqrt(n)) for $\Theta(\sqrt{n})$.

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- n =#bits in m
- ► *x* a floating-point number

- Cost: C = # multiplications
- C = n (line 4) + #one-bits binary representation of *m* (line 5)

$$\rightsquigarrow n \le C \le 2n$$

 $\rightsquigarrow C = \Theta(n) = \Theta(\log m)$

Note: Often, you can pretend Θ is "like ~ with an unknown constant" *but in this case, no such constant exists*!

