

COMP526 (Fall 2023) University of Liverpool version 2023-09-27 23:44

Learning Outcomes

- 1. Know logical *proof strategies* for proving implications, set inclusions, set equalities, and quantified statements.
- **2.** Be able to use *mathematical induction* in simple proofs.
- **3.** Know techniques for *proving termination* and *correctness* of procedures.

Unit 0: Proof Techniques

Outline

O Proof Techniques

- 0.1 Digression: Random Shuffle
- 0.2 **Proof Templates**
- 0.3 Mathematical Induction
- 0.4 Correctness Proofs

0.1 Digression: Random Shuffle

▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n − 1] should be equally likely.

A natural approach yields the following code

```
<sup>1</sup> procedure myShuffle(A[0..n))
```

```
<sup>2</sup> for i := 0, ..., n - 1
```

³ $r := randomInt([0..n)) // A uniformly random number r with <math>0 \le r < n$.

```
4 Swap A[i] and A[r] // Swap A[i] to random position.
```

```
5 end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right?

- ▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n - 1] should be equally likely.
- A natural approach yields the following code

```
procedure myShuffle(A[0..n))
```

```
2 for i := 0, ..., n-1
```

- r := randomInt([0..n)) // A uniformly random number r with $0 \le r < n$.
- 4 Swap A[i] and A[r] // Swap A[i] to random position.

```
5 end for
```

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right?

3

- ▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n - 1] should be equally likely.
- A natural approach yields the following code

```
procedure myShuffle(A[0..n))
```

```
2 for i := 0, ..., n-1
```

r := randomInt([0..n)) // A uniformly random number r with $0 \le r < n$.

```
4 Swap A[i] and A[r] // Swap A[i] to random position.
```

```
5 end for
```

3

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right??

- ▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n - 1] should be equally likely.
- A natural approach yields the following code

```
procedure myShuffle(A[0..n))
```

```
2 for i := 0, ..., n-1
```

- $r := randomInt([0..n)) // A uniformly random number r with <math>0 \le r < n$.
- 4 Swap A[i] and A[r] // Swap A[i] to random position.
- 5 end for

3

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right???

- ▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n - 1] should be equally likely.
- A natural approach yields the following code

```
procedure myShuffle(A[0..n))
```

```
2 for i := 0, ..., n-1
```

- $r := randomInt([0..n)) // A uniformly random number r with <math>0 \le r < n$.
- 4 Swap A[i] and A[r] // Swap A[i] to random position.
- 5 end for

3

▶ Intuitively: All elements are moved to a random index, so the order is random . . . right????

- ▶ Goal: Put an array A[0..n) of n numbers into random order. More precisely: Any ordering of the elements A[0],...,A[n − 1] should be equally likely.
- A natural approach yields the following code

→ sli.do/comp526

Correct shuffle

interestingly, a very small change corrects the issue

looks good ...

... but how can we convince ourselves that it is correct beyond any doubt?

0.2 Proof Templates

What is a *formal* proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

- 1. is an *axiom* (of the logical system), Or
- 2. follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*. But: Use formal logic as guidance against faulty reasoning. \rightarrow bulletproof

What is a *formal* proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

- 1. is an *axiom* (of the logical system), Or
- 2. follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*. But: Use formal logic as guidance against faulty reasoning. \rightarrow bulletproof

Notation:

- Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".
- ▶ Negation: $\neg A$ "Not A"
- And/Or: $A \land B$ "A and B"; $A \lor B$ "A or B or both"

• Implication: $A \Rightarrow B$ "If A, then B"; $\neg A \lor B$

• Equivalence: $A \Leftrightarrow B$ "A holds true *if and only if* ('*iff*') B holds true."; $(A \Rightarrow B) \land (B \Rightarrow A)$

Implications

▶ prove $(\neg B) \Rightarrow (\neg A)$ indirect proof, proof by contraposition

• assume $A \land \neg B$ and derive a contradiction

proof by contradiction, reductio ad absurdum

• distinguish cases, i. e., separately prove $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$. proof by exhaustive case distinction

n odd $\Rightarrow n = 2k+1$ for some k = (N) $\Rightarrow n^{2} = (2k+1)^{2}$ $= 4k^{2} + 4k + \frac{1}{2}$ $= 2(2k^{2}+2k)$ Suppose we want to prove: "If $n^2 \in \mathbb{N}_0$ is an even number, then *n* is also even." For that we show that when *n* is odd, also n^2 is odd. Which proof template do we follow? direct proof: $A \Rightarrow B$ **B** indirect proof: $(\neg B) \Rightarrow (\neg A)$ =k'eN proof by contradiction: $A \land \neg B \Rightarrow 4$ proof by case distinction: $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$

A => R

Equivalences

To prove $A \Leftrightarrow B$, we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set *S* contains a set *R*, i. e., $R \subseteq S$, we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets *S* and *R* are equal, S = R, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

0.3 Mathematical Induction

Quantified Statements

Notation

- Statements with parameters: $A(x) \equiv "x$ is an even number." A(S)
- Existential quantifiers: $\exists x : A(x)$ "There exists some *x*, so that A(x)."
- ► Universal quantifiers: $\forall x : A(x)$ "For all *x* it holds that A(x)." Note: $\forall x : A(x)$ is equivalent to $\neg \exists x : \neg A(x)$

Quantifiers can be nested, e.g., ε - δ -criterion for limits:

 $\lim_{x \to \xi} f(x) = a \qquad :\Leftrightarrow \qquad \forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \left(|x - \xi| < \delta \right) \Rightarrow \left| f(x) - a \right| < \varepsilon.$

To prove $\exists x : A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

A(6)

For-all statements

To prove $\forall x : A(x)$, we can

- ▶ derive *A*(*x*) for an *"arbitrary but fixed value of x"*, or,
- ▶ for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - prove A(0), *induction basis*, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : A(n) \Rightarrow A(n+1)$ inductive step

A(u+1)

 $\Delta(m)$

More general variants of induction:

- complete/strong induction inductive step shows $(A(0) \land \dots \land A(n)) \Rightarrow A(n+1)$
- structural/transfinite induction works on any *well-ordered* set, e.g., binary trees, graphs, Boolean formulas, strings, ...

0.4 Correctness Proofs

Formal verification

- verification: prove that a program computes the correct result
- not our focus in COMP 526 but some techniques are useful for *reasoning* about algorithms

Here:

- 1. Prove that loop or recursive call eventually *terminates*.
- **2.** Prove that a *loop* computes the *correct* result.

Proving termination

To prove that a recursive procedure $proc(x_1, ..., x_m)$ eventually terminates, we

• define a *potential* $\Phi(x_1, \ldots x_m) \in \mathbb{N}_0$ of the parameters (Note: $\Phi(x_1, \ldots x_m) \ge 0$ by definition!)

 $IN_{0} = \{0, 1, 2, ..., \}$ $IN_{1} = \{1, 2, 3, ..., \}$

prove that every recursive call decreases the potential, i. e., any recursive call proc(y₁,..., y_m) inside proc(x₁,..., x_m) satisfies

$$\Phi(y_1, \dots, y_m) < \Phi(x_1, \dots, x_m) \quad \text{which means}$$

$$\Phi(y_1, \dots, y_m) \le \Phi(x_1, \dots, x_m) - \mathbf{1}$$

→ $proc(x_1, ..., x_m)$ terminates because we can only strictly *decrease* the (integral) potential a *finite* number of times from its initial value

Can use same idea for a loop: show that potential decreases in each iteration.
 see tutorials for an example.

Loop invariants

Goal: Prove that a *post condition* holds after execution of a (terminating) loop.

 $\sum_{i=1}^{n} \frac{1}{A} before loop$ $\sum_{i=1}^{n} \frac{1}{A} before loop$ $\sum_{i=1}^{n} \frac{1}{A} before body$ $\sum_{i=1}^{n} \frac{1}{A} before body$

For that, we

- ► find a *loop invariant I* (that's the tough part!)
- prove that *I* holds at (A)
- prove that $I \wedge cond$ at (B) imply I at (C)
- prove that $I \land \neg cond$ imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

Loop invariant – Example

- loop condition: $cond \equiv i < n$
- ► post condition (in line 13): $curMax = \max_{k \in [0..n-1]} A[k]$
- $\boxed{loop invariant:}_{I \equiv curMax = \max_{k \in [0..i-1]} A[k] \land i \le n }$

We have to proof:

(i) I holds at (A) \checkmark (ii) $I \land cond$ at (B) \Rightarrow I at (C) \checkmark (iii) $I \land \neg cond \Rightarrow$ post condition

li

1	procedure arrayMax(<i>A</i> , <i>n</i>)
2	// input: array of n elements, $n \ge 1$
3	// output: the maximum element in $A[0n-1]$
4	curMax := A[0]; i = 1
5	// (A)
6	while $i < n$ do
7	// (B)
8	if $A[i] > curMax$
9	curMax := A[i]
10	i := i + 1
11	// (C)
12	end while
(13) //(D)
14	return <i>curMax</i>
	$L = 1 \qquad \text{cur Max} = A[0] = \max_{k \in [00]} A[k]$
	$i=1 \leq n$

ocedure arrayMax(*A*,*n*) // input: array of n elements, $n \ge 1$ // output: the maximum element in A[0..n-1]curMax := A[0]; i = 1//(A)while i < n do // (B) **if** A[i] > curMaxcurMax := A[i]i := i + 1//(C) end while //(D) return *curMax*

$$ask (b) false A[i] \leq car Max = max A[k]
I ke E0...i-n
= max A[k]
ke E0...i-n
after line 10
$$cor Max = max A[k]
ke E0...i-1]
for i \leq n : af (B) I: i < n
after line 10 i := i+1
=> i \leq n \\ (ii) = i = i+1 \\ => i \leq n \\ (ii) = i = i+1 \\ => i \leq n \\ (ii) = i = i+1 \\ => i \leq n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i = i+1 \\ => i < n \\ (ii) = i < n \\ (i$$$$

(iii) $I \wedge \neg cond$ $\equiv I \wedge i \geq n$ $\Longrightarrow cor Max = max A[k]$ $k \in [0..n-1]$ (iii) $I \wedge \neg cond \Rightarrow post condition V$ post condition (in line 13): $curMax = \max_{k \in [0..n-1]} A[k]$ $I \equiv curMax = \max_{k \in [0..i-1]} A[k] \wedge i \leq n$