) B HER H 1] [,
2L N0 n
L1 [= H s
HAOD L ==
1O B L T =
THWNHMD T -
) L = e H = U
)LD O WM -
IRV S0 M
A H AT U0 [
TNESE U
2= OB H < 66
ImoZ2eb<< U
I s 3 N =
) HCHU] = T
1O AN
OZ2H<CO H -
OMMLBERDO
AL 2L O
> <O [[[[©

_J | |

5 October 2023

Machines & Models

Sebastian Wild

1

COMP526 (Fall 2023)

University of Liverpool

version 2623-69-30 16:40

Learning Outcomes

7,

Understand the difference between
empirical running time and algorithm
analysis.

Understand worst / best / average case
models for input data.

Know the RAM machine model.

Know the definitions of asymptotic

notation (Big-Oh classes and relatives).

Understand the reasons to make
asymptotic approximations.

Be able to analyze simple algorithms.

Unit 1: Machines & Models

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?
An algorithm is a sequence of instructions.
think: recipe

. e.g. Python script
More precisely:

1. mechanically executable
~ no “common sense” needed

Ui
) ——— 4

2. finite description # finite computation!

3. solves a problem, i.e., a class of problem instances

X +y,notonly 17 + 4

» input-processing-output abstraction
Typical example: bubblesort

. ~> not a specific program
input(s) output(s) but the underlying idea

Algorithm

What is a data structure?

A data structure is

1. arule for encoding data
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

I b Ja &SR Eas
i‘ ’-“'_ﬁ‘lﬂ\.“_\“

: l.lﬁ»“
iu it - D

S
|

1.1 Algorithm analysis

Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to
> compare different algorithms,

» predict their performance in an application

Running time experiments

Why not simply run and time it?

» results only apply to
» single test machine
tested inputs

>

> tested implementation
> ..
+

universal truths

» instead: consider and analyze algorithms on an abstract machine

~~ provable statements for model survives Pentium 4

~ testable model hypotheses

~> Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance: \
consider the worst of all inputs as our cost metric

> best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.

~ performance is only a function of 7.

1.2 The RAM Model

Clicker Question

-~
What is the cost of adding two d-digit integers?

(For example, for d = 5, what is 45235 + 91 342?)

constant time
logarithmic in d
proportional to d

@ quadratic in d

@ no idea what you are talking about

D - sli.do/comp526

Clicker Question

-~
What is the cost of adding two d-digit integers?

(For example, for d = 5, what is 45235 + 91 342?)
constant time \/ e hawe < 64 50h

'] i
proportional to d \/ 1L ovmbe 0w Qc:vy,\,

(D) auedeaticins
@ no idea what you are talking about \/

D - sli.do/comp526’

Machine models
The machine model decides
» what algorithms are possible
> how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Machine models
The machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

honest

~+ usually some compromise is needed

smart investment
banker

Random Access Machines

Random access machine (RAM) e Gl (20 of G e AP Bt s

>
2
>

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev
unlimited memory MEM[0], MEM[1], MEM[2], . . .
fixed number of registers Ry, ..., R, (say r = 100)
memory cells MEM[i] and registers R; store w-bit integers, i. e., numbers in [0..2% — 1]

w is the word width/size; typically n

Instructions:
> load & store: R; := MEM[R;] MEM[R;] := R;
» operations on registers: Ry := R; + R j (arithmetic is modulo 2°!)

also R; —-Rj, Ri-Rj, R; div Rj, R; mod R;
C-style operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

cost: number of executed instructions

we will see further models later

The RAM is the standard model for sequential computation.

Pseudocode

» Programs for the random-access machine are very low level and detailed

~ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

re

code that humans understand (easily)
» more abstract pseudocode

» control flow using if, for, while, etc.
» variable names instead of fixed registers and memory cells

»> memory management (next slide)

% » count dominant operations (e.g. memory accesses) honest

instead of all RAM instructions

In both cases: We can go to full detail where needed.

smart investment
banker

Memory management & Pointers

»> A random-access machine is a bit like a bare CPU ... without any operating system
~» cumbersome to use

» All high-level programming languages add memory management to that:
» Instruction to allocate a contiguous piece of memory of a given size (like malloc).

> used to allocate a new array (of a fixed size) or
> a new object/record (with a known list of instance variables)

» There’s a similar instruction to free allocated memory again.

» A pointer is a memory address (i.e., the i of MEM[]).

» Support for procedures (a.k.a. functions, methods) calls including recursive calls
e e

> (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.

10

1.3 Asymptotics & Big-Oh

Clicker Question

-

What is the correct way to complete the equation?
8n + in?+1024 =

0(1)
O(n)
O(n log(n)
(D) owm?

@ I don’t know O(+)

D - sli.do/comp526

Clicker Question

-

What is the correct way to complete the equation?
8n + in?+1024 =

(A) &
(B) e6n
(C) cbdentun
(p) 0t

[I ENn——

D - sli.do/comp526

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail "
» simplifies analysis

> often necessary for sensible comparison

[Asymptotics = approximation around oo]

Example: Consider a function f (1) given by
2n% — 3nlogy(n + 1)) + 7n — 3|log, (n + 1) + 120

0 10 20 30 40 50 60 70 80 90 100

11

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail "
» simplifies analysis

> often necessary for sensible comparison

[Asymptotics = approximation around oo]

Example: Consider a function f (1) given by
2n% = 3n|logy(n + 1)) + 7n = 3|log,(n +1)| + 120 ~ 2n?

0 10 20 30 40 50 60 70 80 90 100

11

Asymptotic tools — Formal & definitive definition

if, and only if

N
» “Tilde Notation”: f(n) ~g(n) iff lim 00) =

,f and g are asymptotically equivalent”

12

Asymptotic tools —

» “Tilde Notation”:

»> “Big-Oh Notation”:

Formal & definitive definition

if, and le if
f(n) ~g(n) iff lim 00) =

,f and g are asymptotically equivalent”

also write ‘=" instead

f(n) E/O (g(n)) iff) is bounded for 1 > 1y

fin)
g(n

need supremum since limit might not exnst‘

iff hm sup

n—oo

f_>‘

(

Variants: g Omega”
> f(n) € Q(g(n)) iff g(n) e O(f(n)
> fm) € B(g(m) iff f(n)€O(g(m) and fin) € Qs(m)

“Big- Theta

12

Asymptotic tools —

» “Tilde Notation”:

»> “Big-Oh Notation”:

» “Little-Oh Notation”:

Formal & definitive definition

if, and le if
f(n) ~g(n) iff lim 00) =

,f and g are asymptotically equivalent”

also write ‘=" instead

f(n) E/O (g(n)) iff) is bounded for 1 > 1y

fin)
g(n

need supremum since limit might not exnst‘

iff hm sup

n—oo

f_>‘

(

Variants: g Omega”
> f(n) € Q(g(n)) iff g(n) e O(f(n)
> fm) € B(g(m) iff f(n)€O(g(m) and fin) € Qs(m)

“Big- Theta
f(n)

f(n)eo(g(n)) iff lim g(n)

n—oo

f(n) € w(g(n)) if im = o

12

Asymptotic tools — Intuition

» f(n)=0(g(n)): f(n)isatmostg(n)
. .. up to constant factors and
,f (VJ < SC,C} for sufficiently large n

> f(n)=©(g(n): f(n)is equal to g(n)
up to constant factors and
Lo = ale) for sufficiently large

A [Plots can be misleading!] (Example L?‘]

_—

cg(n)

f(n)

no

g <fm=e

c2 g(n)
q(n)

f(n)
c1 8(n)

no

13

Clicker Question

Assume f(n) € O(g(n)). What can we say about g(1)?

g(n) = O(f(n))
g(n) = Q(f(n))
o g(n) = O(f(n))

@ Nothing (it depends on f and g)

D - sli.do/comp526

Clicker Question

DY € gl cm 56D 3O

Assume f(11) € O(g(n)). What can we say about g(1)?
e
g(n) = Q(f(n)

o e
@ Nothi Z]] c]

D - sli.do/comp526

Clicker Question

Assume f(n) € O(g(n)). What can we say about g(1)?
ot
g =0(m) G fn) % 0)
0o e

@ Nothing (it depends on f and g) \/

D - sli.do/comp526

Asymptotics — Example 1
Basic examples: LGN g
(____/&d——ﬁ (~M
> 2017 + 10nIn(n) +5 ~ 20n% = (%)
> 31g(n?) K1k (le(n)) = O@osn)

> 10! = O(1) =
—(\[M\ = O(mz>

QST @51

J’(Q = @(r/\?> \
fuy = Q(F)
3-4 ﬁg(m\ + %(?ﬂﬂ)

QOEL'V\ h:m
C*«.\
=> f,@ s 3= bouded
=D £

Use wolframalpha to compute/check limits.

£6.)
() w & (o = s
£ g (@) 50 i 1
Biwn 010 wlon 4+ S
1Q
" oo ZOV\J < =
Q\‘m/\ = 2 + Z\}M \———O till + Z"W /—g—
1> /’M n=-o 2@\4‘&l -4 29“?
o k/——\,\/ ~—
ﬁ(v\j =0 <
- — 4 (o
n =) edid
n> p 3
—_— 5 — S
;{q’) = > ,Q/M\ 1S QCDUL‘J—\J

14

Clicker Question

Is (sin(n) + 2)n? = @(n?)?

Yes No

D - sli.do/comp526

Clicker Question

(S\"V\(My +2> XZ
_\)_ﬁ/{/_/
LSfm(u.\ ‘r?‘)\/\a = O(M2>

< 5

Is (sin(n) + 2)n? =

Yes\/

O(n?)?

(B) Ne

a [
— <L
(SV'M(MMZ)/ “1+Z

- sli.do/comp526’

Asymptotics — Frequently used facts

» Rules:

» ¢ f(n) = O(f(n)) for constant c # 0

>

O(f +g) = O(max{f,g}) largestsummand determines ®-class

» Frequently used orders of growth:

>

vyVVvyVvYyYvyy

logarithmic @(log 7’1) Note: a,b > 0 constants ~+ ©(log, (1)) = O(log, (1))

linear ©(n)

linearithmic ©(n logn)
quadratic On?)

polynomial O(n°) for constant ¢

exponential O(c") for constant ¢

Note: a > b > 0 constants ~» b" = o(a")

15

Asymptotics — Example 2

Square-and-multiply algorithm

for computing x™ with m € N def pow(x, m):

1
2 # compute binary representation of exponent
Inputs: 4 nary rep f exp

3 exponent_bits = bin(1)[2:]

» m as binary number (array of bits) 4 result = 1 -

» 1 = #bitsinm 5 for bit in exponent_bits:

. . 6 result = result A

» x a floating-point number ; if bit == 1"
8 results==x |
9 return result

» Cost: C =#multiplications

» C=n (linqg + #one-bits binary representation of 1 (line 5y
g

~n<C<2n

16

Clicker Question

We showed 7 < C(n) < 2n; what is the most precise
asymptotic approximation for C(#) that we can make?

Write e. g. 0(n"2) for O(n?) or Theta(sqrt(n)) for ©(~/n).

D - sli.do/comp526

Asymptotics — Example 2 E——

Square-and-multiply algorithm |
for computing x™ with m € N

Inputs:
» i as binary number (array of bits)
> 1 = #bitsin m

» x a floating-point number

u 2
Eﬁls — =7
A - H ok

! ! ! ! L
0 200 400 600 800 1000
J

¢

» Cost: C =#multiplications

» C = n (line 4) + #one-bits binary representation of m (line 5) hl < 4
~n<C<2n cCD

~{C=0(}) = 6(ogm)

Note: Often, you can pretend © is “like ~ with an unknown constant”
but in this case, no such constant exists!

