) B HER H 1] [,
2L NOH] <
1L = HNH
- [T L ==
1O R LT = [
T HWNHMD T -
) [L = e - = O
) [L DO WM
1INV S0 M
(A H T U0 [
T NEE AU [
2= 0B H< 6P
e o R O R=As Al SRS 7D
FAMNOZF =
) HEHU M = T
1O [
02 H<CO H H
OMLBEHOM
ldHL 2L HO
> <O MM [[k ©

_J | |

Proof Techniques

28 September 2023

Sebastian Wild

COMP526 (Fall 2023)

University of Liverpool

version 2023-09-27 23:44

Learning Outcomes

1. Know logical proof strategies for proving
implications, set inclusions, set
equalities, and quantified statements.

2. Be able to use mathematical induction in
simple proofs.

3. Know techniques for proving termination
and correctness of procedures.

Unit 0: Proof Techniques

Outline

O Proof Techniques

0.1 Digression: Random Shuffle
0.2 Proof Templates
0.3 Mathematical Induction

0.4 Correctness Proofs

0.1 Digression: Random Shuffle

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.

More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..n))

2 fori :=0,...,n—1

3 r := randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?

Clicker Question

-~
Select all statements that apply to myShuffle (for you). h

I'have seen this shuffling algorithm (or a very similar
method) before.

I can understand the pseudocode for myShulffle (so I would
be able to do an example by hand).

It can generate all possible orderings of A (depending on the
random numbers).

o @ myShuffle produces all possible orderings with the same
probability.

@ Assuming randomInt gives (perfect) uniform random
numbers in the given range, myShuffle generates any

ordering with equal probability.

D ‘ - sli.do/comp526

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..1n))

2 fori :=0,...,n—1

3 r = randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?

n=2

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..1n))

2 fori :=0,...,n—1

3 r := randomInt([0..1)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right??

n=2 m=3

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..17))

2 fori :=0,...,n—1

3 r = randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right???

n:2 n:3 n:4

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.
More precisely: Any ordering of the elements A[0], .. ., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..17))

2 fori :=0,..., n-—1

3 r := randomInt([0..1)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right????

08 ERREEE M
i Tl - -

Random shuffle

» Goal: Put an array A[0..1) of n numbers into random order.
More precisely: Any ordering of the elements A[0], .. ., A[n — 1] should be equally
likely.

> A natural approach yields the following code

r := randomInt([0..
Swap Ali] and

ndom number r with0 < r <n. < WRONG!
o DO NOT USE

tuitively: All elements are moved to a random index, so the order is random ..

08 ERREEE M
i Tl - -

. right????

Clicker Question

-~

Select all statements that apply to myShuffle (for you).

I'have seen this shuffling algorithm (or a very similar
method) before.

I can understand the pseudocode for myShulffle (so I would
be do an example by hand).

It can generate all possible orderings of A (depending on the
random numbers).

(6]

%’l O

7

e*éeﬂﬂw : 1 -

D -~ sli.do/comp526

Correct shuffle

> interestingly, a very small change corrects the issue

1 procedure shuffleKnuthFisherYates(A[0..1))

2 fori:=0,...,n—1

3 r := randomInt([7..17))
4 Swap Ali] and A[r]

5 end for

» Jooks good ...

.. but how can we convince ourselves that it is correct beyond any doubt?

0.2 Proof Templates

What is a formal proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference riles (of the logical system).
ryerence rutes

[\
Among experts: Suffices to convince a human that a formal proof exists. __@
X

But: Use formal logic as guidance against faulty reasoning. ~+ bulletproof

What is a formal proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference riles (of the logical system).

Q 0
Among experts: Suffices to convince a human that a formal proof exists. __@

K
But: Use formal logic as guidance against faulty reasoning. ~~ bulletproof < SI-L |>§
Notation:

» Statements: A = “it rains”, B = “the street is wet”.
» Negation: —A “Not A”
» And/Or: AAB “Aand B”; AV B “Aor B orboth”

» Implication: A= B “If A, then B”; @

»> Equivalence: A & B “A holds true if and only z'f(’zji) B holds true.”; (A= B)A(B= A)
RN
5

o

Clicker Question

. A =) 6 =
Is the following statement true?
“If the Earth is flat, then ships can fall over its rim.”
A B
Yes No

e
Neither

- sli.do/comp526

Clicker Question

Is the following statement true?
“If the Earth is flat, then ships can fall over its rim.”

o Yes/ Ne Nei-tt-hei=

D - sli.do/comp526

Implications

To prove A = B, we can

- => " A
» directly derive B from A direct proof -
» prove (-B) = (—=A4) indirect proof, proof by contraposition
> assume A A =B and derive a contradiction proof by contradiction, reductio ad absurdum

> distinguish cases, i. e., separately prove
(ANC)= Band (AA-C)= B. proof by exhaustive case distinction

Clicker Question

-~
Suppose we want to prove: noodd h
“If n> € Nj is an even number, then 7 is also even.” —, , - Urd ML some
For that we show that when 7 is odd, also 72 is odd. ke
Which proof template do we follow? =5 W= (Zls 1)
direct proof: A = B AT
indirect proof: (-B) = (=A) = 202k%0) 11
/
proof by contradiction: A A =B = ¢ - 2z =xealN
= " odd
@ proof by case distinction: (A A C) = B and (A A -C) = B
- /

D - sli.do/comp526

Clicker Question

A=R
-~
Suppose we want,to prove: 24
“If n> € Ny is an even number, then n is also even.”
For that we show that when 7 i d, also ?rf/is’o,ddd.
Which proof template do we follow? T
irectproofrd———"_t b
indirect proof: (-B) = (=A) \/
(.

D ‘ - sli.do/comp526

Equivalences

To prove A & B,
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set S contains a set R,i.e., R C S,
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S C R and R C S separately.

0.3 Mathematical Induction

Quantified Statements

Notation A(é)
> Statements with parameters: A(x) = “xis an even number.” AL
> Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”

» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).”
Note: Vx : A(x) is equivalent to —=3x : = A(x)

Quantifiers can be nested, e. g., e-6-criterion for limits:

lim f(x)=a & Ve>036>0: (Jx—£& <0) = |f(x)—a|<e.
x—& = -

To prove Jx : A(x), we simply list an example & such that A(&) is true.

Clicker Question

(Have you seen proofs by mathematical induction before?
Yes, could do it
Yes, but only vaguely remember
o I've heard this term before, but ...
L @ I have not heard “mathematical induction” before

D - sli.do/comp526

For-all statements

To prove Vx : A(x), we can

» derive A(x) for an “arbitrary but fixed value of x”, or, Alw)
» for x € Ny, use induction, i.e., 6 A (/’(\)
» prove A(0), induction basis, and ’
» proveVn e Ny: A(n) = A(n +1) inductive step
Al

More general variants of induction:

»> complete/strong induction
inductive step shows (A(0) A --- A A(n)) = A(n +1)

» structural/transfinite induction
works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, . . .

no infinite strictly decreasing chains

10

0.4 Correctness Proofs

Formal verification

» verification: prove that a program computes the correct result
~+ not our focus in COMP 526
but some techniques are useful for reasoning about algorithms
Here:
1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

'\W(Ju{ —> K6 S cvmffu%

11

Proving termination
To prove that a recursive procedure proc(xy, . .., X;) eventually terminates, we

» define a potential ®(x1, . ..x,) € Ny of the parameters N = 20([2 g
(Note: ®(x1,...x,) > 0 by definition!) °
'N>F Tloz,.5..%

» prove that every recursive call decreases the potential, i.e.,
any recursive call proc(y1, ..., y,) inside proc(x, . .., x,,) satisfies

DY, ..., Ym) < P(x1,...,%m) which means
®(y1,--~,ym) < O(xq,...,xm) =1

~ proc(xy, ..., x,) terminates because
we can only strictly decrease the (integral) potential
a finite number of times from its initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~ see tutorials for an example.

Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

T —>1 //(A) before loop For that, we
2> while cond do .))
3 // (B) before body » find a loop invariant I (that's the tough part!)
¢ by » prove that I holds at (A)
<« 5 //(C) after body
7 end while » prove that I A cond at (B) imply I at (C)

T

L =7 //(D) after loop

» prove that I A ~cond imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

PM COM&[I\‘@(A “:’3 POS'% Cﬂucl)‘ﬂ\nom

(nm uav"m%gr CO&SL (O"‘ Vav{o\t’zﬂkS (5 Qh’}qué)

i ok o ebe)

13

Loop invariant — Example

» loop condition: cond = i <n
> post condition (in line 13):

curMax = max Alk]
kel0..n-1]

- Jo liinic

I = curMax = max Alk] Ai<n

ke[0..i-1] C
We have to proof:
(i) I holds at (A) /
(ii) I A cond at (B) = I at(C) /

(iii) I A —cond = post condition

1
2
3
4
5
6
7
8
9

procedure arrayMax(A, 1) ‘ -

// input: array of n elements&l rzﬁl‘{
// output: the maximum element in A[0..n — 1]
curMax := A[0]; i:=1 -
//(A)
while|i < n({do

//(B)

if A[i] > curMax

curMax := Ali]

i=i+1

//(C)
end while
// (D)

return curMax

c= 1 coy Max = Afo} = wax Aﬂ(] v

ke [d o’

14

((() ccsa Jfgf!\‘v\cﬁ{om Equd ®n ('A[Z] > oy Jvluyﬁ

procedure arrayMax(A,n)
// input: array of n elements, n > 1
// output: the maximum element in A[0..n — 1]
curMax = A[0]; i =1
//(A)

1
2
3
4
5
6 while i < n do
7
8
9
10

Gm QJ\M %)

casaele) - WLYUL [Mw e o‘{ L\}

ALY > cur Mo = wmax ALK
T kefo. -0

//(B)
if A[i] > curMax
curMax = Ali]

QL Ci T’\ M L\? A i=i+1

PN < 3 o L: t 7(C)

e cuy " j 12 end while
i 13 //(D)

Coor M ax = AY_‘E — o AS‘_LXB 14 return curMax

Leld..]

cor Max = (Mmox AUX}

% ved g of T holds ok)

case (bY —Pcﬂx&

55

¢

A[CFS < our Mase

Qi\lx-« Q7ca Lo

£n

cx-(bul

Cor M‘\K

at (®)

Lo € :

=

ac

\1

max ALK)
LG 10 z=MY)

s

kefe.]

= wmox AL

Lc—f_&.,;—f]

T (<

(<)

XA

1
2
3
4
5
6
7
8
9

procedure arrayMax(A, 1)
// input: array of n elements, n > 1
// output: the maximum element in A[0..n — 1]
curMax := A[0]; i =1
//(A)
while i < 1 do
= //(B)
if A[i] > curMax
curMax := Ali]
i=i+1
/(C)
end while
//(D)
return curMax

() T A acoud

e AUS
ke lO.. - l,g

v/

(iii) I A ~cond = post condition 1~

post condition (in line 13):

curMax = max A[k]
ke[0..n-1]

I = curMax = max Alk] A i<n
kel0..i~1]

1

