

About	This	eBook

ePUB is an open, industry-standard format for eBooks. However, support of
ePUB and its many features varies across reading devices and applications. Use
your device or app settings to customize the presentation to your liking. Settings
that you can customize often include font, font size, single or double column,
landscape or portrait mode, and figures that you can click or tap to enlarge. For
additional information about the settings and features on your reading device or
app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-column,
landscape mode and adjust the font size to the smallest setting. In addition to
presenting code and configurations in the reflowable text format, we have
included images of the code that mimic the presentation found in the print book;
therefore, where the reflowable format may compromise the presentation of the
code listing, you will see a “Click here to view code image” link. Click the link to
view the print-fidelity code image. To return to the previous page viewed, click
the Back button on your device or app.

In this eBook, the limitations of the ePUB format have caused us to render
some equations as text and others as images, depending on the complexity of the
equation. This can result in an odd juxtaposition in cases where the same
variables appear as part of both a text presentation and an image presentation.
However, the author’s intent is clear and in both cases the equations are legible.

THE	MMIX	SUPPLEMENT
Supplement	to	The	Art	of	Computer

Programming	Volumes	1,	2,	3
by	Donald	E.	Knuth	MARTIN	RUCKERT

Munich	University	of	Applied	Sciences	 	ADDISON–WESLEY
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York •

Toronto • Montréal • London • Munich • Paris • Madrid Capetown • Sydney •
Tokyo • Singapore • Mexico City

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries,
please contact governmentsales@pearsoned.com.
For questions about sales outside the United States,
please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Ruckert,	Martin.

		The	MMIX	supplement	:	supplement	to	The	art	of	computer

programming,

volumes	1,	2,	3	by	Donald	E.	Knuth	/	Martin	Ruckert,	Munich

University

of	Applied	Sciences.

						pages				cm

		Includes	index.

		ISBN	978-0-13-399231-1	(pbk.	:	alk.	paper)	--	ISBN	0-13-399231-4

(pbk.

:	alk.	paper)

		1.	MMIX	(Computer	architecture)	2.	Assembly	languages	(Electronic

computers)	3.	Microcomputers--Programming.	I.	Knuth,	Donald	Ervin,

1938-.	Art	of	computer	programming.	II.	Title.

QA76.6	.K64	2005	Suppl.	1

005.1--

dc23																																																	2014045485

Internet page http://mmix.cs.hm.edu/supplement.html contains current
information about this book, downloadable software, and general news about
MMIX. See also http://www-cs-faculty.stanford.edu/~knuth/taocp.html for
information about The Art of Computer Programming by Donald E. Knuth.
Copyright © 2015 by Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is

http://informit.com/aw
http://mmix.cs.hm.edu/supplement.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.
ISBN-13: 978-0-13-399231-1
ISBN-10: 0-13-399231-4

Text printed in the United States on recycled paper at Courier in Kendallville,
Indiana.
First printing, February 2015

FOREWORD

WHY ARE SOME programmers so much better than others? What is the magical
ingredient that makes it possible for some people to resonate with computers so
well, and to reach new heights of performance? Many different skills are clearly
involved. But after decades of observation I’ve come to believe that one
particular talent stands out among the world-class programmers I’ve known—
namely, an ability to move effortlessly between different levels of abstraction.

That may sound like a scary and complex thing, inherently abstract in itself,
but I think it’s not really too hard to explain. A programmer must deal with
high-level concepts related to a problem area, with low-level concepts related to
basic steps of computation, and with numerous levels in between. We represent
reality by creating structures that are composed of progressively simpler and
simpler parts. We don’t only need to understand how those parts fit together; we
also need to be able somehow to envision the whole show—to see everything in
the large while seeing it simultaneously in the small and in the middle. Without
blinking an eye, we need to understand why a major goal can be accomplished if
we begin by increasing the contents of a lowly computer register by 1.

The best way to enhance our level-jumping skills is to exercise them
frequently. And I believe the most effective strategy for that is to repeatedly
examine the details of what goes on at the hardware level when a sophisticated
algorithm is being implemented at a conceptual level. In the preface to Volume 1
of The Art of Computer Programming, I listed six reasons for choosing to discuss
machine-oriented details together with high-level abstractions, integrating both
aspects as I was presenting fundamental paradigms and algorithms of computer
science. I still like those six reasons. But in retrospect I see now that I was
actually blind to the most important reason—that is, the pedagogical reason: I
know of no better way to teach a student to think like a top computer scientist
than to ground everything in a firm knowledge of how a computing machine
actually works. This bottom-up approach seems to be the best way to help
nurture an ability to navigate fluently between levels. Indeed, Tony Hoare once
told me that I should never even think of condensing these books by removing
the machine-language parts, because of their educational value.

I am thrilled to see the present book by Martin Ruckert: It is jam-packed with
goodies from which an extraordinary amount can be learned. Martin has not
merely transcribed my early programs for MIX and recast them in a modern
idiom. He has penetrated to their essence and rendered them anew with
elegance and good taste. His carefully checked codes represent a significant

contribution to the art of pedagogy as well as to the art of programming.
Although I myself rarely write machine-level instructions nowadays, my
experiences of doing so in the past have provided an indispensable boost to the
quality of everything that I now am undertaking. So I encourage serious
programmers everywhere to sharpen their skills by devouring this book.

D. E. K.

Stanford, California
December 2014

PREFACE

TRANSLATIONS are made to bring important works of literature closer to those
reading—and thinking—in a different language. The challenge of translating is
finding new words, phrases, or modes of expression without changing what was
said before. An easy task, you may think, when the translation asks only for
replacing one programming language with another. Wouldn’t a simple compiler
suffice to do the job? The answer is Yes, as long as the translated programs are
intended to be executed by a machine; the answer is No, if the translated
programs are intended to explain concepts, ideas, limitations, tricks, and
techniques to a human reader. The Art of Computer Programming by Donald E.
Knuth starts out by describing the “process of preparing programs for a digital
computer” as “an aesthetic experience much like composing poetry or music.”
That raises the level of expectation to a point where a translation becomes a
formidable challenge.

In 1990, the mythical MIX computer used for the exposition of implementation
details in The Art of Computer Programming was so outdated that Knuth decided to
replace it. The design of the new MMIX computer was finally published as a
fascicle, comprising a replacement for the description of MIX in Chapter 1 of that
series of books. It made the translation of all the MIX programs to MMIX programs
in Volumes 1, 2, and 3 inevitable; but Knuth decided that it would be more
important to complete Volumes 4 and 5 first before starting to rewrite Volumes
1–3. Volume 4 meanwhile has grown and by now is to be delivered in (at least)
three installments, Volumes 4A, 4B, and 4C, of which the first has already
appeared in print. Still it means we have to exercise patience until the new
edition of Volume 1 will be published.

With the introduction of the new MMIX, Knuth asked programmers who would
like to help with the conversion process to join the MMIXmasters, a loose group of
volunteers organized and coordinated by Vladimir Ivanović. However, progress
was slow, so in the fall of 2011, when I took over the maintenance of the MMIX
home page, I decided to take on the task of translating all the remaining
programs and update them to a readable form. The result of that effort is the
present book, which is intended to be a bridge into the future although not the
future itself. It is supplementing Volumes 1, 2, and 3 for those who do not want
to wait several more years until that future arrives.

This book is not written for independent reading; it is a supplement,
supplementing the reading of another book. You should read it side by side with
The Art of Computer Programming (let’s call that “the original” for short). Therefore it

is sprinkled with page references such as “[123]” pointing the reader to the exact
page (in the third edition of Volumes 1 and 2, and in the second edition of
Volume 3) where the MIX version can be found in the original. References are
also included in the headings to simplify searching for a translation given the
page number in the original. Further, I tried to pick up a sentence or two
unchanged from the original before switching to MMIX mode. I also tried to
preserve, even in MMIX mode, the wording of the original as closely as possible,
changing as little as possible and as much as needed. Of course, all section names
and their numbering, as well as the numbers of tables, figures, or equations are
taken unchanged from the original. It should help you find the point where the
translation should be spliced in with the original.

When I assume that you are reading this book in parallel with the original,
strictly speaking, I assume that you are reading the original as augmented by the
above-mentioned Fascicle 1. A basic knowledge of the MMIX computer and its
assembly language as explained there is indispensable for an understanding of
the material presented here. If you want to know every detail, you should consult
MMIXware [Lecture Notes in Computer Science 1750, Springer Verlag, as updated in
2014].

Also online you can find plenty of documentation; the MMIX home page at
http://mmix.cs.hm.edu provides full documentation and current sources of the
MMIXware package. Further, the tools mentioned below, other useful MMIX-related
software, and all the programs presented in this book, including test cases, are
available for download. The best companion of MMIX theory is MMIX practice—so
download the software, run the programs, and see for yourself.

This book is written using the TeX typesetting system. To display MMIX code
in print, it is therefore needed in TeX format; however, to assemble and test
MMIX code, it is needed in MMIX assembly language. An automatic converter,
mmstotex, was used to produce (almost all) TeX code in the book from the same
file that was submitted to the MMIX assembler. Another tool, testgen, was written
just for the production of this book: It combines a set of source files, containing
program fragments and test case descriptions, with library code to produce a
sequence of complete, ready-to-run test programs.

Great care was taken to complement the programs shown in this book with
appropriate test cases. Every line of code you see on the following pages was
checked by the MMIX assembler for syntactic correctness and executed at least
once in a test case. While I am sure that no errors could creep in by manual
preparation of TeX sources, that by no means implies that the MMIX code shown
is error free. Of course, it is not only possible but most likely that several bugs are

http://mmix.cs.hm.edu

still hidden in the about 15,000 lines of code written for this book. So please help
in finding them!

Thanks to Donald Knuth, I have several boxes of nice MMIX T-shirts (sizes L
and XL) sitting on the shelf in my office, and I will gladly send one to each first
finder of a bug—technical, typographical, orthographical, grammatical, or
otherwise—as long as supplies last (T-shirts, not bugs). Known bugs will be listed
on the MMIX home page, so check there first before sending me an email.

Aside from tracking down bugs, the test cases helped me a lot while
conducting experiments with the code because I could see immediately how
changes affected correctness and running time. Think of the public test cases as
an invitation to do your own experiments. Let me know about your findings, be
it an improvement to the code or a new test case to uncover a hidden bug.

Speaking about experiments: Of course it was tempting to experiment with the
pipeline meta simulator mmmix. The temptation was irresistible, especially since it
is so easy to take the existing programs, run them on the pipeline simulator, and
investigate the influence of configuration parameters on the running time. But in
the end, I had to stop any work on this wide-open field of research and decided
to postpone a discussion of pipelined execution. It would have made this booklet
into a book and delayed its publication for years.

I am extremely grateful to Donald Knuth, who supported me in every aspect
of preparing this book. The draft version, which I sent to him at Stanford, came
back three months later with dozens of handwritten remarks on nearly every
page, ranging from typographic details such as: “Here I would put a \hair between
SIZE and ;” to questions of exposition: “No, you’ve got to leave this tag bit 0. Other
exercises depend on it (and so does illustration (10))”, wrong instruction counts: “Should be
A + 1[A]”, suggestions: “Did you consider keeping 2b instead of b in a register?”, and bug

fixes: “SRU or you’ll be propagating a ‘minus’ sign.” Without him, this book would not
have been written in the first place, and without him, it would also not have
reached its present form. For the remaining shortcomings, errors, and omissions,
I take full responsibility. I hope that there are not too many left, and that you will
enjoy the book all the same.

Martin Ruckert
München
December 2014

STYLE	GUIDE

1.	NAMES

Choosing good names is one of the most important and most difficult tasks when
writing programs, especially if the programs are intended for publication. Good
names need to be consistent and so this section starts with some simple rules that
guided how names in this book were chosen.

Small named constants, for instance, have all uppercase names such as
FACEUP. Special cases of this rule are the offsets of fields inside records such as
NEXT or TAG (see 2.1–(1) and 2.1–(5)). Addresses are associated with names that
always start with an uppercase letter and continue with uppercase or lowercase
letters. Examples are ‘TOP	OCTA	1F’ and ‘Main	SET	i,0’. In contrast, names for
registers use only lowercase letters, as in x, t, or new.

As a short example illustrating these rules, consider the solution to exercise
2.1–9 on page 123. The address where the printing subroutine starts has the
name :PrintPile (an explanation for the colon follows below), and the location
where the string is stored is named String. The constant #0a, the ASCII newline
character, is named NL; every node has a CARD field at offset 8, and when the
value of this field is loaded into a register, this register has the name card.

Often the statement of algorithms has a more mathematical nature. In
mathematical language most variables have single-letter names that are set in
italic font, such as x, y, Q, or even Q ′, f0, or α. In the actual program these
variables might look like x, y, Q, Qp, f0, or alpha. The single-letter style of
mathematics leads to rather terse programs. This style is appropriate if the
exposition is mostly mathematical and the implementation has to convince the
reader that it embodies the right mathematics. If the program describes the
manipulation of “real-world objects,” a more verbose style using descriptive
names such as card or title will improve readability.

In this book, the ultimate aim of choosing a specific name for an address,
register, or constant is to make the transition from the algorithms and MIX
programs, as given in The Art of Computer Programming, to their implementations as
MMIX programs as painless as possible.

One difficulty arises from the fact that the MIX assembly language did not
provide named registers but only named memory locations; further, names
consisted of uppercase letters only. So when an algorithm mentions the variable
X, there is the silent assumption that if the corresponding MIX program uses X, it
names a memory location where the value of the variable X is stored. In MMIX

programs, names for memory locations are quite rare, because all load and store
instructions require registers to compute the target address. Therefore, it is most
likely that you will not find X in the corresponding MMIX program; instead you
will find a register, named x, that contains the address of the memory location
where the variable X resides. Taking this one step further, often there is no need
to store the value of variable X in memory at all; instead, it is completely
sufficient to keep the value of X in register x for the entire program or subroutine.
As an example, consider again the solution to exercise 2.1–9. The line that read

LD2				0,2(NEXT)				Set	X	←	NEXT(X).

in the MIX program on page [535] now reads as follows in the MMIX program:
LDOU				x,x,NEXT				Set	X	←	NEXT(X).

2.	TEMPORARIES

There is one special variable, named t, which is used as a temporary variable
(hence t). It is used to carry intermediate values from one instruction to the next
and there is no benefit in giving it an individual name. In a few cases, where the
name t is used already in the exposition of the algorithm, x is used to name the
temporary variable.

The specific register number used for one of the named registers is typically
not relevant; in connection with the PUSHJ instruction, however, all named local
registers will have register numbers smaller than t such that the subroutine call
‘PUSHJ	t,. . .’ will not clobber any of them—except t, which might hold the
return value.

3.	INDEX	VARIABLES

The variables used to index arrays fall into a special class. If the exposition of an
algorithm refers to xi for 1 ≤ i ≤ n, we might expect a register xi (the value of xi),

a register x (the address of the array), and a register i (the index) to show up
somewhere in the implementation. Often, however, the implementation will find
it more convenient to maintain in register i the value of 8 × i (the offset of xi
relative to LOC(x0)), or 8 × (i − 1) (the offset of xi relative to LOC(x1)), or even 8

× (i − n) (the offset of xi relative to LOC(xn)). In the latter case (see below), it is

also more convenient to change the value of x to x + 8n. In all these cases, the
use of x (not X) and i (not i) will remind the reader that the registers x and i are
not exactly the variables X and i. For a short example see the solution to exercise
4.3.1–25 on page 157.

4.	REGISTER	NUMBERS

Typically, it is best to avoid the use of register numbers, but instead use register
names. There are, though, a few exceptions.

When using TRIP and TRAP instructions, register $255 has a special purpose: It
serves as parameter register. For the reader of a program, there is some useful
information in the fact that a value is stored in $255: It will serve as a parameter
to the next TRAP or TRIP. This information should not be hidden by using an
alias for $255. Similarly, using the return value from a TRAP or TRIP can be made
explicit by using $255. For an example see Program 1.3.3A on page 1.

Further, the return value of a function must be in register $0 just before the
final POP. Identifying the register by its number makes the assignment of a return
value visible. For an example see again the solution to exercise 4.3.1–25.

The program in Section 2.2.5 is special, however: Due to the restrictions
imposed by its very simple implementation of coroutines, this program can use
local registers only for temporary variables. Consequently, there is no need to
give them names.

5.	LOCAL	NAME	SPACES

If programs have multiple subroutines, name conflicts will be inevitable—unless
the pseudo-instruction PREFIX is used. In this book, every subroutine is given its
own name space by starting it with ‘PREFIX	:name:’, where name repeats the
name of the subroutine itself. (See, for example, the solution to exercise 5–7 on
page 162.)

The use of two colons, one before and one after ‘name’, begs for an
explanation. Without the first colon, ‘name:’ would just be added to the current
prefix, leading to longer and longer prefixes unless the prefix is reset regularly by
‘PREFIX	:’. Adding a colon before ‘name’ is the safer and more convenient
alternative. To explain the second colon, imagine using the label ‘Put’—without
defining it—after ‘PREFIX	:Out’; then MMIXAL will complain about an undefined
symbol ‘OutPut’. In a long program, this error might be hard to diagnose. Could
it be a misspelling of ‘Output’? It becomes really hard to track down such an
error if your program contains an unrelated global symbol ‘OutPut’; MMIXAL will
use it without notice. The colon after ‘name’ will prevent MMIXAL from confusing
global and local names and will make error messages, like a complaint about
‘Out:Put’, more readable.

In order to avoid a clumsy :name:name in the calling code, the entry point into
the subroutine is marked by :name, making it global. A short example is the

ShiftLeft subroutine shown in the solution to exercise 4.3.1–25. The entry
point is usually the only global name defined by a subroutine. However, the
subroutine might use quite a few global names, defined elsewhere, to reference
other subroutines, global registers, or special registers such as :rJ. In these cases,
the extra colon in front of the name is a useful hint that the name belongs to a
global entity; as an added benefit, it allows us to say ‘rJ	IS	$0’ and use rJ to
keep a local copy of :rJ.

Not typical, but occasionally useful, is a joint name space for multiple
subroutines. For example, in the simulation program of Section 2.2.5, the
routines Insert and Delete (lines 059–072 on page 30) share the same name
space.

To leave the local name space and return to the global name space, a simple
‘PREFIX	:’ is sufficient.

Because name spaces are merely a technicality, in most of the program listings
in this book, the PREFIX instructions are not shown.

6.	INSTRUCTION	COUNTS

For the analysis of algorithms, a column of instruction counts is added to the
program display. (Actually, line counts are shown. In the rare cases where several
instructions share a single line of code, the instruction counts are easier to read if
multiple instructions are treated as one single-but-complex instruction that is
counted once.) Instruction counts are shown rather than cycle counts because the
former are easier to read and because there is no simple way to determine the
latter. For a superscalar pipeline processor such as MMIX, the number of cycles
per instruction depends on many, many factors. To further complicate the issue,
MMIX can be configured to mimic a wide variety of processors. Therefore, the
running time is approximated by counting υ and µ, where 1υ is approximately
one cycle and 1µ is one access to main memory. Most MMIX instructions require
1υ; the most important exceptions are load and store instructions (1υ + 1µ),
multiplication (10υ), division (60υ), most floating point instructions (4υ), POP (3υ),
TRIP (5υ), and TRAP (5υ).

For branch instructions, the number of bad guesses is given in square brackets.
So m[n] will label a branch that is executed m times with n bad guesses (and m −
n good guesses). It will contribute (m + 2n)υ to the total running time.

Often the code is presented as a subroutine. In this case, the “call overhead”—
the assignment of parameters, the PUSHJ, and the final POP—is not included in

the computation of the total running time. In situations where the call overhead
would be a significant percentage of the running time, the subroutine code can
be expanded inline (see, for example, the FindTag subroutine in the solution to
exercise 2.5–27 on page 143).

If, however, the subroutine under examination is itself the caller of a
subroutine, the called subroutine, including its call overhead, will be included in
the total count. A special case arises for recursive routines. There, the PUSHJ and
POP instructions cannot be eliminated and must be counted. Further, it would be
confusing not to include the final POP in the total count since this would violate
Kirchhoff’s law. The initial PUSHJ is, however, not shown—and not counted.

PROGRAMMING	TECHNIQUES

1.	INDEX	VARIABLES

Many algorithms traverse information structures that are sequentially allocated
in memory. Let us assume that a sequence of n data items a0, a1, . . . , an−1 is

stored sequentially. Further assume that each data item occupies 8 bytes, and the
first element a0 is stored at address A; the address of ai is then A + 8i. To load ai
with 0 ≤ i < n from memory into register ai, we need a suitable base address
and so we assume that we have A = LOC(a0) in register a. Then we can write
‘8ADDU	t,i,a;	LDO	ai,t,0’ or alternatively ‘SL	t,i,3;	LDO	ai,a,t’. If this
operation is necessary for all i, it is more efficient to maintain a register i
containing 8i as follows:

SET i,0 i	←	0.

LDO ai,a,i Load	ai.

ADD i,i,8 Advance	to	next	element:	i	←	i	+	1.				
·	·	·

Note how i advances by 8 when i advances by 1.

The branch instructions of MMIX, like most computer architectures, directly
support a test against zero; therefore a loop becomes more efficient if the index
variable runs toward 0 instead of toward n. The loop may then take the form:

SL i,n,3 i	←	n.
0H SUB i,i,8 Advance	to	next	element:	i	←	i	−	1.

LDO ai,a,i Load	ai.

·	·	·
PBP i,0B Continue	while	i	>	0.				 	

In the above form, the items are traversed in decreasing order. If the algorithm
requires traversal in ascending order, it is more efficient to keep A + 8n, the
address of an, as new base address in a register an, and to run the index register i

from −8n toward −8 as in the following code:

8ADDU an,n,a an	←	A	+	8n.
SUBU i,a,an i	←	0	(or	i	←	−8n).

0H LDO ai,an,i ai	←	ai.

·	·	·
ADD i,i,8 Advance	to	next	element:	i	←	i	+	1.

PBN i,0B

PBN i,0B Continue	while	i	<	n.				

If a is used only to compute A+8n, it is possible to write ‘8ADDU	a,n,a’ and reuse
register a to hold A + 8n. Loading ai then resumes the nice form ‘LDO	ai,a,i’,

without any need for an. For an example, see Program 4.3.1S on page 63.

When computer scientists enumerate n elements, they say “a0, a1, a2, . . .”,
starting with index zero. When mathematicians (and most other people)
enumerate n elements, they say “a1, a2, a3, . . .” and start with index 1.
Nevertheless when such a sequence of elements is passed as a parameter to a
subroutine, it is customary to pass the address of its first element LOC(a1). If this
address is in register a, the address of ai is now a + 8(i − 1). To load ai efficiently

into register ai, we have two choices: Either we adjust register a, saying ‘SUBU
a,a,8’ for a ← LOC(a0), or we maintain in register i the value of 8(i − 1), saying
for example ‘SET	i,0’ for i ← 1. In both cases, we can write ‘LDO	ai,a,i’ to
load ai ← ai.

Many variations of these techniques are possible; a nice and important
example is Program 5.2.1S on page 76.

2.	FIELDS

Let us assume that the data elements ai, just considered, are further structured by

having three fields, two WYDEs and one TETRA, like this:

It is then convenient to define offsets for the fields reusing the field names as
follows:
LEFT IS 0 Offset	for	field	LEFT
RIGHT IS 2 Offset	for	field	RIGHT
KEY IS 4 Offset	for	field	KEY

There is very little information in these lines, so these definitions are usually
suppressed in a program’s display.

Computing the address of, say, the KEY field of ai requires two additions, A +

8i + KEY, of which only one must be done inside a loop over i. The quantity A +
KEY can be precomputed and kept in a register named key. This simplifies
loading of KEY(ai) as follows:

ADDU key,a,KEY key	←	A	+	KEY.

·	·	·

·	·	· Loop	on	i	with	i	=	8i.

LDT k,key,i k	←	KEY(ai).				

3.	RELATIVE	ADDRESSES

In a more general setting, this technique can be applied to relative addresses.
Assume that one of the data items ai is given by its relative address P = LOC(ai)

− BASE relative to some base address BASE.
Then again KEY(ai) can be loaded by a single instruction ‘LDT	k,key,p’, if P

is in register p, and BASE + KEY is in register key.
While an absolute address always requires eight bytes in MMIX’s memory,

relative addresses can be stored using only four bytes, two bytes, or one byte,
which allows tighter packing of information structures and reduces the memory
footprint of applications that handle large numbers of links. Using this technique,
the use of relative addresses can be as efficient as the use of absolute addresses.

4.	USING	THE	LOW	ORDER	BITS	OF	POINTERS	(“BIT
STUFFING”)

Modern computers impose alignment restrictions on the possible addresses of
primitive data types. In the case of MMIX, an OCTA may start only at an address
that is a multiple of 8, a TETRA requires a multiple of 4, and a WYDE needs an even
address. As a result, data structures are typically octabyte-aligned, because they
contain one or more OCTA-fields—for example, to hold an absolute address in a
link field. Those link fields, in turn, are multiples of eight as well. Put differently,
their three low-order bits are all zero. Such precious bits can be put to use as tag
bits, marking the pointer to indicate that either the pointer itself or the data item
it points to has some special property. MMIX further simplifies the use of these bits
as tags by ignoring the low-order bits of an address in load and store instructions.
That convention is not the case for all CPU architectures. Still, these bits are
usable as tags; they just need to be masked to zero on such computers before
using link fields as addresses.

Three different uses need to be distinguished. First, a tag bit in a link may
contain some additional information about the data item it links to. Second, it
may tell about the data item that contains the link. Third, it may disclose
information about the link itself.

An example of the first type of use is the implementation of two-dimensional
sparse arrays in Section 2.2.6. There, the nonzero elements of each row (or

column) form a circular linked list anchored in a special list head node. It would
have been possible to mark each head node using one of the bits in one of its link
fields, but it is more convenient to put this information into the links pointing to
a head node. Once the link to the next node in the row is known, a single
instruction is sufficient to test for a head node, as for example in the
implementation of Program 2.2.6S on page 132:
S3 LDOU q0,q0,UP S3.	Find	new	row.			Q0	←	UP(Q0).

BOD q0,9F Exit	if	Q0	is	odd.					

If a head node would be marked by using a tag bit in its own UP link, the code
would require an extra load instruction:
S3 LDOU q0,q0,UP S3.	Find	new	row.			Q0	←	UP(Q0).

LDOU t,q0,UP t	←	UP(Q0).
BOD t,9F Exit	if	TAG(Q0)	=	1.					

The great disadvantage of this method, so it seems, is the need to maintain all the
tag bits in all of the links that point to a head node during the running time of the
program. A closer look at the operations a program like Algorithm 2.2.6S
performs will reveal, however, that it inserts and deletes matrix elements but
never deletes or creates head nodes. Inserting or deleting matrix elements will
just copy existing link values; hence no special coding is required to maintain the
tag bits in the links to head nodes.

The second, more common, type of use of a tag field is illustrated by the
solution to exercise 2.3.5–4 on page 139. The least significant bit of the ALINK
field is used to mark accessible nodes, and the least significant bit of the BLINK
field is used to distinguish between atomic and non-atomic nodes. The following
snippet taken from this code is typical for testing and setting of these tag bits:
E2 LDOU x,p,ALINK E2.	Mark	P.

OR x,x,1

STOU x,p,ALINK MARK(P)	←	1.
E3 LDOU x,p,BLINK E3.	Atom?

PBEV x,E4 Jump	if	ATOM(P)	=	0.					 	

An interesting variation of this use of a tag bit can be seen in exercise 2.2.3–26
on page 23. There, the data structure asks for a variable-length list of links
allocated sequentially in memory. Instead of encoding the length of the list
somewhere as part of the data structure, the last link of the structure is marked
by setting a tag bit. This arrangement leads to very simple code for the traversal
of the list.

As a final example, consider the use of tag bits in the implementation of
threaded binary trees in Section 2.3.1. There, the RIGHT and LEFT fields of a
node might contain “down” links to a left or right subtree, or they might contain
“thread” or “up” links to a parent node (see, for example, 2.3.1–(10), page 324).
Within a tree, there are typically both “up” and “down” links for the same node.
Hence, the tag is clearly a property of the link, not the node. Searching down the
left branch of a threaded binary tree, as required by step S2 of Algorithm 2.3.1S,
which reads “If LTAG(Q) = 0, set Q ← LLINK(Q) and repeat this step,” may take
the following simple form:
0H SET q,p Set	Q	←	LLINK(Q)	and	repeat	step	S2.
S2 LDOU p,q,LLINK S2.	Search	to	left.	p	←	LLINK(Q).

PBEV p,OB Jump	if	LTAG(Q)	=	0.				

5.	LOOP	UNROLLING

The loop shown at the end of the last section has a SET operation that has no
computational value; it just reorganizes the data when the code advances from
one iteration to the next. A small loop may benefit significantly from eliminating
such code by unrolling it or, in the simplest case, doubling it. Doubling the loop
adds a second copy of the loop where the registers p and q exchange roles. This
leads to
S2 LDOU p,q,LLINK S2.	Search	to	left.	P	←	LLINK(Q).

BOD p,1F If	LTAG(Q)	≠	0,	exit	the	loop.
LDOU q,p,LLINK S2.	Search	to	left.	Q	←	LLINK(P).
PBEV q,S2 If	LTAG(P)	=	0,	repeat	step	S2.
SET q,p At	this	point	p	and	q	have	exchanged	roles.

1H IS @

The new loop requires 2υ per iteration instead of 3υ. For another example, see
the solution to exercise 5.2.1–33 on page 167. Further, Program 6.1Q′ on page
98 illustrates how loop unrolling can benefit loops maintaining a counter
variable, and the solution to exercise 6.2.1–10 on page 184 shows how to
completely unroll a loop with a small, fixed number of iterations.

6.	SUBROUTINES

The code of a subroutine usually starts with the definition of its stack frame, the
storage area containing parameters and local variables. Using the MMIX register
stack, it is sufficient for most subroutines to list and name the appropriate local
registers. Once the stack frame is defined, the instructions that make up the body

of the subroutine follow. The first instruction is labeled with the name of the
subroutine—typically preceded by a colon to make it global; the last instruction
is a POP. For a simple example see the solution to exercise 2.2.3–2 on page 124 or
the solution to exercise 5–7 on page 162.
Subroutine Invocation. Calling a subroutine requires three steps: passing of
parameters, transfer of control, and handling of return values. In the simplest
case, with no parameters and no return values, the transfer of control is
accomplished with a single ‘PUSHJ	$X,YZ’ instruction and a matching POP
instruction. The problem remains choosing a register $X such that the subroutine
call will preserve the values of registers belonging to the caller’s stack frame. For
this purpose, the subroutines in this book will define a local register, named t,
such that all other named local registers have register numbers smaller than t.
Aside from its role in calling subroutines, t is used as temporary variable. The
typical form of a subroutine call is then ‘PUSHJ	t,YZ’.

If the subroutine has n > 0 parameters, the registers for the parameter values
can be referenced as t+1, t+2, . . . , t+n. A simple example is Program 2.3.1T,
where the two functions Inorder and Visit are called like this:
T3 LDOU t+1,p,LLINK T3.	Stack	⇐	P.

SET t+2,visit

PUSHJ t,:Inorder Call	Inorder(LLINK(P),Visit).
T5 SET t+1,p T5.	Visit	P.

PUSHGO t,visit,0 Call	Visit(P).

After the subroutine has transferred control back to the caller, it may use the
return values. If the subroutine has no return values, register t (and all registers
with higher register numbers) will be marginal and a reference to it will yield
zero; otherwise, t will hold the principal return value and further return values
will be in registers t+1, t+2, The function FindTag in the solution to
exercise 2.5–27 on page 143 is an example of a function with three return values.

Nested Calls. If the return value of one function serves as a parameter for the
next function, the schema just described needs some modification. It is better to
place the return value of the first function not in register t but directly in the
parameter register for the second function; therefore we have to adjust the first
function call. For example, the Mul function in Section 2.3.2, page 42, needs to
compute Q1 ← Mult(Q1,Copy(P2)), and that is done like this:

SET t+1,q1 t+1	←	Q1.

SET t+3,p2

PUSHJ t+2,:Copy t+2	←	Copy(P2).

PUSHJ

PUSHJ t,:Mult

SET q1,t Q1	←	Mult(Q1,Copy(P2)).

The Div function of exercise 2.3.2–15, which computes the slightly more
complex formula

Q	←	Tree2(Mult(Copy(P1),Q),Tree2(Copy(P2),Allocate(),“ ”),“/”),

contains more examples of nested function calls (see also the Pwr function of
exercise 2.3.2–16).

Nested Subroutines. If one subroutine calls another subroutine, we have a
situation known as nested subroutines. The most common error when
programming MMIX is failing to save and restore the rJ register. At the start of a
subroutine, the special register rJ contains the return address for the POP
instruction. It will be rewritten by the next PUSHJ instruction and therefore must
be saved if the next PUSHJ occurs before the POP.

There are two preferred places to save and restore rJ: Either start the
subroutine with a GET instruction, saving rJ in a local register, and end the
subroutine with a PUT instruction, restoring rJ, immediately before the
terminating POP instruction; or, if the subroutine contains only a single PUSHJ
instruction, save rJ immediately before the PUSHJ and restore it immediately after
the PUSHJ. An example of the first method is the Mult function in Section 2.3.2;
the second method is illustrated by the Tree2 function in the same section. If
subroutines use the PREFIX instruction to create local namespaces, the local copy
of ‘:rJ’ can simply be called ‘rJ’; that is the naming convention used in this
book.
Tail Call Optimization. The Mult function of Section 2.3.2 is an interesting
example for another reason: It uses an optimization called “tail call
optimization.” If a subroutine ends with a subroutine call in such a way that the
return values of the inner subroutine are already the return values of the outer
subroutine, the stack frame of the outer subroutine can be reused for the inner
subroutine because it is no longer needed after the call to the inner routine.
Technically, this is achieved by moving the parameters into the right place inside
the existing stack frame and then using a jump or branch instruction to transfer
control to the inner subroutine. The POP instruction of the inner subroutine will
then return directly to the caller of the outer subroutine. So, when the function
Mult(u,v) wants to return Tree2(u,v,“×”), u and v are already in place and
‘GETA	v+1,:Mul’ initializes the third parameter; then ‘BNZ	t,:Tree2’ transfers
control to the Tree2 function, which will return its result directly to the caller of
Mult.

A special case of this optimization is the “tail recursion optimization.” Here,
the last call of the subroutine is a recursive call to the subroutine itself. Applying
the optimization will remove the overhead associated with recursion, turning a
recursive call into a simple loop. For an example, see Program 5.2.2Q on page
82, which uses PUSHJ as well as JMP to call the recursive part Q2.

7.	REPORTING	ERRORS

There is no good program without good error handling. The standard situation
is the discovery of an error while executing a subroutine. If the error is serious
enough, it might be best to issue an error message and terminate the program
immediately. In most cases, however, the error should be reported to the calling
program for further processing.

The most common form of error reporting is the specification of special return
values. Most UNIX system calls, for example, return negative values on error
and nonnegative values on success. This schema has the advantage that the test
for a negative value can be accomplished with a single instruction, not only by
MMIX but by most CPUs. Another popular error return value, which can be
tested equally well, is zero. For example, functions that return addresses often use
zero as an error return, because addresses are usually considered unsigned and
the valid addresses span the entire range of possible return values. In most
circumstances, it is, furthermore, simple to arrange things in a way that excludes
zero from the range of valid addresses.

MMIX offers two ways to return zero from a subroutine: The two instructions
‘SET	$0,0;	POP	1,0’ will do the job, but just ‘POP	0,0’ is sufficient as well. The
second form will turn the register that is expected to contain the return value into
a marginal register, and reading a marginal register yields zero (see the solution
to exercise 2.2.3–4 on page 125 for an example).

The POP instruction of MMIX makes another form of error reporting very
attractive: the use of separate subroutine exits for regular return and for error
return (see exercise 2.2.3–3 and its solution on page 125 for an example). The
subroutine will end with ‘POP	0,0’ in case of error and with ‘POP	1,1’ in case of
success, returning control to the instruction immediately following the PUSHJ in
case of error and to the second instruction after the PUSHJ otherwise. The calling
sequence must then insert a jump to the error handler just after the PUSHJ while
the normal control flow continues with the instruction after the jump instruction.
The advantages of this method are twofold. First, the execution of the normal
control path is faster because it no longer contains a branch instruction to test
the return value. Second, this programming style forces the calling program to

provide explicit error handling; simply skipping the test for an error return will
no longer work.

CONTENTS

Foreword

Preface

Style	Guide

Programming	Techniques

Chapter	1—Basic	Concepts

1.3.3.	Applications	to	Permutations
1.4.4.	Input	and	Output

Chapter	2—Information	Structures

2.1.	Introduction
2.2.2.	Sequential	Allocation
2.2.3.	Linked	Allocation
2.2.4.	Circular	Lists
2.2.5.	Doubly	Linked	Lists
2.2.6.	Arrays	and	Orthogonal	Lists
2.3.1.	Traversing	Binary	Trees
2.3.2.	Binary	Tree	Representation	of	Trees
2.3.3.	Other	Representations	of	Trees
2.3.5.	Lists	and	Garbage	Collection
2.5.	Dynamic	Storage	Allocation

Chapter	3—Random	Numbers

3.2.1.1.	Choice	of	modulus
3.2.1.3.	Potency
3.2.2.	Other	Methods
3.4.1.	Numerical	Distributions

3.6.	Summary

Chapter	4—Arithmetic

4.1.	Positional	Number	Systems
4.2.1.	Single-Precision	Calculations
4.2.2.	Accuracy	of	Floating	Point	Arithmetic
4.2.3.	Double-Precision	Calculations
4.3.1.	The	Classical	Algorithms
4.4.	Radix	Conversion
4.5.2.	The	Greatest	Common	Divisor
4.5.3.	Analysis	of	Euclid’s	Algorithm
4.5.4.	Factoring	into	Primes
4.6.3.	Evaluation	of	Powers
4.6.4.	Evaluation	of	Polynomials

Chapter	5—Sorting

5.2.	Internal	Sorting
5.2.1.	Sorting	by	Insertion
5.2.2.	Sorting	by	Exchanging
5.2.3.	Sorting	by	Selection
5.2.4.	Sorting	by	Merging
5.2.5.	Sorting	by	Distribution
5.3.1.	Minimum-Comparison	Sorting
5.5.	Summary,	History,	and	Bibliography

Chapter	6—Searching

6.1.	Sequential	Searching
6.2.1.	Searching	an	Ordered	Table
6.2.2.	Binary	Tree	Searching

6.2.3.	Balanced	Trees
6.3.	Digital	Searching
6.4.	Hashing

Answers	to	Exercises

1.3.2.	The	MMIX	Assembly	Language
1.3.3.	Applications	to	Permutations
1.4.4.	Input	and	Output
2.1.	Introduction
2.2.2.	Sequential	Allocation
2.2.3.	Linked	Allocation
2.2.4.	Circular	Lists
2.2.5.	Doubly	Linked	Lists
2.2.6.	Arrays	and	Orthogonal	Lists
2.3.1.	Traversing	Binary	Trees
2.3.2.	Binary	Tree	Representation	of	Trees
2.3.5.	Lists	and	Garbage	Collection
2.5.	Dynamic	Storage	Allocation
3.2.1.1.	Choice	of	modulus
3.2.1.3.	Potency
3.2.2.	Other	Methods
3.4.1.	Numerical	Distributions
3.6.	Summary
4.1.	Positional	Number	Systems
4.2.1.	Single-Precision	Calculations
4.2.2.	Accuracy	of	Floating	Point	Arithmetic
4.2.3.	Double-Precision	Calculations

4.3.1.	The	Classical	Algorithms
4.4.	Radix	Conversion
4.5.2.	The	Greatest	Common	Divisor
4.5.3.	Analysis	of	Euclid’s	Algorithm
4.6.3.	Evaluation	of	Powers
4.6.4.	Evaluation	of	Polynomials
5.	Sorting
5.2.	Internal	Sorting
5.2.1.	Sorting	by	Insertion
5.2.2.	Sorting	by	Exchanging
5.2.3.	Sorting	by	Selection
5.2.4.	Sorting	by	Merging
5.2.5.	Sorting	by	Distribution
5.3.1.	Minimum-Comparison	Sorting
5.5.	Summary,	History,	and	Bibliography
6.1.	Sequential	Searching
6.2.1.	Searching	an	Ordered	Table
6.2.2.	Binary	Tree	Searching
6.2.3.	Balanced	Trees
6.3.	Digital	Searching
6.4.	Hashing

Acknowledgments

Index

CHAPTER	ONE

BASIC	CONCEPTS

1.3.3.	Applications	to	Permutations

In this section, we shall give several more examples of MMIX programs, and at the
same time introduce some important properties of permutations. These
investigations will also bring out some interesting aspects of computer
programming in general.

[167]
An MMIX program. To implement this algorithm for MMIX, the “tagging” can be
done by using the sign bit of a BYTE. Suppose our input is an ASCII text file, with
characters in the range 0 to #7F, where each character is either (a) ’(’,
representing the left parenthesis beginning a cycle; (b) ’)’, representing the right
parenthesis ending a cycle; (c) an ignorable formatting character in the range 0 to
#
20; or (d) anything else, representing an element to be permuted. For example,

(6) might be represented in two lines as follows:
(ACFG)	(BCD)

(AED)	(FADE)	(BGFAE)

The output of our program will be the product in essentially the same format.
Program A (Multiply permutations in cycle form). This program implements
Algorithm A, and it also includes provision for input, output, and the removing
of singleton cycles. But it doesn’t catch errors in the input.

01 LOC Data_Segment

02 GREG @

03 MAXP IS #2000 Maximum	number	of	permutations
04 InArg OCTA Buffer,MAXP The	arguments	for	Fread
05 Buffer BYTE 0 Place	for	input	and	output
06 left GREG ’(’

07 right GREG ’)’

08 LOC #100

09 base IS $0 Base	address	of	permutations
10 k IS $1 Index	into	input
11 j IS $2 Index	into	output
12 x IS $4 Some	permutation
13 current IS $5

14

14 start IS $6

15 size IS $7

16 t IS $8

17 Main LDA $255,InArg Prepare	for	input.
18 TRAP 0,Fread,StdIn Read	input.
19 SET size,$255

20 INCL size,MAXP size	←	$255	+	MAXP.
21 BNP size,Fail Check	if	input	was	OK.
22 LDA base,Buffer

23 ADDU base,base,size base	←	Buffer	+	size.
24 NEG k,size 1 A1.	First	pass.
25 2H LDBU current,k,base A Get	next	element	of	input.
26 CMP t,current,#20 A

27 CSNP current,t,0 A Set	format	characters	to	zero.
28 STB current,k,base A

29 CMP t,current,’(’ A Is	it	‘(’?
30 PBNZ t,1F A[B]

31 ORL current,#80 B If	so,	tag	it.
32 STBU current,k,base B

33 0H ADD k,k,1 B

34 LDBU start,k,base B Put	the	next	nonformat
35 BZ start,0B B[0] input	symbol	in	START.
36 1H CMP t,current,’)’ C Is	it	‘)’?
37 PBNZ t,0F C[D]

38 ORL start,#80 D

39 STBU start,k,base D Replace	‘)’	by	tagged	START.
40 0H ADD k,k,1 C

41 PBN k,2B C[1] Have	all	elements	been	processed?
42 SET j,0 1
43 Open NEG k,size E A2.	Open.
44 1H LDB x,k,base F Look	for	untagged	element.
45 PBP x,Go F[G]

46 ADD k,k,1 G

47 PBN k,1B G[1]

48 Done BNZ j,0F Is	answer	the	identity	permutation?
49 STB left,base,0 If	so,	change	to	‘()’.
50

50 STB right,base,1

51 SET j,2

52 0H SET t,#0a Add	a	newline.
53 STB t,base,j

54 ADD j,j,1

55 SET t,0 Terminate	the	string.
56 STB t,base,j

57 SET $255,base

58 TRAP 0,Fputs,StdOut Print	the	answer.
59 SET $255,0

60 Fail TRAP 0,Halt,0 Halt	program.
61 Go STB left,base,j H Output	'('.
62 ADD j,j,l H

63 STBU x,base,j H Output	X.
64 ADD j,j,l H

65 SET start,x H

66 Succ ORL x,#80 J

67 STBU x,k,base J TagX.
68 3H ADD k,k,l J A3.	Set	CURRENT.
69 LDBU current,k,base J

70 ANDNL current,#80 J Untag.
71 PBNZ current,1F J[0] Skip	past	blanks.
72 JMP 3B 0
73 5H STBU current,base,j Q Output	CURRENT.
74 ADD j,j,l Q

75 NEG k,size Q Scan	formula	again.
76 4H LDBU x,k,base K A4.	Scan	formula.
77 ANDNL x,#80 K Untag.
78 CMP t,x,current K

79 BZ t,Succ K[K+J-L]

80 IH ADD k,k,l L Move	to	right.
81 PBN k,4B L[P] End	of	formula?
82 CMP t,start,current P A5.	CURRENT	≠	START.
83 PBNZ t,5B P[R]

84 STBU right,base,j R A6.Close.
85 SUB j,j,2 R Suppress	singleton	cycles.
86

86 LDB t,base,j R

87 CMP t,t,'(' R

88 BZ t,Open R[R-S]

89 ADD j,j,3 S

90 JMP Open S

This program of approximately 74 instructions is quite a bit longer than the
programs of the previous section, and indeed it is longer than most of the
programs we will meet in this book. Its length is not formidable, however, since it
divides into several small parts that are fairly independent. Lines 17–23 read the
input file; lines 24–41 accomplish step A1 of the algorithm, the preconditioning
of the input; lines 42–47 and 61–90 do the main business of Algorithm A; and
lines 48–60 output the answer.

· · ·

Timing. The parts of Program A that are not concerned with input-output
have been decorated with frequency counts as we did for Program 1.3.2´M; thus,
line 34 is supposedly executed B times. For convenience it has been assumed that
no formatting characters appear in the input; under this assumption, line 72 is
never executed and the branch in line 35 is never taken.

By simple addition the total time to execute the program is

plus the time for input and output. In order to understand the meaning of
formula (7), we need to examine the thirteen unknowns A, B, C, D, E, F, G, H,
J, K, P, Q, R (the running time does not depend on S or L) and we must relate
them to pertinent characteristics of the input. We will now illustrate the general
principles of attack for problems of this kind.

First we apply “Kirchhoff’s first law” of electrical circuit theory: The number
of times an instruction is executed must equal the number of times we transfer to
that instruction. This seemingly obvious rule often relates several quantities in a
nonobvious way. Analyzing the flow of Program A, we get the following
equations.

From	lines We	deduce
24,	25,	41 A	=	1	+	(C	−	1)
30,	35,	36 C	=	B	+	(A	−	B)
42,	43,	88,	90 E	=	1	+	R
43,	44,	47 F	=	E	+	(G	−	1)

45,	60,	61 H	=	F	−	G
65,	66,	79 J	=	H	+	(K	−	L	+	J)
75,	76,	81 K	=	Q	+	(L	−	P)
72,	73,	83 R	=	P	−	Q

[171]

The next step is to try to match up variables with important characteristics of
the data. We find from lines 24, 33, and 40 that

From line 31,

Similarly, from line 38,

Now (10) and (11) give us a fact that could not be deduced by Kirchhoff’s law:

From line 61,

Line 84 says R is equal to this same quantity; the fact that H = R was in this case
deducible from Kirchhoff’s law, since it already appears in (8).

Using the fact that each nonformatting character is ultimately tagged, and
lines 32, 39, and 67, we find that

where Y is the number of nonformatting characters appearing in the input.
From the fact that every distinct element appearing in the input permutation is
written into the output just once, either at line 63 or line 73, we have

(See Eqs. (8).) A moment’s reflection makes this clear from line 82 as well.
Clearly the quantities B, C, H, J, and P that we have now interpreted are

essentially independent parameters that may be expected to enter into the timing
of Program A.

The results we have obtained so far leave us with only the unknowns G and L
to be analyzed. For these we must use a little more ingenuity. The scans of the
input that start at lines 43 and 75 always terminate either at line 48 (the last time)
or at line 82. During each one of these P + 1 loops, the instruction ‘ADD	k,k,1’ is
performed B + C times; this takes place only at lines 46, 68, and 80, so we get

the nontrivial relation

concerning our unknowns G and L. Fortunately, the running time (7) is a
function of G + L (it involves · · ·+2F +4G+6K +· · · = · · ·+6G+· · ·+6L+· ·
·), so we need not try to analyze the individual quantities G and L any further.

Summing up all these results, we find that the total time exclusive of input-
output comes to

in this formula, new names for the data characteristics have been used as follows:

In this way we have found that analysis of a program like Program A is in many
respects like solving an amusing puzzle.

We will show below that, if the output permutation is assumed to be random,
the quantity U will be HN on the average.

[174]
Let us now write an MMIX program based on the new algorithm. . . . A simple

way to solve this problem is to make table T large enough so that we can use the
elements xi directly as indices. In our case the range of possible elements is #21 to
#
7F, which makes a moderate-sized table.

Program B (Same effect as Program A).

01 LOC Data_Segment

02 T GREG @-#21 T	←	LOC(T[0]).
03 BYTE 0 Now	make	a	table
04 LOC @+#5F for	all	valid	names.
05 Z IS $9

Same	as	lines	02–22	of	Program	A.
27 SET k,#21 1 B1.	Initialize.	Set	k	to	first	valid	name.
28 0H STB k,T,k A T[k]	←	k.
29 ADD k,k,1 A k	←	k	+	1.
30 CMP t,k,#80 A Loop	until	k	=	#7F.
31 PBN t,0B

31 PBN t,0B
A[1]

32 SET k,size 1
33 JMP 9F 1
34 2H LDB X,base,k B B2.	Next	element.
35 CMP t,X,#20 B Skip	formatting	characters.
36 BNP t,9F B[0]

37 CMP t,X,')' B

38 BZ t,0F B[B–C]

39 CMP t,X,'(' C

40 CSZ X,t,j C B4.	Change	T[i].
41 CSZ j,Z,X C B3.	Change	T[j].
42 LDB t,T,X C

43 STB Z,T,X C

44 0H SET Z,t D If	t	=	0,	set	Z	←	0.
45 9H SUB k,k,1 E

46 PBNN k,2B E[1] Input	exhausted.
47 Output ADDU base,base,size 1 base	←	Buffer	+	size.
48 SET j,0 1
49 SET k,#21 1 Traverse	table	T.
50 0H LDB X,T,k F

51 CMP t,X,k F

52 PBZ t,2F F[G] Skip	singleton.
53 PBN X,2F G[H] Skip	tagged	element.
54 STB left,base,j H Output	'('.
55 ADD j,j,1 H

56 SET Z,k H Loop	invariant:	X	=	T[Z].
57 1H STB Z,base,j J Output	Z.
58 ADD j,j,1 J

59 OR t,X,#80 J

60 STBU t,T,Z J Tag	T[Z].
61 SET Z,X J Advance	Z.
62 LDB X,T,Z J Get	successor	element
63 PBNN X,1B J[H] and	continue,	if	untagged.
64 STB right,base,j H Otherwise,	output	‘)’.
65 ADD j,j,1 H

66 2H ADD k,k,1 K Advance	in	table	T.
67

67 CMP t,k,#80 K

68 PBN t,0B K[1]

Same	as	lines	48–60	of	Program	A.

Notice how lines 38–44 accomplish most of Algorithm B with just a few
instructions.

· · ·

Making the table T large enough to enable the use of the elements as indices is
not feasible if arbitrary strings are allowed as element names. Algorithms for
searching and building dictionaries of names, called symbol table algorithms, are of
great importance in computer applications. Chapter 6 contains a thorough
discussion of efficient symbol table algorithms.

[177]
Program I (Inverse in place). We assume that the permutation is stored as an
array of BYTEs and that x ≡ LOC(X[1]).

01 :Invert SUBU x,x,1 1 x	←	LOC(X[0]).
02 SET m,n 1 I1.	Initialize.
03 NEG j,1 1 j	←	−1.
04 2H LDB i,x,m N I2.	Next	element.	i	←	X[m].
05 BN i,5F N[N−C] To	I5	if	i	<	0.
06 3H STB j,x,m N I3.	Invert	one.	X[m]	←	j.
07 NEG j,m N j	←	−m.
08 SET m,i N m	←	i.
09 LDB i,x,m N i	←	X[m].
10 4H PBP i,3B N[C] I4.	End	of	cycle?.	To	I3	if	i	>	0.
11 SET i,j C Otherwise	set	i	←	j.
12 5H NEG i,i N I5.	Store	final	value.	i	←	−i.
13 STB i,x,m N X[m]	←	i.
14 6H SUB m,m,1 N I6.	Loop	on	m.
15 BP m,2B N[1] To	I2	if	m	>	0.					

The timing for this program is easily worked out in the manner shown earlier;
every element X[m] is set first to a negative value in step I3 and later to a
positive value in step I5. The total time comes to (13N + C + 5)υ, where N is the
size of the array and C is the total number of cycles. The behavior of C in a
random permutation is analyzed below.

[178]
Program J (Analogous to Program I).

01 :Invert SUBU x,x,1 1 x	←	LOC(X[0]).
02 SET k,n 1 J1.	Negate	all.
03 0H LDB i,x,k N i	←	X[k].
04 NEG i,i N i	←	−i.
05 STB i,x,k N X[k]	←	i.
06 SUB k,k,1 N Continue
07 PBP k,0B N[1] while	k	>	0.
08 SET m,n 1 m	←	n.
09 2H SET i,m N J2.	Initialize.	i	←	m.
10 0H SET j,i A j	←	i.
11 LDB i,x,j A J3.	Find	negative	entry.	i	←	X[j].
12 PBP i,0B A[N] i	>	0?
13 NEG i,i N J4.	Invert.	i	←	−i.
14 LDB k,x,i N k	←	X[i].
15 STB k,x,j N X[j]	←	k.
16 STB m,x,i N X[i]	←	m.
17 SUB m,m,1 N J5.	Loop	on	m.
18 BP m,2B N[1] To	J2	if	m	>	0.					

1.4.4.	Input	and	Output

[215]

A brief digression about terminology is perhaps appropriate here. . . . This
completes today’s English lessons.

The old MIX machine that is featured in Volumes 1, 2, and 3 of The Art of
Computer Programming has old-fashioned conventions for input and output, now
called “non-blocking I/O.” That is, a MIX programmer said, “Please start
inputting (or outputting) now, but let me continue executing more code.” The
machine would block further computation only if it hadn’t yet finished the
previous I/O instruction on the same device. The programmer could also test, if
desired, whether or not that previous command was complete, again without
blocking.

By contrast, input and output are specified in MMIX programs by the primitive
operations Fopen, Fclose, Fread, . . ., which are supplied by an underlying
operating system. Modern operating systems and programming languages tend

to discourage the use of more primitive, low-level operations, because such
instructions are deemed to be too dangerous. Thus it is impossible to give MMIX
programs that correspond closely with the MIX programs in the original text.

At the same time, the rise of modern multicore processors has made it
necessary for every serious programmer to understand threads. A thread is a kind
of coroutine that enjoys special support from the operating systems. The system
might assign separate physical processors to individual threads, executing them
in parallel; or it might allow a pool of threads to share a pool of processors,
periodically switching processors from one thread to another, so as to create the
illusion of truly parallel execution. Like coroutines, multiple threads share a joint
memory space; in contrast to coroutines, each thread has its own register file and
stack space. In such an environment, the techniques used with non-blocking I/O
reappear when one thread is responsible for asking the operating system to do
input or output while another thread is concurrently doing the computation. The
computing thread can send data to the I/O thread for output, or the I/O thread
can send input data to the computing thread for processing.

There’s a nice symmetry between these two threads, because both are doing
“computation” in some sense. The I/O thread is blocked while waiting for the
operating system to finish reading or writing; the other thread is “blocked” while
waiting for its instructions to be performed. In the following, we will call one of
the threads the producer and the other one the consumer—but it really won’t matter
which one is doing the I/O because of the symmetry.

The main interesting point is the sharing of a common resource. Inside an
operating system kernel, the available physical devices (disks, screens, network
connections, etc.) are shared resources; within user-space, the shared resource is
usually just a set of locations in main memory. In general, many threads can
share a complex data structure, but two threads might actually need to share
only one octabyte.

Let us therefore consider the problem of an I/O thread and a computing
thread, which exchange data using a shared area of memory called a “buffer.”
The simplest way to do this is probably to make the producer and the consumer
alternate in their use of the buffer: While the producer fills the buffer, the
consumer will wait; and while the consumer uses the buffer data, the producer
will wait. To synchronize both threads, we use a shared octabyte S, called a
semaphore. The octabyte will have the value 0 if the producer is allowed to
access the buffer (and the semaphore); it will have the value 1 if the consumer has
access to both. The code granting mutual exclusive access to the buffer may look
like this:

Consumer: Producer:
0H LDO t,S Acquire. 0H LDO t,S Acquire.

BZ t,0B Wait. BNZ t,0B Wait.
SYNC 2 Synchronize. Use	buffer. (1)

Use	buffer. SYNC 1 Synchronize.
STCO 0,S Release. STCO 1,S Release.

Note the ‘SYNC	2’ and ‘SYNC	1’ instructions in the consumer and the producer,
respectively. Here we assume that the producer is writing to the buffer and the
consumer is reading from it. Without the ‘SYNC	2’, the consumer might guess
that the ‘BZ’ will not be taken and it might load data from the buffer even before
the ‘LDO	t,S’ instruction loads S. By the time S is known to be zero, the data
loaded from the buffer might already be outdated.

The reason for the ‘SYNC	1’ instruction in the producer is similar. Modern
processors will not usually guarantee “sequential consistency”; in other words, we
cannot rely on the machine to make the effect of store instructions visible to
another thread in exactly the same order in which the instructions are issued.
The ‘SYNC	1’ instruction is there to ensure that the consumer will see all changes
made to the buffer once it has seen the change of S.

Programming concurrent threads on the instruction level is a demanding task.
Here we can only touch on some of the problems and assure the reader that this
book is mostly about sequential programs.

The method of (1) is generally wasteful of computer time, however, because a
very large amount of potentially useful calculating time is spent in the waiting
loop. The program’s running speed can be as much as doubled if this additional
time is used for calculation (see exercises 4 and 5, page 225).

One way to avoid such a “busy wait” is to use two buffers to exchange data
between producer and consumer: The producer can fill one buffer while the
consumer is using the data in the other. The code for the consumer could change
to the following:

Consumer:
0H LDO t,S Acquire.

BZ t,0B Wait.
SYNC 2 Synchronize. (3)

Copy	buffer	one	to	buffer	two.
STCO 0,S Release.

Use	buffer	two.

This has the same overall effect as (1), but it keeps the producer busy while the
consumer works on the data in buffer two.

[217]

The sequence (3) is not always superior to (1), although the exceptions are
rare. Let us compare the execution times: Suppose P is the time required by the
producer to input one page containing 256 octabytes, and suppose C is the
computation time that intervenes between two input requests by the consumer.
Method (1) requires a time of essentially P + C per input page, while method (3)
takes essentially max(P,	C) + 256υ. (The quantity 256υ is an estimate for the
time needed for the copy operation assuming that a pipelined processor can
complete one LDO and one STO instruction simultaneously per cycle.) One way to
look at this running time is to consider “critical path time”—in this case, the
amount of time the I/O unit is idle between uses. Method (1) keeps the unit idle
for C units of time, while method (3) keeps it idle for 256υ (assuming that C < P).

The relatively slow copying of buffers in (3) is undesirable, particularly because
it takes up critical path time. An almost obvious improvement of the method
allows us to avoid the copying: Producer and consumer can be revised so that
they refer alternately to two buffers. While one buffer is filled by the producer,
the consumer can perform computations using the other; then the producer can
fill the second buffer while the consumer continues with the information in the
first. This is the important technique known as buffer swapping. The location of the
current buffer of interest will be kept in memory together with the semaphore
protecting it and a link to the next semaphore.

As an example of buffer swapping, suppose we have two buffers at locations
Buffer1 and Buffer2, each SIZE bytes long. Then we define two semaphores, S1
and S2, and combine each one with a link to the respective buffer and a link to
the other semaphore. We assume that the consumer has set up three global
registers: buffer, pointing to one of the buffers; i, an index into this buffer; and
s, pointing to the corresponding semaphore. Then the following subroutine
GetByte gets the next byte from the buffer, switching to a new buffer if the end
of the current buffer (marked by a zero byte) is reached.

S1 OCTA 1,Buffer1,S2 Consumers	buffer	linked	to	S2.
S2 OCTA 0,Buffer2,S1 Producers	buffer	linked	to	S1.

1H STCO 0,s,0 Release.
LDO s,s,16 Switch	to	next	buffer.

0H LDO t,s,0 Acquire.
BZ Wait. (4)

BZ
t,0B

Wait. (4)

SYNC 2 Synchronize.
LDO buffer,s,8 Update	buffer.
NEG i,1 Initialize	i	←	−1.

:GetByte ADD i,i,1 Advance	to	next	byte.
LDBU $0,buffer,i Load	one	byte.
BZ $0,1B Jump	if	end	of	buffer.
POP 1,0 Otherwise	return	a	byte.				

The subroutine used by the producer to fill the buffer is quite symmetric (see
exercise 2).

It is easy to see that the same subroutine would also work for multiple buffers
provided that they are set up with multiple semaphores linked to form a ring.

Some more programming is required to make the subroutine work for
multiple concurrent consumers. If used as written above, the second consumer
could acquire the same buffer that the first consumer is working on and process it
a second time. The obvious way to prevent this from happening is to use a three-
valued semaphore: The value 0 implies that the producer owns it, 1 marks it for
consumer one, and 2 marks it for consumer two. The producer could then
schedule the buffers alternating between both consumers.

In general, the flow of buffers through a system with many buffers and many
threads can be organized in the manner outlined above as long as every thread
releasing a buffer knows in advance which thread should acquire this buffer for
further processing. But this assumption is unrealistic in many situations. Just
think of a web server with one producer that turns incoming network traffic into
page requests and a variable number of consumers (depending on the current
workload) that take one page request at a time and assemble a reply. Since the
producer will not know in advance which consumer will finish next, it cannot
possibly assign the right consumer to a new page request.

We solve this problem in three steps. First, we separate acquisition and release
of buffers into separate subroutines; second, we color each buffer with Red ≡ 0 if
it is empty, with Green ≡ 1 if it is full, and with Yellow ≡ 2 if it is assigned to a
consumer; and third, we maintain two pointers, NEXTG and NEXTR, pointing
respectively to the red and green buffer that is to be processed next. These
pointers will split the ring of buffers in two sections: NEXTG points to the sequence
of all the green buffers, after which NEXTR points to the sequence of all the red
and yellow buffers. Of course, any of these sequences might be empty. As long as
these pointers are used by a single thread, we can keep them in global registers; if

multiple threads need to share them, they need to be stored in main memory and
concurrent access to them must be protected by two semaphores SG and SR,
respectively.

The producer will fill the first red buffer, then turn it green, and advance to
the next red buffer, waiting, if necessary, for a yellow (or even green) buffer to
turn red. Multiple consumers will be working, each one on its own yellow buffer.
When a consumer has finished work with its buffer, it will release the buffer and
color it red. Then the consumer will advance to the first green buffer, acquire the
corresponding semaphore, then wait if necessary for the buffer to turn green,
before finally coloring it yellow and releasing the semaphore.

Program A (Acquire for multiple consumers).

01 s GREG 0 Pointer	to	current	color,	buffer,	and	link
02 t IS $0 Temporary	variable
03 :Acquire PUT :rP,0 Expect	GS	=	0.
04 	 SET t,1 Intend	to	set	GS	←	1.
05 	 CSWAP t,:GS Acquire	green	semaphore.
06 	 BZ t,:Acquire Start	over	if	swap	failed.
07 	 SYNC 2 Synchronize.
08 	 LDOU s,:NEXTG Load	address	of	next	green	buffer.
09 0H LDO t,s,0 Load	buffer	color.
10 	 CMP t,t,:Green Is	it	green?
11 	 BNZ t,0B Jump	if	it’s	not	green.
12 	 STCO :Yellow,s,0 Color	buffer	yellow.
13 	 LDOU t,s,16 Load	link.
14 	 STOU t,:NEXTG Advance	NEXTG.
15 	 LDO $0,s,8 Load	buffer	address.
16 	 SYNC 1 Synchronize.
17 	 STCO 0,:GS Release	green	semaphore.
18 	 POP 1,0 Return	buffer	address.			 	

The most interesting part of this routine is the loop in lines 03–06 where the
consumer waits until it can acquire the green semaphore. The loop culminates in
the instruction ‘CSWAP	t,:GS’. This instruction will—in one atomic operation—
load the content of the octabyte at location GS, compare it with the content of the
special prediction register rP, and, if both values are equal, will store the content
of register t at location GS and set register t to 1. The important word here is
“atomic.” The same sequence of operations could be achieved with a sequence

of ordinary load, compare, branch, and store instructions, but it would not be
atomic. In the context of multiple threads that execute in parallel, it would easily
be possible that one thread loads the value zero from location GS, and while it is
busy with comparing and branching, a second thread also loads the value zero
from location GS, long before the first thread can execute its store instruction.
Then both threads would proceed and both would start working with the same
buffer. The CSWAP instruction, in contrast, will do the load, compare, and store as
one uninterruptable (that is, atomic) operation. Once a CSWAP instruction has
started, it will prevent any other CSWAP instruction from loading or storing at the
same memory location in parallel. Multiple CSWAP instructions will always
execute one after the other.

Therefore, if multiple consumer threads enter the above subroutine
concurrently, one lucky thread gets its CSWAP instruction executed first and
successfully. The CSWAP instructions executing later will find that the value at
location GS no longer matches the content of the prediction register and so will
fail. In case of failure, the instruction ‘CSWAP	t,:GS’ will change the prediction
register to reflect the new value at location GS, leave the memory at location GS
unchanged, and set the register t to zero to indicate failure.

In this way, the CSWAP instruction protects the code sequence from line 08 up
to line 17 where GS is reset to zero. If multiple consumers need a green buffer,
CSWAP and the semaphore guarantee that at any time only one consumer can set
GS to one and enter the protected code sequence; all the others will have to wait.
Once inside the protected code sequence, the thread has earned the right to
modify NEXTG, the buffer it points to, its color, and the semaphore GS (see also
exercise 15). First, the loop in lines 09–11 ensures that the buffer at NEXTG is
indeed green. Since NEXTG points to the next green buffer, we can reasonably
expect that the loop is executed only once. Then the color of the buffer is
changed to yellow and the NEXTG pointer is advanced. The final ‘SYNC	1’ ensures
that these changes become visible to other threads before they can see the
change in GS from 1 back to 0.

Compared to this, releasing a buffer is extremely simple.
Program R (Release for multiple consumers).

:Release STCO :Red,s,0 Turn	buffer	red.				

EXERCISES

[225]
1. [20] New: In (1), the memory at location S is shared between two concurrent

threads that both alter it. Why is no CSWAP instruction required?
2. [20] New: Write a program for a producer collaborating with a consumer that

uses (4). The producer should use Fgets to fill each buffer with one line from
StdIn.

3. [25] New: Write an improved version of (4). The current subroutine will delay
the release of the buffer unnecessarily until the first byte of the next buffer is
requested. The improved version should release the buffer as soon as the last
byte of the current buffer is taken out.
6. [20] New: How should the global registers s, i, and buffer as well as the

content of Buffer1 and Buffer2 be initialized so that the GetByte subroutine in
(4) gets off to the right start?
7. [17] New: Which changes are required in Programs A and R in order to

obtain Acquire and Release subroutines for use by a single producer?

12. [12] New: Modify Program A and R to work with multiple producers. Hint:
Add the color Purple; a buffer should have the color Purple if it is currently
owned by a producer.
13. [20] New: Discuss why a ring of buffers is not always the best data structure
for sharing buffers between multiple consumers and multiple producers.
15. [20] New: Mr. B. C. Dull (an MMIX programmer) thought that CSWAP is an
expensive instruction and he could improve Program A by first waiting until the
buffer at NEXTG turns green and only then start an attempt to acquire the green
semaphore. After all, the waiting loop does not modify any memory locations,
therefore setting the semaphore should not be necessary for this part of the
program. So he used the following code instead of Program A:

01 s GREG 0 Pointer	to	current	color,	buffer,	and	link
02 t IS $0 Temporary	variable
03 :Acquire LDOU s,:NEXTG Load	address	of	next	green	buffer.
04 LDO t,s,0 Load	buffer	color.
05 CMP t,t,:Green Is	it	green?
06 BNZ t,:Acquire Jump	if	it’s	not	green.
07 PUT :rP,0 Expect	GS	=	0.
08 SET t,1 Intend	to	set	GS	←	1.
09 CSWAP t,:GS Acquire	green	semaphore.
10 BZ t,:Acquire Start	over	if	swap	failed.
11 STCO :Yellow,s,0 Color	buffer	yellow.

12 ... (Lines	12–18	remain	as	before.)

12 ... (Lines	12–18	remain	as	before.)

What serious mistake did he make, and what should he have done instead?
18. [35] New: Inside an operating system, I/O typically uses the interrupt
facilities of the processor. Write a forced trap handler that implements ‘TRAP
0,Fgets,StdIn’ and a matching dynamic trap handler, which takes care of the
keyboard interrupt. Both handlers should communicate by using a shared buffer.

To keep things simple, assume that each keystroke causes an interrupt which
will set the KBDINT bit of rQ to 1; and that after such an interrupt, the character
code just typed can be read as a single byte value at physical address KBDCHAR.
An invocation of ‘TRAP	0,Fgets,StdIn’ should return immediately, if the
necessary data is already available in the buffer; otherwise, it should wait until
sufficient data has accumulated. Besides the buffer, both handlers may share
additional data to do the “bookkeeping.”

CHAPTER	TWO

INFORMATION	STRUCTURES

2.1.	INTRODUCTION

[233]

We will illustrate methods of dealing with information structures in terms of
the MMIX computer. A reader who does not care to look through detailed MMIX
programs should at least study the ways in which structural information is
represented in MMIX’s memory.

· · ·

As a more interesting example, suppose the elements of our table are intended
to represent playing cards; we might have two-octabyte nodes broken into five
fields, TAG, SUIT, RANK, TITLE, and NEXT:

(This format reflects the content of two octabytes; see Section 1.3.1´.)

[234]

TAG is stored as one BYTE; TAG = #80 means that the card is face down, TAG =
#
00 means that it is face up. A single bit would be enough to store this

information; it is, however, convenient to use an entire byte, because this is the
smallest unit of memory that can be loaded or stored individually. Using the
most significant bit has the further advantage that it is the “sign” bit; it can be
tested directly—for instance, with a BN (branch if negative) instruction. SUIT is
another byte, with SUIT = 1, 2, 3, or 4 for clubs, diamonds, hearts, or spades,
respectively. The next byte holds the RANK; RANK = 1, 2, . . . , 13 for ace, deuce, . .
. , king. TITLE is a five-character alphabetic name of this card, for use in
printouts. NEXT is a link to the card below this one in the pile. A typical pile might
look like this:

Computer representation

It is easy to transform this notation into MMIXAL assembly language code. The
values of link variables are put into registers; field-offsets, defined as appropriate
constants, are used in load and store instructions. For example, Algorithm A
above could be written thus:

LOC Data_Segment
GREG @

TOP OCTA 1F Link	variable;	points	to	top	card	on	pile.
NEWCARD OCTA 2F Link	variable;	points	to	a	new	card.
NEXT IS 0 Definition	of	NEXT
TAG IS 8 and	TAG	offsets	for	the	assembler
FACEUP IS 0

top IS $0 Register	for	TOP
new IS $1 Register	for	NEWCARD
t IS $2 Temporary	variable

·	·	· (5)
LOC #100

Main ·	·	·
LDOU new,NEWCARD A1.	new	←	NEWCARD.
LDOU top,TOP top	←	TOP.
STOU top,new,NEXT NEXT(NEWCARD)	←	TOP.
STOU new,TOP A2.	TOP	←	NEWCARD.
SET t,FACEUP A3.
STBU t,new,TAG TAG(TOP)	←	FACEUP.
·	·	·

· · ·

There is an important distinction between assembly language and the notation
used in algorithms. Since assembly language is close to the machine’s internal

language, the symbols used in MMIXAL programs mostly stand for addresses and
registers instead of values. Thus, in the left-hand column of (5), the symbol TOP
actually is bound to the address where the pointer to the top card appears in
memory; but in (6) and (7) and in the remarks at the right of (5), it denotes the
value of TOP—namely, the address of the top card node. To complicate things
even further, before MMIX can work with the address of the top card, it needs to
load this address into a register. For this purpose, (5) introduces the symbol top
and binds it to register $0. After MMIX loads the content of TOP, the octabyte in
memory, into top, the register, both will contain the same value. Occasionally,
however, a symbol in an MMIXAL program is indeed bound to a plain value; in (5),
the name FACEUP was introduced just to illustrate this case.

EXERCISES

[237]

7. [07] In the text’s example MMIX program (5), the link variable TOP is stored in
an OCTA labeled TOP in MMIXAL assembly language. Given the field structure (1),
which of the following sequences of code brings the quantity SUIT(TOP) into
register t? Explain why the other sequences are incorrect.

a) LDA	t,TOP
LDB	t,t,SUIT

b) LDA	t,TOP+SUIT
LDB	t,t,0

c) LDOU	t,TOP
LDB	t,t,SUIT

8. [18] Write an MMIX program corresponding to steps B1–B3.

9. [23] Write an MMIX subroutine that prints out the alphabetic names of the
cards in the card pile, starting with card X, passed as a parameter, with one card
per line, and with parentheses around cards that are face down.

2.2.2.	Sequential	Allocation

[246]
In the case of MMIX, given an index in register i, the coding to bring the ith

one-octabyte node into register a is changed from
LDA	base,L0 LDOU	base,BASE

SL	ii,i,3 to,	for	example, SL	ii,i,3 (8)
LDO	a,base,ii LDO	a,base,ii

where ii is an auxiliary register and BASE contains the address of L0. Such
relative addressing may take longer than fixed-base addressing, because the LDOU
executes an additional load from memory after an address calculation, which by
itself is equivalent to the LDA instruction. If, however, the base address is kept in a
global register instead of in a memory location, relative addressing can be as fast
as fixed-base addressing.

EXERCISES

[251]

3. [21] New: Suppose that MMIX is extended as follows: The value of the Z field of
the LDOUI instruction is to have the form Z = 8Z1 + 4Z2 + Z3, where 0 ≤ Z1 <
32, 0 ≤ Z2 < 2, and 0 ≤ Z3 < 4. If Z2 = 0, the meaning is that the instruction will
load u($X) ← M8[$Y + Z1 × 8] if Z3 = 0, and it will load u($X) ← M8[$Y + (Z1

+ $Z3) × 8] if 0 < Z3 < 4. If, however, Z2 = 1 instead of loading $X, the
instruction will first load a new value of Z according to the rules above and then
repeat the load instruction using the new value for Z (with 0 ≤ Z1 < 261) and zero
instead of $Y. The execution time of the instruction will be 1υ + 1µ plus an extra
υ + µ for each time where Z2 = 1.

The instruction LDOU will work the same, but will take the value of Z from
register $Z; the instructions LDO and LDOI will work like their unsigned
counterparts. As a nontrivial example, suppose that the octabyte at location
#
1020 contains #2002, register $0 holds the value #1000, and register $2 holds

the value 7.

Then the instruction LDOUI	$X,$0,#24 will first compute $0 + #20 = #1020,
then load Z ← M8[#

1020] = #2002, and start over, now computing the address
#
2000 + $2 × 8 = #2038, and finally load u($X) ← M8[#

2038].

Using this new addressing feature, show how to simplify the coding of (8).
How much faster is your code than (8)?
4. [20] New: Given the extension of exercise 3, suppose there are several tables

whose base addresses are stored as octabytes in locations X, X + 8, X + 16,
How can the new addressing feature be used to bring the ith element of the jth
table into register a?

5. [20] New: Discuss the merits of the extension proposed in exercise 3.

2.2.3.	Linked	Allocation

2.2.3.	Linked	Allocation

[256]
7) Simple operations, like proceeding sequentially through a list, are slightly

faster for sequential lists on many computers. For MMIX, the comparison is
between ‘INCL	i,c’ and ‘LDOU	p,p,LINK’, which both are done in one cycle but
with the difference of an additional memory access. If the elements of a linked list
belong to different cache lines, or even to different pages in bulk memory, the
memory accesses might take significantly longer.

· · ·

In the next few examples we will assume for convenience that a node has two
octabytes—first one octabyte for the LINK and then one octabyte for the INFO:

[258]
Before looking at the case of queues, let us see how the stack operations can be

expressed conveniently in programs for MMIX. Assuming that AVAIL is kept in a
global register avail, we can write a program for insertion, with parameter y
(the INFO) as follows, using two auxiliary local registers p and t:
LINK IS 0 Offset	of	the	LINK	field
INFO IS 8 Offset	of	the	INFO	field

SET p,:avail P	←	AVAIL.
BZ p,:Overflow Is	AVAIL	=	Λ?
LDOU :avail,p,LINK AVAIL	←	LINK(P). (10)

STO y,p,INFO INFO(P)	←	Y.
LDOU t,:T

STOU t,p,LINK LINK(P)	←	T.
STOU p,:T T	←	P.				

This takes 7υ + 5µ, compared to 3υ + 1µ for a comparable operation with a
sequential table (although Overflow in the sequential case would in many cases
take considerably longer). In this program, as in others to follow in this chapter,
Overflow denotes an ending routine.

A program for deletion is equally simple:
LDOU p,:T P	←	T.

BZ p,:Underflow Is	T	=	Λ?

LDOU t,p,LINK

STOU t,:T T	←	LINK(P). (11)
LDO y,p,INFO Y	←	INFO(P).

STOU :avail,p,LINK LINK(P)	←	AVAIL.

SET :avail,p AVAIL	←	P.				

[263]
Therefore we will assume that the objects to be sorted are numbered from 1 to

n in any order. The input of the program will be in a Buffer as a sequential list
of 256 pairs of TETRAs, where the pair (j,	k) means that object j precedes object k.
The first pair, however, is (0, n), where n is the number of objects. The pair (0, 0)
terminates the input. We shall assume that n + 1 table entries plus the number of
relation pairs will fit comfortably in memory; that the next input buffer can be
obtained with ‘LDA	$255,InArgs;	TRAP	0,Fread,Fin’ from a binary file; and
that it is not necessary to check the input for validity. The output is to be the
numbers of the objects in sorted order, followed by the number 0. Up to 512 of
these numbers can be stored as TETRAs in the Buffer, before the buffer needs to
be written to disk using the instructions ‘LDA	$255,OutArgs;	TRAP
0,Fwrite,Fout’.

[264]

The algorithm that follows uses a sequential table X[0], X[1], . . . , X[n], and
each node X[k] has the form

Here COUNT[k] is the number of direct predecessors of object k (the number of
relations j k that have appeared in the input), and TOP[k] is a link to the
beginning of the list of direct successors of object k. The latter list contains entries in
the format

where SUC is a direct successor of k and NEXT is the next item of the list. To make
the links in the TOP[k] and NEXT fields fit into one tetrabyte, we use relative
addresses: All addresses are relative to a fixed global address Base and can be
converted into an absolute address by adding Base.

· · ·

The coding of Algorithm T in MMIX assembly language has a few additional
points of interest. Since no deletion from tables is made in the algorithm (because

no storage must be freed for later use), the operation P ⇐ AVAIL can be done in
an extremely simple way, as shown in lines 11, 12, 24, and 25 below; we need
not keep any linked pool of memory, and we can choose new nodes
consecutively. The program includes complete input and output using Fopen,
Fread, Fwrite, and Fclose system calls; the details of the data structures
containing the parameters are omitted for the sake of simplicity. Right after the
input buffer, we assume a Sentinel, the pair (0, 0), in memory. It allows us to
assert in step T4 simultaneously that neither the end of the input nor the end of
the buffer has been reached. The reader should not find it very difficult to follow
the details of the coding in this program, since it corresponds directly to
Algorithm T but with slight changes for efficiency. The efficient use of base
addresses, which is an important aspect of linked memory processing, is
illustrated here. We combine the conversion of relative addresses to absolute
addresses and the addition of an appropriate offset to access a field by
precomputing two base addresses (see line 13): count ← Base+COUNT and top ←
Base + TOP. Using these bases, COUNT[j] and TOP[j] can be loaded or stored
with a single instruction. The same applies to the SUC and NEXT fields; because
they use the same base and incidentally the same offsets, we merely define suc as
an alias for count and next for top. Again, qlink is just an alias for count. The
code is further simplified by scaling object numbers by 8. This turns the object
number k into the relative address of X[k]. Similarly, we define suitable base
address left and right for loading pairs from the Buffer.
Program T (Topological Sort).

01 :TSort LDA $255,InOpen 1 T1.	Initialize.
02 TRAP 0,:Fopen,Fin 1 Open	input	file.
03 LDA $255,IOArgs 1
04 TRAP 0,:Fread,Fin 1 Read	first	input	buffer.
05 SET size,SIZE 1 Load	buffer	size.
06 LDA left,Buffer+SIZE 1 Point	left	to	the	buffer	end.
07 ADDU right,left,4 1 Point	right	to	next	TETRA.
08 NEG i,size 1 i	←	0.
09 LDT n,right,i 1 First	pair	is	(0,	n),	n	←	n.
10 ADD i,i,8 1 i	←	i	+	1.
11 SET :avail,8 1 Allocate	QLINK[0].
12 8ADDU :avail,n,:avail 1 Allocate	n	COUNT	and	TOP	fields.
13 LDA count,Base+COUNT 1 count	←	LOC(COUNT[0]).
14 LDA top,Base+TOP 1 top	←	LOC(TOP[0]).

15 SL k,n,3 1

15 SL k,n,3 1 k	←	n.
16 1H STCO 0,k,count n	+	1 Set	(COUNT[k],	TOP[k])	←	(0,	0),
17 SUB k,k,8 n	+	1 for	0	≤	k	≤	n.

18 PBNN k,1B n	+	1[1] Anticipate	QLINK[0]	←	0	(step	T4).

19 JMP T2 1
20 T3 SL k,k,3 m T3.	Record	the	relation.
21 LDT t,k,count m Increase	COUNT[k]	by	one.
22 ADD t,t,1 m

23 STT t,k,count m

24 SET p,:avail m P	⇐	AVAIL.
25 ADD :avail,:avail,8 m

26 STT k,suc,p m SUC(P)	←	k.
27 SL j,j,3 m

28 LDTU t,top,j m NEXT(P)	←	TOP[j].
29 STTU t,next,p m

30 STTU p,top,j m TOP[j]	←	P.
31 T2 LDT j,left,i m	+	b T2.	Next	relation.
32 LDT k,right,i m	+	b
33 ADD i,i,8 m	+	b i	←	i	+	1.

34 PBNZ j,T3 m	+	b[b] End	of	input	or	buffer?

35 1H BNP i,T4 b[1] End	of	input?
36 TRAP 0,:Fread,Fin b	−	1 Read	next	buffer.
37 NEG i,size b	−	1 i	←	0.
38 JMP T2 b	−	1
39 T4 TRAP 0,:Fclose,Fin 1 T4.	Scan	for	zeros.
40 SET r,0 1 R	←	0.
41 SL k,n,3 1 k	←	n.
42 1H LDT t,k,count n Examine	COUNT[k],
43 PBNZ t,0F n[a] and	if	it	is	zero,
44 STT k,qlink,r a set	QLINK[R]	←	k,
45 SET r,k a and	R	←	k.
46 0H SUB k,k,8 n

47 PBP k,1B n[1] For	n	≥	k	>	0.
48 LDT f,qlink,0 1 F	←	QLINK[0].
49 LDA $255,OutOpen 1 Open	output	file.
50 TRAP 0,:Fopen,Fout 1

51 NEG i,size 1 Point	i	to	the	buffer	start.
52 JMP T5 1
53 T5B PBN i,0F n[c−1] Jump	if	buffer	is	not	full.
54 LDA $255,IOArgs c	−	1
55 TRAP 0,:Fwrite,Fout c	−	1 Flush	output	buffer.
56 NEG i,size c	−	1 Point	i	to	the	buffer	start.
57 0H SUB n,n,1 n n	←	n	−	1.
58 LDTU p,top,f n P	←	TOP[F].

59 BZ p,T7 n[d] If	P	=	Λ	go	to	T7.

60 T6 LDT s,suc,p m T6.	Erase	relations.
61 LDT t,s,count m Decrease	COUNT[SUC(P)].
62 SUB t,t,1 m

63 STT t,s,count m

64 PBNZ t,0F m[n−a] If	zero,
65 STT s,qlink,r n	−	a set	QLINK[R]	←	SUC(P),
66 SET r,s n	−	a and	R	←	SUC(P).
67 0H LDT p,next,p m P	←	NEXT(P).

68 PBNZ p,T6 m[n−d] If	P	=	Λ	go	to	T7.

69 T7 LDT f,qlink,f n T7.	Remove	from	queue.
70 T5 SR t,f,3 n	+	1 T5.	Output	front	of	queue.
71 STT t,left,i n	+	1 Output	the	value	of	F.
72 ADD i,i,4 n	+	1

73 PBNZ f,T5B n	+	1[1] If	F	=	0	go	to	T8.

74 T8 LDA $255,IOArgs 1 T8.	End	of	process.
75 TRAP 0,:Fwrite,Fout 1 Flush	output	buffer.
76 TRAP 0,:Fclose,Fout 1 Close	output	file.
77 POP 1,0 Return	n.				

The analysis of Algorithm T is quite simple with the aid of Kirchhoff’s law; the
execution time has the approximate form c1m + c2n, where m is the number of
input relations, n is the number of objects, and c1 and c2 are constants. It is hard
to imagine a faster algorithm for this problem! The exact quantities in the
analysis are given with Program T above, where a = number of objects with no
predecessor, b = number of disk blocks in the input file = (m + 2)/256 , c =
number of disk blocks in the output file = (n + 2)/512 , and d = number of
objects with no successor (needed only for the analysis of bad guesses at the end

of T4 and T6). Exclusive of input-output operations, with each TRAP instruction
contributing only 5υ, the total running time in this case is only (22m + 22n +
14b + 9c + 50)υ + (12m + 6n + 2b + 4)µ.

EXERCISES

[269]
2. [22] Write a “general purpose” MMIX subroutine to do the insertion operation,

(10). This subroutine should have the following specifications:

Calling	sequence: PUSHJ	$X,Insert

Entry	conditions: $0	≡	LOC(T)	and	$1	≡	Y.

AVAIL	is	kept	in	the	global	register	avail.
Exit	conditions: The	information	Y	is	inserted	just	before	the	node	that	was	pointed

to	by	link	variable	T.

3. [22] Write a “general purpose” MMIX subroutine to do the deletion operation,
(11). This subroutine should have the following specifications:

Calling	sequence: PUSHJ	$X,Delete

JMP	Underflow

Entry	conditions: $0	≡	LOC(T).

AVAIL	is	kept	in	the	global	register	avail.
Exit	conditions: If	the	stack	whose	pointer	is	the	link	variable	T	is	empty,	the	first

exit	is	taken.	Otherwise,	the	top	node	of	that	stack	is	deleted,	exit	is
made	to	the	second	instruction	following	‘PUSHJ’,	and	the	return
value	in	$X	is	the	contents	of	the	INFO	field	of	the	deleted	node.

4. [22] The exercise for the MIX computer used the fact that the conditional
jump to OVERFLOW could also be thought of as a subroutine call with a return to
the instruction immediately preceding the call. The MMIX computer, as most
computers now do, uses different instructions for subroutine calls and for
conditional jumps, which are oneway streets with no return path. A comparable
exercise for MMIX could use a calling convention as in exercise 3 and replace the
‘JMP	Underflow’ after the call to Delete with ‘PUSHJ	$255,Underflow’. Another
approach, used by many code libraries, is to provide a subroutine that combines
the operation P ⇐ AVAIL with memory repacking and/or garbage collection. If in
spite of all efforts sufficient memory is not available, these subroutines return Λ
and leave it to the calling program to attempt a programspecific recovery. The
following new exercise follows this second approach.

Show how to write an MMIX memory allocation subroutine Allocate following

(7). This subroutine should have the following specifications:

Calling	sequence: PUSHJ	$X,Allocate

Entry	conditions: AVAIL,	POOLMAX,	and	SEQMIN	are	kept	in	global	registers.
Exit	conditions: If	memory	is	available,	return	the	address	of	a	newly

allocated	node.	Otherwise,	the	subroutine	returns	zero.

8. [24] Write an MMIX subroutine for the problem of exercise 7, taking the
address of FIRST as a parameter. Try to design your program to operate as fast
as possible.

· · ·

22. [23] Program T assumes that its input file contains valid information, but a
program that is intended for general use should always make careful tests on its
input so that clerical errors can be detected, and so that the program cannot
“destroy itself.” For example, if one of the input relations for k were negative,
Program T may erroneously change memory locations preceding array X when
storing into X[k]. Suggest ways to modify Program T so that it is suitable for
general use.
24. [24] Incorporate the extensions of Algorithm T made in exercise 23 into
Program T.
26. [29] (Subroutine allocation.) Suppose that we have a large file containing the
main subroutine library in relocatable form. The loading routine wants to
determine the amount of relocation for each subroutine used, so that it can make
one pass through the file to load the necessary routines.

· · ·

One way to tackle this problem is to have a “file directory” that fits in
memory. The loading routine has access to two tables:

a) The file directory. This table is composed of variable-length nodes that
consist of two or more tetrabytes each. The first tetrabyte of a node contains the
SPACE field, and the following tetrabytes contain one or more LINK fields.

In each node, SPACE is the number of tetrabytes required by the subroutine in
the range 0 < SPACE < 231; LINK0, the first LINK field, is a link to the directory
entry for the subroutine that follows this subroutine in the linked list of entries or
zero if this subroutine is the last. We implement links as relative addresses and
ensure, by a suitable choice of the base address, that zero will not occur as link to
a valid directory entry. The remaining LINK fields, LINK1, LINK2, . . . , LINKk (k ≥

0), are links to the directory entries for any other subroutines required by this
one. The LINK fields are normally even, because nodes are TETRA aligned.
However, the last LINK field of a node has its least significant bit set to 1 to
indicate the end of the node; this bit is ignored when using a LINK field as an
address in load or store instructions. The relative address of the directory entry
for the first subroutine of the library file is specified by the link variable FIRST.

b) The list of subroutines directly referred to by the program to be loaded.
This is stored in consecutive octabytes X[0], X[1], . . . , X[N − 1], where N ≥ 0 is
a variable known to the loading routine. Each octabyte in this list has the
following form:

Initially, only the SUB field is used, for the offsets of the directory entries for the
subroutines desired; the BASE field is unused.

The loading routine also knows MLOC, the amount of relocation to be used for
the first subroutine loaded.

As a small example, consider the following configuration:
File directory

List of subroutines needed

with N = 2, FIRST = #100C, and MLOC = 2400.

The file directory in this case shows that the subroutines on file are #100C,
#
1048, #102C, #1000, #1024, #1014, and #1034 in that order. Subroutine #1034

takes 200	TETRAs and implies the use of subroutines #1024, #100C, and #102C;
etc. The program to be loaded requires #1014 and #1048, which are to be placed
into locations ≥ 2400. These subroutines in turn imply that #1000, #102C, and
#
100C must also be loaded.

The subroutine allocator is to change the X-table so that in each entry X[0],
X[1], . . . , the SUB field is a subroutine to be loaded and the BASE field is the
amount of its relocation. These entries are to be in the order in which the
subroutines appear in the file directory. The last entry contains the first unused
memory address and a zero link field.

One possible answer for the example above would be:

The problem in this exercise is to design an algorithm for the stated task.

27. [25] Write an MMIX program for the subroutine allocation algorithm of
exercise 26.

2.2.4.	Circular	Lists

[275]
We will consider here the two operations of addition and multiplication. Let us

suppose that a polynomial is represented as a list in which each node stands for
one nonzero term, and has the three-octabyte form

Here COEF contains the (signed) coefficient of the term xAyBzC. We will assume
that the coefficients and exponents will always lie in the range allowed by this
format, and that it is not necessary to check the ranges during our calculations.
The notation ABC will be used to stand for the SIGN	A	B	C fields of the node (5),
treated as a single octabyte. The SIGN field will always be zero, except that there
is a special node at the end of every polynomial that has ABC = −1 and COEF = 0.
This special node is a great convenience, analogous to our discussion of a list
head above, because it provides a convenient sentinel and it avoids the problem
of an empty list (corresponding to the polynomial 0). Actually, only the sign bit of
the SIGN field is necessary to tag the sentinel node; if required, the remaining 15
bits could be used to accommodate a fourth exponent. The nodes of the list
always appear in decreasing order of the ABC field, if we follow the direction of the
links, except that the last node (which has ABC = −1) links to the largest value of
ABC. For example, the polynomial x6 − 6xy5 + 5y6 would be represented thus:

· · ·

The programming of Algorithm A in MMIXAL language shows again the ease with
which linked lists are manipulated in a computer. In the following code, we
assume that the global register avail points to a sufficiently large stack of
available nodes.
Program A (Addition of polynomials). The subroutine expects two parameters, p ≡
polynomial(P) and q ≡ polynomial(Q). It will replace polynomial(Q) by
polynomial(Q) + polynomial(P).

01 :Add SET q1,q 1	+	m	″ A1.	Initialize.	Q1	←	Q.
02 LDOU q,q,LINK 1	+	m	″ Q	←	LINK(Q).
03 0H LDOU p,p,LINK 1	+	p P	←	LINK(P).
04 LDO coefp,p,COEF 1	+	p coefp	←	COEF(P).
05 LDO abcp,p,ABC 1	+	p A2.	ABC(P):	ABC(Q).
06 2H LDO t,q,ABC x t	←	ABC(Q).
07 CMP t,abcp,t x Compare	ABC(P)	and	ABC(Q).
08 BZ t,A3 x[m+1] If	equal,	go	to	A3.

09 BP t,A5 p	′	+	q	′[p	′] If	greater,	go	to	A5.

10

10 SET q1,q q	′ If	less,	set	Q1	←	Q.
11 LDOU q,q,LINK q	′ Q	←	LINK(Q).
12 JMP 2B q	′ Repeat.

13 A3 BN abcp,6F m	+	1[1] A3.	Add	coefficients.

14 LDO coefq,q,COEF m coefq	←	COEF(Q).
15 ADD coefq,coefq,coefp m coefq	←	coefq	+	coefp.
16 STO coefq,q,COEF m COEF(Q)	←	COEF(Q)	+	COEF(P).
17 PBNZ coefq,:Add m[m	′] Jump	if	nonzero.
18 SET q2,q m	′ A4.	Delete	zero	term.	Q2	←	Q.
19 LDOU q,q,LINK m	′ Q	←	LINK(Q).
20 STOU q,q1,LINK m	′ LINK(Q1)	←	Q.
21 STOU :avail,q2,LINK m	′
22 SET :avail,q2 m	′ AVAIL	⇐	Q2.
23 JMP 0B m	′ Go	to	advance	P.
24 A5 SET q2,:avail p	′ A5.	Insert	new	term.
25 LDOU :avail,:avail,LINK p	′ Q2	⇐	AVAIL.
26 STO coefp,q2,COEF p	′ COEF(Q2)	←	COEF(P).
27 STOU abcp,q2,ABC p	′ ABC(Q2)	←	ABC(P).
28 STOU q,q2,LINK p	′ LINK(Q2)	←	Q.
29 STOU q2,q1,LINK p	′ LINK(Q1)	←	Q2.
30 SET q1,q2 p	′ Q1	←	Q2.
31 JMP 0B p	′ Go	to	advance	P.
32 6H POP 0,0 Return	from	subroutine.				

· · ·

The analysis given with Program A uses the abbreviations

m	=	m	′	+	m	″,			p	=	m	+	p	′,			q	=	m	+	q	′,			x	=	1	+	m	+	p	′	+	q	′;

the running time for MMIX is (21m ′ + 15m ″ + 17p ′ + 7q ′ + 13)υ + (9m ′ + 7m ″
+ 9p ′ + 2q ′ + 5)µ.

EXERCISES

[279]
11. [24] . . . Write an MMIX subroutine with the following specifications:

Calling	sequence: PUSHJ	$X,Copy

Entry	conditions: $0	≡	polynomial(P).

Exit	conditions: Returns	a	pointer	to	a	newly	created	polynomial	equal	to
polynomial(P).

12. [21] Compare the running time of the program in exercise 11 with that of
Algorithm A when the polynomial(Q) = 0.

13. [20] Write an MMIX subroutine with the following specifications:

Calling	sequence: PUSHJ	$X,Erase

Entry	conditions: $0	≡	polynomial(P).

Exit	conditions: polynomial(P)	has	been	added	to	the	AVAIL	list.

[Note: This subroutine can be used in conjunction with the subroutine of exercise
11 in the sequence ‘LDOU	t+1,Q;	PUSHJ	t,Erase;	LDOU	t+1,P;	PUSHJ
t,Copy;	STOU	t,Q’ to achieve the effect “polynomial(Q) ← polynomial(P)”.]

14. [22] Write an MMIX subroutine with the following specifications:

Calling	sequence: PUSHJ	$X,Zero

Entry	conditions: None
Exit	conditions: Returns	a	newly	created	polynomial	equal	to	0.

15. [24] Write an MMIX subroutine to perform Algorithm M, having the following
specifications:

Calling	sequence: PUSHJ	$X,Mult

Entry	conditions: $0	≡	polynomial(Q),	$1	≡	polynomial(M),	$2	≡	polynomial(P).

Exit	conditions: polynomial(Q)	←	polynomial(Q)	+	polynomial(M)	×	polynomial(P).

[Note: Modify Program A by adding an outer loop on M and a multiplication by
one term of M in the inner loop.]
16. [M28] Estimate the running time of the subroutine in exercise 15 in terms of
some relevant parameters.

2.2.5.	Doubly	Linked	Lists

[282]

. . . Corresponding to these buttons, there are two variables CALLUP and
CALLDOWN, in which the five least significant bits each represent one button.
There is also a variable CALLCAR representing with its bits the buttons within the
elevator car, which direct it to the destination floor. The individual bits are
denoted by CALLUP[j], CALLDOWN[j], and CALLCAR[j] in the following
algorithms, for 0 ≤ j ≤ 4. When a person presses a button, the appropriate bit in
one of these variables is set to 1; the elevator clears the bit to 0 after the request

has been fulfilled.
So far we have described the elevator from the user’s point of view; the

situation is more interesting as viewed by the elevator. The elevator is in one of
three states: GOINGUP (STATE > 0), GOINGDOWN (STATE < 0), or NEUTRAL (STATE =
0).

[288]
Each node representing an activity (whether a user or an elevator action) has

the form

[289]
First comes a number of lines of code that just serve to define the initial contents
of the tables. There are several points of interest here: We have list heads for the
WAIT list (line 010), the QUEUE lists (lines 020–024), and the ELEVATOR list (line
026). Each of them is a node of the form (6), but with unimportant words
deleted; the WAIT list head contains only the first four octabytes of a node, while
the QUEUE and ELEVATOR list heads require only the last two octabytes of a node.
For convenience, we set up global registers wait, queue, and elevator pointing
to these list heads. We have also four nodes that are always present in the system
(lines 011–015): USER1, a node that is always positioned at step U1 ready to enter
a new user into the system; ELEV1, a node that governs the main actions of the
elevator at steps E1, E2, E3, E4, E6, E7, and E8; and ELEV2 and ELEV3, nodes
that are used for the elevator actions E5 and E9, which take place independently
of other elevator actions with respect to simulated time. Each of these four nodes
contains only four octabytes, since they never appear in the QUEUE or ELEVATOR
lists. The nodes representing each actual user in the system will appear in the
pool segment.

001 LLINK1 IS 0 Definition	of	fields
002 RLINK1 IS 8

003 NEXTINST IS 16

004 NEXTTIME IS 24

005 IN IS 30

005 IN IS 30

006 OUT IS 31

007 LLINK2 IS 32

008 RLINK2 IS 40

009 LOC Data_Segment

010 WAIT OCTA USER1,USER1,0,0 List	head	for	WAIT	list
011 USER1 OCTA WAIT,WAIT,U1,0 User	action	U1
012 wait GREG WAIT Pointer	to	WAIT	list	head
013 ELEV1 OCTA 0,0,E1,0 Elevator	actions	except	E5	and	E9
014 ELEV2 OCTA 0,0,E5,0 Elevator	action	E5
015 ELEV3 OCTA 0,0,E9,0 Elevator	action	E9
016 time GREG 0 Current	simulated	time
017 c GREG 0 Current	node
018 c0 GREG 0 Backup	for	current	node
019 queue GREG @-4*8 Pointer	to	QUEUE[0]	list	head
020 OCTA @-4*8,@-4*8 List	head	for	QUEUE[0]
021 OCTA @-4*8,@-4*8 List	head	for	QUEUE[1]
022 OCTA @-4*8,@-4*8 (All	queues	are
023 OCTA @-4*8,@-4*8 initially	empty.)
024 OCTA @-4*8,@-4*8 List	head	for	QUEUE[4]
025 elevator GREG @-4*8 Pointer	to	ELEVATOR	list	head
026 OCTA @-4*8,@-4*8 List	head	for	ELEVATOR
027 callup GREG 0

028 calldown GREG 0

029 callcar GREG 0

030 off IS 0

031 on GREG 1

032 floor GREG 0

033 d1 GREG 0 Indicates	doors	open,	activity
034 d2 GREG 0 Indicates	no	prolonged	standstill
035 d3 GREG 0 Indicates	doors	open,	inactivity
036 state GREG 0 -1	going	down,	0	neutral,	+1	going	up
037 dt GREG 0 Hold	time
038 fi GREG 0 Floor	IN
039 fo GREG 0 Floor	OUT
040 tg GREG 0 Give-up	time				

The next part of the program coding contains basic subroutines and the main
control routines for the simulation process. Subroutines Insert and Delete
perform typical manipulations on doubly linked lists; they put the current node C
into or take it out of a QUEUE or ELEVATOR list. There are also subroutines for the
WAIT list: Subroutine SortIn adds the current node to the WAIT list, sorting it into
the right place based on its NEXTTIME field. Subroutine Immed inserts the current
node at the front of the WAIT list. Subroutine Hold puts the current node into the
WAIT list, with NEXTTIME equal to the current time plus the amount in register dt.
Subroutine DeleteW deletes the current node from the WAIT list.

The heart of the simulation control is the scheduling of the coroutines. The
following program implements these subroutines as TRIP handlers, and we will
see that TRIPs are very flexible and convenient for this kind of “system
programming.” TRIP	Cycle,0 decides which activity is to be performed next
(namely, the first element of the WAIT list, which we know is nonempty) and
jumps to it. There are three special entrances to Cycle: Cycle1 first sets
NEXTINST in the current node; HoldC is the same with an additional call on the
Hold subroutine using the global register dt to specify the hold time; and HoldCI
is like HoldC but with the hold time given as an immediate value in the Z field of
the TRIP instruction. Thus, the effect of the instruction ‘TRIP	HoldC,0’ with
amount t in register dt or of ‘TRIP	HoldCI,t ’ is to suspend activity for t units of
simulated time and then return to the following location.

The implementation that follows will not save and restore the complete
context of each coroutine; in particular, it will not save the contents of local
registers. Consequently, it is not possible to use TRIPs inside of subroutines
because the register stack would be corrupted. This is a small inconvenience but
it simplifies the code.

041 LOC 0 TRIP	entry	point
042 GET $0,rX $0	←	TRIP	X,Y,Z.
043 GET $1,rW $1	←	rW	(the	return	address).
044 SR $2,$0,16 Extract	X	field
045 AND $2,$2,#FF and
046 GO $2,$2,0 dispatch	depending	on	X.
047 Cycle1 STOU $1,c,NEXTINST Set	NEXTINST(C)	←	rW.
048 JMP Cycle

049 HoldCI AND dt,$0,#FF Set	dt	←	Z.
050 HoldC STOU $1,c,NEXTINST Set	NEXTINST(C)	←	rW.
051 PUSHJ $0,Hold Insert	NODE(C)	in	WAIT	with	delay	dt.

052 Cycle LDOU c,wait,RLINK1

052 Cycle LDOU c,wait,RLINK1 Set	C	←	RLINK1(LOC(WAIT)).
053 LDTU time,c,NEXTTIME TIME	←	NEXTTIME(C).
054 PUSHJ $0,DeleteW Remove	NODE(C)	from	WAIT	list.
055 LDOU $0,c,NEXTINST

056 PUT rW,$0 rW	←	NEXTINST(C).
057 RESUME 0 Return.
058 LOC #100

059 PREFIX :queue:

060 p IS $0 Parameter	for	Insert
061 q IS $1 Local	variable
062 :Insert LDOU q,p,:LLINK2 Insert	NODE(C)	to	left	of	NODE(P).
063 STOU q,:c,:LLINK2

064 STOU :c,p,:LLINK2

065 STOU :c,q,:RLINK2

066 STOU p,:c,:RLINK2

067 POP 0,0

068 :Delete LDOU p,:c,:LLINK2 Delete	NODE(C)	from	its	list.
069 LDOU q,:c,:RLINK2

070 STOU p,q,:LLINK2

071 STOU q,p,:RLINK2

072 POP 0,0

073 PREFIX :wait:

074 tc IS $0 Parameter	for	SortIn
075 q IS $1 Local	variables
076 p IS $2

077 tp IS $3

078 t IS $4

079 :Immed SET tc,:time Insert	NODE(C)	first	in	WAIT	list.
080 STTU tc,:c,:NEXTTIME

081 SET p,:wait

082 JMP 2F

083 :Hold ADDU tc,:time,:dt Add	delay	dt	to	current	TIME.
084 :SortIn STTU tc,:c,:NEXTTIME Sort	NODE(C)	into	WAIT	list.
085 SET p,:wait P	←	wait.
086 1H LDOU p,p,:LLINK1 P	←	LLINK1(P).
087 LDTU tp,p,:NEXTTIME tp	←	NEXTTIME(P).

088 CMP t,tp,tc Compare	NEXTTIME	fields,	right	to	left.
089 BP t,1B Repeat	until	tp	≤	tc.
090 2H LDOU q,p,:RLINK1 Insert	NODE(C)	right	of	NODE(P).
091 STOU q,:c,:RLINK1

092 STOU p,:c,:LLINK1

093 STOU :c,p,:RLINK1

094 STOU :c,q,:LLINK1

095 POP 0,0

096 :DeleteW LDOU p,:c,:LLINK1 Delete	NODE(C)	from	WAIT	list.
097 LDOU q,:c,:RLINK1 (This	is	the	same	as	lines	068–071
098 STOU p,q,:LLINK1 except	LLINK1,	RLINK1	are	used
099 STOU q,p,:RLINK1 instead	of	LLINK2,	RLINK2.)
100 POP 0,0

Now comes the program for Coroutine U. At the beginning of step U1, the
function Values will initialize fi, fo, tg, and dt by generating new values for IN,
OUT, GIVEUPTIME, and INTERTIME. After these quantities have been computed,
line 103 of the program causes the current node C, which is USER1 (see line 011
above) to be reinserted into the WAIT list so that the next user will be generated
after dt = INTERTIME units of simulated time. The following lines 104–106 create
a new node using the function Allocate and record the values of fi and fo in
this node. The give-up time tg is used in line 139 when the new node enters the
WAIT list. The node is returned to free storage in step U6 by calling the
subroutine Free (line 146).

101 PREFIX :

102 U1 PUSHJ $0,Values U1.	Enter,	prepare	for	successor.
103 PUSHJ $0,Hold Put	NODE(C)	in	WAIT	list.
104 PUSHJ $0,Allocate Allocate	new	NODE(C).
105 STB fi,c,IN

106 STB fo,c,OUT

107 U2 SET c0,c U2.	Signal	and	wait.	Save	value	of	C.
108 CMP $0,fi,floor

109 BNZ $0,2F Jump	if	FLOOR	≠	fi.
110 LDA c,ELEV1 Set	current	coroutine	to	ELEV1.
111 LDOU $0,c,NEXTINST

112 GETA $1,E6

113 CMPU $0,$0,$1 Is	elevator	positioned	at	E6?

BNZ $0,3F

114 BNZ $0,3F

115 GETA $0,E3

116 STOU $0,c,NEXTINST If	so,	reposition	at	E3.
117 PUSHJ $0,DeleteW Remove	it	from	WAIT	list
118 JMP 4F and	reinsert	it	at	front	of	WAIT.
119 3H BZ d3,2F Jump	if	not	waiting;
120 SET d3,off otherwise,	make	it	not	waiting,
121 SET d1,on but	loading.
122 4H PUSHJ $0,Immed Schedule	ELEV1	for
123 JMP U3 immediate	execution.
124 2H SL $1,on,fi Elevator	is	not	on	floor	fi.
125 CMP $0,fo,fi

126 ZSP $2,$0,$1

127 OR callup,callup,$2

128 ZSN $2,$0,$1

129 OR calldown,calldown,$2 Press	buttons.
130 BZ d2,0F If	not	busy,	make	a	decision.
131 LDOU $0,ELEV1+NEXTINST

132 GETA $1,E1

133 CMP $0,$0,$1 Elevator	at	E1?
134 BNZ $0,U3 If	yes,
135 0H PUSHJ $0,Decision make	a	decision.
136 U3 SET c,c0 U3.	Enter	queue.	Restore	C.
137 16ADDU $1,fi,queue

138 PUSHJ $0,Insert Insert	NODE(C)	at	right	end	of	QUEUE[IN].
139 U4A SET dt,tg

140 TRIP HoldC,0 Wait	GIVEUPTIME	units.
141 U4 LDB fi,c,IN U4.	Give	up.
142 CMP $0,fi,floor

143 BNZ $0,U6 Give	up	if	fi	≠	FLOOR.
144 BNZ d1,U4A See	exercise	7.
145 U6 PUSHJ $0,Delete U6.	Get	out.
146 PUSHJ $0,Free AVAIL	⇐	C.

147 TRIP Cycle,0 Continue	simulation.
148 U5 PUSHJ $0,Delete U5.	Get	in.	Delete	C	from	QUEUE.
149 SET $1,elevator

150 PUSHJ $0,Insert Insert	it	at	right	of	ELEVATOR.

151 LDB fo,c,OUT

152 SL $0,on,fo

153 OR callcar,callcar,$0 Set	bit	CALLCAR[OUT(C)]	←	1.
154 BZ state,1F

155 TRIP Cycle,0

156 1H CMP state,fo,floor STATE	←	1,	0,	or	−1.
157 LDA c,ELEV2

158 PUSHJ $0,DeleteW Remove	E5	action	from	WAIT	list.
159 TRIP HoldCI,25

160 JMP E5 Restart	E5	action	25	units	from	now.	

The function Allocate and Free perform the actions ‘C ⇐ AVAIL’ and ‘AVAIL ⇐
C’ using the POOLMAX technique; no test for Overflow is necessary here, since the
total size of the storage pool (the number of users in the system at any one time)
rarely exceeds 10 nodes (480 bytes).

161 avail GREG 0 List	of	available	nodes
162 poolmax GREG 0 Location	of	pool	memory
163 Allocate PBNZ avail,1F C	⇐	AVAIL	using	2.2.3–(7).
164 SET c,poolmax

165 ADDU poolmax,c,6*8

166 POP 1,0

167 1H SET c,avail

168 LDOU avail,c,LLINK1

169 POP 1,0

170 Free STOU avail,c,LLINK1 AVAIL	⇐	C	using	2.2.3–(5).
171 SET avail,c

172 POP 0,0

The program for Coroutine E is a rather straightforward rendition of the
semi-formal description given earlier. Perhaps the most interesting portion is the
preparation for the elevator’s independent actions in step E3, and the searching
of the ELEVATOR and QUEUE lists in step E4.

173 E1A TRIP Cycle1,0 Set	NEXTINST	←	E1,	go	to	Cycle.
174 E1 IS @ E1.	Wait	for	call.	(no	action)
175 E2A TRIP HoldC,0 Decelerate.
176 E2 OR $0,callup,calldown E2.	Change	of	state?
177 OR $0,$0,callcar

177 OR $0,$0,callcar

178 BN state,1F Jump	if	going	down.
179 ADD $1,floor,1 State	is	GOINGUP.
180 SR $2,$0,$1

181 BNZ $2,E3 Are	there	calls	for	higher	floors?
182 NEG $1,64,floor If	not,	have	passengers	in	the
183 SL $2,callcar,$1 elevator	called	for	lower	floors?
184 JMP 2F

185 1H NEG $1,64,floor State	is	GOINGDOWN.
186 SL $2,$0,$1

187 BNZ $2,E3 Are	there	calls	for	lower	floors?
188 ADD $1,floor,1 If	not,	have	passengers	in	the
189 SR $2,callcar,$1 elevator	called	for	upper	floors?
190 2H NEG state,state Reverse	direction	of	STATE.
191 CSZ state,$2,0 STATE	←	NEUTRAL	or	reversed.
192 SL $0,on,floor

193 ANDN callup,callup,$0 Set	all	CALL	bits	to	zero.
194 ANDN calldown,calldown,$0

195 ANDN callcar,callcar,$0

196 E3 LDA c,ELEV3 E3.	Open	doors.
197 LDO $0,c,LLINK1

198 BZ $0,1F If	activity	E9	is	already	scheduled,
199 PUSHJ $0,DeleteW remove	it	from	the	WAIT	list.
200 1H SET dt,300

201 PUSHJ $0,Hold Schedule	activity	E9	after	300	units.
202 LDA c,ELEV2

203 SET dt,76

204 PUSHJ $0,Hold Schedule	activity	E5	after	76	units.
205 SET d2,on

206 SET d1,on

207 SET dt,20

208 E4A LDA c,ELEV1

209 TRIP HoldC,0

210 E4 LDA $0,elevator E4.	Let	people	out,	in.
211 LDA c,elevator C	←	LOC(ELEVATOR).
212 1H LDOU c,c,LLINK2 C	←	LLINK2(C).

CMP $1,c,$0

213 CMP $1,c,$0 Search	ELEVATOR	list,	right	to	left.
214 BZ $1,1F If	C	=	LOC(ELEVATOR),	search	is	complete.
215 LDB $1,c,OUT

216 CMP $1,$1,floor Compare	OUT(C)	with	FLOOR.
217 BNZ $1,1B If	not	equal,	continue	searching;
218 GETA $0,U6 otherwise,	send	user	to	U6.
219 JMP 2F

220 1H 16ADDU $0,floor,queue

221 LDOU c,$0,RLINK2 Set	C	←	RLINK2(LOC(QUEUE[FLOOR])).
222 LDOU $1,c,RLINK2

223 CMP $1,$1,c Is	C	=	RLINK2(C)?
224 BZ $1,1F If	so,	the	queue	is	empty.
225 PUSHJ $0,DeleteW If	not,	cancel	action	U4	for	this	user.
226 GETA $0,U5 Prepare	to	replace	U4	by	U5.
227 2H STOU $0,c,NEXTINST Set	NEXTINST(C).
228 PUSHJ $0,Immed Put	user	at	the	front	of	the	WAIT	list.
229 SET dt,25

230 JMP E4A Wait	25	units	and	repeat	E4.
231 1H SET d1,off

232 SET d3,on

233 TRIP Cycle,0 Return	to	simulate	other	events.
234 E5 BZ d1,0F E5.	Close	doors.
235 TRIP HoldCI,40 If	people	are	still	getting	in	or	out,
236 JMP E5 wait	40	units	and	repeat	E5.
237 0H SET d3,off If	not	loading,	stop	waiting.
238 LDA c,ELEV1

239 TRIP HoldCI,20 Wait	20	units,	then	go	to	E6.
240 E6 SL $0,on,floor E6.	Prepare	to	move.
241 ANDN callcar,callcar,$0 Reset	CALLCAR	on	this	floor.
242 ZSNN $1,state,$0 If	not	going	down,
243 ANDN callup,callup,$1 reset	CALLUP	on	this	floor.
244 ZSNP $1,state,$0 If	not	going	up,
245 ANDN calldown,calldown,$1 reset	CALLDOWN	on	this	floor.
246 PUSHJ $0,Decision

247 E6B BZ state,E1A If	STATE	=	NEUTRAL,	go	to	E1	and	wait.
248 BZ d2,0F

249 LDA c,ELEV3 If	busy,
250 PUSHJ $0,DeleteW cancel	activity	E9
251 STCO 0,c,LLINK1 (see	line	197).
252 0H LDA c,ELEV1

253 TRIP HoldCI,15 Wait	15	units	of	time.
254 BN state,E8 If	STATE	=	GOINGDOWN,	go	to	E8.
255 E7 ADD floor,floor,1 E7.	Go	up	a	floor.
256 TRIP HoldCI,51 Wait	51	units.
257 SL $0,on,floor

258 OR $1,callcar,callup

259 AND $2,$1,$0 Is	CALLCAR[FLOOR]	≠	0
260 BNZ $2,1F or	CALLUP[FLOOR]	≠	0?
261 CMP $2,floor,2

262 BZ $2,2F If	not,	is	FLOOR	=	2?
263 AND $2,calldown,$0 If	not,	is	CALLDOWN[FLOOR]	≠	0?
264 BZ $2,E7 If	not,	repeat	step	E7.
265 2H OR $1,$1,calldown

266 ADD $2,floor,1

267 SR $1,$1,$2

268 BNZ $1,E7 Are	there	calls	for	higher	floors?
269 1H SET dt,14 It	is	time	to	stop	the	elevator.
270 JMP E2A Wait	14	units	and	go	to	E2.

(See	exercise	8.)
287 E9 STCO 0,c,LLINK1 E9.	Set	inaction	indicator.	(See	line	197.)
288 SET d2,off

289 PUSHJ $0,Decision

290 TRIP Cycle,0 Return	to	simulation	of	other	events.				

We will not consider here the Decision subroutine (see exercise 9), nor the
Values subroutine that is used to specify the demands on the elevator. At the
very end of the program comes the code

Main SET floor,2 Start	with	FLOOR	=	2,
SET state,0 STATE	=	NEUTRAL,
SETH poolmax,Pool_Segment>>48 and	no	extra	nodes.
TRIP Cycle,0,0 Begin	simulation.						

· · ·

. . . The author made such an experiment with the elevator program above,
running it for 10000 units of simulated elevator time; 26 users entered the
simulated system. The instructions in the SortIn loop, lines 086–089, were
executed by far the most often, 1432 times, while the SortIn subroutine itself
was called 437 times. The Cycle routine was performed 407 times; so we could
gain a little speed by not calling the DeleteW subroutine at line 054: The four
lines of that subroutine could be written out in full (to save 4υ each time Cycle is
used). The profiler also showed that the Decision subroutine was called only 32
times and the loop in E4 (lines 212–217) was executed only 142 times.

EXERCISES

[297]

7. [25] · · ·

Assume that line 144 said ‘BZ	D1,U6;	TRIP	Cycle,0’ instead of ‘BNZ	D1,U4A’.

8. [21] Write the code for step E8, lines 271–286, which has been omitted from
the program in the text.
9. [23] Write the code for the Decision subroutine, which has been omitted

from the program in the text.

2.2.6.	Arrays	and	Orthogonal	Lists

[302]
The representation we will discuss consists of circularly linked lists for each

row and column. Every node of the matrix contains four octabytes and five
fields:

· · ·

There are special list head nodes, BASEROW[i] and BASECOL[j], for every row
and column. These nodes are identified by odd links pointing to them. So UP(P)
is odd if and only if UP(P) = LOC(BASECOL[j]) | 1, and LEFT(P) is odd if and
only if LEFT(P) = LOC(BASEROW[i]) | 1.

· · ·

Using sequential allocation of storage, a 400 × 400 matrix would fill more
than 1 MByte, and this is more memory than used to fit in the cache of many
computers; but a suitable sparse 400 × 400 matrix can be represented even in a
small 64 KByte level 1 cache.

[305]

The programming of this algorithm is left as a very instructive exercise for the
reader (see exercise 15). It is worth pointing out here that it is necessary to
allocate only one octabyte to each of the nodes BASEROW[i], BASECOL[j], since
most of their fields are irrelevant. (See the shaded areas in Fig. 14, and see the
program of Section 2.2.5.) Furthermore there is one additional octabyte required
for each PTR[j].

EXERCISES

[306]

5. [20] Show that it is possible to bring the value of A[J,K] into register a in one
MMIX instruction, using the indirect addressing feature of exercise 2.2.2–3, even
when A is a triangular matrix as in (9). (Assume that the values of J and K are in
registers $1 and $2, respectively.)
11. [11] Suppose that we have a 400 × 400 matrix in which there are at most
four nonzero entries per row. How much storage is required to represent this
matrix as in Fig. 14, if we use four octabytes per node except for list heads, which
will use one octabyte?
15. [29] Write an MMIX program for Algorithm S. Assume that the VAL field is a
floating point number.

2.3.1.	Traversing	Binary	Trees

[324]

For threaded trees, it turns out that things will work nicely if NODE(LOC(T)) is
made into a “list head” for the tree, with
			LLINK(HEAD)	=	T, LTAG(HEAD)	=	0,
			RLINK(HEAD)	=	HEAD, RTAG(HEAD)	=	0. (8)

(Here HEAD denotes LOC(T), the address of the list head.) An empty threaded tree
will satisfy the conditions

(9)

			LLINK(HEAD)	=	HEAD, LTAG(HEAD)	=	1. (9)

· · ·

With these preliminaries out of the way, we are now ready to consider MMIX
versions of Algorithms S and T. The following programs assume that binary tree
nodes have the three-word form

The two TAGs are stored in the least significant bit of the link fields. In an
unthreaded tree, both TAGs will always be zero and terminal links will be
represented by zero. In a threaded tree, the least significant bits of the link fields
come “for free,” because pointer values will generally be even, and MMIX ignores
the low-order bits when addressing memory.

The following two subroutines traverse a binary tree in symmetric order (that
is, inorder), calling the subroutine Visit periodically; that subroutine is given a
pointer to the node that is currently of interest.

Program T (Traverse binary tree inorder). In this implementation of Algorithm T,
the stack is kept conveniently on the register stack. While this might appear to be
less memory efficient—the register stack stores three octabytes per nesting level
instead of only one—it is just making good use of the available hardware. After
all, if the tree is well balanced, the 256 registers in the register ring will go a long
way. The subroutine expects two parameters: p ≡ LOC(HEAD), the address of the
root node of the tree; and visit ≡ LOC(Visit), the address of a subroutine to
be called for every node in the tree.

01 :Inorder PBZ p,T4 n	+	1[a] T2.	P	=	Λ?

02 GET rJ,:rJ a

03 T3 LDOU t+1,p,LLINK n T3.	Stack	⇐	P.
04 SET t+2,visit n

05 PUSHJ t,:Inorder n Call	Inorder(LLINK(P),Visit).
06 T5 SET t+1,p n T5.	Visit	P.
07 PUSHGO t,visit,0 n Call	Visit(P).
08 LDOU p,p,RLINK n P	←	RLINK(P).

09 BNZ p,T3 n[n−a] T2.	P	=	Λ?

10 PUT :rJ,rJ a

10
11 T4 POP 0,0 n	+	1 T4.	P	⇐	Stack.				

Program S (Symmetric successor in a threaded binary tree). Algorithm S has been
augmented to form a complete subroutine comparable to Program T.

01 :Inorder GET rJ,:rJ 1 S0.	Initialize.
02 SET head,p 1 Remember	HEAD.
03 JMP S2 1 Skip	step	S1.
04 S3 PUSHGO t,visit,0 n S3.	Visit	P.
05 S1 LDOU p,p,RLINK n S1.	RLINK(P)	a	thread?
06 BOD p,1F n[a] If	RTAG(P)	=	1,	visit	P.
07 S2 LDOU t,p,LLINK n	+	1 S2.	Search	to	left.
08 CSEV p,t,t n	+	1 If	LTAG(P)	=	0,	set	P	←	LLINK(P)

09 BEV t,S2 n	+	1[a] and	repeat	this	step.

10 1H ANDN t+1,p,1 n	+	1 Untag	P	and	prepare	to	visit	P.
11 CMP t,t+1,head n	+	1 Unless	P	=	HEAD,

12 PBNZ t,S3 n	+	1[1] visit	P.

13 9H PUT :rJ,rJ 1
14 POP 0,0

[326]
The analysis tells us Program T takes (15n + 2a + 4)υ + 2nµ, and Program S

takes (11n + 4a + 12)υ + (2n + 1)µ, where n is the number of nodes in the tree
and a is the number of terminal right links (nodes with no right subtree).

EXERCISES

[332]

20. [20] Modify Program T so that it maintains an explicit stack, instead of using
the implicit register stack provided by PUSHJ. The stack can be kept in
consecutive memory locations or in a linked list.

22. [25] Write an MMIX program for the algorithm given in exercise 21 and
compare its execution time to Programs S and T.

[334]
37. [24] (D. Ferguson) If three computer words (octabytes) are necessary to
contain two link fields and an INFO field, representation (2) requires 3n words of
memory for a tree with n nodes. Design a representation scheme for binary trees

that uses less space, assuming that one LINK and an INFO field will fit in two
computer words.

2.3.2.	Binary	Tree	Representation	of	Trees

[338]
We shall assume that tree structures for the algebraic formulas with which we

will be dealing have nodes of the following form in MMIX programs:

Here RLINK and LLINK have the usual significance, and RTAG is 1 for thread links.
The INFO field and the DIFF field share the third octabyte as shown. Instead of
storing a TYPE field to distinguish different kinds of nodes, we store
DIFF[TYPE(P)] (see Algorithm D) directly as DIFF(P), thereby avoiding an extra
level of indirection. Using object-oriented terminology, the DIFF field contains
the differentiation method; in terms of MMIX machine language, it contains the
address of the code needed to differentiate the current node. In order to squeeze
the address into a single WYDE, the address is given relative to DIFF[0], the code
used to differentiate a constant. As a consequence, constants have conveniently a
DIFF value of zero. Constants use the high tetrabyte of the INFO field to store the
value of the constant, and variables use the INFO field to store the variable name
padded with zeros to the right; otherwise, the INFO field is zero.

[342]

Program D (Differentiation). The following MMIX subroutine performs Algorithm
D. It expects two parameters: Register y points to the list head of a tree
representing an algebraic formula and register x contains the INFO and DIFF
fields of the dependent variable. The return value is a pointer to the list head of a
tree representing the analytic derivative of y with respect to the variable given by
x. The order of computations has been rearranged a little, for convenience.

001 :D GET rJ,:rJ

002 LDOU p1,y,:LLINK D1.	Initialize.	P1	←	LLINK(Y),	prepare	to	find	Y$.
003 1H SET p,p1 P	←	P1.
004 2H LDOU p1,p,:LLINK P1	←	LLINK(P).

005 BNZ p1,1B If	P1	≠	Λ,	repeat.

006 D2 LDWU diff,p,:DIFF D2.	Differentiate.
007 GETA t,:Const

008 GO t,t,diff Jump	to	the	differentiation	method.
009 D3 STOU p2,p1,:RLINK D3.	Restore	link.	RLINK(P1)	←	P2.
010 D4 SET p2,p D4.	Advance	to	P$.	P2	←	P.
011 LDOU p,p,:RLINK P	←	RLINK(P).
012 BOD p,1F Jump	if	RTAG(P)	=	1;
013 STOU q,p2,:RLINK otherwise,	set	RLINK(P2)	←	Q.
014 JMP 2B Note	that	Node(P$)	will	be	terminal.
015 1H ANDN p,p,1 Remove	tag	from	P.
016 D5 CMP t,p,y D5.	Done?
017 LDOU p1,p,:LLINK P1	←	LLINK(P),	prepare	for	step	D2.
018 LDOU q1,p1,:RLINK Q1	←	RLINK(P1).
019 BNZ t,D2 Jump	to	D2	if	P	≠	Y;
020 PUSHJ dy,:Allocate otherwise,	allocate	DY.
021 STOU q,dy,:LLINK LLINK(DY)	←	Q.

022 STOU dy,dy,:RLINK RLINK(DY)	←	DY.

023 OR t,dy,1

024 STOU t,q,:RLINK RLINK(Q)	←	DY,	RTAG(Q)	←	1.

025 PUT :rJ,rJ

026 SET $0,dy Return	DY.
027 POP 1,0 Exit	from	differentiation	subroutine.				

The next part of the program contains the basic subroutines Tree1 and Tree2.
They create nodes for unary and binary operations, respectively. Tree2 expects
three parameters: first u and v, the pointers to the operands; and then diff, the
absolute address of the differentiation method of the operation in question.
Tree2 returns a tree that represents the two operands connected by the given
operation.

For convenience, Tree1 uses the same calling convention; the second
parameter v is, however, ignored.

028 :Tree1 SET v,u Set	V	←	U	in	the	unary	case.
029 JMP 1F

030 :Tree2 STOU v,u,:RLINK RLINK(U)	←	V.

031 1H GET rJ,:rJ

032 PUSHJ r,:Allocate R	⇐	AVAIL.

033 PUT :rJ,rJ

034 STOU u,r,:LLINK LLINK(R)	←	U.

035 GETA t,:Const

036 SUBU diff,diff,t Convert	diff	to	relative	address.
037 STOU diff,r,:INFO INFO(R)	←	0,	DIFF(R)	←	diff.

038 OR t,r,1 Set	tag	bit.
039 STOU t,v,:RLINK RLINK(V)	←	R,	RTAG(V)	←	1.

040 SET $0,r Return	R.
041 POP 1,0

Next is the Copy subroutine, which appears as exercise 13.

Allocate returns a zero-initialized node representing the constant “0”; Free
puts a node back to free storage.

071 avail GREG 0

072 pool GREG 0

073 :Allocate BNZ avail,1F AVAIL	stack	empty?
074 SETH $0,#4000 If	so,	get	24	bytes
075 ADDU $0,$0,pool from	the	Pool_Segment.
076 ADDU pool,pool,24

077 JMP 0F

078 1H SET $0,avail Else,	get	the	next	node
079 LDOU avail,avail,:LLINK from	the	AVAIL	stack.
080 0H STCO 0,$0,:RLINK Zero	out	the	node.
081 STCO 0,$0,:LLINK

082 STCO 0,$0,:INFO

083 POP 1,0

084 :Free STOU avail,$0,:LLINK Add	node	to	the	AVAIL	stack.
085 SET avail,$0

086 POP 0,0

The remaining portion of the program corresponds to the differentiation
routines. These routines are written to return control to step D3 after processing
a binary operator; otherwise they return to step D4. Note that all named registers
(except t) have register numbers smaller than register q, so that ‘PUSHJ
q,:Allocate’ will not clobber them.

087 :Const PUSHJ q,:Allocate Q	←	“0”.
088 JMP D4

089 :Var PUSHJ q,:Allocate Q	←	“0”.
090 LDOU t,p,:INFO

091 CMP t,t,x Is	INFO(P)	=	x?
092 BNZ t,D4 If	not,	it’s	a	constant;

092 BNZ t,D4 If	not,	it’s	a	constant;
093 SET t,1 else	Q	←	“1”.
094 STT t,q,:INFO

095 JMP D4

096 :Ln LDOU t,q,:INFO

097 BZ t,D4 Return	to	control	routine	if	INFO(Q)	=	0.
098 SET q+1,q

099 SET q+3,p1

100 PUSHJ q+2,:Copy

101 GETA q+3,:Div

102 PUSHJ q,:Tree2 Q	←	Tree2(Q,Copy(P1),“/”).
103 JMP D4

104 :Neg LDOU t,q,:INFO

105 BZ t,D4 Return	to	control	routine	if	INFO(Q)	=	0.
106 SET q+1,q

107 GETA q+3,:Neg

108 PUSHJ q,:Tree1 Q	←	Tree1(Q,	·	,“−”).
109 JMP D4

110 :Add LDOU t,q1,:INFO

111 PBNZ t,1F Jump	unless	INFO(Q1)	=	0.
112 SET t+1,q1

113 PUSHJ t,:Free AVAIL	⇐	Q1.
114 JMP D3

115 1H LDOU t,q,:INFO

116 PBNZ t,1F Jump	unless	INFO(Q)	=	0.
117 2H SET t+1,q

118 PUSHJ t,:Free AVAIL	⇐	Q.
119 SET q,q1 Q	←	Q1

120 JMP D3

121 1H GETA q+3,:Add

122 3H SET q+1,q1

123 SET q+2,q

124 PUSHJ q,:Tree2 Q	←	Tree2(Q1,Q,“+”).
125 JMP D3

126 :Sub LDOU t,q,:INFO

127 BZ t,2B If	INFO(Q)	=	0,	then	−Q	=	+Q.

128

128 GETA q+3,:Sub Prepare	for	Q	←	Tree2(Q1,Q,“−”).
129 LDOU t,q1,:INFO

130 PBNZ t,3B

131 SET t+1,q1

132 PUSHJ t,:Free AVAIL	⇐	Q1.
133 SET q+1,q

134 GETA q+3,:Neg

135 PUSHJ q,:Tree1 Q	←	Tree1(Q,	·	,“−”).
136 JMP D3

137 :Mul LDOU t,q1,:INFO

138 BZ t,1F Jump	if	INFO(Q1)	=	0.
139 SET t+1,q1

140 SET t+3,p2

141 PUSHJ t+2,:Copy

142 PUSHJ t,:Mult

143 SET q1,t Q1	←	Mult(Q1,Copy(P2)).
144 1H LDOU t,q,:INFO

145 BZ t,:Add Jump	if	INFO(Q)	=	0.
146 SET q+2,p1

147 PUSHJ q+1,:Copy

148 SET q+2,q

149 PUSHJ q,:Mult Q	←	Mult(Copy(P1),Q).
150 JMP :Add

Mult expects two parameters u and v; it returns an optimized representation of
u × v.

151 :Mult GET rJ,:rJ

152 SETMH info,1 The	constant	“1”	has	INFO	=	1	and	DIFF	=	0.
153 LDO t,u,:INFO

154 CMP t,info,t Test	if	U	is	the	constant	“1”.
155 BZ t,1F Jump	if	so.
156 LDO t,v,:INFO Otherwise,
157 CMP t,info,t test	if	V	is	the	constant	“1”,
158 GETA v+1,:Mul prepare	third	parameter,
159 BNZ t,:Tree2 and	if	not	so,	return	Tree2(U,V,“×”);
160 SET t+1,v else,	pass	V	to	Free.
161 JMP 2F

161 JMP 2F

162 1H SET t+1,u1 Pass	U	to	Free.
163 SET u,v U	←	V.
164 2H PUSHJ t,:Free Free	one	parameter
165 PUT :rJ,rJ and	return	U.
166 POP 1,0

The last two routines Div and Pwr are similar and they have been left as
exercises (see exercises 15 and 16).

EXERCISES

[347]

13. [26] Write an MMIX program for the Copy subroutine. [Hint: Adapt Algorithm
2.3.1C to the case of a right-threaded binary tree, with suitable initial
conditions.]
14. [M21] How long does it take the program of exercise 13 to copy a tree with
n nodes?

15. [23] Write an MMIX program for the Div routine, corresponding to DIFF[7]
as specified in the text. (This program should be added to the program in the text
after line 166.)
16. [24] Write an MMIX program for the Pwr routine, corresponding to DIFF[8]
as specified in exercise 12. (This program should be added to the program in the
text after the solution to exercise 15.)

2.3.3.	Other	Representations	of	Trees

[357]
Nodes have six fields, which in the case of MMIX might fit in three octabytes. A

compact representation may use the fact that either the VALUE field is used to
represent a constant or the NAME and DOWN fields are used to represent a
polynomial gj. So two kinds of nodes are possible:

Here RIGHT, LEFT, UP, and DOWN are relative links; EXP is an integer representing
an exponent; VALUE contains a 64-bit floating point constant; and the NAME field

contains the variable name. To distinguish between the two types of nodes, the
low-order bit in a link field can be used. There are two essentially different
choices: Either one of the link fields within the node is used or all the links that
point to the node are marked. The first choice makes it easy to change a node
from one type to the other (as is possible in step A9); the second choice makes
searching for a constant (as in step A1) simpler.

2.3.5.	Lists	and	Garbage	Collection

[411]
1) . . . Therefore each node generally contains tag bits that tell what kind of

information the node represents. The tag bits can occupy a separate TYPE field
that can also be used to distinguish between various types of atoms (for example,
between alphabetic, integer, or floating point quantities, for use when
manipulating or displaying the data), or the tag bits can be placed in the low-
order bits of the link fields, where they are ignored when using link fields as
addresses of other OCTA-aligned nodes.

2) The format of nodes for general List manipulation with the MMIX computer
might be designed in many different ways. For example, consider the following
two ways.

a) Compact one-word format, assuming that all INFO appears in atoms:

This format uses 32-bit relative addresses to nodes from a common storage pool;
the short addresses imply a limit of 4GByte on its maximum size. RLINK is such a
pointer for straight or circular linkage as in (8). Limiting addresses to OCTA-
aligned data, the three least significant bits H, M, and A are freely available as tag
bits.

The M bit, normally zero, is used as a mark bit in garbage collection (see
below).

The A bit indicates an atomic node. If A = 1, all the bits of the node, except A
and M, can be used to represent the atom. If A = 0, the H bit can be used to
distinguish between List heads and List elements. If H = 1, the node is a List
head, and REF is a reference count (see below); otherwise, REF points to the List
head of the sub-List in question.

b) Simple three-word format: A straightforward modification of (9) yields
three-word nodes using absolute addresses. For example:

The H, M, and A bits are as in (9). RLINK and LLINK are the usual pointers for
double linkage as in (8). INFO is a full word of information associated with this
node; for a header node this may include a reference count, a running pointer to
the interior of the List to facilitate linear traversal, an alphabetic name, and so
on. If H = 0, this field contains the DLINK.

[420]
Of all the marking algorithms we have discussed, only Algorithm D is directly

applicable if atomic nodes must use all the node bits except a single bit, the mark
bit. For example, Lists could be represented as in (9) using only the least
significant bit for M. The other algorithms all test whether or not a given node P is
an atom; they will need the A bit. However, each of the other algorithms can be
modified so that they will work when atomic data is distinguished from pointer
data in the word that links to it instead of by looking at the word itself. . . . The
adaptation of Algorithm E is almost as simple; both ALINK and BLINK can even
accommodate two more tag bits in addition to the mark bit.

EXERCISES

[422]

4. [28] Write an MMIX program for Algorithm E, assuming that the nodes are
represented as two octabytes, with ALINK the first octabyte and BLINK the second
octabyte. The least significant bits of ALINK and BLINK can be used for MARK and
ATOM. Also determine the execution time of your program in terms of relevant
parameters.

2.5.	DYNAMIC	STORAGE	ALLOCATION

[440]
The method we will describe assumes that each block has the following form:

Note that the SIZE − 8 bytes reserved for use by an application are OCTA-
aligned, while the node itself starts and ends with a SIZE field that is only TETRA-
aligned.

The idea in the following algorithm is to maintain a doubly linked AVAIL list,
so that entries may conveniently be deleted from random parts of the list. The
TAG bit at either end of a block—the least significant bit in the SIZE field—can be
used to control the collapsing process, since we can tell easily whether or not
both adjacent blocks are available.

To save space, links are stored as relative addresses in a TETRA. As base
address, we use LOC(AVAIL), the address of the list head, which conveniently
makes the relative address of the list head zero.

Unfortunately, a notation such as ‘LINK(P + 1)’ does not work well in the
world of MMIX, where addresses refer to bytes and links are stored as tetrabytes or
octabytes. Therefore, we use the familiar RLINK and LLINK instead of ‘LINK(P)’
and ‘LINK(P + 1)’, but we do not rephrase Algorithm C. Double linking is
achieved in a familiar way—by letting RLINK point to the next free block in the
list, and letting LLINK point back to the previous block; thus, if P is the address of
an available block, we always have

To ensure proper “boundary conditions,” the list head is set up as follows:

Here RLINK points to the first block and LLINK to the last block in the available
space list. Further, a tagged tetrabyte should occur before and after the memory
area used to limit the activities of Algorithm C.

[449]
Here are the approximate results:

Here are the approximate results:

Time	for	reservation Time	for	liberation
Boundary	tag	system: 				24	+	5A 18,	22,	27,	or	28
Buddy	system: 			26	+	26R	 				36.5	+	24S

· · ·

This shows that both methods are quite fast, with the buddy system
reservation faster and liberation slower by a factor of approximately 1.5 in MMIX’s
case. Remember that the buddy system requires about 44 percent more space
when block sizes are not constrained to be powers of 2.

A corresponding time estimate for the garbage collection and compacting
algorithm of exercise 33 is about 98υ to locate a free node, assuming that
garbage collection occurs when the memory is approximately half full, and
assuming that nodes have an average length of 5 octabytes with two links per
node.

EXERCISES

[453]

4. [22] Write an MMIX program for Algorithm A, paying special attention to
making the inner loop fast. Assume that the SIZE and the LINK fields are stored
in the high and low TETRA of an octabyte. To make links fit in a tetrabyte, use
addresses relative to the base address in the global register base. If successful,
return an absolute address. Use Λ = −1 if dealing with relative addresses, but for
absolute addresses (the return value) use Λ = 0.

13. [21] Write an MMIX subroutine using the algorithm of exercise 12. Assume
that the only parameter N is the size of the requested memory in bytes and that
the return value is an OCTA-aligned absolute address where these N bytes are
available. In case of overflow, the return value should be zero.

16. [24] Write an MMIX subroutine for Algorithm C that complements the
program of exercise 13, incorporating the ideas of exercise 15.
27. [24] Write an MMIX program for Algorithm R, and determine its running
time.
28. [25] Write an MMIX program for Algorithm S, and determine its running
time.

33. [28] (Garbage collection and compacting.) Assume a storage pool of nodes of

varying sizes, each one having the following form:

The node at address P starts with two octabytes preceding the address P; these
contain special data for use during garbage collection only. The node
immediately following NODE(P) in memory is the node at address P + SIZE(P).
The nodes populate a memory area starting at BASE − 16 up to AVAIL − 16.
Assume that the only fields in NODE(P) that are used as links to other nodes are
the octabytes LINK(P) + 8, LINK(P) + 16, . . . , LINK(P) + T(P), and that each of
these link fields is either Λ or the absolute address of another node. Finally,
assume that there is one further link variable in the program, called USE, and it
points to one of the nodes.
34. [29] Write an MMIX program for the algorithm of exercise 33, and determine
its running time.

CHAPTER	THREE

RANDOM	NUMBERS

3.2.1.1.	Choice	of	modulus

[12]

Consider MMIX as an example. We can compute y mod m by putting y and m in
registers and dividing y by m using the instruction ‘DIV	t,y,m’; y mod m will
then appear in register rR. But division is a comparatively slow operation, and it
can be avoided if we take m to be a value that is especially convenient, such as
the word size of our computer.

Let w be the computer’s word size, namely 2e on an e-bit binary computer.
The result of an addition and multiplication is usually given modulo w. Thus, the
following program computes the quantity (aX + c) mod w efficiently:

MULU x,x,a X	←	aX	mod	w. (1)
ADDU x,x,c X	←	(X	+	c)	mod	w.				

The result appears in register x. The code uses arithmetic on unsigned numbers,
which never causes overflow. If c is less than 216, the instruction ‘ADDU	x,x,c’
can be replaced by ‘INCL	x,c’, using an immediate value c instead of a register
c. The same is possible for the constant a; however, satisfactory values for a are
typically large and the MULU instruction allows only a one-byte immediate
constant.

A clever technique that is less commonly known can be used to perform
computations modulo w + 1. For reasons to be explained later, we will generally
want c = 0 when m = w + 1, so we merely need to compute (aX) mod (w + 1).
With w = 264, the following program does this:

01 MULU r,x,a; GET	q,rH Compute	q,	r	with	aX	=	qw	+	r.
02 SUBU x,r,q X	←	r	−	q	mod	w.
03 CMPU t,r,q (2)
04 ZSN t,t,1 Set	t	←	[r	<	q].
05 ADDU x,x,t X	←	X	+	t	mod	w.				

The register x now contains the value (aX) mod (w+1). Of course, this value
might lie anywhere between 0 and w, inclusive, so the reader may legitimately
wonder how we can represent so many values in one register! (The register
obviously cannot hold a number larger than w − 1.) The answer is that X will be
0 and t will be 1 after program (2) if and only if the result equals w. We could

represent w by 0, since (2) will not normally be used when X = 0; but it is most
convenient simply to reject the value w (and 0) if it appears in the congruential
sequence modulo w + 1. We do this by appending the instructions ‘NEGU	t,1,a;
CSZ	x,x,t’.

To prove that code (2) actually does determine (aX) mod (w + 1), note that in
line 02 we are subtracting the lower half of the product from the upper half; and
if aX = qw + r, with 0 ≤ r	< w, we will have the quantity r − q in register x after
line 02. Now

aX = q(w + 1) + (r − q),

and we have −w < r − q < w since q < w; hence (aX) mod (w + 1) equals either
r − q or r − q + (w + 1), depending on whether r − q ≥ 0 or r − q < 0.

EXERCISES

[15]

1. [M12] In exercise 3.2.1–3 we concluded that the best congruential generators
will have a multiplier a relatively prime to m. Show that in such a case there is a
constant c ′ such that (aX + c) mod m = a(X + c′) mod m.

2. [16] Write an MMIX subroutine having the following characteristics:

Calling	sequence: PUSHJ	t,Random

Entry	conditions: The	global	registers	x	≡	X,	a	≡	a,	and	c	≡	c	are	initialized.

Exit	conditions: Set	X	←	(aX	+	c)	mod	264	and	return	X.

(Thus a call on this subroutine will produce the next random number of a linear
congruential sequence.)

5. [20] Given that m is less than the word size, that x and y are nonnegative
integers less than m, and assuming that the values x, y, and m are already loaded
into registers, show that the difference (x − y) mod m may be computed in just
four MMIX instructions without requiring any division. What is the best code for
the sum (x + y) mod m? What is the best code if m is less than 2e−1?
8. [20] Write an MMIX program analogous to (2) that computes (aX) mod (w −

1). The values 0 and w − 1 are to be treated as equivalent in the input and
output of your program.

3.2.1.3.	Potency

[24]

For example, suppose that we choose a = 2k + 1, where k ≥ 2 is a constant.
With a temporary register t, the code

SLU	t,x,k;	ADDU	x,t,x;	ADDU	x,x,1 (3)

can be used in place of the instructions given in Section 3.2.1.1, and the
execution time decreases from 11υ to 3υ. Even faster code is possible for k = 2, 3,
or 4. For example, the code ‘16ADDU	x,x,x;	ADDU	x,x,1’ has a running time of
only 2υ.

EXERCISES

[25]

1. [M10] Show that, for all k ≥ 2, the code in (3) yields a random number
generator of maximum period.
2. [10] What is the potency of the generator represented by the MMIX code (3)?

3.2.2.	Other	Methods

[28]

This algorithm in MMIX is simply the following:
Program A (Additive number generator). Using global registers j ≡ 8j, k ≡ 8k, and
y ≡ LOC(Y [1]) − 8, the following MMIX code is a step-by-step implementation of
Algorithm A.
:Random LDOU $0,y,j A1.	Add.	$0	←	Y	[j].

LDOU t,y,k t	←	Y	[k].
ADDU $0,$0,t $0	←	Y	[j]	+	Y	[k].
STOU $0,y,k Y	[k]	←	Y	[j]	+	Y	[k].
SUB j,j,8 A2.	Advance.	j	←	j	−	1.
SUB k,k,8 k	←	k	−	1.
SET t,55*8

CSNP j,j,t If	j	≤	0,	set	j	←	55.
CSNP k,k,t If	k	≤	0,	set	k	←	55.
POP 1,0 Return	$0.				

One disadvantage of the code above is its use of three possibly precious global
registers. An improved version of this program is discussed in exercise 25.

[30]
There is a simple way to generate a highly random bit sequence on a binary

computer, manipulating k-bit words: Start with an arbitrary binary word X in
register x. To get the next random bit of the sequence, do the following
operations, shown in MMIX’s language (see exercise 16):

ZSN t,x,a Adjust	by	a	if	the	high	bit	of	x	is	1,	else	by	zero.
SLU x,x,1 Shift	left	one	bit. (10)
XOR x,x,t Apply	the	adjustment	with	“exclusive	or.”

The value of the global register a is the k-bit binary constant a = (a1 . . . ak)2,

shifted left by 64 − k bits, where xk − a1x
k−1 − · · · − ak is a primitive

polynomial modulo 2 as above. After the code (10) has been executed, the next
bit of the generated sequence may be taken as the kth bit from the left of register
x. Alternatively, we could consistently use the most significant bit (the sign bit) of
x; that gives the same sequence, but each bit is seen one step earlier.

· · ·

On MMIX we may implement Algorithm B by taking k = 256, obtaining the
following simple generation scheme once the initialization has been done:

SRU j,y,53 j	←	 256Y	/w ,	j	←	8j	+	{0,	.	.	.	,	7}.

MULU x,x,a;	ADD	x,x,c Xn+1	←	(aXn	+	c)	mod	w. (14)
LDOU y,V,j Y	←	V	[j].

STOU x,V,j V	[j]	←	Xn+1.				

The output appears in register y. Notice that Algorithm B requires only 3υ +
2µ of additional overhead per generated number.

EXERCISES

[37]

7. [20] Show that a complete sequence of length 2e (that is, a sequence in which
each of the 2e possible sets of e consecutive sign bits occurs just once in the
period) may be obtained if program (10) is changed to the following:

ZSN t,x,a
SLU x,x,1
ZSZ s,x,a
XOR x,x,t

XOR x,x,t
XOR x,x,s								

[39]

25. [26] Discuss an alternative to Program A: a subroutine Random55 that
changes all 55 entries of the Y table every 55th time a random number is
required. Try to get by with just one global register.

3.4.1.	Numerical	Distributions

[119]
In general, to get a random integer X between 0 and k − 1, we can multiply by

k, and let X = kU . On MMIX, we would write

MULU t,k,u (rH,	t)	←	kU
GET x,rH X	←	 kU/m (1)

and after these two instructions have been executed the desired integer will
appear in register x. If a random number between 1 and k is desired, we add one
to this result. (The instruction ‘INCL	x,1’ would follow (1).)

EXERCISES

[138]

3. [14] Discuss treating U as an integer and computing its remainder mod k to get
a random integer between 0 and k − 1, instead of multiplying as suggested in the
text. Thus (1) would be changed to

DIV t,u,k t	←	 U/k
GET x,rR X	←	U	mod	k

with the result again appearing in register x. The new method might be
especially tempting if k = 2i (for a small constant i) because

AND x,u,(2i	−	1) X	←	U	mod	2i

will do the job in a single MMIX cycle. Is this a good method?

3.6.	SUMMARY

EXERCISES

[189]

1. [21] Write an MMIX subroutine RandInt using method (1) according to the
following specification:

Calling	sequence: PUSHJ	t,RandInt

Entry	conditions: Global	register	x	≡	X	initialized.

$0	≡	k,	a	positive	integer.

Return	value: A	random	integer	Y	,	1	≤	Y	≤	k,	with	each	integer	about
equally	probable.

Exit	conditions: Global	register	x	modified.

CHAPTER	FOUR

ARITHMETIC

4.1.	POSITIONAL	NUMBER	SYSTEMS

[203]

The MIX computer, as used in Chapter 4 of The Art of Computer Programming,
deals only with signed magnitude arithmetic, whereas the MMIX computer, used
here, deals only with two’s complement binary arithmetic. However, alternative
procedures for complement notations are discussed in Chapter 4 when it is
important to do so.

EXERCISES

[209]

4. [20] Assume that we have an MMIX program in which register a contains a
nonnegative number for which the radix point lies between bytes 3 and 4, while
register b contains a nonnegative number whose radix point lies between bytes 5
and 6. (The leftmost byte is number 1.) Where will the radix point be in registers
x, rH, and rR after the following instructions (assuming that the instructions do
not raise an arithmetic exception)?

(a) MUL				x,a,b
(b) DIV				x,a,b

(c) MULU			x,a,b
(d) PUT				rD,0;	DIVU	x,a,b

4.2.1.	Single-Precision	Calculations

[215]
The MMIX computer assumes that its floating point numbers have the form

Here we have base b = 2, excess q = 1023, floating point notation with p = 53
bits of precision. The sign bit is stored in the leftmost bit; it is 1 for negative
numbers and 0 otherwise. The exponent e is stored in the next 11 bits; it is an
integer in the range 0 < e < 2047. The fraction part f is stored as a 52-bit binary
value f	′ in the range 0 ≤ f	′ < 252 with f = 1 + f	′/252. Since b = 2, the most
significant digit of a normalized fraction part is always 1, and there is no need to

store this bit. With this hidden bit added to the left of f	′, the precision is 53.
B. Normalized calculations. The floating point arithmetic of MMIX follows
IEEE/ANSI Standard 754, which is implemented by most modern computers.
Following this standard and contrary to the definitions used in the current
edition of The Art of Computer Programming, Volume 2, the radix point is placed just
between the hidden bit and the stored part f	′ of f. A floating point number (s,	e,
f) is normalized if 0 < e < 2047 and the most significant digit of the representation
of f is nonzero, so that

The floating point number represents ±0.0 if f = e = 0.
[218]

The following MMIX subroutines, for addition and subtraction of numbers
having the form (4), show how Algorithms A and N can be expressed as
computer programs. The subroutines below do not handle all the complications
of the IEEE Standard 754. They are designed to take two parameters u and v
and return a normalized result w. A simple JMP	Error is used whenever this is
not possible.
Program A (Addition, subtraction, and normalization). The following program is an
implementation of Algorithm A, and it is also designed so that the trailing
implementation of Algorithm N can be used by other programs that appear later
in this section.

The variables are named to match Algorithms A and N. Where the variable
names differ in Algorithms A and N, we gave preference to Algorithm N. So
instead of fw we use f in Algorithm A, and similarly we use e instead of ew. The

registers s, su, and sv are used for the sign bits of w, u, and v. To ensure proper
rounding, the next lower 64 bits of f are stored in register fl. The register carry
is used as a shuttle between f and fl. Another register, d, is needed in step A4
and A5 to hold the difference eu − ev.

01 :Fsub SETH t,#8000;	XOR	v,v,t Change	sign	of	operand.
02 :Fadd SLU eu,u,1;	SLU	ev,v,1 Remove	sign	bit.

03 CMPU t,eu,ev A2.	Assume	eu	dominates	ev.

04 BNN t,A1 Jump	if	(eu,	fu)	≥	(ev,	fv);

05 SET t,u;	SET	u,v;	SET	v,t else	swap	u	with	v
06 SLU eu,u,1;	SLU	ev,v,1 and	remove	sign	bits	again.

07 A1 SRU eu,eu,53;	SRU
ev,ev,53 A1.	Unpack.

08 Get	sign	and	exponent	mask.

08 SETH t,#FFF0 Get	sign	and	exponent	mask.
09 ANDN fu,u,t;	ANDN	fv,v,t Remove	sign	and	exponent.
10 INCH fu,#10;	INCH	fv,#10 Add	hidden	bit.
11 SRU su,u,63;	SRU	sv,v,63 Get	sign	bit.

12 SET e,eu;	SET	s,su A3.	Set	ew	←	eu.

13 SUB d,eu,ev Step	A4	unnecessary.
14 A5 NEG t,64,d A5.	Scale	right.

15 SLU fl,fv,t Shift	(fv,	fl)	to	the	right

16 SRU fv,fv,d eu	−	ev	places.

17 CMP t,su,sv;	BNZ	t,0F Signs	su	and	sv	differ.

18 ADDU f,fu,fv A6.	Add.
19 JMP :Normalize

20 0H NEGU fl,fl;	ZSNZ
carry,fl,1 A6.	Subtract.

21 SUBU f,fu,fv

22 SUBU f,f,carry

23 :Normalize OR t,f,fl;	BZ	t,:Zero Assume	u	+	v	≠	0.
24 SRU t,f,53 N1.	Test	f.
25 BP t,N4 If	f	≥	2,	scale	right.
26 N2 SRU t,f,52;	BP	t,N5 N2.	Is	f	normalized?
27 SRU carry,fl,63 N3.	Scale	left.
28 SLU fl,fl,1

29 SLU f,f,1

30 ADDU f,f,carry

31 SUB e,e,1

32 JMP N2

33 N4 SLU carry,f,63 N4.	Scale	right.
34 SRU f,f,1

35 SRU fl,fl,1

36 ADDU fl,fl,carry

37 ADD e,e,1

38 N5 SETH t,#8000 N5.	Round.

39 CMPU t,fl,t Compare	fl	to	 .

40 CSOD carry,f,1 f	is	odd.	Round	up	if	fl	≥	 .

41 CSEV carry,f,t f	is	even.	Round	up	if	fl	>	 .

42 ZSNN carry,t,carry

42 ZSNN carry,t,carry
Round	down	if	fl	<	 .

43 ADDU f,f,carry

44 SET fl,0

45 SRU t,f,53;	BP	t,N4 Rounding	overflow.
46 SET t,#7FE;	CMP	t,e,t N6.	Check	e.
47 BP t,:Error Overflow.
48 BNP e,:Error Underflow.
49 SLU w,s,63 N7.	Pack.
50 SLU t,e,52;	OR	w,w,t

51 ANDNH f,#FFF0 Remove	hidden	bit.
52 OR $0,w,f

53 POP 1,0 Return	w.
54 :Zero POP 0,0 Return	zero.				

Using a second register fl for the lower 64 bits of fraction f and extending
adding, subtracting, and shifting to it is not strictly necessary. Exercise 5 shows
how to get by with p + 2 = 55 digits, which fit nicely into one of MMIX’s registers.
This optimization, however, will make the code neither significantly shorter nor
faster; there are just too many special cases to consider. On the other hand, MMIX
is well suited to do multi-precision arithmetic.

[220]
The following MMIX subroutines, intended to be used in connection with

Program A, illustrate the machine considerations that arise in Algorithm M.
Program M (Floating point multiplication and division).

01 :Fmul SLU eu,u,1;	SRU	eu,eu,53 M1.	Unpack.
02 SLU ev,v,1;	SRU	ev,ev,53

03 SETH t,#FFF0 Get	sign	and	exponent	mask.
04 ANDN fu,u,t;	ANDN	fv,v,t Remove	sign	and	exponent	bits.
05 INCH fu,#10;	INCH	fv,#10 Add	hidden	bit.

06 XOR s,u,v;	SRU	s,s,63 s	←	su	×	sv.

07 SLU fv,fv,6;	SLU	fu,fu,6 M2.	Operate.

08 MULU fl,fu,fv;	GET	f,:rH (f,	fl)	←	252+6fu	.	252+6fv	=	252+64fufv.

09 ADD e,eu,ev

10 SET t,1023;	SUB	e,e,t e	←	eu	+	ev	−	q.

11 JMP :Normalize M3.	Normalize.
12 :Fdiv SLU eu,u,1;	SRU	eu,eu,53 M1.	Unpack.
13

13 SLU ev,v,1;	SRU	ev,ev,53

14 SETH t,#FFF0 Get	sign	and	exponent	mask.
15 ANDN fu,u,t;	ANDN	fv,v,t Remove	sign	and	exponent	bits.
16 INCH fu,#10;	INCH	fv,#10 Add	hidden	bit.

17 XOR s,u,v;	SRU	s,s,63 s	←	su	×	sv.

18 SLU fv,fv,11 M2.	Operate.	fv	←	211fv.

19 PUT :rD,fu;	SET	t,0

20 DIVU f,t,fv (f,	fl)	←	252+64fu/(252+11fv)	=	253fu/fv.

21 GET t,:rR;	PUT	:rD,t

22 SET t,0;	DIVU	fl,t,fv

23 SUB e,eu,ev

24 INCL e,1023-1 e	←	eu	−	ev	+	q	−	1.

25 JMP :Normalize M3.	Normalize.				

The most noteworthy feature of this program is the use of double-precision
multiplication in line 08 and division in lines 19–22 in order to ensure enough
accuracy to round the answer.

The numbers fu and fv are represented by the unsigned integers 252fu and

252fv, respectively. Using the MULU directly would yield 252+52fufv; applying an

extra factor of 26 to both fu and fv prior to the multiplication yields 252+64fufv,

which moves the radix point in rH just to the right place after bit 52. Applying
an extra factor of 212 to only one operand would cause overflow.

The division works differently since extra factors applied to fu and fv shift the

radix point of the result in opposite directions. Shifting fu (the high 64 bits of the

dividend) right would be possible if the bits are shifted into the low 64 bits of the
dividend. Fortunately, the limit for shifting fv left is 11 bits, which is just what we

need. Dividing by 211fv gives 21+52+64fu/fv. With the imagined radix point just

left of bit 52 in (f,	fl), we have (f,	fl) ← 2fu/fv. We compensate for the extra factor

2 by reducing e by 1. If fu and fv are normalized, we have 1 ≤ fu < 2 and 1 ≤ fv
< 2 so that 1 ≤ 2fu/fv < 4; step N4 of the normalization will then adjust f if

needed.
We occasionally need to convert values between fixed and floating point

representations. A “fix-to-float” routine is easily obtained with the help of the
normalization algorithm above; for example, in MMIX, the following subroutine

converts a nonzero integer u to floating point form:

01 :Flot ZSN s,u,1 Set	sign.

02 SET f,0;	NEG	fl,u;	CSNN
fl,u,u (f,	fl)	←	|u|	/264.

03 SET e,64+52+1023 Set	raw	exponent. (10)
04 JMP :Normalize Normalize,	round,	and	exit.				

A “float-to-fix” subroutine is the subject of exercise 14.
[223]

The MMIX computer, which is being used as an example of a “typical” machine
in this supplement, has a full set of floating point instructions conforming to
IEEE/ANSI Standard 754.

EXERCISES

[228]

14. [25] Write an MMIX subroutine, to be used in connection with the other
subroutines in this section, that takes as a parameter a normalized floating point
number and returns the nearest signed 64 bit two’s complement integer (or
determines that the number is too large in absolute value to make such a
conversion possible).

15. [28] Write an MMIX subroutine, to be used in connection with the other
subroutines in this section, that takes a nonzero normalized floating point
number u as a parameter and returns u mod 1, namely u	− u rounded to the
nearest floating point number. Notice that when u is a very small negative
number, u mod 1 should be rounded so that the result is unity (even though u
mod 1 has been defined to be always less than unity, as a real number).
19. [24] What is the running time for the Fadd subroutine in Program A, in
terms of relevant characteristics of the data? What is the maximum running time,
over all inputs that do not cause exponent overflow or underflow?
20. [28] New: Given a nonzero octabyte in register f, find a fast way to compute
the number of its leading zero bits and use the result to eliminate the loop in
steps N2 and N3 of Algorithm N. How will this change affect the average
running time?

21. [40] New: Imagine a low-cost version of MMIX with no hardware support for
floating point numbers (used in the CEO’s office, where floating point
calculations are routinely delegated to the research department). In such an MMIX

CPU, floating point instructions will trap with the operands in registers rYY and
rZZ. The operating system should then compute the result, store it back to
register rZZ, and set exception flags in the upper half of rXX in preparation for
a final RESUME	1. Write a subroutine library, emulating the standard MMIX
floating point hardware, to be used in such an operating system.

4.2.2.	Accuracy	of	Floating	Point	Arithmetic

EXERCISES

[244]
17. [28] Assume that MMIX needs to emulate its FCMPE (floating compare with
respect to epsilon) instruction in software. Write an MMIX subroutine, Fcmpe, that
compares two nonzero normalized floating point numbers u and v with respect
to a positive normalized floating point number stored in register rE. Under the
conditions just stated, the subroutine should be equivalent to ‘Fcmpe	FCMPE
$0,$0,$1;	POP	1,0’.

4.2.3.	Double-Precision	Calculations

[246]

Double precision is quite frequently desired not only to extend the precision of
the fraction parts of floating point numbers, but also to increase the range of the
exponent part. The IEEE/ANSI standard specifies a lower bound on the
precision and a minimum exponent range only for what it calls “extended
precision.” It requires p ≥ 64 and emin ≤ −16382 and emax > 16382. One way to
satisfy these requirements could be to take one OCTA for the fraction part and
another OCTA to provide very generous room for the sign and exponent. A more
common compromise between precision and exponent range is to use 15 bits for
the exponent, just enough to satisfy the range requirement. With one bit for the
sign, that leaves 112 bits for the fraction part. Thus we shall deal in this section
with the following 128-bit format for double-precision floating point numbers in
the MMIX computer:

Here two bytes are used for the sign bit and the exponent and 14 bytes for the
fraction part. We have base b = 2, excess q = 214 − 1 = 16383, and because of
the hidden bit added to the left of f	′, a precision of p = 113.

For a double-precision floating point number u, we will use the notation su for

the sign field and eu for the exponent field of u as before; um is used to denote the

most significant fraction part from the first octabyte with the radix point just
after the hidden bit, and ul is used to denote the least significant fraction part

stored in the second octabyte with the radix point just to the left of its 64 bits.
With that notation and = 2−48, we can write f = 1 + f	′ = um + ul. To do

computations on um and ul, the programs that follow will use registers named um

and ul to perform unsigned integer arithmetic on the values 248um and 264ul,

respectively.

· · ·

Program A (Double-precision addition). The subroutine DFadd adds a double-
precision floating point number v, having the form (1), in registers vm and vl to a
double-precision floating point number u in registers um and ul, storing the
answer w in registers wm and wl. The subroutine DFsub subtracts v from u under
the same conventions.

Both input operands are assumed to be nonzero and normalized; the answer is
normalized. The last portion of this program is a double-precision normalization
procedure that is used by other subroutines of this section. Step 5 of Algorithm N
is omitted; exercise 5 shows how to get better rounding.

01 :DFsub SETH t,#8000;	XOR	vm,vm,t Change	sign	of	operand.
02 :DFadd SLU eu,um,1;	SLU	ev,vm,1 Remove	sign	bit.
03 CMPU t,eu,ev A2.	Assume

04 BP t,A1 eu	dominates	ev.

05 PBN t,0F

06 CMPU t,ul,vl;	BNN	t,A1 If	(eu,	um,	ul)	<	(ev,	vm,	vl),

07 0H SET t,um;	SET	um,vm;	SET
vm,t swap	u	with	v

08 SET t,ul;	SET	ul,vl;	SET
vl,t and

09 SLU eu,um,1;	SLU	ev,vm,1 remove	sign	bit	again.
10 A1 SRU eu,eu,49;	SRU	ev,ev,49 A1.	Unpack.
11 SRU su,um,63;	SRU	sv,vm,63 Get	sign	bit.
12 ANDNH um,#FFFF;	ANDNH	vm,#FFFF Remove	s	and	e	bits.
13 ORH um,#0001;	ORH	vm,#0001 Add	hidden	bit.

14 SET e,eu;	SET	s,su

14 SET e,eu;	SET	s,su A3.	Set	ew	←	eu.

15 SUB d,eu,ev A4.	Test	eu	−	ev.

16 CMP t,d,113+2;	PBN	t,A5 eu	−	ev	≥	p	+	2	?

17 SET wm,um;	SET	wl,ul w	←	u.
18 JMP :DNormalize

19 A5 CMP t,d,64;	PBN	t,0F A5.	Scale	right.
20 SET vl,vm;	SET	vm,0 Scale	right	by	64	bits.
21 SUB d,d,64

22 0H NEG t,64,d

23 SRU vl,vl,d

24 SLU carry,vm,t;	OR
vl,vl,carry Shift	(vm,	vl)	right	by

25 SRU vm,vm,d eu	−	ev	places.

26 CMP t,su,sv;	BNZ	t,0F Signs	su	and	sv	differ.

27 ADDU wl,ul,vl A6.	Add.
28 CMPU t,wl,ul;	ZSN	carry,t,1

29 ADDU wm,um,vm

30 ADDU wm,wm,carry

31 JMP :DNormalize

32 0H SUBU wl,ul,vl A6.	Subtract.
33 CMPU t,wl,ul;	ZSP	carry,t,1

34 SUBU wm,um,vm

35 SUBU wm,wm,carry

36 :DNormalize SRU t,wm,49 N1.	Test	f.
37 BOD t,N4 If	w	≥	2,	scale	right.
38 OR t,wm,wl;	BZ	t,:Zero

39 N2 SRU t,wm,48;	PBOD	t,6F N2.	Is	w	normalized?
40 ZSN carry,wl,1;	SLU	wl,wl,1 N3.	Scale	left.
41 SLU wm,wm,1

42 ADDU wm,wm,carry

43 SUB e,e,1

44 JMP N2

45 N4 SLU carry,wm,63 N4.	Scale	right.
46 SRU wl,wl,1

47 ADDU wl,wl,carry

48 SRU wm,wm,1

49 ADD e,e,1

50 6H SET t,#7FFE;	CMP	t,e,t N6.	Check	e.
51 BP t,:Error Overflow.
52 BNP e,:Error Underflow.
53 SLU s,s,63 N7.	Pack.
54 SLU e,e,48

55 ANDNH wm,#FFFF Remove	hidden	bit.
56 OR wm,wm,s;	OR	wm,wm,e

57 SET $0,wl

58 SET $1,wm

59 POP 2,0 Return	w.
60 :Zero POP 0,0 Return	zero.				

· · ·

Now let us consider double-precision multiplication. The product has four
components, shown schematically in Fig. 4. If the limited precision (p = 96) of
the leftmost six WYDEs is sufficient, we can ignore the digits to the right of the
vertical line in the diagram; in particular, we need not even compute the product
of the two least-significant halves.

Fig. 4. Double-precision multiplication of seven-WYDE fraction parts.

Program M (Double-precision multiplication). The input and output conventions for
this subroutine are the same as for Program A.

01 :DFmul SLU eu,um,1;	SLU	ev,vm,1 M1.	Unpack.
02 SRU eu,eu,49;	SRU	ev,ev,49

03 XOR s,um,vm;	SRU	s,s,63 s	←	su	×	sv.

04 ANDNH um,#FFFF;	ORH	um,#0001

05 ANDNH vm,#FFFF;	ORH	vm,#0001

06 MULU t,um,vl M2.	Operate.

07 GET wl,:rH wl	←	248um	×	264vl	×	2-64.

08 MULU t,ul,vm

09 GET t,:rH;	ADDU	wl,wl,t wl	←	wl	+	248ulvm.

10 MULU t,um,vm;	GET	wm,:rH wm	←	 232um	×	vm .

11 ADDU wl,wl,t wl	←	wl	+	um	×	vm	mod	264.

12 CMPU t,wl,t;	ZSN	carry,t,1 carry	←	1	if	wl	+	t	<	t.
13 ADDU wm,wm,carry

14 SLU wm,wm,16 wm	←	216wm	=	216 232um	×	vm .

15 SRU carry,wl,64-16

16 ADDU wm,wm,carry

17 SLU wl,wl,16 wl	←	216wl.
18 ADD e,eu,ev

19 SET t,#3FFF;	SUB	e,e,t e	←	eu	+	ev	−	q.

20 JMP :DNormalize M3.	Normalize.				

Notice that there is no carry into wm from the addition in line 09 because um and
vm are smaller than 249; in line 11, however, we add the low 64 bits of um × vm,
which can be any value less than 264, so that we need to consider a carry.
Program M is perhaps too slipshod in accuracy, since it uses only 49-bit operands
when computing the most significant digits of the result in line 10, and it adds 16
zero bits in line 17. More accuracy can be achieved as discussed in exercise 4.

[251]
Program D (Double-precision division). This program adheres to the same
conventions as Programs A and M. For the DIVU (divide unsigned) instruction in
line 11 to work properly, we need um < vm. Since u and v are normalized, shifting
(vm, vl) to the left by one bit would be sufficient. We shift by 15 bits, the
maximum amount possible, instead and compute wm ← (264+48um +

264ul)/(215+48vm) = 248+1(um + ul)/vm. This moves the radix point in wm one

bit too far to the left. We compensate for this by adjusting the exponent e by −1
in line 09; the “Scale Right” step in the normalization routine will shift wm back if
necessary. Some more precision could be gained if we shifted v only by one bit,
but then the normalization routine would need a “Scale Right” step that is not
restricted to shifting a single bit.

01 :DFdiv SLU eu,um,1;	SLU	ev,vm,1 D1.	Unpack.
02 SRU eu,eu,49;	SRU	ev,ev,49

03 XOR s,um,vm;	SRU	s,s,63

03 XOR s,um,vm;	SRU	s,s,63 sw	←	su	·	sv.

04 ANDNH um,#FFFF;	ORH	um,#0001

05 SLU vm,vm,15;	ORH	vm,#8000 vm	←	vm215.

06 SRU carry,vl,64-15

07 ADDU vm,vm,carry

08 SLU vl,vl,15 (vm,	vl)	←	(vm,	vl)215.

09 SUB e,eu,ev;	INCL	e,#3FFF-1 e	←	eu	−	ev	+	q	−	1.

10 PUT :rD,um D2.	Operate.

11 DIVU wm,ul,vm wm	←	 248+1(um	+	E	ul)/vm .

12 GET r,:rR Get	remainder	r.
13 PUT :rD,r;	SET	t,0

14 DIVU wl,t,vm wl	←	264r/vm.

15 MULU pl,wm,vl;	GET	pm,:rH (pm,	pl)	←	wm	×	vl.

16 PUT :rD,pm

17 DIVU ql,pl,vm ql	←	(pm	+	E	pl)/vm.

18 CMPU t,wl,ql;	ZSN	carry,t,1 carry	←	[wl	<	ql].

19 SUBU wl,wl,ql;	SUBU
wm,wm,carry w	←	w	−	E	ql.

20 JMP :DNormalize M3.	Normalize.				

Here is a table of the approximate average computation times for these
double-precision subroutines, compared to the single-precision subroutines that
appear in Section 4.2.1:

Single	precision Double	precision

Addition 62.3υ 64.4υ

Subtraction 64.3υ 66.4υ

Multiplication 55.8υ 75.6υ

Division 167.5υ 235.5υ

EXERCISES

[252]

2. [20] Is it strictly necessary to clear the hi-wyde of um in line 12 of Program A?
After all, these bits get cleared later in line 55 during normalization.
3. [M20] Explain why overflow cannot occur during Program M.

4. [22] Program M should be changed so that extra accuracy is achieved,
essentially by making a better use of the MULU instruction. Investigate these
alternatives:
(a) Use the low 64 bits now wasted in lines 06 and 08.

(b) Shift the fraction parts left by up to 15 bits when unpacking.
Specify all changes that are required, and determine the difference in execution
time caused by these changes.
5. [24] How should Program A be changed so that extra accuracy is achieved,

essentially by keeping the lowest bits of v in a separate register vll and using it to
achieve proper rounding in the normalization procedure? Specify all changes
that are required, and determine the difference in execution time caused by these
changes.

4.3.1.	The	Classical	Algorithms

[266]

For the following MMIX subroutines, we assume that u, v, and w are stored in
arrays and the addresses of the three arrays are in registers u, v, and w. In
principle, the arrays can be in big-endian or little-endian order; that is, if LOC(u)
is the starting address of the array holding u = (un−1 . . . u1u0)b, then at address

LOC(u) we might have either un−1 or u0. Here, we assume little-endian ordering;

thus LOC(u) is the address of u0, LOC(u) + 8 is the address of u1, and so on.

Further, we take b = 264, so that each digit uj fits in one octabyte.

Program A (Addition of nonnegative integers). This subroutine expects four
parameters: the addresses of u, v, w, in registers u, v, and w and the value of n in
register n. To make traversal of the arrays from j = 0 to j = n − 1 as efficient as
possible, we keep the value 8(j − n) in register j and change the values of u, v,
and w to LOC(u) + 8n, LOC(v) + 8n, and LOC(w) + 8n. After these changes,
adding the values of u and j will yield LOC(u) + 8n + 8(j − n) = LOC(u) + 8j,
which is exactly the address of the digit uj.

01 :Add 8ADDU u,n,u 1 A1.	Initialize.	u	←	u	+	8n.
02 8ADDU v,n,v 1 v	←	v	+	8n.
03 8ADDU w,n,w 1 w	←	w	+	8n.
04 SL j,n,3;	NEG	j,j 1 j	←	0.
05 SET k,0 1 k	←	0.

06 A2 LDOU t,u,j;	ADDU	wj,t,k N A2.	Add	digits.	wj	←	uj	+	k.

07 Carry?

07 ZSZ k,wj,k N Carry?

08 LDOU t,v,j;	ADDU	wj,wj,t N wj	←	wj	+	vj.

09 CMPU t,wj,t;	CSN	k,t,1 N Carry?
10 STOU wj,w,j N

11 ADD j,j,8 N A3.	Loop	on	j.	j	←	j	+	1.
12 PBN j,A2 N[1] Probably	j	<	n.

13 STOU k,w,j 1 wn	←	k.

14 POP 0,0

The running time for this program is 9υ + 1µ + N(10υ + 3µ).
[267]

Program S (Subtraction of nonnegative integers). The program uses the same
conventions as Program A and is very similar to it. It changes the ADDU
instruction into a SUBU instruction as expected and the carry is now a borrow.
The CSN instruction in line 10 will not work with negative constants, so we set k
to 1 (not −1) if a subtraction does not make the number smaller.

01 :Sub 8ADDU u,n,u 1 S1.	Initialize.
02 8ADDU v,n,v 1
03 8ADDU w,n,w 1
04 SL j,n,3;	NEG	j,j 1 j	←	0.
05 SET k,0 1 k	←	0.
06 S2 LDOU uj,u,j N S2.	Subtract	digits.

07 SUBU wj,uj,k N wj	←	uj	−	k.

08 CSNZ k,uj,0 N Carry?
09 LDOU vj,v,j N

10 CMPU t,wj,vj;	CSN
k,t,1

N Carry?

11 SUBU wj,wj,vj N wj	←	wj	−	vj.

12 STOU wj,w,j N

13 ADD j,j,8 N S3.	Loop	on	j.	j	←	j	+	1.
14 PBN j,S2 N[1] Probably	j	<	n.

15 BNZ k,:Error 1[0] k	≠	0	only	if	u	<	v.

16 POP 0,0

The running time of Program S is 9υ + N(10υ + 3µ), just one µ shorter than the
corresponding amount for Program A, because it finally tests k but does not store
it.

[269]
The following MMIX program shows the considerations that are necessary when

Algorithm M is implemented on a computer. Fortunately, MMIX has the MULU
operation, which delivers a 128-bit result.

Program M (Multiplication of nonnegative integers). To make the inner loop as fast as
possible, we scale i by 8 and run register i from −8m toward zero. Further, we
maintain in register wj the address (namely LOC(wj) + 8m) needed to make wj +

i the address of wj+i. Thanks to the MULU instruction, the value of t/b needed in

step M4 can be found in the rH register (we just need to add the possible carry of
the two ADDU instructions).

01 :Mul 8ADDU u,m,u;	8ADDU
v,n,v 1 M1.	Initialize.

02 SL j,n,3;	NEG	j,j 1 j	←	0.

03 8ADDU wj,m,w 1 wj	←	LOC(wj)	+	8m.

04 SL i,m,3;	NEG	i,i 1 i	←	0.

05 0H STCO 0,wj,i M (wm−1	.	.	.	w0)	←	(0	.	.	.	0).

06 ADD i,i,8 M i	←	i	+	1.
07 PBN i,0B M[1] Loop	for	0	≤	i	<	m.
08 M2 SET k,0 N M2.	Zero	multiplier?
09 LDOU vj,v,j N

10 BZ vj,6F N[Z] If	vj	=	0,	set	wj+m	←	0.

11 SL i,m,3;	NEG	i,i N	−	Z M3.	Initialize	i.	i	←	0.
12 M4 LDOU t,u,i (N	−	Z)M M4.	Multiply	and	add.

13 MULU t,t,vj (N	−	Z)M t	←	ui	×	vi.

14 ADDU t,t,k (N	−	Z)M t	←	ui	×	vi	+	k.

15 CMPU c,t,k;	ZSN	k,c,1 (N	−	Z)M Carry?
16 LDOU wij,wj,i (N	−	Z)M

17 ADDU t,t,wij (N	−	Z)M t	←	ui	×	vi	+	k	+	wi+j.

18 CMPU c,t,wij;	CSN
k,c,1 (N	−	Z)M Carry?

19 STOU t,wj,i (N	−	Z)M wi+j	←	t	mod	b.

20 GET t,:rH;	ADDU	k,k,t (N	−	Z)M k	←	 t/b .

21 ADD i,i,8 (N	−	Z)M M5.	Loop	on	i.	i	←	i	+	1.

22 PBN i,M4 (N	−	Z)M[N−Z]

23 6H STOU k,wj,0 N	−	Z wj+m	←	k.

24 ADD wj,wj,8

24 ADD wj,wj,8 N M6.	Loop	on	j.
25 ADD j,j,8 N j	←	j	+	1.
26 PBN j,M2 N[1]

27 POP 0,0

The execution time of Program M depends on the number of places, M, in the
multiplicand u; the number of places, N, in the multiplier v; and the number of
zeros, Z, in the multiplier. We find that the total running time comes to (23MN
+ 3M + 11N + 11 − Z(23M + 3))υ + (3MN + M + 2N − Z(3M + 1))µ. If step
M2 were deleted, the running time would be (23MN + 3M + 10N + 11)υ +
(3MN + M + 2N)µ, so that step is advantageous only if the density of zero
positions within the multiplier is Z/N > 1/(23M + 3). If the multiplier is chosen
completely at random, the ratio Z/N is expected to be only about 1/b, which is
extremely small. Unless the PBNZ instruction on line 10 can be done in parallel
on a superscalar pipeline processor (such as MMIX) with proper branch prediction,
causing zero delay if the branch is not taken, we conclude that step M2 is usually
not worthwhile.

[273]
Program D (Division of nonnegative integers). The conventions of this subroutine are
analogous to Program A. It expects five parameters: First, u, v, and q hold the
addresses of u = (um+n−1 .	.	.	u0)b, v = (vn−1 .	.	.	v0)b where vn−1 ≠ 0, and q =

(qm .	.	.	q0)b; then follow nu and nv, which hold the number of digits of u and v

(we compute m, needed in Algorithm D, as m = nu − nv). The array u is used as
the algorithm’s working area. It will contain the remainder r after the program
has finished. Similar to Program M, we maintain registers uj and i such that uj
+ i = LOC(uj+i). The DIVU instruction will not compute quotient and

remainder unless rD = uj+n < vn−1. So we test for it before attempting the

division. In step D1, instead of d, we compute the number of leading zeros in
vn−1 because shifting is more efficient than multiplication. The variables pm and

pl in registers pm and pl, respectively, are used for the most and least significant

64 bits of the product × vn−2. Registers vn1, vn2, uji, and ujn are used to hold

the values of vn−1, vn−2, uj+i, and uj+n, respectively.

01 :Div GET rJ,:rJ 1
02 SL nv,nv,3;	SL	nu,nu,3 1
03 SUB t,nv,8 1 D1.	Normalize.
04 LDOU ld+1,v,t 1

05 PUSHJ ld,:LeadingZeros 1 See	new	exercise	4.2.1–20.
06 SET t+1,v;	SR	t+2,nv,3 1
07 SET t+3,ld 1
08 PUSHJ t,:ShiftLeft 1 See	new	exercise	25.
09 SET t+1,u;	SR	t+2,nu,3 1
10 SET t+3,ld 1
11 PUSHJ t,:ShiftLeft 1 See	new	exercise	25.

12 SET ujn,t 1 uj+n	←	carry.

13 SUB m,nu,nv 1 m	←	nu	−	nv.

14 SET j,m 1 D2.	Initialize	j.	j	←	m.
15 ADDU v,nv,v 1 v	←	LOC(v)	+	8n.

16 NEG t,8;	LDOU	vn1,v,t 1 vn1	←	vn−1.

17 NEG t,16;	LDOU	vn2,v,t 1 vn2	←	vn−2.

18 ADDU uj,j,u 1
19 ADDU uj,nv,uj 1 uj	←	LOC(u)	+	8(j	+	n).

20 JMP 0F 1 Avoid	loading	um+n.

21 D3 LDOU ujn,uj,0 M D3.	Calculate	 .

22 0H CMPU t,ujn,vn1 M	+	1

23 BNN t,1F M	+	1[0] Jump	if	 	would	be	b.

24 NEG i,8 M	+	1 i	←	n	−	1.

25 LDOU uji,uj,i M	+	1 Get	uj+n−1.

26 PUT :rD,ujn M	+	1 rD	←	uj+n.

27 DIVU qh,uji,vn1 M	+	1 	←	 (uj+nb	+	uj+n−1)/vn−1 .

28 GET rh,:rR M	+	1 	←	·	·	·	mod	vn−1.

29 JMP 2F M	+	1

30 1H SET qh,0 	←	b.

31 SET rh,uji 	←	uj+n	=	vn−1.

32 3H SUBU qh,qh,1 E Decrease	 	by	one.

33 ADDU rh,rh,vn1 E 	←	 	+	vn−1.

34 CMPU t,rh,vn1 E Check	if	overflow.
35 BN t,D4 E[E−F] If	yes,	continue	the	test.

36 2H MULU pl,qh,vn2 M	+	F	+	1 pmb	+	pl	←	 vn−2.

37 GET pm,:rH M	+	F	+	1
38 CMPU t,pm,rh M	+	F	+	1 Compare	high	64	bits.

39 PBN t,D4

39 PBN t,D4
M	+	F	+	1[E]

40 PBP t,3B E[0]

41 NEG i,16 i	←	n	−	2.

42 LDOU uji,uj,i Get	uj+n−2.

43 CMPU t,pl,uji Compare	low	64	bits.
44 BP t,3B

45 D4 SET k,0 M	+	1 D4.	Multiply	and	subtract.
46 NEG i,nv M	+	1 i	←	0.

47 0H LDOU uji,uj,i N(M	+	1) Load	uj+i.

48 LDOU t,v,i N(M	+	1) t	←	vi.

49 MULU pl,t,qh N(M	+	1) (pm,	pl)	←	vi	×	 .

50 GET pm,:rH N(M	+	1)

51 ADDU pl,pl,k N(M	+	1) (pm,	pl)	←	(pm,	pl)	+	k.

52 CMPU t,pl,k;	ZSN	k,t,1 N(M	+	1) Carry	from	pl	to	pm?

53 ADDU pm,pm,k N(M	+	1)

54 CMPU
t,uji,pl;	ZSN	k,t,1

N(M	+	1) N(M	+	1) Carry	from	ui+j	−	pl?

55 SUBU uji,uji,pl N(M	+	1) uj+i	←	uj+i	−	vi	×	 .

56 STOU uji,uj,i N(M	+	1) Store	uj+i.

57 ADDU k,pm,k N(M	+	1) Add	pm	to	carry.

58 ADD i,i,8 N(M	+	1) i	←	i	+	1.

59 PBN i,0B N(M	+	1)[M+1] Repeat	for	0	≤	i	<	n.

60 SUBU uji,ujn,k M	+	1 Complete	D4	for	i	=	n.
61 CMPU t,ujn,k M	+	1
62 ZSN k,t,1 M	+	1 Borrow	to	the	left?

63 CMP t,j,m;	BNN	t,D5 M	+	1[1] Store	unless	j	=	m.

64 STOU uji,uj,i M uj+n	←	uj+n	+	carry.

65 D5 PBZ k,1F M	+	1[0] D5.	Test	remainder.

66 SUBU qh,qh,1 D6.	Add	back.
67 NEG i,nv i	←	−8n.
68 SET k,0 Carry	←	0.
69 0H LDOU uji,uj,i

70 ADDU uji,uji,k uj+i	←	uj+i	+	carry.

71 ZSZ k,uji,k Carry?
72 LDOU t,v,i t←	vi.

73 ADDU uji,uji,t uj+i	←	uj+i	+	vi.

74 CMPU t,uji,t

75 CSN k,t,1 Carry?
76 STOU uji,uj,i

77 ADD i,i,8

78 PBN i,0B Probably	j	<	0.
79 LDOU uji,uj,i

80 ADDU uji,uji,k

81 STOU uji,uj,i uj+n	←	uj+i	+	carry.

82 1H STOU qh,q,j M	+	1 qj	←	 .

83 D7 SUB uj,uj,8 M	+	1 D7.	Loop	on	j.
84 SUBU j,j,8 M	+	1 j	←	j	−	1.

85 PBNN j,D3 M	+	1[1]
86 SET t+1,u 1 D8.	Unnormalize.
87 SR t+2,nv,3 1
88 SET t+3,ld 1
89 PUSHJ t,:ShiftRight 1 See	exercise	26.
90 PUT :rJ,rJ 1
91 POP 0,0

The running time for Program D can be estimated by considering the quantities
M, N, E, and F shown in the program. (These quantities ignore several situations
that occur only with very low probability; for example, we may assume that lines
30 and 31, lines 41–44, and step D6 are never executed.) Here M + 1 is the
number of words in the quotient; N is the number of words in the divisor; E is
the number of times is adjusted downward in step D3; and F is the number of
times the full test of in step D3 is required. If we assume that F is
approximately 0.5E and E is approximately 0.5M, we get a total running time of
approximately (24MN + 45N + 110.25M + 169)v. When M and N are large,
this is only about five percent longer than the time needed by Program M to
multiply the quotient and the divisor.

EXERCISES

[281]

3. [21] Write an MMIX program for the algorithm of exercise 2, and estimate its
running time as a function of m and n.

8. [M26] Write an MMIX program for the algorithm of exercise 5, and estimate
its running time based on the expected number of carries as computed in the
text.
10. [18] Would Program S work properly if the three instructions on lines 10
and 11 were replaced by ‘SUBU	wj,wj,vj;	CSN	k,wj,1’ ?

13. [21] Write an MMIX subroutine that multiplies (un−1 .	.	.	u1u0)b by v, where v

is a a single-precision number (that is, 0 ≤ v < b), producing the answer (wn	.	.	.

w1w0)b. Assume that b = 232 and numbers are stored as TETRA arrays in little-

endian order. How much running time is required?
25. [26] Write an MMIX subroutine ShiftLeft, which is needed to complete
Program D. ShiftLeft accepts three parameters: LOC(x), the address of an
array of octabytes; n, the size of the array; and p, the number of bits to shift x to
the left. If x is considered an n-digit number to the base 264 stored in little-endian
order, the routine will transform x to 2px. The bits shifted out of the most
significant “digit” of x comprise the return value of the subroutine.
26. [21] Write an MMIX routine ShiftRight, which is needed to complete
Program D. ShiftRight uses the same conventions as ShiftLeft in exercise 25,
but shifts it in the other direction.

4.4.	RADIX	CONVERSION

[320]
B. Single-precision conversion. To illustrate these four methods, suppose
that we want to store the decimal representation of a nonnegative (binary)
integer u in register u as an array U of BYTEs in little-endian order at address u10
≡ LOC(U). With b = 2 and B = 10, Method 1a could be programmed as follows:

SET j,0 Set	j	←	0.
PUT rD,0 Prepare	for	DIVU.

1H DIVU u,u,10 u	←	 u/10 	and	rR	←	u	mod	10.

GET t,rR;	STBU
t,u10,j Uj	←	u	mod	10. (1)

ADD j,j,1 j	←	j	+	1.
PBP u,1B Repeat	until	result	is	zero.				

This requires (64υ + µ)M + 4υ to obtain M digits. The expensive instruction
here is the division, which costs 60υ each time.

[321]

For the corresponding MMIX program, we choose n = 19, the largest n with 10n

< 264 = w, and assume that the global register ten19 contains the constant 1019.
If u < 10n, we can implement Method 2a as follows:

PUT rD,u

DIVU x,ten19,ten19 x	←	 (wu	+	10n)/10n .
SET j,n-1 j	←	n	−	1.

0H MULU x,x,10 (rH,	x)	←	10x. (4)
GET t,rH;	STB	t,u10,j Uj	←	 10x .

SUB j,j,1 j	←	j	−	1.
PBNN j,0B Repeat	for	n	>	j	≥	0.				

This slightly longer routine requires (14υ + µ)n + 64υ, so it is faster than
program (1) if no leading zeros are present and n = M ≥ 2; if leading zeros are
present, (1) will be faster if n = 19 and M ≤ 5. The most expensive instruction of
the previous program is the MULU inside the loop, which contributes 190υ. If we
choose w sufficiently smaller than 264, we can avoid this multiplication. For
example, with 32-bit integers, we choose w = 232 and n = 9. We can then write

SLU u,u,32
ADD u,u,ten9

DIV x,u,ten9 x	←	 (wu	+	10n)/10n .
SET j,n-1 j	←	n	−	1.

0H 4ADDU x,x,x

SLU x,x,1 x	←	10x. (4′)
SRU t,x,32

STBU t,u10,j Uj	←	 10x .

ANDNMH x,#FFFF x	←	x	mod	w.
SUB j,j,1 j	←	j	−	1.
PBNN j,0B Repeat	for	n	>	j	≥	0.				

This routine requires (7υ + µ)n + 65υ; it has a loop twice as fast as before. For n
= 9, it requires 128υ, which is close to the 131υ required by Method 1a for a
two-digit number. With more than two digits, Method 1a is significantly slower.

· · ·

An MMIX program for conversion using (5) appears in exercise 8; it requires
about 19υ per digit.

[322]

Method 1b is the most practical method for decimal-to-binary conversion in
the great majority of cases. The following MMIX code assumes that there are at
least two digits in the number (um .	.	.	u1u0)10 being converted, and that 10m+1

< w so that overflow is not an issue:
SET j,m-1 j	←	m	−	1.

LDBU u,u10,m U	←	um.

1H MULU u,u,10 (6)

LDBU t,u10,j;	ADDU	u,u,t U	←	10U	+	uj.

SUB j,j,1 j	←	j	−	1.
PBNN j,1B Repeat	for	m	>	j	≥	0.				

The running time is (14υ + µ)m − 10υ.
The multiplication by 10 can be done in 2υ by ‘4ADDU	u,u,u;	SL	u,u,1’,

which brings the running time down to (6υ + µ)m − 4υ.

EXERCISES

[328]
5. [M20] Show that program (4) would still work if the DIVU instruction were

replaced by DIVU	x,c,c for certain other constants c.

8. [24] Write an MMIX program analogous to (1) that uses (5) and includes no
division instructions.
13. [25] Assume that u is a multiple-precision fraction u = (.u−1u−2 .	.	.	u−m)b,

where b = 232, and that u is stored as an array of tetrabytes in little-endian order.
Write an MMIX subroutine with parameters LOC(u), m, and LOC(Buffer) that
converts the fraction u to decimal notation, truncating it to 126 decimal digits.
The answer should be stored in the given Buffer as an ASCII string, such that
the two instructions ‘LDA	$255,Buffer;	TRAP	0,Fputs,StdOut’ print the
answer on two lines, with the digits grouped into 14 blocks of nine each
separated by blanks.
19. [M23] Let the decimal number u = (u7 .	.	.	u1u0)10 be represented in
register u as a sequence of eight ASCII characters u7 + ’0’, .	.	.	,	u1 + ’0’, u0

+ ’0’. Convert the ASCII code representation first to a sequence of eight binary
coded numbers u7, .	.	.	,	u1, u0. Then find appropriate constants ci and masks

mi so that the operation u ← u − ci(u & mi) repeated for i = 1, 2, 3, will convert

u to the binary representation of u. Write an MMIX routine to do the conversion.

4.5.2.	The	Greatest	Common	Divisor

[337]
The following MMIX program illustrates the fact that Algorithm A can easily be

implemented on a computer.

Program A (Euclid’s algorithm). Assume that u and v are nonnegative integers.
This subroutine expects u and v as parameters and returns gcd(u,	v).
0H DIV t,u,v A2.	Take	u	mod	v.

SET u,v u	←	v.
GET v,rR v	←	u	mod	v.

Gcd PBNZ v,0B A1.	v	=	0?	Done	if	v	=	0.
POP 1,0 Return	u.				

The running time for this program is (63T + 3)v, where T is the number of
divisions performed.

[339]
An MMIX program for Algorithm B requires a bit more code than for

Algorithm A, but the steps are elementary.
Program B (Binary gcd algorithm). Assume that u and v are positive integers. This
subroutine expects u and v as parameters, uses Algorithm B, and returns gcd(u,
v).

01 Gcd SET k,0 1 B1.	Find	powers	of	2.
02 0H OR t,u,v A	+	1

03 PBOD t,B2 A	+	1[A] Both	even?

04 SR u,u,1;	SR	v,v,1 A u	←	u/2	and	v	←	v/2.
05 ADD k,k,1 A k	←	k	+	1.
06 JMP 0B A

07 B2 NEG t,v 1 B2.	Initialize.

08 PBOD u,B4 1[B]
09 SET t,u B

10 B3 SR t,t,1 D B3.	Halve	t.

11 B4 PBEV t,B3 1	−	B	+	D[C] B4.	Is	t	even?

12 CSP u,t,t C B5.	Reset	max(u,v).
13 NEG t,t;	CSNN	v,t,t C

14 SUB t,u,v C B6.	Subtract.
15 PBNZ t,B3 C[1]

16 SL u,u,k 1

16 SL u,u,k 1
17 POP 1,0 Return	2k	·	u.				

The running time of this program is

(8A	+	2B	+	7C	+	2D	+	9)υ,

where A = k, B = 1 if t ← u in step B2 (otherwise B = 0), C is the number of
subtraction steps, and D is the number of halving steps in step B3. Calculations
discussed later in this section imply that we may take A = , B = , C = 0.71N
−0.5, and D = 1.41N −2.7 as average values for these quantities, assuming
random inputs u and v in the range 1 ≤ u,	v < 2N . The total running time is
therefore about 7.8N + 3.4 cycles, compared to about 36.8N + 6.8 cycles for
Program A under the same assumptions. The worst possible running time for u
and v in this range occurs when A = 0, C = N, D = 2N − 2; this amounts to
11N + 5.7 cycles. (The corresponding value for Program A is 90.7N + 45.4
cycles.)

Thus the greater speed of the iterations in Program B, due to the simplicity of
the operations, compensates for the greater number of operations required. We
have found that the binary algorithm is almost 5 times faster than Euclid’s
algorithm on the MMIX computer.

EXERCISES

[356]

43. [20] New: It is possible to compute k in Step B1 of Algorithm B with just
three MMIX instructions, because lines 01–06 can be replaced by

01 :Gcd OR t,u,v B1.	Find	powers	of	2.
02 SUBU k,t,1;	SADD	k,k,t

03 SR u,u,k;	SR	v,v,k u	←	u/2k	and	v	←	v/2k.				

Will this make Program B more efficient?

4.5.3.	Analysis	of	Euclid’s	Algorithm

EXERCISES

[373]

1. [20] Since the quotient u/v is equal to unity more than 40 percent of the

time in Algorithm 4.5.2A, it may be advantageous on some computers to make a
test for this case and to avoid the division when the quotient is unity. Is the
following MMIX program for Euclid’s algorithm more efficient than Program
4.5.2A?

0H SUB r,u,v r	←	u	−	v.
SET u,v u	←	v.
NEG v,r;	CSN	v,v,r v	←	|r|.
CMP t,r,u

BN t,Gcd r	<	u	?
DIV t,v,u;	GET	v,:rR v	←	u	mod	v.

Gcd PBNZ v,0B
POP 1,0

4.5.4.	Factoring	into	Primes

[389]

An even more important method of speeding up Algorithm D is to use
Boolean operations. For example, MMIX has 64 bits per word. The tables S[i,	ki]

can be kept in memory with one bit per entry; thus 64 values can be stored in a
single word and the AND instruction can be used to process 64 values of x at once!
For convenience, we can make several copies Si of the tables S[i,	j] so that the

table entries for mi involve lcm(mi, 64) bits; then the sieve tables for each

modulus fill an integral number of words. Under these assumptions, 64
executions of the main loop in Algorithm D are equivalent to code of the
following form:

D2 LDOU sieve,S1,k1 sieve	←	S	′[1,	k1′].

CSZ k1,k1,m1*8;	SUB	k1,k1,8 k1	←	(k1	−	64)	mod	lcm(m1,	64).

LDOU t,S2,k2;	AND	sieve,sieve,t sieve	←	sieve	&	S	′[2,	k2′].

CSZ k2,k2,m2*8;	SUB	k2,k2,8 k2	←	(k2	−	64)	mod	lcm(m2,	64).

(m3	through	mr	are	like	m2)

LDOU t,Sr,kr;	AND	sieve,sieve,t sieve	←	sieve	&	S	′[r,	k	′r].

CSZ kr,kr,mr*8;	SUB	kr,kr,8 kr	←	(kr	−	64)	mod	lcm(mr,	64).

ADD x,x,64 x	←	x	+	64.
PBZ sieve,D2 Repeat	if	all	sieved	out.				

The number of cycles for 64 iterations is essentially (1 + 4r)v; if r < 16, this
means that less than one v is being used on each iteration, compared to 3v to 5v

in Algorithm C, and Algorithm C involves more iterations. The
savings in the loop are partially offset by the extra time needed to initialize all the
registers and tables.

4.6.3.	Evaluation	of	Powers

EXERCISES

[481]

2. [22] Write an MMIX subroutine for Algorithm A, with parameters x and n > 0,
returning xn mod w (where w is the word size).

Write another MMIX subroutine that computes xn mod w in a serial manner
(multiplying repeatedly by x), and compare the running times of these
subroutines.

4.6.4.	Evaluation	of	Polynomials

EXERCISES

[516]

20. [10] Write an MMIX program that evaluates a fifth-degree polynomial
according to scheme (11). Use MMIX’s floating point instructions.

CHAPTER	FIVE

SORTING

EXERCISES

[6]

6. [15] Mr. B. C. Dull (an MMIX programmer) wanted to know if the number
stored in location A is greater than, less than, or equal to the number stored in
location B. So he wrote ‘LDO	$0,A;	LDO	$1,B;	SUB	$2,$0,$1’ and tested
whether register $2 was positive, negative, or zero. What serious mistake did he
make, and what should he have done instead?
7. [17] Write an MMIX subroutine MCmp for multiprecision comparison of n-byte

keys (an−1, .	.	.	,	a0) and (bn−1, .	.	.	,	b0), where ai and bi are unsigned bytes

stored in order of increasing index i. Use the following specification:

Calling	sequence: PUSHJ	t,MCmp

Entry	conditions: $0	≡	n;	$1	≡	LOC(a0);	and	$2	≡	LOC(b0)

Return	value: 			1,	if	(an–1,	.	.	.	,	a0)	<	(bn–1,	.	.	.	,	b0);

			0,	if	(an–1,	.	.	.	,	a0)	≡	(bn–1,	.	.	.	,	b0);

	–1,	if	(an–1,	.	.	.	,	a0)	<	(bn–1,	.	.	.	,	b0).

Here the relation (an−1, .	.	.	,	a0) < (bn−1, .	.	.	,	b0) denotes lexicographic

ordering from left to right; that is, there is an index j such that ak = bk for n > k

> j, but aj < bj.

8. [20] Registers a and b contain two nonnegative numbers a and b,
respectively. Find the most efficient MMIX program that computes min(a,	b) and
max(a,	b) and assigns these values to registers min and max. Hint: 3υ are sufficient
for this task.

5.2.	INTERNAL	SORTING

[76]
Program C (Comparison counting). The following MMIX implementation of
Algorithm C assumes that keys and counts are stored as arrays of consecutive
octabytes. Furthermore, the registers k, count, and n are initialized to contain
LOC(K1), LOC(COUNT[1]), and N, respectively. To allow a more efficient use of

the counts later on (see exercises 4 and 5), we scale the counts by 8.

01 :Sort SL i,n,3 1 C1.	Clear	COUNTs.
02 JMP 0F 1
03 1H STCO 0,count,i N COUNT[i]	←	0.
04 0H SUB i,i,8 N	+	1

05 PBNN i,1B
N	+
1[1]

N	>	i	≥	0.

06 SL i,n,3 1 C2.	Loop	on	i.
07 JMP 1F 1
08 2H LDO ci,count,i N	–	1
09 LDO ki,k,i N	–	1
10 3H LDO kj,k,j A

11 CMP t,ki,kj A C4.	Compare	Ki	:	Kj

12 PBNN t,4F A[B] Jump	if	Ki	≥	Kj.

13 LDO cj,count,j B COUNT[j]
14 ADD cj,cj,8 B +	1
15 STO cj,count,j B →COUNT[j].
16 JMP 5F B

17 4H ADD ci,ci,8 A	–	B COUNT[i]	←	COUNT[i]	+	1.
18 5H SUB j,j,8 A C3.	Loop	on	j.
19 PBNN j,3B A[N–1]

20 STO ci,count,i N	–	1
21 1H SUB i,i,8 N

22 SUB j,i,8 N N	>	i	>	j	≥	0.
23 PBNN j,2B N[1]

The running time of this program is (11N +6A+5B+5)υ+(4N +A+2B−3)µ.
[78]

Hence Program C requires between (3N2 + 8N + 5)υ + (0.5N2 + 3.5N − 3)µ
and (5.5N2 + 5.5N + 5)υ + (1.5N2 + 2.5N − 3)µ; the average running time lies
halfway between these two extremes. For example, the data in Table 1 has N =
16, A = 120, B = 41, so Program C will sort it in 1106υ + 263µ.

EXERCISES

[79]

4. [16] Write an MMIX program that “finishes” the sorting begun by Program C;
your program should transfer the records R1, . . . , RN to an output area S1, . . . ,

SN in the desired order. How much time does your program require?

5. [22] Does the following set of changes improve Program C?

New	line	08a: ADD ci,ci,i

Change	line	12: PBNN t,5F

Change	line	16: SUB ci,ci,8

Delete	line	17.

9. [23] Write an MMIX program for Algorithm D, analogous to Program C and
exercise 4. What is the execution time of your program, as a function of N and (v
− u)?
11. [M27] Write an MMIX program for the algorithm of exercise 10, and analyze
its efficiency.

12. [25] Design an efficient algorithm suitable for rearranging the records R1, .	.
.	,	RN into sorted order, after a list sort (Fig. 7) has been completed. Try to avoid

using excess memory space. Write an MMIX program for this algorithm.

5.2.1.	Sorting	by	Insertion

[81]
Program S (Straight insertion sort). For simplicity, we assume that the records
consist just of the keys, which are 64-bit signed integers. This subroutine expects
two parameters: key ≡ LOC(R1) = LOC(K1), the address where the items to be
sorted are located; and n ≡ N, the number of items. We use the register i ≡ 8i
together with the base addresses key and key1 ≡ key + 8 (for the computation of
key + 8(i + 1)); register j ≡ 8(N − j) is used with the base address keyn ≡ key +
8N. To convert between the bases, we keep the difference in register d ≡ keyn −
key1.

01 :Sort ADD key1,key,8 1
02 8ADDU keyn,n,key 1
03 SUBU d,keyn,key1 1
04 SUBU j,key1,keyn 1 j	←	1.
05 JMP S1 1
06 S2 LDO k,keyn,j N	–	1 S2.	Set	up	j,	K,	R.
07 ADD i,d,j N	–	1 i	←	j	–	1.

08 S3 LDO ki,key,i

08 S3 LDO ki,key,i N	–	1	+	B	–	A S3.	Compare	K	:	Ki.

09 CMP c,k,ki N	–	1	+	B	–	A

10 BNN c,S5 N	–	1	+	B	–	A[N-1-A] To	S5	if	K	≥	Ki.

11 STO ki,key1,i B S4.	Move	Ri,	decrease	i.

12 SUB i,i,8 B i	←	i	–	1.
13 PBNN i,S3 B[A] To	S3	if	i	≥	0.

14 S5 STO k,key1,i N	–	1 S5.	R	into	Ri+1.

15 ADD j,j,8 N	–	1 j	←	j	+	1.

16 S1 PBN j,S2 N[1] S1.	Loop	on	j.	1	≤	j	≤	N.

17 POP 0,0

The running time of this program is (10N −3A+6B −2)υ + (3N −1A+2B
−3)µ, where N is the number of records sorted, A is the number of times i
decreases to zero in step S4, and B is the number of moves.

The branch in line 10 is optimized for large values of B compared to N − A.
For an array that is expected to be almost sorted, B might be small compared to
N − A; in this case the branch should be replaced by a probable branch.

[82]
The average running time of Program S, assuming that the input keys are

distinct and randomly ordered, is (1.5N2 + 8.5N − 3HN − 2)υ. Exercise 33

shows how to improve this slightly.

The example data in Table 1 involves 16 items; there are two changes to the
left-to-right minimum, namely 087 and 061; and there are 41 inversions, as we
have seen in the previous section. Hence N = 16, A = 2, B = 41, and the total
sorting time is 398υ.

· · ·

Program D (Shellsort). We assume that the increments are stored in an auxiliary
table, with hs in location H + 8s; all increments are less than N. The parameters

of the following subroutine are: key ≡ LOC(K1), the address of an array of
octabytes to be sorted; n ≡ N, the number of elements in the array; inc ≡
LOC(H), the address of a suitable array of increments; and t ≡ t, the number of
increments to be used. The use of other registers is similar to Program S; the
constant d, used to set i to j − h in line 10, is computed once for each h.

01 :Sort 8ADDU keyn,n,key 1 keyn	←	LOC(KN+1).

02 SL s,t,3 1 s	←	t	–	1.
03 JMP D1 1

04 D2 LDO h,inc,s T D2.	Loop	on	j.	h	←	hs.

05 SL h,h,3 T

06 ADDU keyh,key,h T keyh	←	LOC(Kh+1).

07 SUBU d,keyn,keyh T d	←	N	–	h.
08 SUBU j,keyh,keyn T j	←	h	+	1.
09 JMP 0F T

10 D3 ADD i,d,j NT	–	S D3.	Set	up	j,	K,	R.	i	←	j	–	h.
11 LDO k,keyn,j NT	–	S

12 D4 LDO ki,key,i B	+	NT	–	S	–	A D4.	Compare	K	:	Ki.

13 CMP c,k,ki B	+	NT	–	S	–	A

14 BNN c,D6 B	+	NT	–	S	–	A[NT-S-A] To	D6	if	K	≥	Ki.

15 STO ki,keyh,i B D5.	Move	Ri,	decrease	i.

16 SUB i,i,h B i	←	i	–	h.
17 PBNN i,D4 B[A] To	D4	if	i	≥	0.

18 D6 STO k,keyh,i NT	–	S D6.	R	into	Ri+1.

19 ADD j,j,8 NT	–	S j	←	j	+	1.

20 0H PBN j,D3 NT	–	S	+	T[T] To	D3	if	j	<	N.

21 D1 SUB s,s,8 T	+	1 D1.	Loop	on	s.

22 PBNN s,D2 T	+	1[1] 0	≤	s	<	t.	

[92]

Let’s consider practical sizes of N more carefully by looking at the total running
time of Program D, namely (6B + 10NT + 11T − 10S − 3A + 7)υ + (2B +
3NT + T − 3S − A)µ. Table 5 shows the average running time for various
sequences of increments when N = 8. For this small value of N, bookkeeping
operations are the most significant part of the cost, and the best results are
obtained when t = 1; hence for N = 8, we are better off using simple straight
insertion. (The average running time of Program S when N = 8 is only 154υ.)
Curiously, the best two-pass algorithm occurs with MMIX when h1 = 7 (this was h1

= 6 for the MIX computer), since a large value of S is more important here than a
small value of B.

[94]

Table 5 Analysis of Algorithm D when N = 8

Since Program D takes (6B + 10(NT − S) + · · ·)υ, we see that saving one
pass is about as desirable as saving N moves; when N = 1000 we are willing to
add 1666 moves if we can save one pass. (The first pass is very quick, however, if
ht−1 is near N, because NT − S = (N − ht−1) + · · · + (N − h0).)

[97]
Program L (List insertion). We assume that Kj is stored in the octabyte at

LOC(R0) + 16j + KEY and Lj is stored in the octabyte at LOC(R0) + 16j. The

subroutine has two parameters: link ≡ LOC(R0) = LOC(LINK(R0)) = LOC(L0)

and n ≡ N, the number of records. The registers p and q, as well as the link
fields, contain relative addresses using LOC(R0) as base address.

01 :Sort ADDU key,link,KEY 1 L1.	Loop	on	j.
02 SL j,n,4 1 j	←	N.

03 STOU j,link,0 1 L0	←	N.

04 STCO 0,link,j 1 LN	←	0.

05 JMP 0F 1 Go	to	decrease	j.

06 L2 LDOU p,link,0 N	–	1 L2.	Set	up	p,	q,	K.	p	←	L0.

07 SET q,0 N	–	1 q	←	0.

08 LDO k,key,j N	–	1 K	←	Kj.

09 L3 LDO kp,key,p B	+	N	–	1	–	A L3.	Compare	K	:	Kp.

10 CMP t,k,kp B	+	N	–	1	–	A

11 BNP t,L5 B	+	N	–	1	–	A[N-1-
A]

To	L5	if	K	≤	Kp.

12 SET q,p B L4.	Bump	q,	q.	q	←	p.

13 LDOU p,link,q B p	←	Lq.

14 PBNZ p,L3 B[A] To	L3	if	p	≠	0.

15 L5 STOU j,link,q N	–	1 L5.	Insert	into	list.	Lq	←	j.

16 STOU p,link,j N	–	1 Lj	←	p.

17 0H SUB j,j,16 N j	←	j	–	1.
18 PBP j,L2 N[1] N	>	j	≥	1.				

The running time of this program is (6B + 12N − 3A − 3)υ + (2B + 5N − A −
3)µ, where N is the length of the file, A + 1 is the number of right-to-left
maxima, and B is the number of inversions in the original permutation. (See the
analysis of Program S. Note that Program L does not rearrange the records in
memory; this can be done as in exercise 5.2–12, at a cost of about 17N
additional units of time.) Program S requires (6B + 10N − 3A − 2)υ, and we
can see that the extra memory space used for the link fields has not bought us
any extra speed. If, however, the records contain other data besides the key and
the link field, the copy operation of Program S will require one LDO and one STO
for each additional memory word. So for each additional octabyte, the running
time of Program S will increase by 2Bυ + 2Bµ, which is about 33 percent of the
running time. The running time of Program L can be reduced by 33 percent by
careful programming (see exercise 33), but the running time remains
proportional to N2.

[99]
To illustrate this approach, suppose that the 16 keys used in our examples are

divided into the M = 4 ranges 0–255, 256–511, 512–767, 768–1023. We obtain
the following configurations as the keys K1, K2, . . . , K16 are successively
inserted:

After After After Final
4	items: 8	items: 12	items: state:

List	1: 061,	087 061,	087,	170 061,	087,	154,	170 061,	087,	154,	170
List	2: 503 275,	503 275,	426,	503,	509 275,	426,	503,	509
List	3: 512 512 512,	653 512,	612,	653,	677,	703,	765
List	4: 897,	908 897,	908 897,	908

(Program M below actually inserts the keys in reverse order, K16, .	.	.	,	K2, K1,
but the final result is the same.) Because linked memory is used, the varying-
length lists cause no storage allocation problem. All lists can be combined into a
single list at the end, if desired (see exercise 35).
Program M (Multiple list insertion). In this program we make the same

assumptions as in Program L, except that the keys must be nonnegative in the
range

0	≤	Kj	<	2e

for some suitable value of e ≤ 64. The program divides this range into M equal
parts by multiplying each key by a suitable constant. As before, p, q, and the link
fields contain relative addresses using the address of the artificial record LOC(R0)

as base address. The lists heads H1 to HM are allocated as M consecutive

octabytes with nonzero relative addresses. Besides link ≡ LOC(R0) and n ≡ N,
the subroutine takes head ≡ LOC(H1) and m ≡ M as parameters; e ≤ 64 is
assumed to be constant.

01 :Sort SL i,m,3 1 i	←	M.
02 JMP 1F 1
03 0H STCO 0,head,i M Clear	heads.
04 1H SUB i,i,8 M	+	1 i	←	i	–	1.

05 PBNN i,0B M	+	1[1]
06 SUBU head,head,link 1 Make	head	a	relative	address.
07 ADDU key,link,KEY 1 M1.	Loop	on	j.
08 SL j,n,4 1 j	←	N.
09 JMP 0F 1

10 M2 LDO k,key,j N M2.	Set	up	p,	q,	K.	K	←	Kj.

11 MUL i,m,k N i	←	M	·	Kj.

12 SRU i,i,e-3 N i	←	 M	·	Kj/2e .

13 ADDU q,head,i N q	←	relative	address	of	Hi.

14 JMP 4F N Jump	to	load	and	test	p.

15 M3 LDO kp,key,p B	+	N	–	A M3.	Compare	K	:	Kp.

16 CMP t,k,kp B	+	N	–	A

17 BNP t,M5 B	+	N	–	A[N-
A]

To	L5	if	K	≤	Kp.

18 SET q,p B M4.	Bump	p,	q.	q	←	p.

19 4H LDOU p,link,q B	+	N p	←	Lq.

20 PBNZ p,M3 B	+	N[A] To	L3	if	p	≠	0.

21 M5 STOU j,link,q N M5.	Insert	into	list.	Lq	←	j.

22 STOU p,link,j N Lj	←	p.

23 SUB j,j,16

23 SUB j,j,16
N

24 0H PBP j,M2 N	+	1[1] N	>	j	≥	1.				

This program is written for general M, but it would be much better to fix M at
some convenient value; for example, if the range of keys is 0 ≤ Kj < 2e, we can

choose d < e and M = 2d, so that the multiplication sequence of lines 11–12
could be replaced by the single instruction SRU	i,k,e-3-d, reducing the total
running time by 10Nυ. In the following discussion, we shall consider this
improved version of Program M, unless otherwise noted.

The most notable contrast between Program L and Program M is the fact that
Program M must consider the case of an empty list, when no comparisons are to
be made.

How much time do we save by having M lists? The total running time of (the
improved) Program M is (6B + 15N −3A+3M +13)υ +(2B +5N −A+M)µ, . . .

[101]

By combining (17) and (18) we can deduce the total running time of Program
M, for fixed M as N → ∞:

min 12N	+	3M	+	13,

ave 1.5N2/M	+	15N	–	3MHN	+	3M	lnM	+	3M	–	3δ	–	1.5N/M	+	13,

max 3N2	+	12N	+	3M	+	10, (19)

· · ·

If we set M = N, the average running time of Program M is approximately
(17.11N + 11.5)υ + (5.70N −0.5)µ; when M = N it is approximately (16.02N +
11.5)υ + (5.34N − 0.5)µ; and when M = N it is approximately (15.94N +
11.5)υ + (5.31N − 2.5)µ. The additional cost of the supplementary program in
exercise 35, which links all M lists together in a single list, raises these times
respectively to (28.00N +8.5)υ+(8.34N −1.5)µ, (23.32N +5.5)υ+(7.27N −2.5)µ,
(19.84N − 18.5)υ + (6.51N − 10.5)µ. (Note that an extra 10Nυ is necessary if
the multiplication by M cannot be avoided.)

EXERCISES

[102]

3. [30] Is Program S the shortest possible sorting program that can be written

for MMIX, or is there a shorter program that achieves the same effect?
10. [22] If Kj ≥ Kj−h when we begin step D3, Algorithm D specifies a lot of

actions that accomplish nothing. Show how to modify Program D so that this
redundant computation can be avoided, and discuss the merits of such a
modification.

[104]
31. [25] Write an MMIX program for Pratt’s sorting algorithm (exercise 30).
Express its running time in terms of quantities A, B, S, T, N analogous to those
in Program D.
33. [25] Find a way to improve an Program L so that its running time is
dominated by 4B instead of 6B, where B is the number of inversions. Discuss
corresponding improvements to Program S.

35. [21] Write an MMIX program to follow Program M, so that all lists are
combined into a single list. Your program should set the LINK fields exactly as
they would have been set by Program L.
36. [18] The sixteen example keys in Table 8 fit nicely into the range 0 ≤ Kj <

210. Determine the running time of Programs L and M on this data, when M =
4.

5.2.2.	Sorting	by	Exchanging

[107]
Program B (Bubble sort). As in previous MMIX programs of this chapter, the Sort
subroutine expects two parameters: key ≡ LOC(K1), the address where the items
to be sorted are located; and n ≡ N, the number of items. For simplicity, we
assume that the records consist of just the key, which is a 64-bit signed integer.
Instead of the index BOUND, we maintain the address of K

BOUND
 in register keyb.

01 :Sort SUB n,n,1 1 B1.	Initialize	BOUND.
02 8ADDU keyb,n,key 1 BOUND	←	N.
03 JMP B2 1

04 B3 LDO kj,keyb,j A B3.	Compare/exchange	Rj	:	Rj+1.

05 B3A ADD j,j,8 C j	←	j	+	1.

06 LDO kjj,keyb,j C kjj	←	Kj+1.

07 CMP c,kj,kjj C Kj	>	Kj+1?

08 BNP c,0F C[C–B] If	Kj	>	Kj+1,

09 STO kj,keyb,j

09 STO kj,keyb,j B interchange	Rj	↔	Rj+1.

10 SUB t,j,8 B t	←	j.

11 STO kjj,keyb,t B Kj	←	Kj+1.

12 PBN j,B3A B[D]

13 JMP 1F D To	B4	(but	skip	test	for	termination).

14 0H SET kj,kjj C	–	B kj	←	Kj.

15 PBN j,B3A C	–	B[A-D]
16 B4 BZ t,9F A	–	D[1] B4.	Any	exchanges?

17 1H ADD keyb,keyb,t A	–	1 BOUND	←	t.
18 B2 SET t,0 A B2.	Loop	on	j.	t	←	0.
19 SUB j,key,keyb A j	←	1.
20 PBN j,B3 A[0] 1	≤	j	<	BOUND.
21 9H POP 0,0

Analysis of the bubble sort. It is quite instructive to analyze the running
time of Algorithm B. Four quantities are involved in the timing: the number of
passes, A; the number of exchanges, B; the number of comparisons, C; and the
number of times that a pass ends with an exchange, D. The running time of
Program B (not counting the final POP) is (4 + 8A + 8C)υ + (A + 2B + C)µ;
fortunately, it does not depend on D (which appears subtle to analyze).

· · ·

In example (1) we therefore have A = 9, B = 41, C = 15 + 14 + 13 + 12 + 7
+ 5 + 4 + 3 + 2 = 75. The total MMIX sorting time for Fig. 14 is 676υ + 166µ.

[109]
In each case the minimum occurs when the input is already in order, and the
maximum occurs when it is in reverse order; so the MMIX running time is (4 + 8A
+ 8C)υ + (A + 2B + C)µ = (min (6N + 6)υ + Nµ, ave (4N2 + O(N ln N))υ + (N2

+ O(N ln N))µ, max (5N2 + 4N + 4)υ + (1.5N2 − 0.5N)µ).
[117]

The corresponding MMIX program is rather long, but not complicated; in fact,
a large part of the coding is devoted to step Q7, which uses recursion to make
use of the MMIX register stack.
Program Q (Quicksort). Records to be sorted are octabyte values. Assume that
the extra records R0 and RN+1 contain, respectively, the smallest and largest 64-

bit signed number.
Instead of the index l, we maintain the register left ≡ LOC(Rl−1); it serves as

base address for the registers i, j, and r, which are scaled to make LOC(Ki) =

left + i and similarly for j and r. The stack is kept on the register stack of MMIX.
The recursive part from steps Q2 to Q8 is called with two parameters, the
address $0 ≡ left and the offset $1 ≡ LOC(Rr+1) − LOC(Rl−1), such that the

addresses of all records to be sorted are then strictly between $0 and $0 + $1.
Instead of using $1 to hold r, we use it to hold j. This is very convenient for the
recursive calls, since in step Q7, the left partition simply has the parameters left
and j, and the right partition has the parameters left + j and r − j.

To keep the stack frame for each invocation as small as possible, we choose
key ≡ left ≡ $0, n ≡ j ≡ $1, rJ ≡ $2, and t ≡ $3; all other local registers
have register numbers greater than 3.

01 :Sort CMP t,n,M 1 Q1.	Initialize.

02 BNP t,Q9 1[0] To	Q9	if	N	≤	M.

03 GET rJ,:rJ 1
04 SUBU t+1,key,8 1 l	←	0.
05 8ADDU t+2,n,8 1 r	←	N	+	1.
06 PUSHJ t,Q2 1 To	Q2.
07 PUT :rJ,rJ 1
08 JMP Q9 1
09 Q2 SET i,16 A Q2.	Begin	new	stage.	i	←	l	+	1.

10 LDO k,left,8 A k	←	Kl.

11 SET r,j A r	←	j.
12 JMP 0F A

13 Q6 STO ki,left,j B Q6.	Exchange.	Kj	←	Ki.

14 STO kj,left,i B Ki	←	Kj.

15 Q3 ADD i,i,8 C	′	–	A Q3.	Compare	Ki	:	K.	i	←	i	+	1.

16 0H LDO ki,left,i C	′ ki	←	Ki.

17 CMP t,ki,k C	′ If	Ki	<	K,

18 PBN t,Q3 C	′[A] repeat	this	step.

19 Q4 SUB j,j,8 C	–	C′ Q4.	Compare	K	:	Kj.	j	←	j	–	1.

20 LDO kj,left,j C	–	C′ kj	←	Kj.

21 CMP t,k,kj C	–	C′ If	K	<	Kj,

22 PBN t,Q4 repeat	this	step.

22 PBN t,Q4 C	–	C′[B+A] repeat	this	step.

23 CMP t,i,j B	+	A Q5.	Test	i	:	j.

24 PBN t,Q6 B	+	A[A] If	i	<	j	go	to	Q6.

25 STO kj,left,8 A Interchange	Rl	↔	Rj.

26 STO k,left,j A

27 SUB d,r,j A Q7.	Put	on	stack.	d	←	r	–	j.
28 CMP t,d,j A

29 BNN t,0F A[A–A	′] Put	smaller	subfile	on	stack.
30 CMP t,j,8*M+8 A′ Is	left	subfile	too	small?
31 BNP t,Q8 A	′[A	′–S	′–A″] To	Q8	if	M	+	1	≥	j	>	r	–	j.
32 CMP t,d,8*M+8 S	′	+	A″ If	right	subfile	is	too	small,

33 PBNP t,Q2 S	′	+	A″[S	′] go	to	Q2	with	l	and	j.

34 GET rJ,:rJ S	′ Now	j	>	r	–	j	>	M	+	1.
35 ADDU t+1,left,j S	′ To	Q2	with	l	+	j.
36 SET t+2,d S	′ and	r	–	j.
37 PUSHJ t,Q2 S	′ (l,	j)	⇒	stack.
38 PUT :rJ,rJ S	′

39 JMP Q2 S	′ To	Q2	with	l	and	j.
40 0H CMP t,d,8*M+8 A	–	A	′ Is	right	subfile	too	small?

41 BNP t,Q8 A	–	A	′[A–A	′–S+S	′–A] To	Q8	if	M	+	1	≥	r	–	j	≥	j.

42 CMP t,j,8*M+8 S	–	S	′	+	A Is	left	subfile	too	small?

43 PBNP t,0F S	–	S	′	+	A [S–S	′] Jump	if	r	–	j	>	M	+	1	≥	j

44 GET rJ,:rJ S	–	S	′ Now	r	–	j	≥	j	>	M	+	1.
45 SET t+1,left S	–	S	′ Continue	with	l
46 SET t+2,j S	–	S	′ and	j.
47 ADD left,left,j S	–	S	′ l	←	l	+	j.
48 SET j,d S	–	S	′ j	←	r	–	j.
49 PUSHJ t,Q2 S	–	S	′ (l	+	j,	r	–	j)	⇒	stack.
50 PUT :rJ,rJ S	–	S	′
51 JMP Q2 S	–	S	′ To	Q2	with	l	+	j	and	r	–	j.
52 0H ADD left,left,j A Now	r	–	j	>	M	≥	j	–	0.
53 SET j,d A

54 JMP Q2 A To	Q2	with	l	+	j	and	r	–	j.
55 Q8 POP 0,0 S Q8.	Take	off	stack.
56 Q9 SL j,n,3 1 Q9.	Straight	insertion	sort.

57 SUB j,j,8 1

57 SUB j,j,8 1 j	←	N	–	1.

58 SUBU key0,key,8 1 key0	←	LOC(K0).

59 JMP S1 1
60 S2 LDO ki,key,j N	–	1 S2.	Set	up	j,	K,	R.
61 SUB j,j,8 N	–	1
62 LDO kj,key,j N	–	1

63 CMP t,kj,ki N	–	1 S3.	Compare	K	:	Ki.

64 PBNP t,S1 N	–	1[D]
65 ADD i,j,8 D

66 S4 STO ki,key0,i E S4.	Move	Ri,	increase	i.
67 ADD i,i,8 E

68 LDO ki,key,i E S3.	Compare	K	:	Ki.

69 CMP t,kj,ki E

70 PBP t,S4 E[D]

71 STO kj,key0,i D Ri+1	←	Rj.

72 S1 PBP j,S2 N[1] S1.	Loop	on	j.				

Analysis of quicksort. The timing information shown with Program Q is not
hard to derive using Kirchhoff’s conservation law (Section 1.3.3) and the fact
that everything put onto the stack is eventually removed again. Kirchhoff’s law
applied at Q2 also shows that

hence the total running time comes to

(25A − 2A	′ − 3A″ + 6B + 4C + 6D + 5E + 6N + 7S − 2S	′ + 6)υ + (3A +
2B + C + D + 2E + 2N − 2)µ

where

Because of symmetry, we may assume A″ = A	′″, A	′ = A − A	′, and S	′ = S −
S	′. This simplifies the total running time to

(22.5A+6B+4C +6D+5E +6N +9S +7.5)υ+(3A+2B +C +D+2E +2N −2)µ.

[121]

Formulas (24) and (25) can be used to determine the best value of M on a
particular computer. In MMIX’s case, Program Q requires 10(N + 1)HN+1 + (N +

1)f(M) − 27 cycles on the average, for N > 2M + 1, where

We want to choose M so that f(M) is a minimum, and a simple computer
calculation shows that M = 12 is best. The average running time of Program Q is
approximately 10(N +1) ln N − 7.27N −34.27 cycles when M = 12, for large N.

So Program Q is quite fast, on average, considering that it requires very little
memory space. Its speed is primarily due to the fact that the inner loops, in steps
Q3 and Q4, are extremely short—only four MMIX instructions each (see lines 15–
18 and 19–22).

[125]
Program R (Radix exchange sort). The following MMIX code expects the
parameters key ≡ LOC(K1), n ≡ N, and b ≡ 2m−1. It keeps the addresses of Kl,

Kr, and Kj in registers left, right, and j; instead of i and j, the main loop,

maintains the difference d ≡ 8(i − j). The code uses recursion, keeping the
return address rJ and the values of right and b on the register stack. The
function returns the final value of right so that processing can continue with

left = right + 8. Steps R2 to R10 form the body of this recursive procedure.
Its parameters are $0 ≡ right ≡ LOC(Kr), $2 ≡ b, and $3 ≡ left ≡ LOC(Kl);

the second parameter is ignored and the corresponding register $1 is used later to
save the return address. Passing the address of Kj as the new value for right

does not need an instruction, since j ≡ $4 is the same register as left+1.

01 :Sort SET left,key 1 R1.	Initialize.	l	←	1.
02 8ADDU right,n,left 1
03 SUBU right,right,8 1 r	←	N.
04 R2 SET j,right A R2.	Begin	new	stage.	j	←	r.
05 SUB d,left,j A i	←	l.

06 R3 LDO ki,j,d C′ R3.	Inspect	Ki	for	1.

07 AND t,ki,b C′

08 PBZ t,R4 C′[B+X] To	R4	if	it	is	0.
09 R6 SUBU j,j,8 C″	+	X R6.	Decrease	j.	j	←	j	–	1.

10 BNN d,R8 C′	+	X[X] To	R8	if	j	<	i.

11 ADD d,d,8 C″ j	←	j	–	1.

12 LDO kj,j,8 C″ R5.	Inspect	Kj+1	for	0.

13 AND t,kj,b C″

14 BNZ t,R6 C″[C″	–	B] To	R6	if	it	is	1.

15 STO ki,j,8 B R7.	Exchange	Ri,	Rj+1.

16 STO kj,j,d B

17 R4 ADD d,d,8 C′	–	X R4.	Increase	i.	i	←	i	+	1.
18 PBNP d,R3 C′	–	X[A	–	X] To	R3	if	i	≤	j.
19 R8 BOD b,R10 A[G] R8.	Test	special	cases.
20 SRU b,b,1 A	–	G b	←	b	+	1.
21 CMPU t,j,right A	–	G

22 BNN t,R2 A	–	G[R] To	R2	if	j	=	r.
23 CMPU t,j,left A	–	G	–	R

24 BN t,R2 A	–	G	–	R[L] To	R2	if	j	<	l.

25 BZ t,0F A	–	G	–	R	–	L[K+1] To	R9	if	j	≠	l.

26 SET left+3,b S R9.	Put	on	stack.
27 SET left+4,left S

28 GET rJ,:rJ S

29 PUSHJ left,R2 S Call	R2	with	(Kj,	·	,	b,	Kl).

30 PUT :rJ,rJ S

30
31 0H ADDU left,left,8 S	+	K	+	1 l	←	return	value	+	1.
32 CMP t,left,right S	+	K	+	1 R2.	Begin	new	stage.

33 BN t,R2 S	+	K	+	1[K+G] To	R2	if	l	<	r.

34 R10 POP 1,0 S	+	1 R10.	Take	off	stack.				

[127]
By Kirchhoff’s law, S = A − G − R − L − K − 1; so the total running time
comes to (22A + 2B + 5C	′ + 8C″ − 13G − 4K − 10L − 12R + 2X)υ + (C	′ +
C″ + 2B)µ. Assuming C	′ = C″ = C/2, this simplifies to (22A + 2B + 6.5C −
13G − 4K − 10L − 12R + 2X)υ + (2B + C)µ.

· · ·

Here α = 1/ ln 2 ≈ 1.4427. Notice that the average number of exchanges, bit
inspections, and stack accesses is essentially the same for both kinds of data, even
though case (ii) takes about 44 percent more stages. Our MMIX program takes
approximately 10.1N ln N units of time, on the average, to sort N items in case
(ii), and this could be cut to about 8.66N ln N using the suggestion of exercise 34;
the corresponding figure for Program Q is 10.0N ln N, which can be decreased
to about 8.91N ln N using Singleton’s median-of-three suggestion.

Thus radix exchange sorting takes about as long as quicksort, on the average,
when sorting uniformly distributed data. On some machines, such as MMIX, it is
actually a little quicker than quicksort.

EXERCISES

[134]

12. [24] Write an MMIX program for Algorithm M. How much time does your
program take to sort the sixteen records in Table 1?

34. [20] How can the bit-inspection loops of radix exchange (in steps R3 through
R6) be speeded up?
55. [22] Show how to modify Program Q so that the partitioning element is the
median of the three keys (28), assuming that M > 1.
56. [M43] Analyze the average behavior of the quantities that occur in the
running time of Algorithm Q when the program has been modified to take the
median of three elements as in exercise 55. (See exercise 29.)

5.2.3.	Sorting	by	Selection

[140]
Program S (Straight selection sort). As in previous programs of this chapter, the
parameters key ≡ LOC(K1) and n ≡ N are passed to this subroutine to sort the
records in place on a full octabyte key.

01 :Sort SL j,n,3 1 S1.	Loop	on	j.	j	←	N.
02 JMP 1F 1

03 2H SET k,j N	–	1 S2.	Find	max(K1,	.	.	.	,	Kj).

04 SET i,j N	–	1 i	←	j.

05 LDO max,key,i N	–	1 max	←	Ki.

06 3H SUB k,k,8 A Loop	on	k.

07 LDO kk,key,k A kk	←	Kk.

08 CMP t,max,kk A Compare	max	:	Kk.

09 PBNN t,0F A[B] If	max	<	Kk,

10 SET i,k B i	←	k	and

11 SET max,kk B max	←	Kk.

12 0H PBP k,3B A[N	–	1] Repeat	if	k	>	0.

13 LDO t,key,j N	–	1 S3.	Exchange	with	Rj.

14 STO max,key,j N	–	1
15 STO t,key,i N	–	1
16 1H SUB j,j,8 N Decrement	j.
17 PBP j,2B N[1] N	>	j	>	0.				

· · ·

Thus the average running time of Program S is (2.5N2 + 4(N + 1)HN − 0.5N

− 4)υ + (0.5N2 + 3.5N − 4)µ, noticeably slower than straight insertion (Program
5.2.1S).

[146]
Program H (Heapsort). The records K1 through KN are sorted by Algorithm H.

The subroutine expects the parameters key ≡ LOC(K1) and n ≡ N.

01 :Sort SLU r,n,3 1 H1.	Initialize.
02 SUB r,r,8 1 r	←	N.
03 SRU l,n,1 1

03 SRU l,n,1 1

04 SLU l,l,3 1 l	←	 N/2 .

05 BNP l,9F 1[0] Terminate	if	N	<	2.

06 1H SUB l,l,8 N/2 l	←	l	–	1.

07 LDO k,key,l N/2 K	←	Kl.

08 SET j,l N/2 H3.	Prepare	for	siftup.	j	←	l.

09 JMP H4 N/2

10 5H LDO kj,key,j B	+	A kj	←	Kj.

11 BZ t,H6 B	+	A[D] To	H6	if	j	=	r.

12 ADD j1,j,8 B	+	A	–	D H5.	Find	larger	child.	j1	←	j	+
1.

13 LDO kj1,key,j1 B	+	A	–	D kj1	←	Kj+1.

14 CMP t,kj,kj1 B	+	A	–	D Compare	Kj	:	Kj+1.

15 CSNP j,t,j1 B	+	A	–	D If	Kj	<	Kj+1,	j	←	j	+	1.

16 CSNP kj,t,kj1 B	+	A	–	D If	Kj	<	Kj+1,	kj	←	kj1.

17 H6 CMP t,k,kj B	+	A H6.	Larger	than	K?

18 BNN t,H8 B	+	A[A] To	H8	if	K	≥	Kj.

19 STO kj,key,i B H7.	Move	it	up.	Ri	←	Rj.

20 H4 SET i,j B	+	P H4.	Advance	downward.	i	←	j.
21 2ADDU j,j,8 B	+	P j	←	2j	+	1.
22 CMP t,j,r B	+	P Compare	j	:	r.

23 PBNP t,5B B	+	P[P–A] Jump	if	j	≤	r.

24 H8 STO k,key,i P H8.	Store	R.	Ki	←	K.

25 BP l,1B P[N/2 –1] H2.	Decrease	l	or	r.

26 2H LDO k,key,r N	–	1 If	l	=	0,	set	K	←	Kr.

27 LDO t,key,0 N	–	1

28 STO t,key,r N	–	1 Kr	←	K1.

29 SUB r,r,8 N	–	1 r	←	r	–	1.
30 SET j,0 N	–	1 H3.	Prepare	for	siftup.	j	←	l.

31 PBP r,4B N	–	1[1] To	H3	if	r	>	1.

32 STO k,key,0 1 K1	←	K.

33 9H POP 0,0

[148]
The total running time,

(9A + 14B + 17N − 3D + 8 N/2 − 16)υ + (2A + 3B + 4.5N − D + N/2 −
4)µ, is therefore approximately (14N lg N − 2N − 3 ln N − 16)υ +(3N lg N −ln
N −4)µ on the average.

A glance at Table 2 makes it hard to believe that heapsort is very efficient;
large keys migrate to the left before we stash them at the right! It is indeed a
strange way to sort, when N is small; the sorting time for the 16 keys in Table 2 is
898υ, while the simple method of straight insertion (Program 5.2.1S) takes only
393υ. Straight selection (Program S) takes 852υ.

For larger N, Program H is more efficient. It invites comparison with shellsort
(Program 5.2.1D) and quicksort (Program 5.2.2Q), since all three programs sort
by comparisons of keys and use little or no auxiliary storage. When N = 1000,
the approximate average running times on MMIX are

140000υ for heapsort,
100000υ for shellsort,

 70000υ for quicksort.

(MMIX is a typical computer, but particular machines will of course yield
somewhat different relative values.) As N gets larger, heapsort will be superior to
shellsort, but its asymptotic running time 14N lg N ≈ 20.2N ln N will never beat
quicksort’s 10N ln N.

· · ·

We always have

so Program H will take no more than 14N lg N + 34.5N − 16 units of time,
regardless of the distribution of the input data.

EXERCISES

[156]

8. [24] Show that if the search for max(K1, .	.	.	,	Kj) in step S2 is carried out by

examining keys in left-to-right order K1, K2, . . . , Kj, instead of going from right

to left as in Program S, it is often possible to reduce the number of comparisons
needed on the next iteration of step S2. Write an MMIX program based on this

observation.
9. [M25] What is the average number of comparisons performed by the

algorithm of exercise 8, for random input?

5.2.4.	Sorting	by	Merging

[162]

We can sketch the time in the inner loop as follows, if we assume that there is
low probability of equal keys:

Thus about 11υ is spent on each record in each pass, and the total running time
will be asymptotically 11N lg N, for both the average case and the worst case.
This is a little bit slower than quicksort’s average time, and it may not be enough
better than heapsort to justify taking twice as much memory space, since the
asymptotic running time of Program 5.2.3H is never more than 14N lg N.

[163]
The former tests for stepdowns have been replaced by decrementing q or r

and testing the results for zero; this reduces the asymptotic MMIX running time to
9N lg N units, slightly faster than we were able to achieve with Algorithm N.
(The implementation of exercise 9 reduces this further to 8N lg N units.)

[164]
Algorithm L (List merge sort).

· · ·

The use of signed links is well suited to MIX, but unfortunately not to MMIX and
most other computers. Instead of the sign bit, we use the least significant bit of a
link as a TAG field; TAG(Ls) = 1 denotes the end of an ordered sublist. MMIX

ignores this tag bit when the link value is used as an address; the TAG bit can be
tested with BEV (branch if even) or BOD (branch if odd) instructions. Inside the

inner loop, it is too expensive to extract the tag bit from Ls and set it in p before

storing p; instead, we keep track of the location of the initial link to an ordered
sublist by setting s0 ← s each time we start a new sublist and set TAG(Ls0

) ← 1

after we finish the sublist. This method can be used on all computers that have
“spare bits” in address values.
L1. [Prepare two lists.] Set Li ← i + 2 and TAG(Li) = 1 for 1 ≤ i ≤ N − 2, L0 ←

1, TAG(L0) = 1, LN+1 ←2, TAG(LN+1) = 1, LN ← 0, TAG(LN) = 1, LN−1 ←
0, and TAG(LN−1) = 1. (We have created two lists containing R1, R3, R5, . . .

and R2, R4, R6, . . . , respectively; the TAG fields indicate that each ordered
sublist consists of one element only. For another way to do this step, taking
advantage of ordering that may be present in the initial data, see exercise
12.)

L2. [Begin new pass.] Set s ← 0, S0 ← s, t ← N + 1, p ← Ls, TAG(p) = 0, q ←
Lt, TAG(q) = 0. If q = 0, the algorithm terminates. (During each pass, p and

q traverse the lists being merged; s0 points to the location of the initial link to
the current sublist; s usually points to the most recently processed record of
the current sublist; while t points to the end of the previously output sublist.)

L3. [Compare Kp : Kq.] If Kp > Kq, go to L6.

L4. [Advance p.] Set Ls ← p, s ← p, p ← Lp. If TAG(p) = 0, return to L3.

L5. [Complete the sublist.] Set Ls ← q, s ← t. Then set t ← q and q ← Lq, one

or more times, until TAG(q) = 1. Finally go to L8.
L6. [Advance q.] (Steps L6 and L7 are dual to L4 and L5.) Set Ls ← q, s ← q, q

← Lq. If TAG(q) = 0, return to L3.

L7. [Complete the sublist.] Set Ls ← p, s ← t. Then set t ← p and p ← Lp, one

or more times, until TAG(p) = 1.

L8. [End of pass?] (At this point TAG(p) = 1 and TAG(q) = 1, since both
pointers have moved to the end of their respective sublists.) Set TAG(Ls0

) ←1,

s0 ← s, TAG(p) ← 0, TAG(q) ← 0. If q = 0, set Ls ← p, Lt ← 0 and return to

L2. Otherwise return to L3.

· · ·

Let us now construct an MMIX program for Algorithm L, to see whether the list

manipulation is advantageous from the standpoint of speed as well as space:
Program L (List merge sort). For convenience, we assume that records are one
octabyte long, with Lj in the low TETRA and Kj in the high TETRA. The

parameters are key ≡ LOC(R0) = LOC(K0), the location of the first key, and n ≡
N, the number of records to be sorted.

01 :Sort SL n,n,3 1 L1.	Prepare	two	lists.

02 ADDU link,key,4 1 link	←	LOC(L0).

03 SUB p,n,16 1 p	←	N	–	2.

04 BN p,9F 1[0] Terminate	if	N	<	2.

05 OR q,n,1 1 q	←	N,	TAG(q)	←	1.
06 0H STTU q,link,p N	–	2 LINK(p)	←	q.
07 SUB q,q,8 N	–	2 q	←	q	–	1.
08 SUB p,p,8 N	–	2 p	←	p	–	1.

09 PBP p,0B N	–	2[1] Repeat	until	p	=	0.

10 SET c,8|1 1

11 STTU c,link,0 1 L0	←	1,	TAG(L0)	←	1.

12 SUB c,n,8 1

13 ADDU linkn1,link,c 1 linkn	1	←	LOC(LN	–	1).

14 SET c,16|1 1

15 STTU c,linkn1,16 1 LN+1	←	2,	TAG(LN+1)	←	1.

16 SET c,0|1 1

17 STTU c,linkn1,8 1 LN	←	0,	TAG(LN)	←	1.

18 STTU c,linkn1,0 1 LN	–	1	←	0,	TAG(LN	–	1)	←	1.

19 JMP L2 1

20 L3 CMP c,kp,kq C L3.	Compare	Kp	:	Kq.

21 BP c,L6 C[C″] If	Kp	>	Kq,	go	to	L6.

22 L4 STTU p,link,s C′ L4.	Advance	p.	Ls	←	p.

23 SET s,p C	′ s	←	p.

24 LDTU p,link,p C	′ p	←	Lp.

25 LDT kp,key,p C	′ kp	←	Kp.

26 PBEV p,L3 C	′[B′] If	TAG(p)	=	0,	return	to	L3.

27 L5 STTU q,link,s B′ L5.	Complete	the	sublist.	Ls	←	q.

28 SET s,t B′ s	←	t.
29 0H SET t,q D′ t	←	q.

30 LDTU q,link,q D′ q	←	Lq.

31 BEV q,0B D′[D′–B′] Repeat	until	TAG(q)	=	1.

32 LDT kq,key,q B′ kq	←	Kq.

33 JMP L8 B′ Go	to	L8.

34 L6 STTU q,link,s C″ L6.	Advance	q.	Ls	←	q.

35 SET s,q C″ s	←	q.

36 LDTU q,link,q C″ q	←	Lq.

37 LDT kq,key,q C″ kq	←	Kq.

38 PBEV q,L3 C″[B″] If	TAG(q)	=	0,	return	to	L3.

39 L7 STTU p,link,s B″ L7.	Complete	the	sublist.	Ls	←	p.

40 SET s,t B″ s	←	t.
41 0H SET t,p D″ t	←	p.

42 LDTU p,link,p D″ p	←	Lp.

43 BEV p,0B D″[D″–B″] Repeat	until	TAG(p)	=	1.

44 LDT kp,key,p B″ kp	←	Kp.

45 L8 LDTU c,link,s0 B L8.	End	of	pass?
46 OR c,c,1 B

47 STTU c,link,s0 B TAG(Ls0)	←	1.

48 SET s0,s B s0	←	s.

49 ANDN p,p,1 B TAG(p)	←	0.
50 ANDN q,q,1 B TAG(q)	←	0.
51 PBNZ q,L3 B[A] If	q	≠	0,	go	to	L3.
52 OR p,p,1 A

53 STTU p,link,s A Ls	←	p,	TAG(Ls)	←	1.

54 SET c,1 A

55 STTU c,link,t A Lt	←	0,	TAG(Lt)	←	1.

56 L2 SET s,0 A	+	1 L2.	Begin	new	pass.	s	←	0.

57 SET s0,s A	+	1 s0	←	s.

58 ADDU t,n,8 A	+	1 t	←	N	+	1.

59 LDTU p,link,s A	+	1 p	←	Ls.

60 ANDN p,p,1 A	+	1 Clear	TAG	bit.

61 LDTU q,link,t A	+	1 q	←	Lt.

62 ANDN q,q,1 A	+	1 Clear	TAG	bit.

63 LDT kp,key,p A	+	1 kp	←	Kp.

64 LDT kq,key,q A	+	1 kq	←	Kq.

65 PBNZ q,L3 A	+	1[1] Terminate	if	q	=	0.

66 9H POP 0,0

The running time of this program can be deduced using techniques we have seen
many times before (see exercises 13 and 14); it comes to approximately (8N lg N
+ 21.5N)υ on the average, with a small standard deviation of order .
Exercise 15 shows that the running time can be reduced to about (6.5N lg N)υ at
the expense of a somewhat longer program.

Thus we have a victory for linked-memory techniques over sequential
allocation, when internal merging is being done: Typically, less memory space is
required, and using all possible optimizations, the program runs about 10
percent faster. On the other hand, we haven’t considered the effects of cache
memory, which can be complicated.

EXERCISES

[167]

9. [24] Write an MMIX program for Algorithm S. Specify instruction frequencies
in terms of quantities analogous to A, B	′, B″, C	′, . . . in Program L.
13. [M34] Give an analysis of the average running time of Program L, in the
style of other analyses in this chapter: Interpret the quantities A, B, B′, . . . , and
explain how to compute their exact average values. How long does Program L
take to sort the 16 numbers in Table 3?
15. [20] Hand simulation of Algorithm L reveals that it occasionally does
redundant operations; the assignments Ls ← p, Ls ← q in steps L4 and L6 are

unnecessary about half of the time, since we have Ls = p (or q) each time step L4

(or L6) returns to L3. How can Program L be improved so that this redundancy
disappears?

5.2.5.	Sorting	by	Distribution

[173]

Program R (Radix list sort). The given records are assumed to have a link field at
offset LINK = 0 and a p-byte key field at offset KEY + 8 − p. We use M = 256 and
extract the next ak from the key with a simple LDBU (load byte unsigned)

instruction. The following subroutine has four parameters: key ≡ LOC(R1), the
location of the records; n ≡ N, the number of records; p ≡ p, the number of

bytes in the key; and bot ≡ LOC(BOTM[0]), the location of the 256 bottom link
fields followed by the 256 top link fields. We keep the variable named P in
register P (using an uppercase name for a register) because we are already using p
for p, the length of the key.

01 :Sort GET rJ,:rJ 1 First	pass.
02 SET t+1,bot 1
03 PUSHJ t,:Empty 1 R2.	Set	piles	empty.
04 SET t,M 1
05 8ADDU top,t,bot 1 top	←	LOC(TOP[0]).

06 16ADDU P,n,key 1 R1.	Loop	on	k.	P	←	LOC(RN+1).

07 SET k,KEY+7 1 k	←	1.
08 0H SUBU P,P,16 N R5.	Step	to	next	record.
09 LDBU i,P,k N R3.	Extract	rst	digit	of	key.
10 SL i,i,3 N

11 LDOU ti,top,i N R4.	Adjust	links.	ti	←	TOP[i].
12 STOU P,ti,LINK N LINK(TOP[i])	←	P.
13 STOU P,top,i N TOP[i]	←	P.

14 SUB n,n,1 N

15 PBP n,0B N[1]

16 JMP R6 1 Later	passes.
17 R2 SET t+1,bot P	–	1 R2.	Set	piles	empty.
18 PUSHJ t,:Empty P	–	1
19 SUB k,k,1 P	–	1
20 R3 LDBU i,P,k N(P	–	1) R3.	Extract	kth	digit	of	key.
21 SL i,i,3 N(P	–	1)
22 LDOU ti,top,i N(P	–	1) R4.	Adjust	links.	ti	←	TOP[i].
23 STOU P,ti,LINK N(P	–	1) LINK(TOP[i])	←	P.

24 STOU P,top,i N(P	–	1) TOP[i]	←	P.
25 LDOU P,P,LINK N(P	–	1) R5.	Step	to	next	record.

26 PBNZ P,R3 N(P	–	1)[P	–	1] To	R3	if	not	end	of	pass.

27 R6 SET t+1,bot P R6.	Do	Algorithm	H.
28 PUSHJ t,:Hook P

29 LDOU P,bot,0 P P	←	BOTM[0].
30 SUB p,p,1 P R1.	Loop	on	k.
31 PBP p,R2 P[1]

32 PUT :rJ,rJ 1

32 PUT :rJ,rJ 1
33 POP 0,0

The running time of Program R is (7P + 1)N + 11PM + 26P + 8 cycles, where
N is the number of input records, M is the radix (the number of piles), and P is
the number of passes. This includes the running time for the two auxiliary
procedures: Hook and Empty. Both procedures are called P times.

After the Hook procedure, the first bottom link is pointing to the entire list.

01 :Hook SET i,M*8 1 H1.	Initialize.	i	←	0.
02 ADDU bot,bot,i 1 bot	←	LOC(BOTM[M	+	1]).

03 ADDU top,bot,i 1 top	←	LOC(TOP[M	+	1]).
04 NEG i,i 1 Now	bot	+	i	=	LOC(BOTM[i])
05 JMP H2 1 and	top	+	i	=	LOC(TOP[i]).
06 0H LDOU bi,bot,i M	–	1 bi	←	BOTM[i].

07 BZ bi,H3 M	–	1[E	′] H4.	Is	pile	empty?

08 STOU bi,P,LINK M	–	1	–	E	′ H5.	Tie	piles	together.
09 H2 LDOU P,top,i M	–	E	′ H2.	Point	to	top	of	pile.
10 H3 ADD i,i,8 M H3.	Next	pile.
11 PBN i,0B M[1]

12 STCO 0,P,LINK 1 Terminate	list.
13 POP 0,0 1

The total running time for the Hook procedure is (6M + 8)υ+(3M −2E	′−1)µ,
where E	′ is the number of occurrences of empty piles in each pass.

After the Empty procedure, all piles are empty.

01 :Empty SET i,M*8 1 i	←	M.
02 ADDU top,bot,i 1 top	←	LOC(TOP[0]).
03 SUB i,i,8 1 i	←	i	–	1.
04 0H ADDU bi,bot,i M bi	←	LOC(BOTM[i]).
05 STCO 0,bi,LINK M BOTM[i]	←	Λ.

06 STOU bi,top,i M TOP[i]	←	LOC(BOTM[i]).

07 SUB i,i,8 M i	←	i	–	1.
08 PBNN i,0B M[1] 0	≤	i	<	M.
09 POP 0,0 1

The Empty procedure takes (5M + 8)υ + 2Mµ.

EXERCISES

[177]

5. [20] New: What changes are necessary to Program R so that it uses M = 2m,
sorting keys of length Pm ≤ 64 bits in P passes? What is the running time of the
program, after these changes have been made?

5.3.1.	Minimum-Comparison	Sorting

EXERCISES

[196]

28. [40] Write an MMIX program that sorts five one-byte keys in the minimum
possible amount of time, and halts. (See the beginning of Section 5.2 for ground
rules.)

5.5.	SUMMARY,	HISTORY,	AND	BIBLIOGRAPHY

[381]
Table 1 summarizes the speed and space characteristics of many of these

methods, when programmed for MMIX.

· · ·

since MMIX is a fairly typical computer.
[383]

The case N = 16 refers to the sixteen keys that appear in so many of the
examples of Section 5.2; the binary representation of the keys requires 10 bits.
The case N = 1000 refers to the sequence K1, K2, .	.	.	,	K1000 of 32-bit keys
defined by

X0 = 0; Xn+1 = (6364136223846793005Xn + 9754186451795953191) mod 264;

Kn = Xn/232 .

For the multiplier, see Section 3.3.4, page 108; 9754186451795953191 is some
random increment value. An MMIX program of reasonably high quality has been
used to represent each algorithm in the table, often incorporating improvements
that have been suggested in the exercises.

EXERCISES

EXERCISES

[390]

2. [20] Based on the information in Table 1, what is the best list-sorting method
for 32-bit keys, for use on the MMIX computer?

Table 1 A Comparison of Internal Sorting Methods Using the MMIX Computer

CHAPTER	SIX

SEARCHING

6.1.	SEQUENTIAL	SEARCHING

[397]

Program S (Sequential search). Assume that the keys Ki are stored as an array of

octabyte values.
The following subroutine has three parameters: key ≡ LOC(K1); n ≡ N, the

number of keys; and k ≡ K, the key we want to find. After a successful search,
the subroutine returns the location of the key found; otherwise, it returns zero.
For efficiency, register i is scaled by 8, the size of the table entries. Further, we
subtract 8N, the table size, from i and add it to key. With this trick, we can
replace the test i ≤ N by 8(i − N) < 0 and control the loop with a single PBN
instruction.

01 :Search SL i,n,3 1 S1.	Initialize.
02 NEG i,i 1 i	←	–8N,	i	←	1.

03 SUBU key,key,i 1 key	←	LOC(KN	+	1).

04 S2 LDO ki,key,i C S2.	Compare.
05 CMP t,k,ki C

06 BZ t,Success C[S] Exit	if	K	=	Ki.

07 ADD i,i,8 C	–	S S3.	Advance.

08 PBN i,S2 C	–	S[1	–	S] S4.	End	of	file?

09 POP 0,0 Return	zero	if	not	in	table.

10 Success ADDU $0,key,i S Return	LOC(Ki).

11 POP 1,0

The analysis of this program is straightforward; it shows that the running time
of Algorithm S depends on two things,

Program S takes (5C − S + 5)υ + Cµ units of time. If the search successfully
finds K = Ki, we have C = i, S = 1; hence the total time is (5i + 4)υ + iµ. On the

other hand if the search is unsuccessful, we have C = N, S = 0, for a total time of
(5N + 5)υ + Nµ.

· · ·

Program Q (Quick sequential search). This algorithm is the same as Algorithm S,
except that it assumes the presence of a dummy record RN+1 at the end of the

file.

01 :Search SL i,n,3 1 Q1.	Initialize.
02 NEG i,i 1 i	←	–8N,	i	←	1.

03 SUBU key,key,i 1 key	←	LOC(KN	+	1).

04 STO k,key,0 1 KN	+	1	←	K.

05 JMP Q2 1
06 Q3 ADD i,i,8 C	–	S Q3.	Advance.
07 Q2 LDO ki,key,i C	–	S	+	1 Q2.	Compare.
08 CMP t,k,ki C	–	S	+	1

09 PBNZ t,Q3 C	–	S	+	1[1] To	Q3	if	K	≠	Ki.

10 PBN i,Success 1[1	–	S] Q4.	End	of	file?

11 POP 0,0 Exit	if	not	in	table.

12 Success ADDU $0,key,i S Return	LOC(Ki).

13 POP 1,0

In terms of the quantities C and S in the analysis of Program S, the running time
has decreased to (4C − 5S + 13)υ + (C − S + 2)µ; this is an improvement
whenever i ≥ 5 in a successful search, and whenever N ≥ 9 in an unsuccessful
search.

The transition from Algorithm S to Algorithm Q makes use of an important
speed-up principle: When an inner loop of a program tests two or more
conditions, we should try to reduce the testing to just one condition.

Another technique will make Program Q still faster.

Program Q′ (Quicker sequential search).

01 :Search SL i,n,3 1 Q1.	Initialize.
02 NEG i,i 1 i	←	–8N,	i	←	1.

03 SUBU key,key,i 1 key	←	LOC(KN	+	1).

04 ADDU key1,key,8 1 key1	+	i	←	LOC(KN	+	2).

05 STO k,key,0 1 KN	+	1	←	K.

06 JMP Q2 1

07 Q3 ADD i,i,16 (C	–	S)/2 Q3.	Advance.	(twice)

08 Q2 LDO ki,key,i

08 Q2 LDO ki,key,i (C	–	S)/2 	+	1 Q2.	Compare.

09 CMP t,k,ki (C	–	S)/2 	+	1

10 BZ t,Q4 (C	–	S)/2 	+	1[1	–	F] To	Q4	if	K	=	Ki.

11 LDO ki,key1,i (C	–	S)/2 	+	F Q2.	Compare.

12 CMP t,k,ki (C	–	S)/2 	+	F

13 PBNZ t,Q3 (C	–	S)/2 	+	F[F] To	Q3	if	K	≠	Ki.

14 ADD i,i,8 F

15 Q4 PBN i,Success 1[1	–	S] Q4.	End	of	file?

16 POP 0,0 Exit	if	not	in	table.

17 Success ADDU $0,key,i S Return	LOC(Ki).

18 POP 1,0

The inner loop has been duplicated; this avoids about half of the “i ← i + 1”
instructions, so with F = (C − S) mod 2, it reduces the running time to

units.

EXERCISES

[405]

3. [16] Write an MMIX program for the algorithm of exercise 2. What is the
running time of your program, in terms of the quantities C and S in (1)?

5. [20] Program Q′ is, of course, noticeably faster than Program Q, when C is
large. But are there any small values of C and S for which Program Q′ actually
takes more time than Program Q?
6. [20] Add five more instructions to Program Q′, reducing its running time to

about (3.33C + constant)υ.

6.2.1.	Searching	an	Ordered	Table

[411]
Program B (Binary search). As in the programs of Section 6.1, we assume here
that the keys Ki are an array of octabyte values. The following subroutine

expects three parameters: key ≡ LOC(K1), the location of K1; n ≡ N, the
number of keys; and k ≡ K, the given key. It returns the address of the key, if

found, and zero otherwise.

01 :Search SET l,0 1 B1.	Initialize.	l	←	1.
02 SUB u,n,1 1 u	←	N.
03 JMP B2 1
04 B5 ADD l,i,1 C1 B5.	Adjust	l.
05 B2 CMP t,u,l C	+	1	–	S B2.	Get	midpoint.

06 BN t,Failure C	+	1	–	S[1	–	S] Jump	if	u	<	l.

07 ADDU i,u,l C

08 SRU i,i,1 C i	←	 (u	+	l)/2	 .

09 SLU t,i,3 C B3.	Compare.

10 LDO ki,key,t C ki	←	Ki.

11 CMP t,k,ki C

12 BP t,B5 C[C1] Jump	if	K	>	Ki.

13 BZ t,Success C2[S]

14 SUB u,i,1 C2	–	S B4.	Adjust	u.	u	←	i	–	1.

15 JMP B2 C2	–	S To	B2.

16 Success 8ADDU $0,i,key S

17 POP 1,0

18 Failure POP 0,0

The running time is (11C − 3S + 7)υ + Cµ, where C = C1 + C2 is the
number of comparisons made (the number of times step B3 is performed), and S
= [outcome is successful].

[414]
The average running time of Program B is approximately

(11	lg	N	−	7)υ for	a	successful	search, (5)
(11	lg	N	+	7)υ for	an	unsuccessful	search,

if we assume that all outcomes of the search are equally likely.

· · ·

Program C (Uniform binary search). This program does the same job as Program
B, using Algorithm C. It adds a fourth parameter j ≡ LOC(DELTA[1]), the
location of the auxiliary table. For convenience, this table contains offsets, scaled
and decremented, ready to access the keys relative to the parameter key.

01 :Search LDO i,j,0 1

01 :Search LDO i,j,0 1 C1.	Initialize.	j	=	1,	i	←	DELTA[j].
02 JMP 2F 1

03 3H BZ t,Success C1[S] Jump	if	K	=	Ki.

04 BZ dj,Failure C1	–	S[A] Jump	if	DELTA[j]	=	0.

05 SUB i,i,dj C1	–	S	–	A C3.	Decrease	i.

06 2H ADDU j,j,8 C j	←	j	+	1.
07 LDO dj,j,0 C C2.	Compare.
08 LDO ki,key,i C

09 CMP t,k,ki C

10 PBNP t,3B C[C2] Jump	if	K	≤	Ki.

11 ADD i,i,dj C2 C4.	Increase	i.
12 PBNZ dj,2B C2[1	–	S	–	A] Jump	if	DELTA[j]	≠	0.
13 Failure POP 0,0 Exit	if	not	in	table.

14 Success ADDU $0,key,i S Return	LOC(Ki).

15 POP 1,0

· · ·

The total running time of Program C is not quite symmetrical between left and
right branches, since C2 is weighted more heavily than C1, but exercise 11 shows
that we have K < Ki roughly as often as K > Ki; hence Program C takes

approximately

(8.5	lg	N	–	6)υ for	a	successful	search, (7)
(8.5 lg	N 	+	12)υ for	an	unsuccessful	search.

This is about 23 percent faster than Program B.

· · ·

Program F (Fibonaccian search). We follow the previous conventions, with key ≡
LOC(K1) and k ≡ K. Instead of N, we have i ≡ 8Fk − 8, p ≡ 8Fk−1, and q ≡
8Fk−2. As usual, the values are scaled by 8 and i is reduced by 8, so that it can

be used directly as offset relative to key.

01 F4A ADD i,i,q C2	–	S	–	A F4.	Increase	i.	i	←	i	+	q.

02 SUB p,p,q C2	–	S	–	A p	←	p	–	q.

03 SUB q,q,p C2	–	S	–	A q	←	q	–	p.

04 :Search LDO ki,key,i C F2.	Compare.
05 CMP t,k,ki C

06 PBN t,F3A C[C2] To	F3	if	K	<	Ki.

07 BZ t,Success C2[S] Exit	if	K	=	Ki.

08 CMP t,p,8 C2	–	S

09 PBNZ t,F4A C2	–	S[A] To	F4	if	p	≠	1.

10 POP 0,0 Exit	if	not	in	table.
11 F3A SUB i,i,q C1 F3.	Decrease	i.	i	←	i	–	q.
12 SUB p,p,q C1 p	←	p	–	q.
13 PBP q,F2B C1[1	–	S	–	A] Swap	registers	if	q	>	0.
14 POP 0,0 Exit	if	not	in	table.
15 F4B ADD i,i,p

(Lines	15–27	are	parallel	to	01–13.)
16 SUB q,q,p

17 SUB p,p,q

18 F2B LDO ki,key,i

19 CMP t,k,ki

20 PBN t,F3B

21 BZ t,Success

22 CMP t,q,8

23 PBNZ t,F4B

24 POP 0,0

25 F3B SUB i,i,p

26 SUB q,q,p

27 PBP p,:Search

28 POP 0,0

29 Success ADDU $0,key,i S Return	LOC(Ki).

30 POP 1,0

· · ·

The total average running time of Program F therefore comes to
approximately

for a successful search, and (4 + 3ϕ−1)υ ≈ 5.85υ less for an unsuccessful search.

This is slightly faster than Program C, although the worst case running time
(roughly 14.4 lg N) is slower.

EXERCISES

[423]

4. [20] If a search using Program 6.1S (sequential search) takes exactly 640 units
of time, how long does it take with Program B (binary search)?
5. [M24] For what values of N is Program B actually slower than a sequential

search (Program 6.1Q′) on the average, assuming that the search is successful?

10. [21] Explain how to write an MMIX program for Algorithm C containing
approximately 6 lg N instructions and having a running time of about 6 lg N
units.

6.2.2.	Binary	Tree	Searching

[428]
This algorithm lends itself to a convenient machine language implementation.

We may assume, for example, that the tree nodes have the form

followed perhaps by additional words of INFO. Using an AVAIL list for the free
storage pool, as in Chapter 2, we can write the following MMIX program:
Program T (Tree search and insertion). This subroutine expects two parameters: p,
a pointer to the root node, and k ≡ K, the given key. If the search is successful, it
returns the location of the node found; otherwise, it returns zero. Note how the
ZSN (zero or set if negative) instruction is used to compute the offset of the next
link.

01 0H SET p,q C	–	1 P	←	Q.
02 :Search LDO kp,p,KEY C T2.	Compare.	kp	←	KEY(P).
03 CMP t,k,kp C

04 BZ t,Success C[S] Exit	if	K	=	KEY(P).
05 ZSN l,t,LLINK C	–	S l	←	(K	<	KEY(P))?	LLINK	:	RLINK.
06 T3 LDOU q,p,l C	–	S T3/4.	Move	left/right.

07 PBNZ q,0B C	–	S[1	–	S] To	T2	if	Q	=	≠	Λ.

08 SET q,:avail 1	–	S T5.	Insert.
09 BZ q,:Overflow 1	–	S
10 LDOU :avail,:avail,0 1	–	S Q	⇐	AVAIL.
11 STOU q,p,l 1	–	S LINK(P)	←	Q.

12 STCO 0,q,RLINK 1	–	S RLINK(Q)	←	Λ.

13 STCO 0,q,LLINK 1	–	S LLINK(Q)	←	Λ.

14 STO k,q,KEY 1	–	S KEY(Q)	←	K.
15 POP 0,0 Exit	after	insertion.
16 Success POP 1,0 Return	node	address.				

The first 7 lines of this program do the search; the next 8 lines do the
insertion. The running time for the searching phase is (7C − 3S +1)υ + (2C
−S)µ, where

C	=	number	of	comparisons	made;

S	=	[search	is	successful].

This compares favorably with the binary search algorithms that use an implicit
tree (see Program 6.2.1C). By duplicating the code we could effectively eliminate
line 01 of Program T, reducing the running time to (6C − 3S + 7)υ. If the search
is unsuccessful, the insertion phase of the program costs an extra 7υ + 5µ.

EXERCISES

[454]

1. [15] Algorithm T has been stated only for nonempty trees. What changes
should be made so that it works properly for the empty tree too?
3. [20] In Section 6.1 we found that a slight change to the sequential search

Algorithm 6.1S made it faster (Algorithm 6.1Q). Can a similar trick be used to
speed up Algorithm T?

6.2.3.	Balanced	Trees

[464]
Program A (Balanced tree search and insertion). This program for Algorithm A uses
tree nodes having the form

The balance factor a of a node is not stored as a field in the node itself; it is stored
as a 2-bit value in two’s complement format (a mod 4) in the low-order bits of the
link field pointing to the node. (MMIX ignores these low-order bits of a register when
using it to load or store an octabyte.) This saves one load instruction in the main
loop (lines 05–12), because we can determine the balance factor of NODE(P) from
P without loading B(P). Further, we do not need to maintain the variable S
inside the loop. Instead, we set T ← LOC(LINK(a,T)), computing a from K and
KEY(T), and set S ← LINK(a,T) right after the loop (lines 13–17). The new value
of T is more convenient in step A7, where we modify B(S), and in step A10,
when we finish the new tree.

Extending the notation used in Algorithm A, we use the notation LINK(a) as a
synonym for the offset LLINK if a = −1, and for RLINK if a = +1. These offsets
are zero and eight, respectively, so that MMIX can compute LINK(a) from a ≠ 0
with a single ZSN (zero or set if negative) instruction (see line 27).

The first parameter of the subroutine is head ≡ LOC(HEAD). The second
parameter, k ≡ K, is the key.

01 :Search SET t,head 1 A1.	Initialize.	T	←	HEAD.
02 STO k,t,KEY 1 (See	line	13.)
03 LDOU p,t,RLINK 1 P	←	RLINK(HEAD).
04 JMP A2 1
05 0H CSOD t,q,p C	–	1 If	B(Q)	≠	0,	T	←	LOC(LINK(a,	P))
06 SET p,q C	–	1 P	–	Q.
07 A2 LDO kp,p,KEY C A2.	Compare.	kp	←	KEY(P).
08 CMP a,k,kp C Compare	K	and	KEY(P);	set	a.
09 BZ a,Success C[S] Exit	if	K	=	KEY(P).
10 ZSN la,a,LLINK C	–	S la	←	LINK(a).
11 LDOU q,p,la C	–	S A3/4.	Move	left/right.

12 PBNZ q,0B C	–	S[1	–	S] Jump	if	Q	=	LINK(a,P)	≠	Λ.

13 LDOU x,t,KEY 1	–	S x	←	KEY(T).
14 CMP a,k,x 1	–	S Compare	K	and	KEY(T);	set	a.
15 ZSN x,a,LLINK 1	–	S x	←	LINK(a).
16 ADDU t,t,x 1	–	S T	←	LOC(LINK(a,T)).

17 LDOU s,t

17 LDOU s,t 1	–	S S	←	LINK(a,T).
18 SET q,:avail 1	–	S A5.	Insert.	B(Q)	←	0.
19 BZ q,:Overflow 1	–	S
20 LDOU :avail,:avail 1	–	S Q	⇐	AVAIL.
21 STOU q,p,la 1	–	S LINK(a,P)	←	Q.

22 STCO 0,q,RLINK 1	–	S RLINK(Q)	←	Λ.

23 STCO 0,q,LLINK 1	–	S LLINK(Q)	←	Λ.

24 STO k,q,KEY 1	–	S KEY(Q)	←	K.
25 LDO kp,s,KEY 1	–	S A6.	Adjust	balance	factors.
26 CMP a,k,kp 1	–	S Compare	K	and	KEY(S);	set	a.
27 ZSN la,a,LLINK 1	–	S la	←	LINK(a).
28 ADDU ll,s,la 1	–	S ll	←	LOC(LINK(a,S)).
29 LDOU p,ll 1	–	S P	←	LINK(a,S).
30 JMP 0F 1	–	S
31 1H LDO kp,p,KEY F kp	←	KEY(P).
32 CMP c,k,kp F c	←	K	:	KEY(P).
33 AND x,c,3 F x	←	c	mod	4.
34 OR p,p,x F B(P)	←	K	:	KEY(P).
35 STOU p,ll F LINK(c,P)	←	P.
36 ZSN x,c,LLINK F x	←	LINK(c).
37 ADDU ll,p,x F ll	←	LOC(LINK(c,P)).
38 LDOU p,ll F P	←	LINK(c,P).
39 0H CMPU x,p,q F	+	1	–	S P	=	Q?

40 PBNZ x,1B F	+	1	–	S[1	–	S] Repeat	until	P	=	Q.

41 AND a,a,3 1	–	S A7.	Balancing	act.
42 AND x,s,3 1	–	S x	←	B(S).

43 BZ x,i 1	–	S[J] If	B(S)	=	0,	go	to	case	(i).

44 CMP x,x,a 1	–	S	–	J B(S)	=	a?

45 BZ x,iii 1	–	S	–	J[G	+	H] If	B(S)	=	a,	go	to	case	(iii).

46 ii ANDN s,s,3 1	–	S	–	J	–	G	–
H

(ii)

47 STOU s,t 1	–	S	–	J	–	G	–
H

B(S)	←	0.

48 POP 0,0

49 i LDO x,head,LLINK J (i)
50 ADD x,x,1 J The	tree	has	grown	higher.

51 STO x,head,LLINK

51 STO x,head,LLINK J
LLINK(HEAD)	←	LLINK(HEAD)	+	1.

52 OR s,s,a J

53 STOU s,t J B(S)	←	a.
54 POP 0,0

55 iii LDOU r,s,la G	+	H (iii)	R	←	LINK(a,S).
56 NEG lm,LLINK,la G	+	H lm	←	LINK(–a).
57 AND x,r,3 G	+	H x	←	B(R).
58 CMP x,a,x G	+	H a	=	B(R)?

59 BZ x,A8 G	+	H[G] Go	to	A8	if	B(R)	=	0.

60 LDOU p,r,lm H A9.	Double	Rotation.
61 LDOU x,p,la H x	←	LINK(a,P).
62 STOU x,r,lm H LINK(–a,R)	←	LINK(a,P).
63 AND bp,p,3 H bp	←	B(P).
64 CMP x,bp,a H B(P)	=	a?
65 CSZ a,x,#02 H a	←	1	mod	4,	if	B(P)	=	a.
66 XOR s,s,a H B(S)	←	B(P)	=	a?	–	B(S)	:	0.
67 CSZ x,bp,0 H x	←	0,	if	B(P)	=	a.
68 AND bp,r,3 H bp	←	B(R).
69 CSNZ bp,x,#02 H bp	←	–1,	if	B(P)	=	–a.
70 XOR r,r,bp H B(R)	←	B(P)	=	a	?	–B(R)	:	0.
71 STOU r,p,la H LINK(a,P)	←	R.
72 LDOU x,p,lm H x	←	LINK(–a,P).
73 STOU x,s,la H LINK(a,S)	←	LINK(–a,P).
74 STOU s,p,lm H LINK(–a,P)	←	S.
75 ANDN p,p,3 H B(P)	=	0?
76 STOU p,t H A10.	Finishing	touch.
77 POP 0,0

78 A8 ANDN r,r,3 G A8.	Single	Rotation.	B(R)	←	0.
79 ANDN s,s,3 G B(S)	←	0.
80 SET p,r G P	←	R.
81 LDOU x,r,lm G x	←	LINK(–a,R).
82 STOU x,s,la G LINK(a,S)	←	LINK(–a,R).
83 STOU s,r,lm G LINK(–a,R)	←	S.
84 STOU p,t G A10.	Finishing	touch.
85 POP 0,0

86 Success SET $0,p S

86

87 POP 1,0

[470]
The running time of the search phase of Program A (lines 01–12) is

where C and S are the same as in previous algorithms of this chapter. Empirical
tests show that we may take C + S ≈ 1.01 lg N + 0.1, so the average search time
is approximately 8.08 lg N + 4.8 − 11S units. (If searching is done much more
often than insertion, we could of course use a separate, faster program for
searching, since it would be unnecessary to look at the balance factors. With p ≡
LOC(HEAD) and k ≡ K, we can write:

01 :Search LDOU p,p,RLINK 1 A1.	Initialize.	P	←	RLINK(HEAD).

02 BZ p,Failure 1[0]
03 A2 LDO kp,p,KEY C A2.	Compare.	kp	←	KEY(P).
04 CMP a,k,kp C Compare	K	and	KEY(P);	set	a.
05 BZ a,Success C[S] Exit	if	K	=	KEY(P).
06 ZSN la,a,LLINK C	–	S la	←	LINK(a).
07 LDOU p,p,la C	–	S A3/4.	Move	left/right.	P	←	LINK(a,	P).

08 PBNZ p,A2 C	–	S[1	–	S]
09 Failure POP 0,0 Not	found.
10 Success POP 1,0

The running time of the above code is only (6C − 3S + 4)υ + (2C − S + 1)µ; it
reduces the average running time for a successful search to only about (6.06 lg N
− 4.4)υ. Even the worst case running time would, in fact, be similar to the
average running time obtained with Program 6.2.2T.

The running time of the insertion phase of Program A (lines 18–40) is (10F +
22)υ, when the search is unsuccessful. The data of Table 1 indicate that F ≈ 1.8
on the average. The rebalancing phase (lines 41–85) takes either 10, 7, 21, or 29
υ, depending on whether we increase the total height, or simply exit without
rebalancing, or do a single or double rotation. The first case almost never occurs,
and the others occur with the approximate probabilities .534, .233, .232, so the
average running time of the combined insertion-rebalancing portion of Program
A is about 55υ.

These figures indicate that maintenance of a balanced tree in memory is
reasonably fast, even though the program is rather lengthy. If the input data are

random, the simple tree insertion algorithm of Section 6.2.2 is roughly 48υ faster
per insertion; but the balanced tree algorithm is guaranteed to be reliable even
with nonrandom input data.

One way to compare Program A with Program 6.2.2T is to consider the worst
case of the latter. If we study the amount of time necessary to insert N keys in
increasing order into an initially empty tree, it turns out that Program A is slower
for N ≤ 27 and faster for N ≥ 28.

EXERCISES

[479]

12. [24] What is the maximum possible running time of Program A when the
eighth node is inserted into a balanced tree? What is the minimum possible
running time for this insertion?

28. [41] Prepare efficient implementations of 2-3 tree algorithms.

6.3.	DIGITAL	SEARCHING

[493]

Program T (Trie search). This program assumes that all keys consist of seven or
less uppercase characters; keys are represented in one OCTA, left aligned and
padded with zero bytes to the right; the rightmost byte is always zero. Since MMIX
uses ASCII codes, each byte of the search argument is assumed to contain a
value between 65 (ASCII ‘A’) and 90 (ASCII ‘Z’). For simplicity, we use the five
least significant bits of each character as index k. This allows 32 values instead of
26 and, therefore, uses more memory but simplifies the extraction of the index.
Links are represented as absolute addresses, with the least significant bit set to 1
(this bit is ignored by MMIX when using the value to load OCTAs). The following
subroutine expects two parameters: p ≡ LOC(ROOT), the location of the root
node, and K ≡ K, the given key. It returns the location of the key in the table if
the search is successful and zero otherwise. To obtain successive characters from
the key K, we copy it into a shift register s, from which we extract the leftmost
character by shifting right and advance to the next character by shifting left.

01 :Start SLU s,K,3 1 T1.	Initialize.	s	←	8K.
02 JMP T2 1
03 T3 SET p,x C	–	1 T3.	Advance.	P	←	X.
04 SLU s,s,8 C	–	1 Advance	to	next	character	of	K.

05 T2 SRU k,s,64-8

05 T2 SRU k,s,64-8 C T2.	Branch.	Extract	8k.
06 LDOU x,p,k C X	←	table	entry	number	k	in	NODE(P).
07 PBOD x,T3 C[1] If	X	is	a	link,	go	to	T3.
08 CMP t,K,x 1 T4.	Compare.

09 BNZ t,Failure 1[1	–	S] If	X	≠	K,	terminate	unsuccessfully;

10 ADDU $0,p,k S else	return	LOC(X).
11 POP 1,0

12 Failure POP 0,0

The running time of this program is (5C − S + 6)υ + Cµ, where C is the number
of characters examined. Since C ≤ 7, the search will never take more than 41υ.

If we now compare the efficiency of this program (using the trie of Table 1) to
Program 6.2.2T (using the optimum binary search tree of Fig. 13), we can make
the following observations.

Table 1 A Trie for the 31 Most Common English Words

1. The trie takes much more memory space; we are using 384 octabytes just to
represent 31 keys, while the binary search tree uses only 93 octabytes. (However,
exercise 4 shows that, with some fiddling around, we can actually fit the trie of
Table 1 into only 53 octabytes.)

2. A successful search takes about 16υ with trie search compared to 28υ with
binary search. An unsuccessful search will go even faster in the trie and slower in
the binary search tree. Hence, the trie is preferable from the standpoint of speed.

3. If we consider the KWIC indexing application of Fig. 15 (page 440) instead
of the 31 commonest English words, the trie loses its advantage because of the
nature of the data. For example, a trie requires 12 iterations to distinguish
between COMPUTATION and COMPUTATIONS. In this case it would be better to build
the trie so that words are scanned from right to left instead of from left to right.

EXERCISES

[507]

4. [21] Most of the 384 entries in Table 1 are blank (null links). But we can
compress the table into only 53 entries, by overlapping nonblank entries with
blank ones as follows:

(Nodes (1), (2), . . . , (12) of Table 1 begin, respectively, at positions 26, 24, 8, 4,
11, 17, 0, 0, 2, 17, 7, 0 within this compressed table.)

Show that if the compressed table is substituted for Table 1, Program T will
still work, but not quite as fast.
9. [21] Write an MMIX program for Algorithm D, and compare it to Program

6.2.2T. You may use the idea of exercise 8 if it helps.

6.4.	HASHING

6.4.	HASHING

[513]
For example, let’s consider again the set of 31 English words that we have

subjected to various search strategies in Sections 6.2.2 and 6.3. Table 1 shows a
short MMIX program that transforms each of the 31 keys into a unique number
f(K) between 0 and 39. If we compare this method to the MMIX programs for the
other methods we have considered (for example, binary search, optimal tree
search, trie memory, digital tree search), we find that it is superior from the
standpoint of both space and speed, except that binary search uses slightly less
space. In fact, the average time for a successful search, using the program of
Table 1 with the frequency data of Fig. 12 on page 436, is only about 13.4υ (not
counting the final POP), and only 40 table locations are needed to store the 31
keys.

Unfortunately, such functions f(K) aren’t very easy to discover. There are 4031

≈ 1050 possible functions from a 31-element set into a 40-element set, and only
40 · 39 · . . . · 10 = 40!/9! ≈ 1042 of them will give distinct values for each
argument; thus only about one of every 100 million functions will be suitable.

[516]
For example, on the MMIX computer we could choose M = 1009 (unfortunately

2009 is not prime), computing h(K) by the sequence
SET m,1009

DIV t,k,m (3)
GET h,rR h(K)	←	K	mod	1009.

The multiplicative hashing scheme is equally easy to do, but it is slightly
harder to describe because we must imagine ourselves working with fractions
instead of with integers. Let w be the word size of the computer, so that w is
usually 232 or 264 for MMIX; we can regard an integer A as the fraction A/w if we
imagine the radix point to be at the left of the word. The method is to choose
some integer constant A relatively prime to w, and to let

In this case we usually let M be a power of 2, so that h(K) consists of the leading
bits of the least significant half of the product AK.

In MMIX code, if we let M = 2m for some small constant m and w = 264, the
multiplicative hash function is

MULU t,a,k
t	←	AK	mod	264.

SRU h,t,64-m Retain	the	m	most	significant	bits. (5)

Now h(K) appears in register h. Since MMIX, like many machines, has a
multiplication instruction that is significantly faster than its division instruction,
this sequence takes only 11 cycles to compute, compared to 62 cycles for (3).

[518]
The theory above suggests Fibonacci hashing, where we choose the constant A to

be the nearest integer to ϕ−1w that is relatively prime to w. For example with
MMIX, a binary computer with w = 264, we would take

Table 1 Transforming a Set of Keys Into Unique Addresses

· · ·

· · ·

Therefore we might do better with a multiplier like

A	=	(9E	9E	9E	9E	9E	9E	9E	9E)16

in place of (7); such a multiplier will separate out consecutive sequences of keys
that differ in any character position.

[519]

A value of A can be found so that each of its bytes lies in a good range and is not
too close to the values of the other bytes or their complements, for example

· · ·

Program C (Chained hash table search and insertion). For convenience, the keys and
links are assumed to be only four bytes long, and nodes are represented as
follows:

Empty nodes have a negative link field; occupied nodes have a nonnegative link
field containing the offset of the next node in the chain. These offsets are all
even; an odd offset is used to mark the end of the chain.

We assume a descriptor D for each hash table that contains the absolute
address of the table and the values of M and R as follows:

The following subroutine is called with two parameters: d ≡ LOC(D), the
location of the descriptor for the hash table, and k ≡ K, the given key.

01 :Start LDT m,d,M 1 M	←	M(D).
02 LDOU key,d,TABLE 1 key	←	TABLE(D).
03 ADDU link,key,LINK 1 link	←	TABLE(D)	+	LINK.
04 DIV t,k,m 1 C1.	Hash.
05 GET i,:rR 1 i	←	h(K)	=	K	mod	M.
06 SL i,i,3 1 Scale	i.	(Now	0	≤	i	<	8M.)
07 LDT t,link,i 1 C2.	Is	there	a	list?

08 BN t,C6 1[1	–	A] If	TABLE[i]	is	empty,	go	to	C6.

09 3H LDT t,key,i

09 3H LDT t,key,i C
t	←	KEY[i].

10 CMP t,t,k C C3.	Compare.
11 PBZ t,Success C[C	–	S] Exit	if	K	=	KEY[i].
12 SET p,i C	–	S Keep	previous	value	of	i.
13 LDT i,link,i C	–	S C4.	Advance	to	next.

14 PBEV i,3B C	–	S[A	–	S] To	C3	if	LINK[i]	is	even.

15 LDT r,d,R A	–	S C5.	Find	empty	node.	R	←	R(D).
16 5H SUB r,r,8 T R	←	R	–	1.
17 BN r,Failure T[0] Exit	if	no	empty	nodes	left.
18 LDT t,link,r T t	←	LINK[R].
19 BNN t,5B T[T	–	(A	–	S)] Repeat	until	TABLE[R]	empty.
20 STT r,d,R A	–	S R(D)	←	R.
21 STT r,link,p A	–	S LINK[i]	←	R.
22 SET i,r A	–	S i	←	R.
23 C6 SET t,1 1	–	S C6.	Insert	new	key.
24 STT t,link,i 1	–	S LINK[i]	←	1.	(End	of	chain.)
25 STT k,key,i 1	–	S KEY[i]	←	K.
26 POP 0,0

27 Success ADDU $0,key,i S Return	LOC(TABLE[i]).
28 POP 1,0

29 Failure NEG $0,1 0 Return	–1.
30 POP 1,0

The running time of this program depends on
C	=	number	of	table	entries	probed	while	searching;

A	=	[initial	probe	found	an	occupied	node];

S	=	[search	was	successful];

T	=	number	of	table	entries	probed	while	looking	for	an	empty	space.

The total running time for the searching phase of Program C is (8C −6S +69)υ+
(2C − S + 3)µ and the insertion of a new key when S = 0 takes an additional (6T
+2A+3)υ+(T +3A+2)µ. The division to obtain h(K) is the most expensive part of
this subroutine.
Program L (Linear probing and insertion). This program deals with full octabyte
keys; but a key of 0 is not allowed, since 0 is used to signal an empty position in
the table. (Alternatively, we could require the keys to be nonnegative, letting
empty positions contain −1.)

As in Program C, we assume a descriptor D for each hash table that contains
the absolute address of the table, the value of M, and the number of vacancies,
M − 1 − N, as follows:

The following subroutine is called with two parameters: d ≡ LOC(D), the location
of the descriptor for the hash table, and k ≡ K, the given key.

The table size M is assumed to be prime, and KEY[i] is stored in location
TABLE(D) + 8i for 0 ≤ i < M. For speed in the inner loop, location TABLE(D) − 8
is assumed to contain 0, and the test “i < 0” has been removed from the loop so
that only the essential parts of steps L2 and L3 remain. The total running time
for the searching phase comes to (7C + 6E + 2S + 62)υ + (C + E + 2)µ, and the
insertion after an unsuccessful search adds an extra 5υ + 3µ.
01 :Start LDO m,d,M 1 M	←	M(D).
02 LDOU key,d,TABLE 1 key	←	TABLE(D).
03 DIV t,k,m 1 L1.	Hash.
04 GET i,:rR 1 i	←	K	mod	M.
05 SL i,i,3 1 i	←	8i.
06 JMP L2 1
07 L3 SL i,m,3 E L3.	Advance	to	next.
08 L3B SUB i,i,8 C	+	E	–	1 i	←	i	–	1.
09 L2 LDO ki,key,i C	+	E L2.	Compare.
10 CMP t,ki,k C	+	E KEY[i]	=	K?

11 BZ t,Success C	+	E[S] Exit	if	KEY[i]	=	K.

12 BNZ ki,L3B C	+	E	–	S[C	–	1] To	L3	if	TABLE[i]	nonempty.

13 BN i,L3 E	+	1	S[E] To	L3	with	i	←	M	if	i	<	0.

14 LDO t,d,VACANCIES 1	–	S L4.	Insert.	t	←	VACANCIES(D).

15 BZ t,Failure 1	–	S[0] Exit	with	overflow	if	N	=	M	–	1.

16 SUB t,t,1 1	–	S Increase	N	by	1.
17 STO t,d,VACANCIES 1	–	S
18 STO k,key,i 1	–	S KEY[i]	←	K.
19 POP 0,0

20 Success ADDU $0,key,i S Return	LOC(KEY[i]).
21 POP 1,0

22 Failure NEG $0,1 0 Return	–1.

22 0 Return	–1.
23 POP 1,0

[529]

If M = 2m and we are using multiplicative hashing, h2(K) can be computed
simply by shifting left m more bits and “oring in“ a 1, so that the coding
sequence in (5) would be followed by

SLU h2,t,m Shift	AK	mod	264	left	m	more	bits.
SRU h2,h2,64-m Retain	the	m	most	significant	bits. (24)
OR h2,h2,1 h2	←	h2	|	1.

This is faster than the division method.
[530]

Algorithms L and D are very similar, yet there are enough differences that it is
instructive to compare the running time of the corresponding MMIX programs.
Program D (Open addressing with double hashing). This program is substantially like
Program L, except that no zero value is assumed in location TABLE(D) − 8.

01 :Start LDO m,d,M 1 M	←	M(D).
02 LDOU key,d,TABLE 1 key	←	TABLE(D).
03 DIV q,k,m 1 D1.	First	hash.

04 GET i,:rR 1 i	←	h1(K)	=	K	mod	M.

05 SL i,i,3 1 i	←	8i.
06 LDO ki,key,i 1 D2.	First	probe.
07 CMP t,ki,k 1 KEY[i]	=	K?

08 PBZ t,Success 1[1	–	S1] Exit	if	KEY[i]	=	K.

09 PBZ ki,D6 1	–	S1[A	–	S1] To	D6	if	TABLE	[i]	is	empty.

10 SUB t,m,2 A	–	S1 D3.	Second	hash.

11 DIV t,k,t A	–	S1
12 GET c,:rR A	–	S1 c	←	K	mod	(M	–	2).

13 8ADDU c,c,8 A	–	S1 c	←	1	+	(K	mod	(M	–	2)).

14 D4 SUB i,i,c C	–	1
D4.	Advance	to	next.	i	←	i	–
c.

15 8ADDU t,m,i C	–	1 t	←	i	+	8M.
16 CSN i,i,t C	–	1 If	i	<	0,	then	i	←	i	+	M.
17 LDO ki,key,i C	–	1 D5.	Compare.
18 CMP t,ki,k C	–	1 KEY[i]	=	K?

19 PBZ t,Success

19 PBZ t,Success
C	–	1[C	–	1	–	S2] Exit	if	KEY[i]	=	K.

20 BNZ ki,D4 C	–	1	–	S2[C	–	1	–	A	+
S1]

To	D4	if	nonempty.

21 D6 LDO t,d,VACANCIES 1	–	S
D6.	Insert.	t	←
VACANCIES(D).

22 BZ t,Failure 1	–	S[0] Overflow	if	N	=	M	–	1.

23 SUB t,t,1 1	–	S Increase	N	by	1.
24 STO t,d,VACANCIES 1	–	S VACANCIES(D)	←	M	–	1	–	N.
25 STO k,key,i 1	–	S KEY[i]	←	K.
26 POP 0,0

27 Success ADDU $0,key,i S Return	LOC(KEY[i]).
28 POP 1,0

29 Failure NEG $0,1 0 Return	–1.
30 POP 1,0

The frequency counts A, C, and S = S1 + S2 in this program have a similar
interpretation to those in Program C above.

[531]
Since each probe takes less time in Algorithm L, double hashing is

advantageous only when the table gets full. Figure 42 compares the average
running time of Program L, Program D, and a modified Program D that
involves secondary clustering, replacing the rather slow calculation of h2(K) in
lines 10–13 by the following three instructions:

SL t,m,3 t	←	8M.
SUB c,t,i c	←	M	–	i. (30)
CSZ c,i,8 If	i	=	0,	c	←	1.

Program D takes a total of 11C + 63(A − S1) − 7S + 64 units of time;
modification (30) saves 60(A − S1) ≈ 30α of these in a successful search. In this
case, secondary clustering is preferable to independent double hashing.

Fig. 42. The running time for successful searching by three open addressing
schemes.

On a binary computer, we can speed up the computation of h2(K) in another
way, if M is a prime greater than, say, 512, replacing lines 10–13 by

AND t,q,511 t	←	 K/M 	mod	512.
8ADDU c,t,8 c	←	 K/M 	mod	512	+	1	(scaled). (31)

EXERCISES

[549]

1. [20] When one of the POP	1,0 instructions in Table 1 is reached, how small
and how large can the return value in a ≡ $0 possibly be, assuming that bytes 1,
2, 3, and 4 of K each contain ASCII codes for uppercase alphabetic characters?
2. [20] Find a reasonably common English word not in Table 1 that could be

added to that table without changing the program.
3. [23] Explain why no program beginning with the seven instructions

SET k,$0
LDBU a,k,0
ADD a,a,x or SUB	a,a,x
LDBU b,k,1

ADD a,a,b or SUB	a,a,b
LDBU c,k,2
BZ c,9F

could be used in place of the more complicated program in Table 1, for any
constant x, since unique addresses would not be produced for the given keys.
5. [15] Mr. B. C. Dull was writing a FORTRAN compiler using an MMIX

computer, and he needed a symbol table to keep track of the names of variables
in the FORTRAN program being compiled. These names were restricted to be
at most 31 characters in length. He decided to use a hash table with M = 256,
and to use the fast hash function h(K) = leftmost byte of K. Was this a good idea?

6. [15] Would it be wise to change the second instruction of (3) from ‘DIV
t,k,m’ to ‘PUT	rD,k;	SET	z,0;	DIVU	t,z,m’?

[551]
12. [21] Show that Program C can be rewritten so that there is only one
conditional jump instruction in the inner loop. Compare the running time of the
modified program with the original.

[557]
72. [M28] · · ·

b) Suppose each hj in (9) is a randomly chosen mapping from the set of all

characters to the set {0, 1, .	.	.	,	M − 1}. Show that this corresponds to a
universal family of hash functions.

Write an MMIX program to compute such a hash function. Assume that K = x1

x2 .	.	.	x8 is a full octabyte key consisting of eight BYTE values and that M is a
power of 2, so that you can avoid the division in (9) as suggested in the text.
Compare the average running time to the running time of Program L, Program
D, and the modified Program D as shown in Fig. 42.

ANSWERS	TO	EXERCISES

1.3.2.	The	MMIX	Assembly	Language

With three exceptions, the exercises of this section haven been revised in Fascicle
1. Here we give solutions to exercises 14, 18, and 22, which are numbered 32,
21, and 29 in Fascicle 1.

[516]
14. The following subroutine has one parameter, the year, and two return
values, the day and the month. The printing is left to a driver that is not shown
here. A basic implementation is easy to obtain. The following solution uses
multiplication instead of division (see exercise 1.3.1´–19), cutting the running
time from approximately 337υ down to 122υ. Further improvements are
possible. The multiplication by 19 can be achieved in two cycles using 2ADDU and
16ADDU; similarly, multiplication by 7 can be done with NEG and 8ADDU; and
multiplication by 30 needs three cycles using SL, NEG and 2ADDU.

01 1H GREG 970881267037344822 264/19	+	2/19
02 :Easter MULU t,y,1B;	GET	t,:rH E1.	Golden	number.
03 MUL t,t,19

04 SUB g,y,t

05 ADD g,g,1 G	←	Y	mod	19	+	1.

06 1H GREG 184467440737095517 264/100	+	84/100
07 MULU t,y,1B;	GET	t,:rH E2.	Century.

08 ADD c,t,1 C	←	 Y/100 	+	1.

09 2ADDU x,c,c E3.	Corrections.
10 SRU x,x,2

11 SUB x,x,12 X	←	 3C/4 	–	12.

12 8ADDU z,c,5

13 1H GREG 737869762948382065 264/25	–	9/25
14 MULU t,z,1B;	GET	z,:rH

15 SUB z,z,5 Z	←	 (8C	+	5)/25 	–	5.

16 4ADDU d,y,y E4.	Find	Sunday.
17 SRU d,d,2

18 SUB d,d,x

19 SUB d,d,10 D	←	 5Y/4 	–	X	–	10.

20 2ADDU e,g,g E5.	Epact.
21 8ADDU e,g,e

21 8ADDU e,g,e

22 ADD e,e,20

23 ADD e,e,z

24 SUB e,e,x

25 1H GREG 614891469123651721 264/30	–	14/30
26 MULU t,e,1B;	GET	t,:rH

27 MUL t,t,30

28 SUB e,e,t E	←	(11G	+	20	+	Z	–	X)	mod	30.
29 CMP t,e,25

30 BNZ t,1F

31 CMP t,g,11

32 ZSP t,t,1 t	←	G	>	11.
33 JMP 2F

34 1H CMP t,e,24

35 ZSZ t,t,1 t	←	E	=	24.
36 2H ADD e,e,t Increase	E	if	needed.
37 NEG n,44,e E6.	Find	full	moon.	N	←	44	–	E.
38 CMP t,n,21

39 ZSN t,t,30

40 ADD n,n,t N	←	N	+	30	if	N	<	21.
41 ADD t,d,n E7.	Advance	to	Sunday.

42 1H GREG 2635249153387078803 264/7	+	5/7
43 MULU t+1,t,1B;	GET	t+1,:rH

44 MUL t+1,t+1,7

45 SUB t,t,t+1

46 ADD n,n,7

47 SUB n,n,t N	←	N	+	7	–	(D	+	N)	mod	7.
48 CMP t,n,31 E8.	Get	month.
49 BNP t,1F If	N	>	31,
50 SUB $1,n,31 				return	N	–	31
51 SET $0,4 				and	April.
52 POP 2,0

53 1H SET $1,n Else	return	N
54 SET $0,3 				and	March.
55 POP 2,0

18. For each value of k ≥ 1, we maintain the three values xk−1, xk, and xk+1 in

registers xp (previous), xk, and xn (next), respectively; we follow a similar pattern
for the y-values. Advancing k therefore needs four SET instructions, which could
be eliminated by unrolling the loop.

22. For n = 24 and m = 11, the last man is found after 913υ in position 15.

01 :Josephus SET i,n 1
02 SET t,0 1
03 JMP 1F 1
04 0H STBU t,x,i N Set	each	cell	to	the
05 SET t,i N 				number	of	the	next	man
06 1H SUB i,i,1 N	+	1 				in	the	sequence.

07 PBNN i,0B N	+	1[1]
08 SET e,1 1 Set	execution	count.
09 SET p,0 1 Start	with	the	first	man.
10 0H SUB i,m,3 N	–	1 Count	around	the	circle.
11 1H LDBU p,x,p (M	–	3)(N	–	1)
12 SUB i,i,1 (M	–	3)(N	–	1)

13 PBP i,1B (M	–	3)(N	–	1)[N	–	1]
14 LDBU l,x,p N	–	1 lucky	man

15 LDBU d,x,l N	–	1 doomed	man
16 LDBU p,x,d N	–	1 next	man
17 STBU p,x,l N	–	1 Take	man	from	circle.
18 STBU e,x,d N	–	1 Store	execution	count.
19 ADD e,e,1 N	–	1 Increment	execution	count.
20 CMP t,e,n N	–	1 How	many	left?

21 PBN t,0B N	–	1[1]
22 STBU e,x,l 1 One	man	left;	he	is	clobbered	too.
23 POP 0,0

The total running time is (3(N − 1)(M + 2) + 16)υ + ((N − 1)(M + 3) + 2)µ. An
asymptotically faster method appears in exercise 5.1.1–5.

1.3.3.	Applications	to	Permutations

[522]

7. With some formatting characters as shown on page 1, we have X = 34, Y =
29, M = 5, N = 7, U = 3. Total, by Eq. (18), 2095υ. Without any formatting
characters, we have X = 29, Y = 29, M = 5, N = 7, U = 3, V = 1. Total, by Eq.
(18), 1805υ.
9. No. For example, given (6) as input, Program A will produce ‘(ADG)(CEB)’ as

output, while Program B produces ‘(ADG)(BCE)’. The answers are equivalent but
not identical, due to the nonuniqueness of cycle notation. The first element
chosen for a cycle is the leftmost available name, in the case of Program A, and
the first character in the order given by the ASCII code, in Program B.
10. (1) Kirchhoff’s law yields D = B, E = D+1 (assuming that there are no
formatting characters in the input), and F = K. (2) Interpretations: F = A = #80
− #21 = 95 is the size of table T; B = number of characters in the input = X; B
− C = number of cycles in the input = M; G = number of distinct elements in
the output = N; H = J = number of cycles in the output (not counting singletons)
= U − V. (3) Summing up, we have (10A + 13X + 10N − 3M + 9(U − V) +
14)υ, where A is the size of table T. This is better than Program A. Even for a
table T that is far too large for the simple input (6), the time is still only 1439υ
and without any formatting symbols 1404υ.

1.4.4.	Input	and	Output

[532]

1. The code in (1) has two protected code sequences that allow access to the
buffer. Each code sequence starts with a wait loop to acquire access rights and
ends with a store instruction to release the access rights. Let’s assume that the
system is initially in a valid state: The consumer is using the buffer, the octabyte
S has the value 1, and the producer is not using the buffer. There is only one
instruction that can change the value of S from 1 to 0; to execute this instruction,
the consumer has to exit the protected code segment. Using real hardware, it
might take some time until the change in the value of S becomes visible to the
producer, but the change will be immediately visible to the consumer itself. A
load following a store on the same memory location and within the same thread
will always return the value just stored. Therefore, the consumer will not be able
to reenter the protected code segment but will get caught in the waiting loop.
Eventually, the producer will notice the value 1 in octabyte S and can enter the
protected code. The new situation is symmetric to the initial situation and the
same reasoning applies. (See also 7.2.2.2–(43).) The ‘SYNC	1’ instruction in the
producer is not needed to protect S; it is needed to protect the buffer. Without it,
the consumer could see the change in S, but still miss recent changes to the buffer
made by the producer before changing S.
2.

:Producer LDA s,:S2 Initialize	s	←	LOC(S2).
0H LDO t,s,0 Acquire.

BNZ t,0B Wait.
LDO buffer,s,16 Update	buffer.
LDA $255,:InArgs Load	argument	for	Fgets.
STOU buffer,$255 Point	InArgs	to	the	buffer.
TRAP 0,:Fgets,:StdIn Read	one	line.
BN $255,EOF Jump	if	error	or	end	of	le.
SYNC 1 Synchronize.
STCO 1,s,0 Release.
LDO s,s,16 Advance	to	next	buffer.
JMP 0B Repeat.

3. In order to decide if the current character is the last character of the buffer,
we need to look ahead to the next character in the buffer. For efficiency, we use
an additional global register c, initially set to zero, to hold the look-ahead
character.

1H STCO 0,s,0 Release.
LDO s,s,16 Switch	to	next	buffer.

2H LDO t,s,0 Acquire.
BZ t,2B Wait.
LDO buffer,s,8 Update	buffer.
SET i,0 Initialize	i	←	0.
SYNC 2 Synchronize.
LDB c,buffer,i Load	first	byte.
BZ c,1B If	zero,	advance	to	next	buffer.

:GetByte BZ c,2B Jump	if	look-ahead	is	zero.
SET $0,c Prepare	to	return	c.
ADD i,i,1 Advance	to	next	byte.
LDB c,buffer,i Load	next	byte.
BNZ c,0F Jump	if	not	end	of	buffer.
STCO 0,s,0 Release.

0H POP 1,0 Return	byte.				

6.
Buffer1 OCTA 0 Empty	buffer.

LOC Buffer1+SIZE
Buffer2 OCTA 0

LOC Buffer2+SIZE
...
PREFIX :Consumer:

buffer GREG 0
i GREG 0
s GREG 0
t IS $0

:Consumer LDA s,:S1 Initialize	s	←	LOC(S1).
LDOU buffer,s,8 Initialize	buffer.
NEG i,1 Initialize	i	←	–1.
PUSHJ t,:GetByte
...

7. With a single producer thread, there is no need for another semaphore. In
Program A, delete the instructions of lines 03–07, 12, and 16–17; then replace
Green by Red and NEXTG by NEXTR. For Program R, it is sufficient to insert ‘SYNC
1’ at the beginning and then replace Red by Green.

12. We define Red ≡ 0, Purple ≡ 1, Green ≡ 2, and Yellow ≡ 3. With these

settings, no changes are necessary for the consumers. For the producers, in
Program A replace GS by RS, NEXTG by NEXTR, Green by Red, and Yellow by
Purple; and in Program R insert ‘SYNC	1’ at the beginning and then replace Red
by Green.
13. One invariant of the buffer ring is that all red or yellow buffers follow all
green and purple buffers, and vice versa. This invariant ensures that all buffers
are consumed in the same order as they are produced. So a single consumer that
needs more time than usual can delay all producers, waiting for its yellow buffer
to turn red, even if there are many red buffers following the yellow buffer. If the
situation lasts long enough, the other consumers must also wait because no new
red buffers have been produced. Because of symmetry, the same can happen
with a slow producer. If the time a consumer or producer needs for a buffer
varies greatly, it might be more efficient to process buffers out of order; in this
case, maintaining separate linked lists for buffers of “different color” can be more
efficient.

15. The thread that sets the semaphore to 1 does not only earn the right to
modify the protected data: It earns the exclusive right to do so, preventing all other
threads from making modifications. The thread executing the “improved” code
loads NEXTG into register s before it sets the green semaphore to 1; so by the time
the semaphore is 1, another thread might have modified NEXTG. In this case, s is
pointing to the wrong buffer, which might not even be green any more. If Mr.
Dull wants to wait for a green buffer first, he has to repeat the wait loop after
setting the semaphore to 1, just as Program A does. It still might be an
improvement. A CSWAP instruction might need to synchronize multiple
distributed caches of multiple processors to gain exclusive and atomic access to
the semaphore. So one processor executing a CSWAP instruction can reduce the
performance of all other processors. But of course, it is much better to allocate
sufficient buffers so that NEXTG almost always points to a green buffer.

2.1.	INTRODUCTION

[535]

7. Sequence (a) loads the address of TOP to t and then the contents of t + SUIT;
so we have t ← SUIT(LOC(TOP)). Sequence (b) loads the address of TOP + SUIT
to t and then the contents of t + 0; so again we have t ← SUIT(LOC(TOP)).
Sequence (c) is correct. There is no need for confusion; consider the analogous
example when x is the MMIXAL label of a numeric variable x: To bring the value
of x into register t, we write ‘LDO	t,x’, not ‘LDA	t,x’, since the latter brings

LOC(x) into the register (namely, the value of the label).
8. With registers x and n we can write:

SET n,0;	LDOU	x,TOP B1.	N	←	0,	X	←	TOP.
JMP B2

B3 ADD n,n,1;	LDOU	x,x,NEXT B3.	N	←	N	+	1,	X	←	NEXT(X).
B2 PBNZ x,B3 B2.	If	X	=	Λ,	stop.				

9. The following subroutine takes a pointer to the starting card in the pile as a
parameter and prints the card names on StdOut.

2.2.2.	Sequential	Allocation

[540]

3. Left side: The instruction LDA	base,L0 is assembled as ADDUI	base,b,c for
some suitable constant 0 ≤ c < 256 with c mod 8 = 0 and base register b
determined by the assembler. If register i is, for example, register $2, the
instruction LDOI	a,b,c + 2 will do the job.

Right side: Again the assembler will choose a constant c and base register b as
before to assemble the instruction LDOU	base,BASE as LDOUI	base,b,c. Hence
we can replace the three instructions in (8) by LDOU	a,b,c + 4 provided the
octabyte at location BASE (ordinarily a multiple of 8) is incremented by 2 to
specify register $2 as the index register to be used. The left side might take 1υ +
1µ instead of 3υ + 1µ as in (8), while the right side will take 2υ + 2µ instead of 3υ
+ 2µ.
4. Assuming that register j is $1, register i is $2, LOC(X) = b + c, and the

addresses stored in X, X + 8, X+16, . . . are incremented by 2 to specify register $2
as index register, we can simply write LDO	a,b,c + 4 + 1.

5. A multiple-level LDOU instruction will cost as much µ and υ as the written-out
sequence of ordinary LDOU instructions, except that the implicit scaling of the
index registers might save some execution time. But a pipelined RISC machine,
such as MMIX, can easily execute the scaling in parallel with the loading because
there is no data dependency between index and loaded value. Further, as many
implementations in this booklet attest, the shift instructions to scale index
registers can be entirely eliminated at least from critical loops.

By comparison, automatic scaling or an extension as proposed in exercise 3
will make special use of these precious low-order bits, preventing their use as tag
bits (as shown later in this chapter).

The whole concept is of limited use, because the available bits in an
instruction are severely limited such that only 3 bits remain to specify an index
register. If complex operations need to be specified for a RISC processor, we can
use multiple short instructions instead of one long instruction. The concept of a
pointer specifying an index register in its low-order bits moves information that is
normally part of the code into the data. Again this goes against the concept of
pipelined RISC processors, where data dependencies can prevent parallel and
speculative execution of code.

In summary, such an extension violates the principles of RISC processor
design, is of limited use, and does not offer true advantages on pipelined
processors. There is no need to implement it.

2.2.3.	Linked	Allocation

[545]

2. As an example, we show the full code of the subroutine Insert.

3. The Delete subroutine is similar. Notice that it has separate exits for success
and failure.

PREFIX :Delete:

t IS $0 First	parameter
p IS $1 Local	variable
x IS $2 Temporary	variable
LINK IS 0 Offset	of	the	LINK	field
INFO IS 8 Offset	of	the	INFO	field
:Delete LDOU p,t P	←	T.

BZ p,1F Is	T	=	Λ?
LDOU x,p,LINK

STOU x,t T	←	LINK(P).
LDO $0,p,INFO y	←	INFO(P).
STOU :avail,p,LINK LINK(P)	←	AVAIL.
SET :avail,p AVAIL	←	P.
POP 1,1 Successful	(second)	exit

1H POP 0,0 Unsuccessful	(first)	exit				

4. The Allocate subroutine uses a different way to signal errors. It “returns”
zero using the instruction POP	0,0, making the return register marginal.

PREFIX :Allocate:

x IS $0 The	return	value
t IS $1 Local	variable

Local	variable
c IS 16 The	node	size
LINK IS 0 Offset	of	the	LINK	field
:Allocate SET x,:avail X	←	AVAIL.

BZ x,1F Is	AVAIL	=	Λ?
LDOU :avail,:avail,LINK AVAIL	←	LINK(AVAIL).

0H POP 1,0 Return	X.
1H SET x,:poolmax X	←	POOLMAX.

ADDU :poolmax,:poolmax,c POOLMAX	←	X	+	c.
CMPU t,:poolmax,:seqmin Is	POOLMAX	>	SEQMIN?
PBNP t,0B If	not,	return	X.

Overflow ... Try	to	recover;	if	all	fails,
POP 0,0 							return	zero.				

8. Here and in the following, we will not show the definition of register names,
such as ‘p	IS	$1’, that are irrelevant for an understanding of the code.
:Revert LDO p,first 1 I1.	P	←	FIRST.

BZ p,2F 1[0] I2.	If	the	list	is	empty,	jump.

SET q,0 1 Q	←	Λ.
1H SET r,q n R	←	Q.

SET q,p n Q	←	P.
LDOU p,q,LINK n P	←	LINK(Q).
STOU r,q,LINK n LINK(Q)	←	R.

PBNZ p,1B n[1] Is	P	≠	Λ?
STOU q,first 1 I3.	FIRST	←	Q.

2H POP 0,0

For a nonempty list, the time is (5n+6)υ+(2n+2)µ (not counting the call
overhead). Better speed (3nυ+2nµ + constant) is attainable; see exercise 1.1–3.

22. To make the program “fail-safe” we should (a) check that 0 < n < some
appropriate maximum; (b) check each relation j k for the conditions 0 < j,	k ≤
n and check the initial zero in the first pair (0, n) and the final zero in the last
pair (0, 0); (c) check that avail does not get too large.
24. Insert four lines in the program of the text:

51a SL k,n,3 Prepare	for	T9:	k	←	n.
58a SET t,0

58b STTU t,top,f TOP[F]	←	0.
76a BNZ n,T9 Jump	if	N	≠	0.

Add the following at the end of Program T:

		78 T9 GET rJ,:rJ

		79 GETA $255,Msg

		80 TRAP 0,:Fputs,:StdErr Print	indication	of	loop.
		81 SET t,0 t	←	0.
		82 1H LDTU p,top,k P	←	TOP[k].
		83 STT t,top,k TOP[k]	←	0.

		84 T10 BZ p,0F Resume	T9	if	P	=	Λ.

		85 LDT t,suc,p

		86 STT k,qlink,t QLINK[SUC(P)]	←	k.
		87 LDT p,next,p P	←	NEXT(P).

		88 BNZ p,T10 Is	P	=	Λ?

		89 0H SUB k,k,8 k	←	k	+	1.
		90 BP k,1B Repeat	while	k	>	0.
		91 T11 ADD k,k,8 k	←	k	+	1.
		92 LDT t,qlink,k

		93 BZ t,T11 Find	k	with	QLINK[k]	≠	0.
		94 T12 STT k,top,k TOP[k]	←	k.
		95 LDT k,qlink,k k	←	QLINK[k].
		96 LDT t,top,k

		97 BZ t,T12 Repeat	if	TOP[k]	=	0.
		98 T13 SR t+1,k,3 Scale	back.
		99 PUSHJ t,:Println Assume	this	prints	k	on	StdErr.
100 LDT t,top,k

101 BZ t,1F Stop	when	TOP[k]	=	0.
102 SET t,0

103 STT t,top,k TOP[k]	←	0.
104 LDT k,qlink,k k	←	QLINK[k].
105 JMP T13

106 1H PUT :rJ,rJ

107 POP 0,0 Return.
108 Msg BYTE "Loop	detected"

109 BYTE "	in	input:",#a,0

Note: If the relations 9 1 and 6 9 are added to the data (18), this program will
print “1, 9, 6, 4, 7, 3, 1” as the loop.

26. One solution is to proceed in two phases as follows:

Phase 1. (We use the X-table as a (sequential) stack as we mark each subroutine
that needs to be used by setting SPACE ← −SPACE.)

A0. For	0≤i	<	N	set	SPACE(SUB[i])	←	−SPACE(SUB[i]).

A1. If	N	=	0,	go	to	phase	2;	otherwise	set	i	←	0,	decrease	N	by	1,	and	set	Q	←	LINKi(SUB[N]).

A2. If	Q	is	odd,	go	to	A1.

A3. Set	i	←	i	+	1	and	Q	←	LINKi(SUB[N]).	If	SPACE(Q)	≥	0,	set	SPACE(Q)	←	−SPACE(Q),
SUB[N]	←	Q,	and	set	N	←	N	+	1.	Now	return	to	A2.				

Phase 2. (We go through the table and allocate memory.)
B1. Set	P	←	FIRST.

B2. If	P	=	0,	set	BASE[N]	←	MLOC,	SUB[N]	←	P,	and	terminate	the	algorithm.

B3. If	SPACE(P)	<	0,	set	BASE[N]	←	MLOC,	SUB[N]	←	P,	SPACE[(P)	←	−	SPACE(P),	MLOC	←	MLOC
+	SPACE(P),	and	N	←	N	+	1.

B4. Set	P	←	LINK(P)	and	return	to	B2.Now	return	to	A2				

27. The following subroutine expects five parameters: dir ≡ LOC(Dir), the
address of the file directory; x ≡ LOC(X[0]), the address of the X-table; n ≡ N,
the number of entries in the X-table; mloc ≡ MLOC, the amount of relocation for
the first subroutine loaded; and first ≡ FIRST, the address of the directory
entry for the first subroutine in the file. To access the LINK field in the file
directory, register link is set to dir + LINK; to access the SPACE field, it suffices to
define space as an alias for dir because the offset is zero. Similarly for the fields
in the X-table, register sub is set to x + SUB and base is defined as an alias for x.

01 :Ex27 ADDU link,dir,LINK

02 ADDU sub,x,SUB

03 SL n,n,3 Scale	N.
04 SET i,n A0.	i	←	N.
05 BNP i,A1 Loop	on	i	for	N	>	i	≥.	0.
06 0H SUB i,i,8 i	←	i	−	1.
07 LDTU p,sub,i P	←	SUB[i].
08 LDT s,space,p s	←	SPACE(P).
09 NEG s,s Negate	s.
10 STT s,space,p SPACE(SUB[i])	←	–SPACE(SUB[i]).
11 PBP i,0B Continue	while	i	>	0.
12 JMP A1

13 A3 ADDU p,p,4 A3.	i	←	i	+	1.

14 LDTU

14 LDTU q,link,p Q	←	LINKi(SUB[N]).

15 LDT s,space,q

16 BN s,A2 If	SPACE(Q)	≥	0,
17 NEG s,s

18 STT s,space,q SPACE(Q)	←	–SPACE(Q),
19 STT q,sub,n SUB[N]	←	Q,	and
20 ADD n,n,8 N	←	N	+	1.
21 A2 PBEV q,A3 A2.	If	Q	is	odd,	go	to	A1;	else	to	A3.
22 A1 BZ n,B1 A1.	If	N	=	0,	go	to	phase	2.
23 SUB n,n,8 N	←	N	–	1.
24 LDTU p,sub,n P	←	SUB[N],	i	←	0.

25 LDTU q,link,p Q	←	LINKi(SUB[N]).

26 JMP A2

27 B1 SET p,first B1.	P	←	FIRST.
28 JMP B2

29 B4 LDT p,link,p B4.	P	←	LINK(P).
30 B2 BZ p,0F B2.
31 LDT s,space,p B3.
32 PBNN s,B4 To	B4	if	SPACE(P)	≥	0.
33 0H STT mloc,base,n B2/B3.	BASE[N]	←	MLOC.
34 ANDN p,p,1 Remove	tag	bit.
35 STTU p,sub,n SUB[N]	←	P.
36 NEG s,s

37 STT s,space,p SPACE(P)	←	–	SPACE(P).
38 ADD mloc,mloc,s MLOC	←	MLOC	+	SPACE(P).
39 ADD n,n,8 N	←	N	+	1.
40 PBNZ p,B4 If	P	=	0,	terminate.
41 POP 0,0 Done.

2.2.4.	Circular	Lists

[552]

As stated before, we assume in the following code that the global register avail
points to a sufficiently large stack of available nodes.
11.

:Copy SET q0,:avail 1 The	future	backlink

:Copy SET q0,:avail 1 The	future	backlink
1H SET q,:avail p Q	←	AVAIL.

LDOU :avail,:avail,LINK p AVAIL	←	LINK(AVAIL).
LDOU p,p,LINK p Advance	P.
LDO t,p,COEF p

STO t,q,COEF p COEF(Q)	←	COEF(P).
LDOU t,p,ABC p

STOU t,q,ABC p ABC(Q)	←	ABC(P).
PBNN t,1B p[1] Was	ABC	≠	0?
STOU q0,q,LINK 1 Store	backlink	to	LINK(Q).
SET $0,q 1
POP 1,0 Return	Q.				

Note that it is not necessary to set LINK(Q) (except for the last node) because the
nodes on the AVAIL stack are already linked together.
12. Let the polynomial copied have p terms. Program A takes (17p + 13)υ + (9p
+ 5)µ. One can argue that a fair comparison should add the time to create a zero
polynomial with exercise 14, which is 6υ + 4µ (not including the final POP). The
program of exercise 11 takes (8p + 5)υ + (6p + 1)µ, about half as much time as
Program A and for small p just a third as much time as the combination of
Program A with exercise 14.

13.
:Erase LDOU t,p,LINK Get	first	node.

STOU :avail,p,LINK Link	end	of	polynomial	to	the	AVAIL	list.
SET :avail,t Point	AVAIL	to	first	node.
POP 0,0 Done.				

14.

:Zero SET p,:avail P	⇐	AVAIL.
LDOU :avail,:avail,LINK

STCO 0,p,COEF COEF(P)	←	0.
NEG t,1;	STO	t,p,ABC ABC(P)	←	–	1.
STOU p,p,LINK LINK(P)	←	P.
POP 1,0 Return	P.				

15. This subroutine combines Algorithm M with Algorithm A. The parallel
addition of the exponents is accomplished using the WDIF operation. In case of an
overflow, this will produce the maximum exponent that can be represented as a

two-byte unsigned integer; and as a special case of this, adding to ABC = −1 will
always give −1.

01 :Mult LDOU m,m,LINK r	+	1 M1.	Next	multiplier.
02 LDO abcm,m,ABC r	+	1 abcm	←	ABC(M).

03 BN abcm,9F r	+	1[1] If	ABC(M)	<	0,	terminate.

04 LDO coefm,m,COEF r coefm	←	COEF(M).

05 A1 SET q1,q Σm″ A1.	Initialize.	Q1	←	Q.

06 LDOU q,q,LINK Σm″ Q	←	LINK(Q).
07 0H LDOU p,p,LINK Σp P	←	LINK(P).
08 LDO coefp,p,COEF Σp coefp	←	COEF(P).
09 MUL coefp,coefm,coefp Σp coefp	←	coefm	·	coefp.
10 LDO abcp,p,ABC Σp A2.	ABC(P)	:	ABC(Q).
11 NOR abcp,abcp,0 Σp abcp	←	abcm	+	abcp	by:
12 WDIF abcp,abcp,abcm Σp invert,	parallel	subtract,
13 NOR abcp,abcp,0 Σp and	invert.
14 2H LDO t,q,ABC Σx t	←	ABC(Q).
15 CMP t,abcp,t Σx Compare	abcp	and	ABC(Q).
16 BZ t,A3 Σx[Σ	m	+	1] If	equal,	go	to	A3.

17 BP t,A5 Σ	p	′	+	q	′[Σ	p	′] If	greater,	go	to	A5.

18 SET q1,q Σ	q	′ If	less,	set	Q1	←	Q.

19 LDOU q,q,LINK Σ	q	′ Q	←	LINK(Q).

20 JMP 2B Σ	q	′ Repeat.

21 A3 BN abcp,:Mult Σ	m	+	1[1] A3.	Add	coefficients.

22 LDO coefq,q,COEF Σ	m

23 ADD coefq,coefq,coefp Σ	m coefq	←	coefq	+	coefp.

24 STO coefq,q,COEF Σ	m COEF(Q)	←	coefq.

25 PBNZ coefq,A1 Σ	m[Σ	m	′] If	coefq	≠	0,	go	to	A1.

26 SET q2,q Σ	m	′ A4.	Delete	zero	term.

27 LDOU q,q,LINK Σ	m	′ Q	←	LINK(Q).

28 STOU q,q1,LINK Σ	m	′ LINK(Q1)	←	Q.

29 STOU :avail,q2,LINK Σ	m	′

30 SET :avail,q2 Σ	m	′ AVAIL	⇐	Q2.

31 JMP 0B Σ	m	′ Go	to	advance	P.

32 A5 SET q2,:avail Σ	p	′ A5.	Insert	new	term.

33 LDOU :avail,:avail,LINK

33 LDOU :avail,:avail,LINK
Σ	p	′ Q2	⇐	AVAIL.

34 STO coefp,q2,COEF Σ	p	′ COEF(Q2)	←	coefp.

35 STO abcp,q2,ABC Σ	p	′ ABC(Q2)	←	abcp.

36 STOU q,q2,LINK Σ	p	′ LINK(Q2)	←	Q.

37 STOU q2,q1,LINK Σ	p	′ LINK(Q1)	←	Q2.

38 SET q1,q2 Σ	p	′ Q1	←	Q2.

39 JMP 0B Σ	p	′ Go	to	advance	P.
40 9H POP 0,0 Return	from	subroutine.				

16. Let r be the number of terms in polynomial(M). The subroutine requires 13
+ 4r + 34 Σm ′ + 28 Σm ′′ + 30 Σp ′ + 7 Σq ′ units of time, where the
summations refer to the corresponding quantities during the r activations of the
modified Program A. The number of terms in polynomial(Q) goes up by p ′ − m
′ each activation of Program A. If we make the not unreasonable assumption that
m ′ = 0 and p ′ = αp where 0 < α < 1, we get the respective sums equal to 0, (1
− α)pr, αpr, and rq0′ + αp(r(r − 1)/2), where q0′ is the value of q ′ in the first

iteration. The grand total is 3.5αpr2 + 28pr − 1.5αpr + 7q0′r + 4r + 13. This
analysis indicates that the multiplier ought to have fewer terms than the
multiplicand, since we have to skip over unmatching terms in polynomial(Q)
more often. (See exercise 5.2.3–29 on page 157 for a faster algorithm.)

2.2.5.	Doubly	Linked	Lists

[554]

7. In line 225 this user is assumed to be in the WAIT list. . . .

8. This code implements step E8 of the elevator coroutine.

271 E8 SUB floor,floor,1 E8.	Go	down	a	floor.
272 TRIP HoldCI,61 Wait	61	units.
273 SL $0,on,floor

274 OR $1,callcar,calldown

275 AND $2,$1,$0 Is	CALLCAR[FLOOR]	≠	0
276 BNZ $2,1F or	CALLDOWN[FLOOR]	≠	0?
277 CMP $2,floor,2

278 BZ $2,2F If	not,	is	FLOOR	=	2?
279 AND $2,callup,$0 If	not,	is	CALLUP[FLOOR]	≠	0?
280 BZ $2,E8 If	not,	repeat	step	E8.
281 2H OR $1,$1,callup

281 2H OR $1,$1,callup

282 NEG $2,64,floor

283 SL $1,$1,$2 Ignore	FLOOR	and	above.
284 BNZ $1,E8 Are	there	calls	for	lower	floors?
285 1H SET dt,23 It	is	time	to	stop	the	elevator.
286 JMP E2A Wait	23	units	and	go	to	E2.				

9. This code implements the Decision subroutine.

291 PREFIX :Decision:

292 next IS $0 NEXTINST(ELEV1)

293 e1 IS $1 Zero	if	next	=	E1
294 calls IS $2 All	buttons	combined
295 j IS $3

296 c IS $4 Local	copy	of	:c
297 rJ IS $5

298 t IS $6

299 :Decision BNZ :state,9F D1.	Decision	necessary?
300 LDOU next,:ELEV1+:NEXTINST D2.	Should	doors	open?
301 GETA t,:E1

302 CMP e1,next,t

303 BNZ e1,D3 Jump	if	elevator	not	at	E1.
304 OR calls,:callup,:calldown

305 OR calls,calls,:callcar

306 GETA next,:E3 Prepare	to	schedule	E3.
307 AND t,calls,1<<2

308 BNZ t,8F Jump	if	call	set	in	2.
309 D3 SL t,:on,:floor D3.	Any	calls?
310 ANDN calls,calls,t Calls	except	in	current	floor
311 SUB t,calls,1

312 SADD j,t,calls Smallest	j	with	a	call
313 BNZ calls,D4 Jump	if	calls	with	j	≠	FLOOR.
314 GET rJ,:rJ

315 GETA t,:E6B

316 CMPU t,rJ,t Invoked	by	step	E6?
317 BNZ t,9F If	not,	exit	subroutine.
318 SET j,2

319 D4 CMP :state,j,:floor

319 D4 CMP :state,j,:floor D4.	Set	STATE.
320 BNZ e1,9F D5.	Elevator	dormant?
321 BZ :state,9F Exit	if	j	=	2.
322 GETA next,:E6 Prepare	to	schedule	E6.
323 8H SET c,:c Save	current	thread.
324 LDA :c,:ELEV1 Disguise	as	ELEV1.
325 STOU next,:c,:NEXTINST Set	NEXTINST	to	E3	or	E6.
326 SET :dt,20 Wait	20	units	of	time.
327 GET rJ,:rJ

328 PUSHJ t,:Hold Schedule	the	activity.
329 PUT :rJ,rJ

330 SET :c,c Restore	current	thread.
331 9H POP 0,0

2.2.6.	Arrays	and	Orthogonal	Lists

[556]

5. With a secondary table TA2 of base addresses for each row such that the
octabyte at location TA2 + 8j contains LOC(A[j,0]) + 2, and assuming that there
is a global base register b and small constant c with b + c = LOC(TA2) (such that
the MMIX assembler could assemble the instruction ‘LDA	t,TA2’), we can write
‘LDO	a,b,c + 4 + 1’.
11. At most 400 + 400 + 4 · 4 · 400 = 7200 octabytes or approximately 56
KByte.

15. The following program expects four parameters: first pivot, the address of
the pivot node; then baserow ≡ LOC(BASEROW[0]); next basecol ≡
LOC(BASECOL[0]); and finally ptr ≡ LOC(PTR[0]). Since only the LEFT field of
the BASEROW nodes and the UP field of the BASECOL nodes is used, the nodes are
assumed to overlap, such that only a single octabyte is used per header node.
Further, the program assumes that pointers to the list heads have their least
significant bit set to 1, making them odd. Within the program, no new pointers
to the list heads are created, since inserting and deleting nodes will just copy
existing links. The functions Allocate and Free are assumed to manage the
allocation of nodes and their return to free storage. Note that line 54 requires
register x to have a suitably large register number, and that the floating point
comparison in line 67 assumes that register rE (epsilon register) has been set

appropriately.

01 :PStep GET rJ,:rJ S1.	Initialize.
02 LDO v,pivot,VAL v	←	VAL(PIVOT).
03 SETH t,#3FF0 t	←	1.0.
04 STO t,pivot,VAL VAL(PIVOT)	←	1.0.
05 FDIV alpha,t,v ALPHA	←	1.0/VAL(P).
06 SETH t,#8000 The	sign	bit
07 XOR malpha,t,alpha Precompute	malpha	←	–ALPHA.
08 LDT i0,pivot,ROW I0	←	ROW(PIVOT).
09 8ADDU p0,i0,baserow P0	←	LOC(BASEROW[I0]).
10 LDT J0,pivot,COL J0	←	COL(PIVOT).
11 8ADDU q0,J0,basecol Q0	←	LOC(BASECOL[J0]).
12 JMP S2

13 2H LDT J,p0,COL J	←	COL(P0).
14 SL j,J,3 Scale	J.
15 ADDU t,basecol,j

16 STOU t,ptr,j PTR[J]	←	LOC(BASECOL[J]).
17 LDO t,p0,VAL

18 FMUL t,alpha,t

19 STO t,p0,VAL VAL(P0)	←	ALPHA	×	VAL(P0).
20 S2 LDOU p0,p0,LEFT S2.	Process	pivot	row.	P0	←	LEFT(P0).
21 BEV p0,2B If	P0	is	even,	process	P0.
22 S3 LDOU q0,q0,UP S3.	Find	new	row.	Q0	←	UP(Q0).
23 BOD q0,9F Exit	if	Q0	is	odd.
24 LDT i,q0,ROW I	←	ROW(Q0).
25 CMP t,i,i0

26 BZ t,S3 If	I	=	I0,	repeat.
27 8ADDU p,i,baserow P	←	LOC(BASEROW[I]).
28 S4A LDOU p1,p,LEFT P1	←	LEFT(P).
29 S4 LDOU p0,p0,LEFT S4.	Find	new	column.	P0	←	LEFT(P0).
30 BOD p0,1F

31 LDT J,p0,COL J	←	COL(P0).
32 CMP t,J,J0

33 BNZ t,S5 If	J	=	J0,
34 JMP S4 repeat	step	S4.

35 1H LDO

35 1H LDO t,q0,VAL If	P0	is	odd,
36 FMUL t,malpha,t

37 STO t,q0,VAL VAL(Q0)	←	–	ALPHA	×	VAL(Q0),
38 JMP S3 and	return	to	S3.
39 1H SET p,p1 P	←	P1.
40 LDOU p1,p,LEFT P1	←	LEFT(P).
41 S5 BOD p1,S6 S5.	Find	I,	J	element.
42 LDT t,p1,COL t	←	COL(P1).
43 CMP t,t,J

44 BP t,1B Loop	until	COL(P1)	≤	J.
45 BZ t,S7 If	COL(P1)	=	J,	go	right	to	S7.
46 S6 SL t,J,3 S6.	Insert	I,	J	element.
47 LDOU pj,ptr,t pj	←	PTR[J].
48 2H SET qj,pj qj	←	pj.
49 LDOU pj,qj,UP pj	←	UP(PTR[J]).
50 BOD pj,0F Jump	if	pj	is	odd.
51 LDT t,pj,ROW

52 CMP t,t,i

53 BP t,2B Loop	until	ROW(UP(PTR[J]))	≤	I.
54 0H PUSHJ x,:Allocate X	⇐	AVAIL.
55 STCO 0,x,VAL VAL(X)	←	0.0.
56 STT i,x,ROW ROW(X)	←	I.
57 STT J,x,COL COL(X)	←	J.
58 STOU p1,x,LEFT LEFT(X)	←	P1.
59 STOU pj,x,UP UP(X)	←	UP(PTR[J]).
60 STOU x,p,LEFT LEFT(P)	←	X.
61 STOU x,qj,UP UP(PTR[J])	←	X.
62 SET p1,x P1	←	X.
63 S7 LDO v,q0,VAL S7.	Pivot.	v	←	VAL(Q0).
64 LDO t,p0,VAL t	←	VAL(P0).
65 FMUL v,v,t v	←	VAL(Q0)	×	VAL(P0).
66 LDO w,p1,VAL w	←	VAL(P1).
67 FEQLE t,w,v

68 BNZ t,S8 If	w	≈	v	(),	go	to	S8.
69 FSUB v,w,v

70 STO v,p1,VAL VAL(P1)	←	VAL(P1)	–	VAL(Q0)	×	VAL(P0).

71 SL t,J,3

72 STOU p1,ptr,t PTR[J]	←	P1.
73 SET p,p1 P	←	P1.
74 JMP S4A

75 S8 SL t,J,3 S8.	Delete	I,	J	element.
76 LDOU pj,ptr,t pj	←	PTR[J].
77 1H SET qj,pj qj	←	pj.
78 LDOU pj,qj,UP pj	←	UP(qj).
79 CMP t,pj,p1

80 BNZ t,1B Repeat	if	UP(PTR[J])	≠	P1.
81 LDOU t,p1,UP

82 STOU t,qj,UP UP(PTR[J])	←	UP(P1).
83 LDOU t,p1,LEFT

84 STOU t,p,LEFT LEFT(P)	←	LEFT(P1).
85 SET t+1,p1

86 PUSHJ t,:Free AVAIL	⇐	P1.
87 JMP S4A

88 9H PUT :rJ,rJ

89 POP 0,0

2.3.1.	Traversing	Binary	Trees

[567]

20. The following implementation of Program T uses a third parameter a, the
address where it will store the stack in consecutive memory locations. The local
register s is used as a stack pointer such that the stack consists of the octabyte
values at a, a + 8, . . ., a + 8(s − 1).

01 :Inorder BZ p,1F 1[0] T1.	Initialize.

02 GET rJ,:rJ 1 Stop	if	P	=	Λ.

03 SET s,0 1 Set	stack	empty.
04 T3 STOU p,a,s n T3.	Stack	⇐	P.
05 ADD s,s,8 n

06 LDOU p,p,LLINK n P	←	LLINK(P).

07 BNZ p,T3 n[a–1] T2.	P	=	Λ?

08 T4 SUB s,s,8 n T4.	P	⇐	Stack.
09 LDOU p,a,s

09 LDOU p,a,s
n

10 T5 SET t+1,p n T5.	Visit	P.
11 PUSHGO t,visit,0 n

12 LDOU p,p,RLINK n P	←	RLINK(P).

13 PBNZ p,T3 n[a] T2.	P	=	Λ?

14 PBP s,T4 a[1] Test	if	the	stack	is	empty.
15 PUT :rJ,rJ 1
16 1H POP 0,0

This version reduces the running time of Program T to (12n + 5a + 4)υ + 4nµ.
If LLINK(P) = Λ, the node P is pushed on the stack in step T3 and removed

immediately again in step T4. Adding a test to step T3 like this
T3 LDOU left,p,LLINK n

PBZ left,T5 n[a–1] To	T5	if	LLINK(P)	=	Λ.
STOU p,a,s a	–	1 T3.	Stack	⇐	P.
ADD s,s,8 a	–	1
SET p,left a	–	1 P	←	LLINK(P).
JMP T3 a	–	1

will eliminate the redundancy. The running time would then be (8n + 11a − 2)υ
+ (2n + 2a − 2)µ, which is a further improvement if we assume that a = (n +
1)/2.

For a linked stack, replace in the previous program

lines	04-05	by: and	lines	08-09	by:
T3 STOU p,a,INFO n T4 LDOU t,s,LINK n

LDOU t,a,LINK n STOU a,s,LINK n

STOU s,a,LINK n SET a,s n

SET s,a n SET s,t n

SET a,t n LDOU p,a,INFO n

These replacements increase the running time for pushing and popping the stack
from 4nυ + 2nµ to 10nυ + 6nµ to yield a total running time of (18n + 5a + 4)υ
+ 8nµ. Applying the optimization for nodes with LLINK(P) = Λ, we can reduce
the total to (10n + 13a – 8)υ + (2n + 6a – 6)µ.

The same optimization applied to the recursive implementation of Program T
yields the following program:

01 :Inorder BZ p,T4 1[0] T2.	P	=	Λ?

02 0H GET rJ,:rJ a Entry	for	recursive	calls.

03 T3 LDOU t+1,p,LLINK

03 T3 LDOU t+1,p,LLINK n T3.	Stack	⇐	P.

04 PBZ t+1,T5 n[a–1] T2.	P	=	Λ?

05 SET t+2,visit a	–	1
06 PUSHJ t,0B a	–	1 Call	Inorder(LLINK(P),Visit).
07 T5 SET t+1,p n T5.	Visit	P.
08 PUSHGO t,visit,0 n Call	Visit(P).
09 LDOU p,p,RLINK n P	←	RLINK(P).

10 BNZ p,T3 n[n–a] T2.	P	=	Λ?

11 PUT :rJ,rJ a

12 T4 POP 0,0 a T4.	P	⇐	Stack.				

Its running time is a remarkable (10n + 7a − 3)υ + 2nµ.
22. In the following implementation of algorithm U, the variable R has been
eliminated (saving two instructions) by replacing the test R = Q with RLINK(Q) =
P.

01 :Inorder BZ p,1F 1[0] U2.	Done?	Stop	if	P	=	Λ.

02 GET rJ,:rJ 1
03 U3 LDOU q,p,LLINK n	+	a	–	1 U3.	Look	left.	Q	←	LLINK(P).

04 PBZ q,U6 n	+	a	–	1[a–
1]

To	U6	if	Q	=	Λ.

05 U4 LDOU rq,q,RLINK 2c U4.	Search	for	thread.
06 CMP t,rq,p 2c

07 BZ t,5F 2c[a–1] Branch	if	RLINK(Q)	=	P.

08 CSNZ q,rq,rq d Q	←	RLINK(Q)	if	RLINK(Q)	≠	Λ.

09 PBNZ rq,U4 d[a–1] Continue	with	U4	if	RLINK(Q)	≠	Λ.

10 STOU p,q,RLINK a	–	1 U5a.	Insert	thread.	RLINK(Q)	←	P.
11 LDOU p,p,LLINK a	–	1 U9.	Go	to	left.	P	←	LLINK(P).
12 JMP U3 a	–	1 To	U3.

13 5H STCO 0,q,RLINK a	–	1 U5b.	Remove	thread.	RLINK(Q)	=	Λ.

14 U6 SET t+1,p n U6.	Inorder	visit	P.
15 PUSHGO t,visit,0 n

16 LDOU p,p,RLINK n U7.	Go	to	right	or	up.

17 PBNZ p,U3 n[1] U2.	Done?	To	U3	if	P	≠	Λ.

18 PUT :rJ,rJ 1
19 1H POP 0,0

The total running time is (18n + 10a – 10b – 5)υ + (4n + 4a – 2b – 4)µ, where n

is the number of nodes, a is the number of null RLINKs (hence a – 1 is the
number of nonnull LLINKs), c = n – b, and d = 2c – (a – 1), where b is the
number of nodes of the tree’s “right spine” P, RLINK(P), RLINK(RLINK(P)), etc.

In summary, the approximate running times for inorder traversal are:

Program	U 			(23υ	+	6µ)n	–	O(log	n)

Program	T	(with	register	stack) 			(16υ	+	2µ)n	+	O(1)

Program	T	(with	stack	in	linked	list) (16.5υ	+	5µ)n	+	O(1)

Program	T	(with	stack	in	consecutive	locations) (13.5υ	+	3µ)n	+	O(1)

Program	T	(optimized	with	register	stack) (13.5υ	+	2µ)n	+	O(1)

Program	S 			(13υ	+	2µ)n	+	O(1)

The optimized recursive version of Program T is simple and short, requires a
minimum amount of memory access, and is among the fastest programs
considered here. If a program needs a simple stack, recursion should be
considered an option; it is hard to beat the efficiency of a hardware-supported
register stack.

[571]

37. If LLINK(P) = RLINK(P) = Λ in the representation (2), let LINK(P) = Λ;
otherwise let LINK(P) = Q where NODE(Q) corresponds to NODE(LLINK(P)) and
NODE(Q + 16) to NODE(RLINK(P)). The condition LLINK(P) or RLINK(P) = Λ is
represented by a sentinel in NODE(Q) or NODE(Q + 16) respectively. This
representation uses between 2n and 4n–2 octabytes; under the stated
assumptions, (2) would require 27 octabytes, compared to 22 in the present
scheme. Insertion and deletion operations are approximately of equal efficiency
in either representation. But this representation is not quite as versatile in
combination with other structures.

2.3.2.	Binary	Tree	Representation	of	Trees

[572]

13. The following subroutine implements Algorithm 2.3.1C after appropriate
changes to the initialization and termination conditions. It expects one
parameter p pointing to a node and returns a copy of this node and everything
reachable through its LLINK pointer.

042 :Copy BZ p,9F 1[0] C1.	Initialize.

043 GET rJ,:rJ 1

044 PUSHJ u,:Allocate 1

044 PUSHJ u,:Allocate 1 Create	NODE(U)	with	RLINK(U)	=	Λ.

045 SET q,u 1 Q	←	U.
046 JMP C3 1 To	C3,	the	rst	time.
047 4H PUSHJ r,:Allocate a R	⇐	AVAIL.

048 STOU r,q,:LLINK a LLINK(Q)	←	R.

049 OR t,q,1 a

050 STOU t,r,:RLINK a RLINK(R)	←	Q,	RTAG(R)	←	1.

051 SET q,r a C5a.	Advance.	Q	←	LLINK(Q).
052 LDOU p,p,:LLINK a P	←	LLINK(P).
053 C2 LDOU t,p,:RLINK n	–	1 C2.	Anything	to	right?

054 BOD t,C3 n	–	1[a] Jump	if	RTAG(P)	=	1.

055 PUSHJ r,:Allocate n	–	1	–	a R	⇐	AVAIL.

056 LDOU t,q,:RLINK n	–	1	–	a
057 STOU t,r,:RLINK n	–	1	–	a RLINK(R)	←	RLINK(Q).
058 STOU r,q,:RLINK n	–	1	–	a RLINK(Q)	←	R,	RTAG(Q)	←	0.
059 C3 LDOU t,p,:INFO n C3.	Copy	INFO.
060 STOU t,q,:INFO n

061 LDOU t,p,:LLINK n C4.	Anything	to	left?

062 BNZ t,4B n[a] Jump	if	LLINK(P)	≠	Λ.

063 C5B LDOU p,p,:RLINK n C5b.	Advance.	P	←	RLINK(P).
064 LDOU q,q,:RLINK n Q	←	RLINK(Q).
065 BOD q,C5B n[a] Jump	RTAG(Q)	=	1.

066 PBNZ q,C2 n	–	a[1] C6.	Test	if	complete.

067 STOU u,u,:RLINK 1 RLINK(U)	←	U.
068 PUT :rJ,rJ 1
069 SET $0,u 1 Return	U.
070 9H POP 1,0

Here n is the total number of nodes copied and a is the number of nonterminal
(operator) nodes copied.

14. The total time (not counting the time spent in Allocate) is (14n + 7a + 4)υ
+ (9n – 3)µ. The time used to copy the INFO field is just 2n(υ + µ); for the LLINK
fields, we need a(υ + µ); and for the RLINK fields, we need n(υ + µ). The total
copy time of (3n + a)(υ + µ) accounts for about 20% of the cycles and 40% of the
memory access. The rest is spent on traversing the tree.
15. The following code is an exercise in nesting subroutines.

167 This	is	part	of	subroutine	D.

167 PREFIX :D: This	is	part	of	subroutine	D.
168 :Div LDOU t,q1,:INFO

169 BZ t,1F

170 SET t+1,q1

171 SET t+3,p2

172 PUSHJ t+2,:Copy

173 GETA t+3,:Div

174 PUSHJ t,:Tree2

175 SET q1,t Q1	←	Tree2(Q1,Copy(P2),“/”).
176 1H LDOU t,q,:INFO

177 BZ t,:Sub

178 SET q+3,p1

179 PUSHJ q+2,:Copy

180 SET q+3,q

181 PUSHJ q+1,:Mult Q+1	←	Mult(Copy(P1),Q).
182 SET q+4,p2

183 PUSHJ q+3,:Copy

184 PUSHJ q+4,:Allocate

185 SET q+5,2

186 STTU q+5,q+4,:INFO

187 GETA q+5,:Pwr

188 PUSHJ q+2,:Tree2 Q+2	←	Tree2(Copy(P2),Allocate()," ").
189 GETA q+3,:Div

190 PUSHJ q,:Tree2 Q	←	Tree2(Q+1,Q+2,“ ”).
191 JMP :Sub Q	←	Q1	–	Q.				

16. Even more nested subroutine calls! Note the unusual definition of register r
serving as basis for the nested subroutine calls.

192 r IS t+1

193 :Pwr LDOU t,q1,:INFO

194 BZ t,2F Jump	if	INFO(Q1)	=	0.
195 SET r+1,p1

196 PUSHJ r,:Copy R	←	Copy(p1).
197 LDWU diff,p2,:DIEF

198 BNZ diff,1F Jump	if	DIFF(P2)	≠	0.
199 LDT info,p2,:INFO Load	value	of	constant	P2.
200 CMP t,info,2 Is	it	2?

200 CMP t,info,2 Is	it	2?
201 BZ t,3F If	yes,	jump.
202 SET r+1,r 1)	R
203 PUSHJ r+2,:Allocate 2)	New	constant
204 SUB info,info,1 								with	value	INFO(P2)	–	1
205 STT info,r+2,:INFO

206 GETA r+3,:Pwr 3)	“ ”
207 PUSHJ r,:Tree2 R	←	Tree	2(R,INFO(P2)	–	1,“ ”).
208 JMP 3F

209 1H SET r+1,r 1)	R

210 SET r+4,p2 																				α)	P2

211 PUSHJ r+3,:Copy a)	Copy(P2)
212 PUSHJ r+4,:Allocate b)	New	constant
213 SET info,1 																				with	value	1
214 STT info,r+4,:INFO

215 GETA r+5,:Sub c)	“–”
216 PUSHJ r+2,:Tree2 2)	Tree2(Copy(P2),1,“–”
217 GETA r+3,:Pwr 3)	“ ”
218 PUSHJ r,:Tree2 R	←	Tree2(R,Tree2(Copy(P2),1,“–”),“ ”
219 3H SET r+1,q1 1)	Q1

220 SET r+4,p2 																				α)	P2

221 PUSHJ r+3,:Copy a)	Copy(P2)
222 SET r+4,r b)	R
223 PUSHJ r+2,:Mult 2)	Mult(Copy(P2),R)
224 PUSHJ r,:Mult R	←	Mult(Q1,Mult(Copy(P2),R)).
225 SET q1,r Q1	←	Mult(Q1,Mult(Copy(P2),R)).
226 2H LDOU t,q,:INFO

227 BZ t,:Add If	INFO(Q)	=	0	go	to	Add.

228 SET q+4,p1 																															i)	P1

229 PUSHJ q+3,:Copy α)	Copy(P1)

230 GETA q+5,:Ln β)	ignored,	γ)	“ln”

231 PUSHJ q+2,:Tree1 a)	Tree1(Copy(P1),	·,	“ln”)
232 SET q+3,q b)	Q
233 PUSHJ q+1,:Mult 1)	Mult(Tree1(Copy(P1),	·,	“ln”),Q)

234 SET q+4,p1 																	α)	P1

235 PUSHJ q+3,:Copy a)	Copy(P1)

236 SET q+5,p2

236 SET q+5,p2 																	α)	P2

237 PUSHJ q+4,:Copy b)	Copy(P2)
238 GETA q+5,:Pwr c)	“ ”
239 PUSHJ q+2,:Tree2 2)	Tree2(Copy(P1),Copy(P2),“ ”)
240 GETA q+3,:Mul 3)	“×”
241 PUSHJ q,:Tree2 Q	←	Tree2(Mult(Tree1(Copy(P1),·,	“ln”),Q),
242 JMP :Add 								Tree2(Copy(P1),Copy(P2),“ ”),	“×”).				

2.3.5.	Lists	and	Garbage	Collection

[601]

4. The program that follows incorporates the suggested improvements in the
speed of processing atoms that appear in the text after the statement of
Algorithm E. It follows closely the original MIX program. The least significant bit
of ALINK(P) is used as mark bit MARK(P), and the least significant bit of BLINK(P)
is used as atom bit ATOM(P). Note the use of the MUX (multiplex) instruction to
selectively set or copy these bits.

01 :Mark SET t,0 1 E1.	Initialize.	T	←	A.
02 PUT :rM,1 1 Prepare	for	MUXing	the	tag	bits.
03 E2 LDOU x,p,ALINK 1 E2.	Mark	P.
04 OR x,x,1 1
05 STOU x,p,ALINK 1 MARK(P)	←	1.
06 E3 LDOU x,p,BLINK 1 E3.	Atom?

07 PBEV x,E4 1[0] Jump	if	ATOM(P)	=	0.

08 E6 BZ t,9F n[1] E6.	Up.
09 SET q,t n	–	1 Q	←	T.
10 LDOU t,q,BLINK n	–	1 T	←	BLINK(Q).

11 PBOD t,1F n	–	1[t2] Jump	if	ATOM(T)	=	1.

12 STOU p,q,BLINK t2 BLINK(Q)	←	P.
13 SET p,q t2 P	←	Q.
14 JMP E6 t2

15 1H ANDN t,t,1 t1 Remove	tag	bit	from	T.
16 STOU t,q,BLINK t1 ATOM(Q)	←	0.
17 LDOU x,q,ALINK t1 t	←	ALINK(Q).
18 ANDN t,x,1 t1 T	←	ALINK(Q)	without	mark	bit.

19 MUX x,x,p

19 MUX x,x,p t1 t	←	P	retaining	MARK(Q).
20 STOU x,q,ALINK t1 ALINK(Q)	←	P	retaining	MARK(Q).
21 SET p,q t1 P	←	Q.
22 E5 LDOU r,p,BLINK n E5.	Down	BLINK.	R	←	BLINK(P).
23 ANDN q,r,1 n Q	←	BLINK(P)	without	atom	bit.

24 BZ q,E6 n[b2] Jump	if	Q	=	Λ.

25 LDOU x,q,ALINK n	–	b2

26 BOD x,E6
n	–	b2[t1	+	1	–	b2	–

a2]
Jump	if	MARK(Q)=	1.

27 OR x,x,1 t2	+	a2 Set	mark	bit.

28 STOU x,q,ALINK t2	+	a2 MARK(Q)	←	1.

29 LDOU x,q,BLINK t2	+	a2
30 BOD x,E6 t2	+	a2[a2] Jump	if	ATOM(Q)	=	1.

31 MUX r,r,t t2 R	←	T	retaining	ATOM(P).
32 STOU r,p,BLINK t2 BLINK(P)	←	T	retaining	ATOM(P).
33 E4A SET t,p n	–	1 T	←	P.
34 SET p,q n	–	1 P	←	Q.
35 E4 LDOU r,p,ALINK n E4.	Down	ALINK.	Q	←	ALINK(P).
36 ANDN q,r,1 n Q	←	ALINK(P)	without	mark	bit.

37 BZ q,E5 n[b1] Jump	if	Q	=	Λ.

38 LDOU x,q,ALINK n	–	b1
39 BOD x,E5 n	–	b1[t2	+	1	–	b1	–	a1] Jump	if	MARK(Q)	=	1.

40 OR x,x,1 t1	+	a1 Set	mark	bit.

41 STOU x,q,ALINK t1	+	a1 MARK(Q)	←	1.

42 LDOU x,q,BLINK t1	+	a1
43 BOD x,E5 t1	+	a1[a1] Jump	if	ATOM(Q)	=	1.

44 LDOU x,p,BLINK t1

45 OR x,x,1 t1 Set	atom	bit.
46 STOU x,p,BLINK t1 ATOM(P)	←	1.
47 MUX r,r,t t1 R	←	T	retaining	ATOM(P).
48 STOU r,p,ALINK t1 ALINK(P)	←	T	retaining	ATOM(P).
49 JMP E4A t1

50 9H POP 0,0

By Kirchhoff’s law, t1 + t2 + 1 = n, a1 + a2 = a, and b1 + b2 = b. The total time

is (29n + 6t1 + 4a – 2b – 5)υ + (9n + 4t1 + 2a – b – 2)µ, where n is the number
of nonatomic nodes marked, a is the number of atoms marked, b is the number
of Λ links encountered in marked nonatomic nodes, and t1 is the number of
times we went down an ALINK (0 ≤ t1 < n).

2.5.	DYNAMIC	STORAGE	ALLOCATION

[607]

4. The following implementation uses a register link to simplify (and speed up)
access to the LINK field given an address relative to base. For the SIZE field, no
such register is needed since the offset of the SIZE field is zero. To improve the
readability, however, we define size as an alias for base.

01 :Allocate ADDU link,:base,LINK

02 size IS :base

03 LDA p,:AVAIL A1.	Initialize.	P	←	LOC(AVAIL).
04 SUBU p,p,link Convert	to	relative	address.
05 1H SET q,p Q	←	P.
06 LDT p,q,link A2.	End	of	list?	P	←	LINK(Q).

07 BN p,9F If	P	=	Λ,	no	room.

08 LDT s,p,size A3.	Is	SIZE	enough?
09 SUB k,s,n K	←	SIZE(P)	–	N.

10 PBN k,1B Jump	if	N	>	SIZE(P).
11 PBNZ k,1F A4.	Reserve	N.
12 LDT t,p,link If	K	=	0,
13 STT t,q,link set	LINK(Q)	←	LINK(P).
14 1H STT k,p,size SIZE(P)	←	K.

15 ADD p,p,k P	+	K.

16 ADDU $0,p,:base Convert	P	+	K	to	an	absolute	address
17 POP 1,0 and	return	it.

18 9H POP 0,0 Return	Λ.				

13. The following code uses registers size, rlink, llink, and psize to simplify
access to the various fields of a node using relative addresses. The notation
PSIZE(P) is a convenient shorthand for the SIZE field that terminates the block
preceding NODE(P) as if it were a field of NODE(P).

01 :Allocate ADD n,n,8+7 1 A.1	Initialize.

02 ANDN n,n,7 1

02 ANDN n,n,7 1 Add	overhead	and	round	up.
03 LDA size,:AVAIL+SIZE 1 Base	address	for	SIZE	fleld,
04 LDA rlink,:AVAIL+RLINK 1 for	RLINK	field,
05 LDA llink,:AVAIL+LLINK 1 for	LLINK	field,	and
06 SUBU psize,size,4 1 for	preceding	SIZE.
07 SET p,:rover 1 P	←	ROVER.

08 SET f,0 1 F	←	0.

09 JMP A2 1 Start	the	search.
10 A3 LDTU s,size,p A A3.	Is	SIZE	enough?
11 SUB k,s,n A K	←	SIZE(P)	–	N.

12 BNN k,A4 A[1] Jump	if	SIZE(P)	≥	N.
13 1H LDTU p,rlink,p A	+	B	–	1 P	←	RLINK(P).

14 A2 PBNZ p,A3 A	+	B[B] A2.	End	of	list?

15 BNZ f,9F B[0] Over	ow	if	P	=	0	and	F	≠	0.
16 SET f,1 B F	←	1.

17 JMP 1B B

18 A4 LDTU :rover,p,rlink 1 A4′.	Reserve	at	least	N.
19 CMP t,k,c 1

20 BNN t,1F 1[1	–	D] Jump	if	K	≥	c.

21 LDTU q,llink,p D Delete	NODE(P)	from	list.
22 STTU :rover,rlink,q D

23 STTU q,llink,:rover D

24 SET l,p D Result	is	P.
25 SET n,s D Size	of	result	is	size	of	P.
26 JMP 2F D

27 1H ADDU l,p,k 1	–	D Split	NODE(P)	into	P	and	L.
28 STTU k,size,p 1	–	D SIZE(P)	←	K.

29 STTU k,psize,l 1	–	D SIZE(P)	←	K	at	block	end.
30 2H OR n,n,1 1
31 STTU n,size,l 1 SIZE(L)	←	N,	TAG(L)	←	1.

32 ADDU q,l,n 1 Advance	to	block	after	L.
33 STTU n,psize,q 1 SIZE(L)	←	N,TAG(L)	←	1.

34 ADDU $0,rlink,l 1 Return	absolute	address
35 POP 1,0 of	usable	memory.
36 9H POP 0,0 Overflow.				

The running time is (23 + 5A + 7B + D)υ + (4 + 2A + B + D)µ. Here A ≥ 1 is
the number of iterations necessary when searching for an available block that is
large enough; B = 1, if the iteration wraps around the end of the list; and D = 1,
if a block is deleted from the list. We can assume that the average value of B is
quite small, whereas the average value of D will approach 1 when the system
reaches a stable state.
16. This subroutine uses the same conventions as the solution to exercise 13. We
use the variables P1 and N1, respectively, for the address and size of the block
following P0, and N2 for the size of the block preceding P0; F is the forward block
and B the backward block in the linked list.

01 :Free LDA size,:AVAIL+SIZE Base	address	for	SIZE	eld,
02 LDA rlink,:AVAIL+RLINK for	RLINK	field,
03 LDA llink,:AVAIL+LLINK for	LLINK	field,	and
04 SUBU psize,size,4 for	preceding	SIZE.
05 SUBU p0,p0,rlink Make	P0	a	relative	address.
06 LDTU n,size,p0 D1.	Initialize.	N	←	SIZE(P0).
07 ANDN n,n,1 Remove	TAG	bit.
08 ADDU p1,p0,n P1	←	P0	+	N.

09 LDTU n1,size,p1 N1	←	SIZE(P1).

10 LDTU n2,psize,p0 N2	←	PSIZE(P0).

11 BEV n1,D4 To	D4	if	NODE(P1)	is	free.
12 BEV n2,D7 To	D7	if	NODE(P2)	is	free.
13 D3 LDTU f,llink,0 D3.	Insert	P0.	F	←	LLINK(AVAIL).
14 SET b,0 B	←	AVAIL.

15 JMP D5

16 D4 ADD n,n,n1 D4.	Delete	upper	area.	N	←	N	+	SIZE(P1).
17 LDTU b,llink,p1 B	←	LLINK(P1).

18 LDTU f,rlink,p1 F	←	RLINK(P1).

19 CMP t,p1,:rover

20 CSZ :rover,t,0 If	P1	=	ROVER,	set	ROVER	←	AVAIL.
21 ADDU p1,p1,n1 P1	←	P1	+	SIZE(P1).

22 BEV n2,D6 To	D6	if	NODE(P2)	is	free.
23 D5 STTU f,rlink,p0 D5.	Insert	NODE(P0).	RLINK(P0)	←	F.
24 STTU b,llink,p0 LLINK(P0)	←	B.

25 STTU p0,rlink,b RLINK(B)	←	P0.

26 STTU p0,llink,f LLINK(F)	←	P0.

27 JMP D8

27 JMP D8

28 D6 STTU f,rlink,b D6.	Delete.	RLINK(B)	←	F.
29 STTU b,llink,f LLINK(F)	←	B.

30 D7 ADD n,n,n2 D7.	Enlarge	lower	area.
31 SUBU p0,p0,n2 Move	P0	to	NODE(P2).
32 D8 STTU n,size,p0 D8.	Store	SIZE.	SIZE(P0)	←	N.
33 STTU n,psize,p1 PSIZE(P1)	←	N.

34 POP 0,0

The possible running times are 18υ (next block occupied, preceding block free),
22υ (next block occupied, preceding block occupied), 27υ (next block free,
preceding block occupied), or 28υ (next block free, preceding block free).

27. The node sizes are 2k bytes with 4 ≤ k ≤ m; the minimum node size is 24 =
16 bytes because an available node must contain three tetrabytes for KVAL,
LINKF, and LINKB. Addresses are stored relative to the value of the global register
base and are assumed to fit in a tetrabyte. Consequently, m is some constant m
< 32. The list heads AVAIL[4], AVAIL[5], . . . , AVAIL[m] are allocated
immediately before the base-address such that the relative address of AVAIL[k] is
16(k – m – 1); list heads are the only nodes with negative relative addresses. In
the KVAL field of a node, we do not store k or 2k (its size), but rather the relative
address of AVAIL[k]; this is more convenient and the value of k can be easily
computed from the address if needed.

For the TAG bits—anticipating exercise 29—we use a separate memory area,
starting at address TAGS, containing one bit for each 16-byte block of available
memory. For convenience, we keep LOC(TAGS) in the global register tags. The
following auxiliary function FindTag will take any nonnegative relative address P
as a parameter and return three return values: the octabyte containing the TAG bit,
a mask with the respective bit set to 1, and the relative address of the octabyte
within the TAGS.

PREFIX :FindTag:

p IS $0 Parameter
tag IS $2 Primary	return	value
mask IS $0 Second	return	value
address IS $1 Third	return	value
t IS $3 Temporary	variable
:FindTag SR address,p,7 address	←	 (P/16/64)	*	8 .

SR t,p,4

AND t,t,64-1

AND t,t,64-1
t	←	 P/16 	mod	64.

SETH mask,#8000

SRU mask,mask,t mask	←	263–t.
LDOU tag,:tags,address

POP 3,0 Return	tag,	mask,	and	address.				

The running time of this function is 9υ + 1µ (including the final POP); it is used in
the following implementation of Algorithm R and again in the solution of
exercise 28.

The function Allocate expects one parameter k. On success, it will return an
absolute address to 2k bytes; on failure, it will return Λ = 0.

01 :Allocate ADDU linkf,:base,LINKF 1
02 ADDU linkb,:base,LINKB 1
03 CMP t,k,4 1
04 CSN k,t,4 1 k	←	max{k,	4}.
05 NEG availk,16*(:m+1) 1 availk	←	LOC(AVAIL[0]).

06 16ADDU availk,k,availk 1 availk	←	LOC(AVAIL[k]).

07 SET availj,availk 1 R1.	Find	block.	j	←	k.
08 1H LDT l,availj,linkf 1	+	R L	←	availF[j].

09 PBNN l,R2 1	+	R[R] To	R2	if	L	≠	AVAIL[j].

10 ADD availj,availj,16 R j	←	j	+	1.
11 PBN availj,1B R[0] Is	j	≤	m?

12 POP 0,0 0 Return	Λ.

13 R2 GET rJ,:rJ 1 R2.	Remove	from	list.
14 LDT p,l,linkf 1 P	←	LINKF(L).

15 STT p,availj,linkf 1 availF[j]	←P.

16 STT availj,p,linkb 1 LINKB(P)	←	LOC(AVAIL[j]).

17 SET t+1,l 1
18 PUSHJ t,:FindTag 1 Find	TAG(L).
19 ANDN t,t,t+1 1 Set	tag	bit	to	zero.
20 STOU t,:tags,t+2 1 TAG(L)	←	0.
21 SUB jk,availj,availk 1 R3.	Split	required?
22 SR jk,jk,4 1 jk	←	j	–	k.

23 PBZ jk,9F 1[R'] Terminate	if	j	=	k.

24 SET bitk,1 R' bitk	←	20.

25 SL bitk,bitk,k R' bitk	←2k.

26 R4 SUB jk,jk,1

26 R4 SUB jk,jk,1 R R4.	Split.	j	←	j	–	1.
27 SL t,bitk,jk R t	←	2j.
28 ADDU p,l,t R P	←	L	+	2j.
29 SET t+1,p R

30 PUSHJ t,:FindTag R Find	TAG(P).
31 OR t,t,t+1 R Set	tag	bit	to	one.
32 STOU t,:tags,t+2 R TAG(P)	←	1.
33 16ADDU availj,jk,availk R Get	LOC(AVAIL[j]).
34 STT availj,p,kval R KVAL(P)	←	LOC(AVAIL[j]).

35 STT availj,p,linkf R LINKF(P)	←	LOC(AVAIL[j]).

36 STT availj,p,linkb R LINKB(P)	←	LOC(AVAIL[j]).

37 STT p,availj,linkf R availF[j]	←	P.

38 STT p,availj,linkb R availB[j]	P.

39 BP jk,R4 R[R	–	R'] Repeat	if	j	>	k.

40 9H ADDU $0,:base,l 1 Return	L	as	absolute	address.
41 PUT :rJ,rJ 1
42 POP 1,0

The running time is (22+22R+2R ′)υ +(5+7R)µ plus (R+1)(9υ +1µ) for the
FindTag subroutine, where R is the number of times a block is split in two, and
R ′ is 1 if R > 0, and 0 otherwise. Since R is quite small on the average, we can
assume ave R ′ ≈ ave R. For good performance, the FindTag subroutine should
be inlined, reducing its cost by (R + 1)(5υ + 1µ).
28. The function Free expects two parameters L and k, assuming that L was
obtained through a call to the function Allocate (see exercise 27) with the same
value k.

01 :Free GET rJ,:rJ 1
02 ADDU linkf,:base,LINKF 1
03 ADDU linkb,:base,LINKB 1
04 CMP t,k,4 1
05 CSN k,t,4 1 k	←	max{k,	4}.
06 SUBU l,l,:base 1 Make	L	a	relative	address.
07 SUB availk,k,:m+1 1
08 SLU availk,availk,4 1 availk	←	LOC(AVAIL[k]).

09 S1 SET t,1 1	+	S S1.	Is	buddy	available?

10 SLU t,t,k 1	+	S t	←	2k.

11 XOR p,l,t

11 XOR p,l,t 1	+	S P	←	buddyk(L).

12 SET t+1,p 1	+	S
13 PUSHJ t,:FindTag 1	+	S Find	TAG(P).
14 AND t,t,t+1 1	+	S Extract	TAG(P).

15 PBZ t,S3 1	+	S[B] To	S3	if	TAG(P)	=	0.

16 LDT t,p,kval B	+	S t	←	KVAL(P).

17 CMP t,t,availk B	+	S KVAL(P)	=	k?

18 PBNZ t,S3 B	+	S[S] To	S3	if	KVAL(P)	≠	k.

19 LDT r,p,linkf S S2.	Combine	with	buddy.
20 LDT q,p,linkb S R	←	LINKF(P);	Q	←	LINKB(P).

21 STT r,q,linkf S LINKF(LINKB(P))	←	LINKF(P).

22 STT q,r,linkb S LINKB(LINKF(P))	←	LINKB(P).

23 ADD k,k,1 S Increase	k.
24 ADD availk,availk,16 S

25 AND l,l,p S If	L	>	P,	set	L	←	P.
26 JMP S1 S

27 S3 SET t+1,l 1 S3.	Put	on	list.
28 PUSHJ t,:FindTag 1 Find	TAG(L).
29 OR t,t,t+1 1 Set	tag	bit	to	one.
30 STOU t,:tags,t+2 1 TAG(L)	←	1.
31 LDT p,availk,linkf 1 P	←	AVAILF[k].
32 STT p,l,linkf 1 LINKF(L)	←	P.

33 STT l,p,linkb 1 LINKB(P)	←	L.

34 STT availk,l,kval 1 KVAL(L)	←	k.
35 STT availk,l,linkb 1 LINKB(L)	←	LOC(AVAIL[k]).
36 STT l,availk,linkf 1 AVAILF[k]	←	L.
37 PUT :rJ,rJ 1
38 POP 0,0

The running time is (26 + 20S + 5B)υ + (7 + 5S + B)µ plus (S + 2)(9υ + 1µ) for
the FindTag subroutine, where S is the number of times buddy blocks are
reunited, and B is the number of times a potential buddy is available but of the
wrong size. With B ≈ 0.5, the running time simplifies to (46.5 + 29S)υ + (9.5 +
6S)µ. Storing the tag bits inside the nodes would improve the performance, but
reserving a bit in a node is usually not convenient for a general-purpose memory
allocator. Again, inlining the FindTag function saves another (10 + 5S)υ.

34. The variables BASE, AVAIL, and USE are kept in global registers. These node
addresses, as well as P, Q, and TOP, always point into the node as described in
exercise 33—except during step G9, where P and Q point to the LINK field. The
field offsets for LINK, SIZE, and T are negative, and MMIX is not specially suited to
handle negative constants. Therefore, we use three registers to hold these
constants. Step G1 is omitted from the following program.

01 :GC NEG size,16 1 Field	offset	for	SIZE
02 NEG t,12 1 Field	offset	for	T
03 NEG link,8 1 Field	offset	for	LINK
04 SET top,:avail 1 G2.	Initialize	marking	phase.

05 STCO 0,:avail,link 1 LINK(AVAIL)	←	Λ.

06 BZ :use,G3 1[0] If	USE	≠	Λ	push	it.

07 STOU top,:use,link 1 LINK(USE)	←	TOP.
08 SET top,:use 1 TOP	←	USE.
09 G3 SET p,top a	+	1 G3.	Pop	up	stack.	P	←	TOP.
10 LDOU top,top,link a	+	1 TOP	←	LINK(TOP).

11 BZ top,G5 a	+	1[1] If	TOP	=	Λ,	go	to	G5.

12 LDTU k,p,t a G4.	Put	new	links	on	stack.	k	←	T(P).

13 1H BNP k,G3 a	+	b[a] While	k	>	0	do:

14 SUB k,k,8 b decrement	k,
15 LDOU q,p,k b Q	←	LINK(P	+	k),

16 BZ q,1B b[b	′] continue	if	Q	=	Λ,

17 LDOU l,q,link b	–	b	′ L	←	LINK(Q),

18 BNZ l,1B b	–	b	′[a–1] continue	if	LINK(Q)	≠	Λ,

19 STOU top,q,link a	–	1 LINK(Q)	←	TOP,	and
20 SET top,q a	–	1 TOP	←	Q.
21 JMP 1B a	–	1
22 G5 SET q,:base 1 G5.	Initialize	next	phase.
23 STOU q,:avail,link 1 LINK(AVAIL)	←	Q.
24 STCO 0,:avail,size 1 SIZE(AVAIL),	T(AVAIL)	←	0.
25 SET p,:base 1 P	←	base.
26 JMP G6 1
27 1H STOU q,p,link 1 Q	←	LINK(P).
28 ADDU q,q,s 1 Q	←	Q	+	SIZE(P).
29 ADDU p,p,s 1 P	←	P	+	SIZE(P).

30 G6 LDOU l,p,link

30 G6 LDOU l,p,link
a	+	1 L	←	LINK(P).

31 G6A LDTU s,p,size a	+	c	+	1 s	←	SIZE(P).

32 BZ l,G7
a	+	c	+

1[c]
To	G7	if	LINK(P)	=	Λ.

33 PBNZ s,1B a	+	1[1] To	G8	if	SIZE(P)	=	0.

34 G8 BZ :use,0F 1 G8.	Translate	all	links.
35 LDOU :use,:use,link 1 USE	←	LINK(USE).
36 0H SET :avail,q 1 AVAIL	←	Q.
37 SET p,:base 1 P	←	base.
38 JMP G8P 1
39 1H LDTU x,ps,size d x	←	SIZE(ps).
40 ADDU s,s,x d s	←	s	+	SIZE(ps).
41 G7 ADDU ps,p,s c	+	d G7.	Collapse	available	area.
42 LDOU l,ps,link c	+	d L	←	LINK(ps).

43 BZ l,1B c	+	d[d] Repeat	if	LINK(ps)	=	Λ.

44 STTU s,p,size c SIZE(P)	←	s.
45 ADDU p,p,s c P	←	P	+	SIZE(P).
46 JMP G6A c

47 2H SUB k,k,8 b Decrement	k.
48 LDOU q,p,k b Q	←	LINK(P	+	8	+	k).

49 BZ q,1F b[b	′] Ignore	Λ.

50 LDOU l,q,link b	–	b	′ L	←	LINK(Q).
51 STOU l,p,k b	–	b	′ LINK(P	+	8	+	k)	←	L.

52 1H BP k,2B a	+	b[b] Jump	if	k	>	0.

53 3H ADDU p,p,s a	+	c P	←	P	+	SIZE(P).
54 G8P LDTU s,p,size 1	+	a	+	c s	←	SIZE(P).
55 LDOU l,p,link 1	+	a	+	c L	←	LINK(P).

56 BZ l,3B 1	+	a	+
c[c]

Is	LINK(P)	=	Λ?

57 LDTU k,p,t 1	+	a k	←	T(P).

58 PBNZ s,1B 1	+	a[1] Jump	unless	SIZE(P)	=	0.

59 G9 SUBU p,:base,16 1 G9.	Move.
60 SET q,p 1 Q	and	P	start	at	LINK(base).
61 JMP G9P 1

62 1H STCO 0,q,8 a LINK(Q)	←	Λ.

63 STOU st,q,0

63 STOU st,q,0 a
SIZE(Q),	T(Q)	←	SIZE(P),	T(P).

64 ADDU q,q,s a Q	←	Q	+	SIZE(P).
65 NEG s,16,s a s	←	16	–	s.
66 2H LDOU x,p,s w	–	2 Copy	data	from	P	to	Q.
67 STOU x,q,s w	–	2
68 ADD s,s,8 w	–	2 s	←	s	+	8.

69 0H PBN s,2B w	–	2[a]
70 G9P LDOU l,p,8 1	+	a	+	c L	←	LINK(P).
71 LDOU st,p,0 1	+	a	+	c st	←	SIZE(P),	T(P).
72 SRU s,st,32 1	+	a	+	c s	←	SIZE(P).
73 ADDU p,p,s 1	+	a	+	c P	←	P	+	SIZE(P).

74 BZ l,G9P 1	+	a	+
c[c]

Jump	if	LINK(P)	=	Λ.

75 PBNZ s,1B 1	+	a[1] Jump	unless	SIZE(P)	=	0.

76 POP 0,0

The total running time for this program is (35a + 14b + 4w + 23c + 7d + 37)υ
+ (12a + 5b – 3b ′ + 2w + 7c + 2d + 9)µ, where a is the number of accessible
nodes, b is the number of link fields therein, b ′ is the number of link fields
containing Λ, c is the number of inaccessible nodes that are not preceded by an
inaccessible node, d is the number of inaccessible nodes that are preceded by an
inaccessible node, and w is the total number of octabytes in the accessible nodes.
If the memory contains n nodes, with ρn of them inaccessible, then we may
estimate a = (1 – ρ)n, c = (1 – ρ)ρn, d = ρ2n. Example: five-octabyte nodes (on
the average), with two link fields per node (on the average), and a memory of
1000 nodes. Then when ρ = 0.2, it takes 352υ per available node recovered;
when ρ = 0.5, it takes 98υ; and when ρ = 0.8, it takes only 31υ.

3.2.1.1.	Choice	of	modulus

[543]

1. Let c ′ be a solution to the congruence ac ′ ≡ c (modulo m). (Thus, c ′ = a ′c
mod m, if a ′ is the number in the answer to exercise 3.2.1–5.) Results derived in
Section 3.3.4 imply that c ′ = 1 works about as well as any constant.

2. For a small c < 216, an INCL instruction can be used instead of the ADDU
instruction, which requires c to be in a register.

:Random MULU x,x,a

:Random MULU x,x,a X	←	aX	mod	w.
ADDU x,x,c X	←	(X	+	c)	mod	w.
SET $0,x
POP 1,0

5. A CMPU instruction is needed to find out whether d = x – y is negative without
overflow.
SUBU d,x,y
CMPU t,x,y
ZSN t,t,m
ADDU d,d,t

The sum s = x + y mod m is computed similarly after rewriting it as a difference
x – (m – y) mod m.
SUBU t,m,y
SUBU s,x,t
CMPU t,x,t
ZSN t,t,m
ADDU s,s,t

But if m is less than 2e−1, the computations can be done directly without CMPU,
using ordinary two’s complement representations.
SUB d,x,y
ZSN t,d,m
ADD d,d,t

And for the sum:
ADDU s,x,y
SUBU t,s,m
CSNN s,t,t

8.
MULU r,a,x; GET	q,rH Compute	q,	r	with	aX	=	qw	+	r.
ADDU x,q,r X	←	q	+	r.
CMPU t,x,q

ZSN t,t,1 t	←	[q	+	r	≤	w].
ADDU x,x,t X	←	X	+	t.				

3.2.1.3.	Potency

[550]

1. For MMIX, we have m = 264. With a = 2k + 1 and b = 2k, b is a multiple of 2,
the only prime dividing m; and b is a multiple of 4, if k > 1. So we have a
maximum period.

2. If ks ≥ 64, then bs = 2ks ≡ 0 (modulo m). We conclude: k ≥ 32 gives potency
s = 2, k ≥ 22 gives potency s = 3, and k ≥ 16 gives potency s = 4. The only
reasonable values for k, considering potency, are less than 16. On the other
hand, small values of k yield small multipliers, which should be avoided.

3.2.2.	Other	Methods

[556]

25. If the subroutine of Program A is invoked as PUSHJ	t,Random, it puts the
next random number in register t. The overhead of the subroutine call is 4υ, one
for the PUSHJ and three for the POP. The subroutine itself takes 9υ + 3µ (not
counting the POP). The total time per random number is 13υ + 3µ; the calling
overhead is about 30 percent.

We save overhead by using the five instructions
SUB j,j,8
PBP j,1F
PUSHJ t,Random55
SET j,55*8

1H LDOU t,y,j

to put the next random number in register t, with the following subroutine:

:Random55 SET j,24*8 j	←	24.
ADD ykj,y,31*8 k	←	55,	ykj	←	Address	of	Y	[k	–	j].

1H LDOU x,y,j X	←	Y	[j].
LDOU t,ykj,j t	←	Y	[k	–	j	+	j]	=	Y	[k].
ADDU x,x,t X	←	Y	[j]	+	Y	[k].
STOU x,ykj,j Y	[k]	←	Y	[k]	+	Y	[j].
SUB j,j,8 j	←	j	–	1.
PBP j,1B

k IS j Reuse	register	j	for	k.
SET k,31*8 k	←	31.
ADD ykj,y,24*8 j	←	55,	ykj	←	Address	of	Y	[j	–	k].

1H LDOU x,ykj,k X	←	Y	[j	–	k	+	k]	=	Y	[j].
LDOU t,y,k t	←	Y	[k].

ADDU x,x,t X	←	Y	[j]	+	Y	[k].
STOU x,y,k Y	[k]	←	Y	[k]	+	Y	[j].
SUB k,k,8 k	←	k	–	1.
PBP k,1B
POP 0,0

The cost is now only 11υ + 55(6υ + 3µ) for the subroutine call, and a single
random number costs (9 + 15/55)υ + 4µ on average. [A similar implementation,
. . .

3.4.1.	Numerical	Distributions

[584]

3. If full-word random numbers are given . . .

Unfortunately, however, the “himult” operation in (1) is not supported in
many high-level languages; see exercise 3.2.1.1–3. Division by m/k may be best
when highmult is unavailable. Indeed, if k = 2i and m = 264, the division by m/k
can be accomplished in a single MMIX cycle as well:

SRU	x,u,(64 – i) X ← U/(m/k).
In this special but common case, the division by m/k is the same as
multiplication with k/m. The remainder method uses the i least significant bits of
U, where the multiplication method uses the i most significant bits. The latter is
preferable.

3.6.	SUMMARY

[599]

1. The following subroutine keeps X in a global register for efficiency; no load
or store operations are required. The constant a is loaded in four steps as an
immediate value; it could also be in a global register, of course.
x GREG

a IS 6364136223846793005 See	Section	3.3.4,	Table	1,	line	26.
c IS 2009 MMIX
k IS $0 Parameter
t IS $1 Temporary	variable
:RandInt SETH t,(a>>48)&#FFFF Load	constant	a.

INCMH t,(a>>32)&#FFFF
INCML t,(a>>16)&#FFFF

INCML t,(a>>16)&#FFFF
INCL t,a&#FFFF

MULU x,x,t X	←	aX	mod	m.
INCL x,c X	←	(aX	+	c)	mod	m.
MULU t,x,k (rH,	t)	←	Xk.
GET t,:rH t	←	 Xk/m .

ADD $0,t,1 Return	 Xk/m 	+	1.
POP 1,0

The total running time of the subroutine is 30υ including the final POP. Adding
the time to pass the parameter k (1υ) and to execute the PUSHJ instruction (1υ), a
random integer value can be computed in 32υ. Keeping a in another global
register will save 4υ.

4.1.	POSITIONAL	NUMBER	SYSTEMS

[605]

4. (a) The product in register x has the radix point at the left end. Overflow will
occur if the result is greater or equal than (0.1)2. Registers rH and rR are not
affected.
(b) The remainder in register rR has the radix point between bytes 3 and 4 (the
same as a). The quotient in register x has the radix point between bytes 6 and 7.
Register rH is not affected. The results get a bit confusing if the radix point in the
divisor is farther to the left than the radix point in the dividend. Imagine dividing
(00101.000)256 by (001.00000)256. Then after division, register rR will contain a
“remainder” of (00001.000)256 and the register x will be 1, representing a
“quotient” of (100)256 with the radix point two bytes past the right end of the
register.

(c) The product in registers (rH, x) has the radix point between rH and x.
Register rR is not affected.
(d) As long as rD contains zero, the radix points are the same as in (b). The
results are also the same, because we assumed a and b to be nonnegative.

The DIVU (divide unsigned) instruction uses the register pair (rD, a) to form a
128-bit dividend with the upper 64 bits of the dividend residing in the dividend
register rD. As long as the quotient will fit into the single register x, the radix
points will be as in (b). Otherwise, MMIX simply sets x ← rD and the remainder
register rR ← b; register x will inherit the radix point from the register pair (rD,

a) and register rR from b.

4.2.1.	Single-Precision	Calculations

14. The following subroutine has one parameter: u, a normalized floating point
number. It returns the nearest signed 64 bit two’s complement integer.

01 :Fix ZSN s,u,1 Unpack.	Record	sign.
02 ANDNH u,#8000 Remove	sign	bit.
03 SRU e,u,52 Get	exponent.
04 SLU u,u,11

Get	fraction	part	and	add	hidden	bit.
05 ORH u,#8000

06 SET t,1023+63;	SUB	e,e,t e	←	e	–	q	–	63.	Now	u	=	u	×	2e.
07 BP e,:Error Overflow.
08 BZ e,Sign

09 NEG e,e Round.	Set	e	←	-e.
10 NEG t,64,e

11 SLU f,u,t f	←	the	fraction	part	of	u	×	2e.

12 SRU u,u,e u	←	 u	×	2e .

13 SETH t,#8000;	CMPU	t,f,t Compare	f	to	0.5.

14 CSOD carry,u,1 u	is	odd.	Round	up	if	f	≥	 .

15 CSEV carry,u,t u	is	even.	Round	up	if	f	>	 .

16 ZSNN carry,t,carry Round	down	if	f	<	 .

17 ADDU u,u,carry

18 Sign BNZ s,Negative Attach	sign.
19 BN u,:Error Overflow.
20 POP 1,0 Return	u.
21 Negative NEG u,u

22 BNN u,:Error Overflow.
23 POP 1,0 Return	u.				

15. The following code uses the same register names as Program A; it finally
jumps to Program N, except if the return value is zero.

01 :Fmod ZSN s,u,1	1. 1.	Unpack.	Set	sign.
02 ANDNH u,#8000 Remove	sign	bit.
03 SRU e,u,52 Get	exponent.
04 SETH t,#FFF0;	ANDN	f,u,t

Get	fraction	part	and	add	hidden	bit.
05 INCH f,#10

06 SET fl,0 u	=	±(f,	fl)2e-q/252.

07 SET t,1023;	SUB	e,e,t 2.	Subtract	q.
08 BN e,0F Branch	if	u	has	no	integer	part.
09 ADD t,e,12;	SLU	f,f,t 3.	Remove	integer	part.
10 SRU f,f,12

11 SET e,0

12 0H BZ f,6F Branch	if	u	has	no	fraction	part.
13 BZ s,5F Branch	if	u	is	nonnegative.
14 ADD t,e,64;	SLU	fl,f,t 4.	Complement	fraction	part.

15 NEG t,e;	SRU	f,f,t (f,	fl)	←	(f,	0)/2e.

16 SET e,0 e	←	0.
17 NEGU fl,fl

18 ZSNZ carry,fl,1

19 ADDU f,f,carry

20 SETH t,#10;	SUBU	f,t,f (f,	fl)	←	1	–	(f,	fl).

21 SET s,0 (f,	fl)	>	0.

22 5H INCL e,1023 5.	Add	q.
23 OR t,f,fl;	BNZ	t,:Normalize 6.	Normalize	if	not	zero.
24 6H POP 0,0 Else	return	0.				

19. The running time for Fadd is 28 – 3[|u| < |v|] + 4[sign(u) ≠ sign(v)].
The running time for Normalize is 4 + [u + v ≠ 0](22 + 3[fraction overflow] +
8N + 16[rounding overflow] – 4[overflow] – 3[underflow]), where N is the
number of left shifts during normalization. If there are neither overflows nor
underflows and the result is not zero, these formulas simplify to

Fadd: 28	–	3[|u|	<	|v|]	+	4[sign(u)	≠	sign(v)],
Normalize: 26	+	8N.

The minimum time for Fadd and Normalize combined is 51υ. The maximum
time is 482υ; it occurs if u and v have opposite signs, |u| < |v|, eu = ev, and u +

v < u/253. In this case, the shift-left loop, taking 8υ, runs 53 times. It is tempting
to remove the dependency on N by eliminating the loop during normalization
(but see exercise 20). [The average time, considering the data in Section 4.2.4,
will be about 62.3υ.]
20. Use ‘MOR	t,f,z;	MOR	t,z,f’ with z ≡ #0102040810204080 to assign to t
the bits of f in reverse order; then use ‘SUBU	d,t,1;	SADD	d,d,t’ to assign to d

the number of trailing bits of t. This computation will add 4υ to the running
time of the normalization routine in place of the loop time. The data in Section
4.2.4 shows, however, that the number of left shifts per normalization is only
about 0.9; on average then, adding this computation will make the normalization
run slower not faster.

4.2.2.	Accuracy	of	Floating	Point	Arithmetic

[615]

17. Fcmpe is almost like Fadd in that it computes |u – v| and compares it to 2e –
1022 .

01 :Fcmpe GET eps,:rE Get	 .
02 SET su,u Sign	of	u.
03 XOR s,u,v Signs	different?
04 ANDNH u,#8000;	ANDNH	v,#8000 Remove	sign	bits.
05 CMPU x,u,v;	BNN	x,0F Compare	|u|	and	|v|.
06 SET t,u;	SET	u,v;	SET	v,t Swap	u	with	v.
07 0H CSN x,s,1 If	signs	are	different,
08 NEG t,x u	is	larger
09 CSN x,su,t unless	u	<	0.
10 SRU eu,u,52;	SRU	ev,v,52 Get	exponents.
11 SETH t,#FFF0

12 ANDN fu,u,t;	ANDN	fv,v,t Get	fraction	part.
13 INCH fu,#10;	INCH	fv,#10 Add	hidden	bit.
14 SUBU d,eu,ev Scale	right.
15 NEG t,64,d

16 CSN t,t,0 Keep	all	low-order	bits.
17 SLU f0,fv,t

18 SRU fv,fv,d

19 SET eu,1022 Divide	by	2eu	−	1022.
20 BN s,Add Add	if	signs	are	different;
21 NEGU f0,f0;	ZSNZ	carry,f0,1 else	subtract.

22 SUBU fu,fu,fv;	SUBU	fu,fu,carry u	←	|u	−	v|	/2eu	−	1022.
23 OR t,fu,f0;	BZ	t,Equal Jump	if	|u	−	v|	=	0.
24 0H SETH t,#0010;	AND	t,fu,t Normalized?
25 BNZ t,Compare

25 BNZ t,Compare

26 SRU carry,f0,63

27 SLU fu,fu,1;	OR	fu,fu,carry Adjust	left.
28 SLU f0,f0,1

29 SUB eu,eu,1

30 JMP 0B

31 Add ADDU fu,fu,fv u	←	|u	−	v|	/2eu	−	1022.
32 SETH t,#0020;	CMP	t,fu,t Normalized?
33 BN t,Compare

34 SLU carry,fu,63

35 SRU fu,fu,1;	SRU	f0,f0,1 Adjust	right.
36 OR f0,f0,carry

37 ADD eu,eu,1

38 Compare ANDNH fu,#FFF0 Remove	hidden	bit.
39 SLU eu,eu,52

40 OR u,eu,fu Combine	eu	with	fu	and

41 CMPU t,u,eps compare	to	 .
42 CSN x,t,0 If	u	<	 ,	then	u	∼	v.
43 CSP f0,t,1 If	u	>	 ,	force	f0	≠	0.
44 Equal CSZ x,f0,0 If	f0	=	0,	then	u	∼	v.
45 SET $0,x Return	x.
46 POP 1,0

4.2.3.	Double-Precision	Calculations

[617]

2. Only the two lowest bits in the hi-wyde of um are strictly needed during
normalization. The hidden bit is tested in step N4, but this bit is set to 1, so there
is no need to clear it. The bit left of the hidden bit is tested in step N1, line 37, so
it needs to be cleared. Clearing the complete wyde, however, also simplifies the
test for zero in line 38.
3. Program M will not cause an overflow exception because it uses “unsigned”

instructions; there might be, however, a silent overflow. Working with exponents
is safe because exponents are very small; the same holds for the upper 48 bits of
the fraction parts. Whenever we work with 64-bit fraction parts, we determine an
eventual carry and apply necessary corrections.

In contrast to the implementation of floating point numbers in the MIX
computer, where both fraction parts are less than 1 and therefore the product is
less than 1 as well, MMIX’s fraction parts fu and fv are in the range 1 ≤ fu, fv < 2

(due to the hidden bit) and so 1 ≤ fu × fv < 4. This might cause an extra increase

of the exponent; the normalization routine takes care of this possibility.
4. (a) As can be seen from Fig. 4, using the low 64 bits computed in lines 06 and

08 alone would not improve the precision, because the high 64 bits of ul × vl
would still be missing. But the product ul × vl is not computed.

(b) While unpacking, we shift the fraction parts of both operands u and v to
the left by 8 bits. The code changes to the following:

01 :DFmul SLU eu,um,1;	SLU	ev,vm,1 M1.	Unpack.
02 SRU eu,eu,49;	SRU	ev,ev,49

03 XOR s,um,vm;	SRU	s,s,63 s	←	su	×	sv.

04 ANDNH um,#FFFF;	ORH	um,#0001

05 ANDNH vm,#FFFF;	ORH	vm,#0001

06 SLU um,um,8 Shift	(um,	ul)	left.

07 SRU carry,ul,64-8

08 ADDU um,um,carry

09 SLU ul,ul,8

10 SLU vm,vm,8 Shift	(vm,	vl)	left.

11 SRU carry,vl,64-8

12 ADDU vm,vm,carry

13 SLU vl,vl,8

14 MULU t,um,vl M2.	Operate.

15 GET wl,:rH wl	←	256um	×	264	vl	×	2−64.

16 MULU t,ul,vm

17 GET t,:rH;	ADDU	wl,wl,t wl	←	wl	+	256ulvm.

18 MULU t,um,vm;	GET	wm,:rH wm	←	 248um	×	vm .

19 ADDU wl,wl,t wl	←	wl	+	um	×	vm	mod	264.
20 CMPU t,wl,t;	ZSN	carry,t,1 carry	←	1	if	wl	+	t	<	t.
21 ADDU wm,wm,carry

22 ADD e,eu,ev

23 SET t,#3FFF;	SUB	e,e,t e	←	eu	+	ev	−	q.

24 JMP :DNormalize M3.	Normalize.				

The shifting yields a 50-bit result for wm in line 18—just the amount of precision
we need. Further, wm is still small enough to leave the single shift-right step to the
normalization routine if needed. The precision improves by a factor of 216 and
the error in the result will be less than 2e−q−112.

Program M has 28 instructions including 3 multiplications; its running time is
55υ. The new program has 4 additional instructions, each taking 1υ; this
increases the running time by about 7 percent to 59υ.
5. We add another register vll to keep the lowest bits of v when shifting right.

We initialize it to zero after unpacking by adding the following instruction after
line 13:

SET vll,0

We replace lines 19–21 by

A5 CMP t,d,64;	PBN	t,0F A5.	Scale	right.
SET vll,vl;	SET	vl,vm;	SET	vm,0 Shift	right	by	64	bits.
SUB d,d,64

0H CMP t,d,64;	PBN	t,0F

SET vll,vl;	SET	vl,vm;	SET	vm,0 Shift	right	by	64	bits.
SUB d,d,64

and add after line 22
SRU vll,vll,d;	SLU	carry,vl,t;	OR	vll,vll,carry

to accomplish step A5 with three registers.

In case of a subtraction, vll must be subtracted from zero and might cause a
carry into wl. After line 32, we insert the following line:

ZSNZ carry,vll,1;	SUBU	wl,wl,carry;	NEGU	vll,vll

Next we modify the scale right and scale left steps of the normalization
procedure. We replace line 40 with
ZSN t,vll,1;	SLU	vll,vll,1 N3.	Scale	left.
ZSN carry,wl,1;	SLU	wl,wl,1;	ADDU	wl,wl,t

and line 45 with

N4 SLU carry,wl,63;	SRU	vll,vll,1 N4.	Scale	right.
ADDU vll,vll,carry;	SLU	carry,wm,63

Last but not least, we round the result. The code for step N5 is inserted just
before line 50.
6H SETH t,#8000 N5.	Round.

CMPU t,vll,t Compare	fl	to	 .

CSOD carry,wl,1 f	is	odd.	Round	up	if	fl	≥	 .

CSEV carry,wl,t f	is	even.	Round	up	if	fl	>	 .

ZSNN carry,t,carry Round	down	if	fl	<	 .
ADDU wl,wl,carry
ZSZ carry,wl,carry
ADDU wm,wm,carry
SET vll,0

SRU t,wm,49;	BP	t,N4 Rounding	overflow.

The cost in performance is 6υ for all calls to DFadd/DFsub plus 11υ for all calls
to DNormalize. Further, a scale right step needs an extra 3υ if executed. In case
of a subtraction (opposite signs of the operands), the running time increases by 3υ
+ T3υ, where T is the number of left shifts executed in step N3. On average, the
running time increases by 21υ.
6. The function ToDouble expects a single-precision floating point number in

register x and returns a double-precision floating point number in two registers.

01 :ToDouble BZ x,:Zero

02 SRU s,x,63;	SLU	s,s,63 Extract	sign.

03 SLU exm,x,1;	SRU	exm,exm,5 Position	ex	and	xm.

04 INCH exm,#3FFF-#3FF Adjust	exponent.

05 SLU $0,x,64-(52-48) Extract	xl.

06 OR $1,exm,s Add	sign	bit.

06 OR $1,exm,s Add	sign	bit.
07 POP 2,0 Return.				

The function ToSingle expects a double-precision floating point number (f,	fl) as

a parameter and returns a single-precision floating point number.

01 :ToSingle SRU s,f,63 Get	sign	bit.
02 SLU e,f,1;	SRU	e,e,49 Get	exponent.
03 SET t,#3FFF-#3FF-4

04 SUBU e,e,t Adjust	exponent.
05 ANDNH f,#FFFF Remove	sign	and	exponent.
06 INCH f,1 Add	hidden	bit.
07 JMP :Normalize Normalize,	round,	and	exit.				

4.3.1.	The	Classical	Algorithms

[623]

3. We assume that we have four parameters: u ≡ LOC(u), the address where the
first of m numbers each n octabytes wide is stored; then m ≡ m; then w ≡
LOC(w), the address where the result will be stored in n + 1 octabytes; and finally
n ≡ n.

01 :AddC 8ADDU w,n,w 1
02 SL j,n,3;	NEG	j,j 1 j	←	0.
03 SET k,0 1 k	←	0.
04 JMP 4F 1
05 1H 8ADDU u,n,u0 N i	←	0.

06 LDOU t,u,j;	ADDU	wj,k,t N wj	←	u0j	+	k.

07 ZSZ k,wj,k N Carry?
08 SET i,m N

09 JMP 3F N

10 2H LDOU t,u,j;	ADDU	wj,wj,t N(M	−	1) wj	←	wj	+	uij.

11 CMPU t,wj,t;	ZSN	t,t,1 N(M	−	1) Carry?
12 ADD k,k,t N(M	−	1)
13 3H 8ADDU u,n,u NM Advance	i.
14 SUB i,i,1 NM

15 PBP i,2B NM[N] Loop	on	i.
16 STOU wj,w,j N

17 ADD j,j,8

17 ADD j,j,8 N j	←	j	+	1.

18 4H PBN j,1B N	+	1[1] Loop	on	j.

19 STOU k,w,j 1 wn	←	k.

20 POP 0,0

The running time is (8NM + 6N + 9)υ + (NM + N + 1)µ.
8. Given three n-digit numbers u, v, and w, the following subroutine expects

four parameters: u ≡ LOC(u), v ≡ LOC(v), w ≡ LOC(w), and n ≡ n. The
program will set w ← u + v using the algorithm of exercise 5.

01 :Add SL j,n,3 1 B1.	j	←	n	–	1.

02 STCO 0,w,j 1 wn	←	0.

03 SUB j,j,8 1 j	←	n	–	1.
04 2H LDOU wj,u,j N B2.

05 LDOU t,v,j;	ADDU
wj,wj,t

N wj	←	uj	+	vj	mod	b.

06 STOU wj,w,j N

07 CMPU t,wj,t N B3.
08 PBNN t,4F N[L]

09 SET i,j L i	←	j.
10 0H ADD i,i,8 K i	←	i	+	1.

11 LDOU wi,w,i K wi	←	wi	+	1	mod	b.

12 ADDU wi,wi,1 K

13 STOU wi,w,i K

14 BZ wi,0B K[K	−	L] Repeat	until	wi	+	1	<	b.

15 4H SUB j,j,8 N B4.	j	←	j	–	1.
16 PBNN j,2B N[1] If	j	≥	0,	go	back	to	B2.
17 POP 0,0

The running time depends on L, the number of positions in which uj + vj ≥ b,

and on K, the total number of carries. It is not difficult to see that K is the same
quantity that appears in Program A. The analysis in the text shows that L has the
average value N((b – 1)/2b) and K has the average value (N – b−1 – b−2 − · · ·
− b−n). So if we ignore terms of order 1/b, the running time is (8N + 7K + L +
5)υ + (3N + 2K + 1)µ ≈ (12N + 5)υ + (4N + 1)µ.
10. No. The instruction CMPU	t,wj,vj compares two unsigned integers wj and

vj and will set t to –1 if wj < vj; the instruction SUBU	wj,wj,vj subtracts two

unsigned integers wj and vj and will set wj to (wj – vj) mod 264. As long as |wj –

vj| < 263, the difference will be considered negative if wj < vj; if |wj – vj| ≥ 263,

however, the difference will be considered negative if wj > vj. The CMPU

instruction does not suffer from this kind of “overflow.”
13. The following subroutine expects four parameters: u ≡ LOC(u), v ≡ v, w ≡
LOC(w), and n ≡ n.

01 :MulS 4ADDU u,n,u;	4ADDU
w,n,w 1

02 SL i,n,2;	NEG	i,i 1 i	←	0.
03 SET k,0 1 k	←	0.

04 0H LDTU wi,u,i N wi	←	ui.

05 MUL wi,wi,v N wi	←	ui	×	v.

06 ADD wi,wi,k N wi	←	ui	×	v	+	k.

07 STTU wi,w,i N wi	←	wi	mod	b.

08 SRU k,wi,32 N k	←	 wi/b .

09 ADD i,i,4 N i	←	i	+	1.
10 PBN i,0B N[1] Loop	in	i.

11 STTU k,w,0 1 wn	←	k.

12 POP 0,0

The running time is (16N + 8)υ + (2N + 1)µ.
25. As an example, the following subroutine is given with complete details.

The running time is 8υ + N(7υ + 2µ).
26. The ShiftRight subroutine is very similar to the ShiftLeft subroutine.

01 :ShiftRight NEG q,64,p q	←	64	–	p.
02 SET k,0	k k	←	0.
03 SLU i,n,3 i	←	n.
04 JMP 1F

05 0H LDOU xi,x,i Load	xi.

06 SRU t,xi,p;	OR	t,t,k Shift	and	add	carry.

07 STOU t,x,i Store	xi.

08 SLU k,xi,q New	carry.
09 SUB i,i,8 i	←	i	–	1.
10 1H PBNN i,0B Loop	on	i.
11 SET $0,k Return	carry.
12 POP 1,0

The running time is 7υ + N(7υ + 2µ).

4.4.	RADIX	CONVERSION

[636]

8. To replace division by multiplication, we need a value 1/10 < x < 1/10 +

1/264 in a register. The following code uses a global register x to store 264x ; it is
also possible to load this value into a local register (with an additional 4υ of total
running time). As in Program (1), we store the decimal representation of a
nonnegative (binary) integer u as an array of BYTE at address U.

x GREG 1+(1<<63)/5 x	←	 264	×	1/10 .
SET j,0 j	←	0.

Loop MULU t,u,x;	GET	ux,rH ux	←	 ux .
4ADDU t,ux,ux;	SLU	t,t,1	t t	←	10 ux .

SUBU r,u,t r	←	u	−	10 ux .

PBNN r,0F

SUBU ux,ux,1 (Can	occur	only	on	first	iteration,
ADD r,r,10 			by	exercise	7.)

0H STBU r,U,j Uj	←	r	=	u	mod	10.
SET u,ux

ADD j,j,1 j	←	j	+	1.
PBP u,Loop Repeat	until	result	is	zero.				

The code has a running time of (19υ + µ)M + 3υ. With approximately 19υ per
digit, it is about three times faster than Program (1), with 62υ per digit; close to
Program (4), with 14υ per digit; and for “small” numbers (M ≤ 6), better than
Program (4′), with 128υ for nine digits.

13. We use the multiplication program of exercise 4.3.1–13, with v = 109 and w
= u to get the nine leading decimal digits of u. Then we use 4.4–(4′) to convert
these digits to ASCII codes.

19. To convert the ASCII codes to pure numbers, we subtract the ASCII code
’0’ from every byte. Then set m1 = #FF00FF00FF00FF00, m2 =
#
FFFF0000FFFFF0000, m3 = #FFFFFFFFF00000000, and ci = 1 – (10/256)2

i −1

.

The division is done by a SRU instruction; the multiplication is done by 4ADDU
and SLU instructions.
ascii GREG #3030303030303030 "00000000"
m1 GREG #FF00FF00FF00FF00
m2 GREG #FFFF0000FFFF0000

m2 GREG #FFFF0000FFFF0000
m3 GREG #FFFFFFFF00000000

LDO u,str
SUBU u,u,ascii
AND t,u,m1
SUBU u,u,t

4ADDU t,t,t;	SRU	t,t,8-1 t	←	t	×	10/28.
ADD u,u,t
AND t,u,m2
SUBU u,u,t

4ADDU t,t,t;	4ADDU	t,t,t;	SRU	t,t,16-
2 t	←	t	×	100/216.

ADD u,u,t
AND t,u,m3
SUBU u,u,t
4ADDU t,t,t;	4ADDU	t,t,t;	4ADDU	t,t,t

4ADDU t,t,t;	SRU	t,t,32-4 t	←	t	×	10000/232.
ADD u,u,t

The conversion needs 21υ + 1µ, less than half the time needed by (6) for the
same eight decimal digits even when (6) is improved to run in 44υ + 8µ.

4.5.2.	The	Greatest	Common	Divisor

[647]

43. The replacement has a constant running time of 5υ; step B1 of Program
4.5.2B has a running time of (8A + 3)υ. Assuming an average value of A =
gives a running time of 5.67υ. In this case, the replacement is only marginally
faster, but it can be a good insurance against large values of k.

4.5.3.	Analysis	of	Euclid’s	Algorithm

[647]

1. The running time is about (44.4T + 3)υ, which is about 30 percent faster
than Program 4.5.2A.

4.6.3.	Evaluation	of	Powers

[691]

2. The following subroutine has two parameters, x and n, and returns xn mod
264.

01 A1 SET y,1 1 A1.	Initialize.
02 JMP 0F 1
03 A2 SRU n,n,1 L	+	1	–	K A2.	Halve	N.	N	even.
04 A5 MULU z,z,z L A5.	Square	Z.

05 0H PBEV n,A2 L	+	1[K] A2.	Halve	N.	N	odd.

06 SRU n,n,1 K N	←	 N/2 .

07 MULU y,z,y K A3.	Multiply	Y	by	Z.
08 PBNZ n,A5 K[1] A4.	N	=	0?
09 SET $0,y 1 Return	Y.
10 POP 1,0

The running time is (12L + 13K + 7)υ, where L = λn = lg n is one less than the
number of bits in the binary representation of n, and K = νn is the number of 1
bits in that representation.

The serial program is very simple:

01 A1 SET y,x 1
02 JMP 1F 1
03 0H MUL y,y,x N	–	1
04 1H SUB n,n,1 N

05 PBP n,0B N[1]

06 SET $0,y 1
07 POP 1,0

The running time for this program is (12N – 5)υ; it is faster than the previous
program when n ≤ 5, slower when n ≥ 6.

4.6.4.	Evaluation	of	Polynomials

[701]

20. Assuming that x and the coefficients αi are in registers, we can write:

FADD y,x,a0 y	←	x	+	α0.

FMUL y,y,y y	←	(x	+	α0)2.

FADD u,y,a1 u	←	(y	+	α1).

FMUL u,u,y u	←	(y	+	α1)y.

FADD u,u,a2 u	←	(y	+	α1)y	+	α2.

FADD t,x,a3 t	←	x	+	α3.

FMUL u,u,t u	←	((y	+	α1)y	+	α2)(x	+	α3).

FADD u,u,a4 u	←	((y	+	α1)y	+	α2)(x	+	α3)	+	α4.

FMUL u,u,a5 u	←	(((y	+	α1)y	+	α2)(x	+	α3)	+	α4)α5.				

5.	SORTING

[585]

6. Overflow is possible in the ‘SUB	$2,$0,$1’ instruction, and it can lead to a
false equality indication. He should have written ‘CMP	$2,$0,$1’. (The inability
to make full-word comparisons by subtraction is a problem on essentially all
computers; it is the chief reason for including CMP, CMPU, and FCMP in MMIX’s
repertoire.)
7. As an example, we show this subroutine in its full length.

8.
ODIF t,a,b;	SUB	min,a,t;	ADD	max,b,t

5.2.	INTERNAL	SORTING

[615]

4. The following code has a running time of (5N + 6)υ + 3Nµ.
:Finish SL i,n,3 1

JMP 0F 1
1H LDO ri,r,i N

LDO ci,count,i N

STO ri,s,ci N Counts	are	already	scaled.
0H SUB i,i,8 N	+	1

PBNN i,1B N	+	1[1]

5. The running time is decreased by (A + 1 – N – B)υ, and this is almost always
an improvement.
9. Let M = v – u; assume that a record fits into one octabyte and that the key, in

the range from u to v, is stored in the most significant WYDE of each record. The
following program sorts the records R1, . . . , RN using an auxiliary table COUNT

of size M + 1. The sorted records are written to an output area S1, . . . , SN. We

maintain two pointers to the array of counters: count0 points to the fictive
counter for the key value zero, and countv points to the counter for the key value
v. We use the first one as base address with Kj as index, keeping in register kj the

value of 8Kj and we use the second with j and i as index, keeping in registers i

and j the values of 8(v – j) and 8(v – i), respectively. Further, we assume key ≡
LOC(K1), count ≡ LOC(COUNT[1]), s ≡ LOC(S1), n ≡ N, u ≡ u, and v ≡ v.

01 :Sort NEG t,u 1
02 8ADDU count0,t,count 1 count0	←	count	–	8u.
03 8ADDU countv,v,count0 1 countv	←	count0	+	8v.
04 SUBU i,count,countv 1 D1.	Clear	COUNTs.	i	←	u.
05 JMP 0F 1
06 1H STCO 0,countv,i M	+	1 COUNT[j]	←	0.
07 ADD i,i,8 M	+	1 i	←	i	+	1.

08 0H PBNP i,1B
M	+
1[1]

u	≤	i	≤	v.

09 SL j,n,3 1 D2.	Loop	on	j.	j	←	N	+	1.
10 JMP 2F 1

11 3H LDWU kj,key,j N D3.	Increase	COUNT[Kj].

12 SL kj,kj,3 N

13 LDO c,count0,kj N COUNT[Kj]

14 ADD c,c,8 +	1

14 ADD c,c,8
N

+	1

15 STO c,count0,kj N 								→	COUNT[Kj].

16 2H SUB j,j,8 N	+	1 j	←	j	–	1.

17 PBNN j,3B
N	+
1[1]

N	>	j	≥	0.

18 SUB i,count,countv 1 D4.	Accumulate.	i	←	u.
19 LDO c,countv,i 1 c	←	COUNT[i].
20 JMP 4F 1
21 0H LDO ci,countv,i M COUNT[i]
22 ADD c,ci,c M +	COUNT[i	–	1]
23 STO c,countv,i M 					→	COUNT[i].
24 4H ADD i,i,8 M	+	1 i	←	i	+	1.

25 PBNP i,0B
M	+
1[1]

u	≤	i	≤	v.

26 SL j,n,3 1 D5.	Loop	on	j.	j	←	N.
27 JMP 5F 1

28 6H LDOU rj,key,j N D6.	Output	Rj.

29 SRU kj,rj,48-3 N Extract	8Kj.

30 LDO i,count0,kj N i	←	COUNT[Kj].

31 SUB i,i,8 N i	←	i	–	1.

32 STO i,count0,kj N COUNT[Kj]	←	i.

33 STOU rj,s,i N Si	←	Rj.

34 5H SUB j,j,8 N	+	1 j	←	j	–	1.

35 PBNN j,6B N	+
1[1]

The running time is (15N + 8M + 29)υ + (7N + 3M + 2)µ.
11. We assume key ≡ LOC(K1), p ≡ LOC(p(1)), and n ≡ N. Further, we use i ≡
i, j ≡ j, k ≡ k, ii ≡ 8i, jj ≡ 8j, and kk ≡ 8k. The program would be simpler if
we could assume that the permutation p uses already scaled values.

01 P1 SET i,n 1 P1.	Loop	on	i.
02 JMP 0F 1
03 P2 SL ii,i,3 N P2.	Is	p(i)	=	i?
04 LDO pi,p,ii N

05 CMP eq,pi,i N

06 BZ eq,0F N[N-(A-B)] Jump	if	p(i)	=	i.

07

07 LDO t,key,ii A	–	B P3.	Begin	cycle.	t	←	Ri.

08 SET j,i;	SET	jj,ii A	–	B j	←	i.

09 P4 LDO k,p,jj N	–	A P4.	Fix	Rj.	k	←	p(j).

10 SL kk,k,3 N	–	A
11 LDO rk,key,kk N	–	A

12 STO rk,key,jj N	–	A Rj	←	Rk.

13 STO j,p,jj N	–	A p(j)	←	j.
14 SET j,k;	SET	jj,kk N	–	A j	←	k.
15 LDO pj,p,jj N	–	A
16 CMP eq,pj,i N	–	A

17 PBNZ eq,P4 N	–	A[A-B] Repeat	if	p(j)	≠	i.

18 STO t,key,jj A	–	B P5.	End	cycle.	Rj	←	t.

19 STO j,p,jj A	–	B p(j)	←	j.
20 0H SUB i,i,1 N	+	1

21 PBNN i,P2 N	+	1[1] N	>	i	≥	0.				

The running time is (18N–5A–5B +6)υ + (6N –2A–3B)µ, where A is the
number of cycles in the permutation p(1) . . . p(N) and B is the number of fixed
points (1-cycles).

We have

and

B = (min 0, ave 1, max N, dev 1),

for N ≥ 2, by Eqs. 1.3.3–(21) and 1.3.3–(28).
12. · · ·

The following subroutine implements MacLaren’s algorithm. It assumes
records that consist of two octabytes—first the LINK field, then the KEY field. It
expects the list head in the LINK field of an artificial record R0 preceding record
R1. Further, all LINK fields contain relative addresses with LOC(R0) as base
address. The parameter of the subroutine is link ≡ LOC(LINK(R0)) =
LOC(HEAD).

01 M1 LDOU p,link,0 1 M1.	Initialize.	P	←	HEAD.
02 SET k,16 1 k	←	1.
03 ADDU key,link,KEY 1

03 ADDU key,link,KEY 1
04 JMP M2 1
05 0H LDOU p,link,p A P	←	LINK(P).
06 M3 CMPU t,p,k N	+	A M3.	Ensure	P	is	at	least	k.
07 BN t,0B N[A]

08 LDOU t,key,k N M4.	Exchange.
09 LDOU kp,key,p N

10 STOU t,key,p N

11 STOU kp,key,k N

12 LDOU t,link,k N

13 LDOU q,link,p N Q	←	LINK(k).
14 STOU t,link,p N

15 STOU p,link,k N LINK(k)	←	P.
16 SET p,q N P	←	Q.
17 ADDU k,k,16 N k	←	k	+	1.

18 M2 PBNZ p,M3 N	+	1[1] M2.	Done?

19 POP 0,0

The total running time is (13N + 4A + 7)υ + (8N + A + 1)µ.

5.2.1.	Sorting	by	Insertion

[618]

3. The following program is conjectured to be the shortest general-purpose
MMIX sorting subroutine, although it is not recommended for speed. The routine
sorts only BYTE values; otherwise, an additional SL instruction is necessary after
line 09 to scale i by the size of the records. A ten-instruction sorting subroutine is
possible in the special case where the base address key of the keys is zero. In this
case, the ADD in line 07 can be merged with the STB in line 08 to a single STB
s,i,1.

01 2H LDB r,key,i B r	←	Ki.

02 SUB i,i,1 B Decrement	i.

03 LDB s,key,i B s	←	Ki-1.

04 CMP t,s,r B

05 BNP t,1F B	+	2A Continue	if	Ki-1	≤	Ki;

06 STB r,key,i A 			else	swap	Ki

07 ADD i,i,1

07 ADD i,i,1 A 			with	Ki-1
08 STB s,key,i A 			and	start	from	the	beginning.
09 :Sort SUB i,n,1 A	+	1 Initialize	i	←	n	–	1.
10 1H BNN i,2B B	+	3 Loop	while	i	≥	0.
11 POP 0,0

Note: The analyses of the MIX and the MMIX programs are the same. The average
running time of the MMIX program is roughly N3υ + N3µ.
10. Change the loop in lines 12–20 to:

12 LDO ki,key,i NT	–	S D4.	Compare	K	:	Ki.

13 CMP c,k,ki NT	–	S

14 BNN c,7F NT	–	S[C] If	Kj	≥	Kj-h,	jump	to	increment	j.

15 D5 STO ki,keyh,i B D5.	Move	Ri,	decrease	i.

16 SUB i,i,h B i	←	i	–	h.
17 BN i,D6 B[A] To	D6	if	i	<	0.

18 LDO ki,key,i B	–	A D4.	Compare	K	:	Ki.

19 CMP c,k,ki B	–	A

20 PBN c,D5 B	–	A[NT-S-C-A] To	D5	if	K	<	Ki.

21 D6 STO k,keyh,i NT	–	S	–	C D6.	R	into	Ri+1.

22 7H ADD j,j,8 NT	–	S j	←	j	+	1.

23 0H PBN j,D3 NT	–	S	+	T[T] To	D3	if	j	<	N.				

For a net increase of three instructions, this saves Cυ, where C is the number of
times Kj ≥ Kj−h. In Tables 3 and 4 the time saved is 33υ and 29υ, respectively; .

. .

[624]
31. The following MMIX program implements Pratt’s sorting algorithm.

01 :Sort 8ADDU keyn,n,key 1 keyn	←	LOC(KN+1).

02 SL n,n,3 1 Scale	N.
03 SL s,t,3 1 s	←	t	–	1.
04 JMP 1F 1
05 2H LDO h,inc,s T

06 SL h,h,3 T Scale	h.

07 SUB keyh,keyn,h T keyh	←	LOC(Kh+1).

08 SET m,h T Loop	on	m.

09 JMP 0F

09 JMP 0F T

10 3H LDO k,keyn,j NT	–	S	–	B	+	A Load	and	compare	Kj	:	Kj-h.

11 LDO kh,keyh,j NT	–	S	–	B	+	A
12 CMP c,k,kh NT	–	S	–	B	+	A

13 PBNN c,7F NT	–	S	–	B	+
A[B]

Jump	if	Kj	≥	Kj-h.

14 STO kh,keyn,j B Exchange	Kj	and	Kj–h.

15 STO k,keyh,j B

16 ADD j,j,h B Increment	j.
17 7H ADD j,j,h NT	–	B	+	A Increment	j.

18 PBN j,3B NT	–	B	+	A[S] m	<	j	+	N	<	N.

19 0H SUB m,m,8 T	+	S Decrement	m.
20 SUB j,m,n T	+	S j	←	n.

21 PBNN m,7B T	+	S[T] 0	≤	m	<	h.

22 1H SUB s,s,8 T	+	1 Loop	on	s.

23 PBNN s,2B T	+	1[1] 0	≤	s	<	t.				

Here A is related to right-to-left maxima in the same way that A in Program D is
related to left-to-right minima; both quantities have the same statistical behavior.
The simplifications in the inner loop have cut the running time to (6NT + 6A –
B + S + 12T + 8)υ + (2NT + 2A + T – 2S)µ. Curiously, the number of
load/store operations is independent of B.

When N = 8 the increments are 6, 4, 3, 2, 1, and we have Aave = 3.892, Bave

= 6.762; the average total running time is 280.59υ + 43.78µ. (Compare with
Table 5.) Both A and B are maximized in the permutation 7 3 8 4 5 1 6 2. When
N = 1000 there are 40 increments, 972, 864, 768, 729, . . . , 8, 6, 4, 3, 2, 1;
empirical tests like those in Table 6 give A ≈ 875, B ≈ 4250, and a total time of
about 250533υ + 63700µ (more than twice as long as Program D with the
increments of exercise 28). Since many increments are larger than N/2, some
time is wasted in the loop from line 17 to line 21 until j = m + h < N. These
iterations can be avoided by inserting the following instructions before line 09:

SL				c,m,1;	CMP	c,c,n;	BNP	c,0F;	SUB	m,n,h

This will improve the running time by about 8 percent.

33. Two types of improvements can be made. First, by adding the artificial key
∞ at the end of the list, we can omit testing whether or not p = 0. (This idea has
been used, for example, in Algorithm 2.2.4A.) Secondly, a standard optimization
technique: We can make two copies of the inner loop with the register

assignments for p and q interchanged; this avoids the assignment SET	q,p. (This
idea has been used in exercise 1.1–3.)

We put the largest possible value in the key field of R0, and initialize the link
fields of R0 and RN to form a circular list (there is no test for the end of the list

anyway).

01 :Sort ADDU key,link,KEY 1 L1.	Loop	on	j.
02 	 SL j,n,4 1 j	←	N.
03 	 NEG t,1;	SRU	t,t,1 1 t	←	the	largest	signed	64-bit	number.

04 	 STO t,key,0 1 K0	←	∞.	;-)

05 	 STOU j,link,0 1 L0	←	N.

06 	 STCO 0,link,j 1 LN	←	0.

07 	 JMP 0F 1 Go	to	decrease	j.

08 L2 SET q,0 N	–	1 L2.	Set	up	p,	q,	K.	p	←	L0.

09 	 LDO k,key,j N	–	1 K	←	Kj.

10 4H LDOU p,link,q B	′ L4.	Bump	p,	q.

11 	 LDO kp,key,p B	′ L3.	Compare	K	:	Kp.

12 	 CMP t,k,kp B	′ 	

13 	 BNP t,L5 B	′[N	′] To	L5	if	K	≤	Kp.

14 	 LDOU q,link,p B″ L4.	Bump	q,	p.

15 	 LDO kp,key,q B″ L3.	Compare	K	:	Kq.

16 	 CMP t,k,kp B″ 	

17 	 PBP t,4B B″[N″] To	L5	if	K	≤	Kq.

18 	 STOU j,link,p N″ L5.	Insert	into	list.	Lp	←	j.

19 	 STOU q,link,j N″ Lj	←	q.

20 OH SUB j,j,16 N″	+	1 j	←	j	–	1.

21 	 PBP j,L2 N″	+	1[A	′] N	>	j	≥	1.

22 	 POP 1,0 	 	

23 L5 STOU j,link,q N	′ L5.	Insert	into	list.	Lq	←	j.

24 	 STOU p,link,j N	′ Lj	←	p.

25 OH SUB j,j,16 N	′ j	←	j	–	1.

26 	 PBP j,L2 N	′[A″] N	>	j	≥	1.

27 	 POP 1,0 	

Here B ′ + B″ = B + N – 1, N ′ + N″ = N – 1, A ′ + A″ = 1 so the total running

time is (4B + 12N)υ + (2B + 5N – 2)µ.
The ∞ trick also speeds up Program S. Unlike MIX, however, MMIX does not

feature a nifty MOVE instruction that loads, stores, and increments all in one
instruction. The following code simplifies Program S, because j can run down to
zero, while i, which is not tested for the end of the array, runs upward, assuming
that the last element of the array already contains the largest possible value.

01 :Sort SUBU key0,key,8 1 key0	←	LOC(K0).

02 	 SL j,n,3;	SUB	j,j,16 1 j	←	N	–	1.
03 	 JMP S1 1 	
04 S2 ADD i,j,8 N	–	1 S2.	Set	up	j,	K,	R.
05 	 LDO k,key,j N	–	1 	
06 	 JMP S3 N	–	1 	
07 S4 STO ki,key0,i B S4.	Move	Ri,	increase	i.
08 	 ADD i,i,8 B 	

09 S3 LDO ki,key,i B	+	N	–	1 S3.	Compare	K	:	Ki.

10 	 CMP t,k,ki B	+	N	–	1 	

11 	 PBP t,S4 B	+	N	–	1[N–1] 	

12 	 STO k,key0,i N	–	1 S5.	R	into	Ri–1.

13 	 SUB j,j,8 N	–	1 	
14 S1 PBNN j,S2 N[1] S1.	Loop	on	j.				

The running time is reduced to (5B + 11N – 4)υ + (2B + 3N – 3)µ. Doubling the
inner loop will not produce any further savings.
35. Passing head ≡ LOC(H1) and m ≡ M as parameters, as in Program M, we
have the following subroutine:

01 :ListCat SL j,m,3;	SUB	j,j,8 1 j	←	M.
02 	 LDOU tail,head,j 1 Initialize	tail.
03 	 JMP 0F 1 	

04 1H LDOU hj,head,j M	–	1 hj	←	LOC(Hj).

05 	 BZ hj,0F M	–	1[E] Skip	empty	heads.

06 	 SET q,hj M	–	1	–	E 	
07 2H SET p,q N	–	L Bump	p	and	q.
08 	 LDOU q,link,p N	–	L 	

09 	 PBNZ q,2B N	–	L[M-1-E] 	

10 	 STOU tail,link,p M	–	1	–	E Concatenate	lists.

11 SET tail,hj Advance	to	the	next	list.

11 	 SET tail,hj M	–	1	–	E Advance	to	the	next	list.

12 OH SUB j,j,8 M j	←	j	–	1.
13 	 PBNN j,1B M[1] Loop	on	j.
14 	 STOU hj,head,0 1 	
15 	 POP 0,0 	

The running time depends not only on the number of list heads M and the
number of elements N, but also on E, the number of list heads with an empty
list, and on L, the length of the list with the biggest elements Hm−1. The total

running time is (3N – 3L + 9M – 3E)υ + (N – L + 2M – E)µ. For equally
distributed keys, we can assume L = N/M. There are MN ways to map N keys to
M lists and (M – 1)N ways to map N keys to M lists while leaving list j empty;
therefore the probability of list j being empty is (M – 1)N	/MN and we should
expect ave E = M(M – 1)N	/MN. Using limM→∞((M – 1)/M)M = 1/e, we

conclude that for large N and M = αN, ave E approaches Me−1/α. In summary,
the running time approaches ((3 + 9α – 3αe1/α)N − 3/α)υ + ((1 + 2α – αe1/α)N
– 1/α)µ.

Note: If Program M were modified to keep track of the current end of each list
in an array at location tail, by inserting first ‘STCO	0,tail,i’ between lines 03
and 04, and then ‘STOU	j,tail,i’ between lines 21 and 22, we could save time
by hooking the lists together as in Algorithm 5.2.5H.
36. Program L: A = 3, B = 41, N = 16, time = 426υ + 156µ. Program M: A =
2 + 1 + 2 + 2 = 7, B = 2 + 2 + 2 + 1 = 7, N = 16; as given, the running time of
Program M is 446υ + 91µ. The multiplications are slow! Folding the
multiplication by M = 4 into the following shift, as suggested in the text,
improves the time to 286υ + 91µ. (We should also add the time needed by
exercise 35, 78υ + 22µ, in order to make a strictly fair comparison. Notice also
that the improved Program L in exercise 33 takes only 356υ + 160µ.)

5.2.2.	Sorting	by	Exchanging

[629]
12. The following program maintains scaled values of j, p, q, d, and r, in order
to use them as offsets into an array of octabytes with base address key ≡
LOC(K1). Instead of d, keeping the address of Kd in register d is more

convenient. Aside from moving the test of the loop condition to the bottom of
each loop, the following code is a simple translation of Algorithm M.

01 1

01 :Sort FLOTU t,ROUND_UP,n 1 M1.	Initialize	p.
02 	 SETH c,#FFF0 1 	
03 	 NOR c,c,c 1 	
04 	 ADDU t,t,c 1 Round	N	up	to	2t.
05 	 SRU t,t,52 1 Extract	t.
06 	 ANDNL t,#400 1 t	←	[lg	N]	–	1.

07 	 8ADDU keyn,n,key 1 keyn	←	LOC(KN+1).

08 	 SET p,8 1 p	←	1.
09 	 SLU p,p,t 1 p	←	p	·	2t.
10 M2 SET q,8 T M2.	Initialize	q,	r,	d.
11 	 SL q,q,t T q	←	2t.
12 	 SET r,0 T r	←	0.
13 	 ADDU d,p,key T d	←	p.
14 	 JMP M3 T 	
15 M5 ADDU d,key,d A	–	T M5.	Loop	on	q.
16 	 SR q,q,1 A	–	T q	←	q/2.

17 	 ANDNL q,7 A	–	T q	←	8	·	 q/8 .

18 	 SET r,p A	–	T r	←	p.
19 M3 SUB i,keyn,d A M3.	Loop	on	i.	i	←	N	+	1	–	d.
20 	 JMP 0F A 	
21 1H AND c,i,p AN	–	D

22 	 CMP c,c,r AN	–	D If	i	&	p	=	r,

23 	 BNZ c,0F AN	–	D[AN-D-
C]

				go	to	M4.

24 	 LDO k,key,i C M4.	Compare/exchange

25 	 LDO kd,d,i C 				Ri+1	:	Ri+d+1.

26 	 CMP c,k,kd C 	

27 	 PBNP c,0F C[B] If	Ki	+	1	>	Ki+d+1,

28 	 STO k,d,i B 				interchange	Ri+d+1

29 	 STO kd,key,i B 				and	Ri+1.

30 OH SUB i,i,8 AN	+	A	–	D i	←	i	–	1.

31 	 PBNN i,1B AN	+	A	–
D[A]

0	≤	i	<	N	–	d.

32 	 SUB d,q,p A M5.	Loop	on	q.	d	←	q	–	p.
33 	 PBNZ d,M5 A[T] 	
34 	 SR p,p,1 T M6.	Loop	on	p.	p	←	p/2.

35 	 ANDNL p,7 T p	←	8	·	 p/8 .

36 	 PBP p,M2 T[1] 	
37 	 POP 0,0 	

The running time depends on six quantities, only one of which depends on the
input data (the remaining five are functions of N alone): T = t, the number of
“major cycles”; A = t(t + 1)/2, the number of passes or “minor cycles”; B = the
(variable) number of exchanges; C = the number of comparisons; D = the
number of blocks of consecutive comparisons; and E = the number of
incomplete blocks. When N = 2t, it is not difficult to prove that D = (t–2)N +t+2
and E = 0. For Table 1, we have T = 4, A = 10, B =
3+0+1+4+0+0+8+0+4+5 = 25, C = 63, D = 38, E = 0, so the total running
time is (7NA + 12A + 4B + 2C – 7D + 6T + 14)υ + (2B + 2C)µ = 1238υ +
176µ.

In general when N = 2e1 + · · · + 2er, Panny has shown that D = e1(N + 1) −
2(2e1 – 1), E = + (e1 + e2 + · · · + er−1) – (e1 – 1)(r – 1).

Using the observation by Panny that step M4 is performed for i = r + 2kp + s,
k ≥ 0, and 0 ≤ s < p, we have the following program. It maintains r + d in a
register instead of r, because the only use of r is in adding it to d when
computing the initial value of i.

01 :Sort FLOTU t,ROUND_UP,n 1 M1.	Initialize	p.
02 	 SETH c,#FFF0 1 	
03 	 NOR c,c,c 1 	
04 	 ADDU t,t,c 1 Round	N	up	to	2t.
05 	 SRU t,t,52 1 Extract	t.

06 	 ANDNL t,#400 1 t	←	 lgN 	–	1.

07 	 8ADDU keyn,n,key 1 keyn	←	LOC(KN+1).

08 	 SET w,8 1 w	←	1.
09 	 SLU p,w,t 1 p	←	2t.
10 	 SL n,n,3 1 Scale	n.
11 M2 SL q,w,t T M2.	Initialize	q,	r,	d.	q	←	2t.
12 	 ADD r,p,0 T r	←	0.
13 	 SUBU d,keyn,p T d	←	p.
14 3H SUB i,r,n A i	←	r.
15 8H SUB s,p,w D	+	E s	←	0.
16 M4 LDO k,d,i C M4.	Compare/exchange.

17 	 LDO kd,keyn,i C 				Ri+1	:	Ri+d+1.

18 	 CMP c,k,kd C 	

19 	 PBNP c,0F C[B] If	Ki	+	1	>	Ki+d+1,

20 	 STO kd,d,i B 				interchange	Ri+d+1

21 	 STO k,keyn,i B 			and	Ri+1.

22 OH PBNP s,7F C[C–D] Jump	if	s	=	p	–	1.
23 	 ADD i,i,w C	–	D i	←	i	+	1.
24 	 SUB s,s,w C	–	D s	←	s	–	1.

25 	 PBN i,M4 C	–	D[E] Repeat	loop	if	i	+	d	<	N.

26 	 JMP 5F E Otherwise,	go	to	M5.
27 7H ADD i,i,p D 	
28 	 ADD i,i,w D i	←	i	+	p	+	1.
29 	 PBN i,8B D[A–E] Repeat	loop	if	i	+	d	<	N.
30 5H SUB d,q,p A 	
31 	 BZ d,M6 A[T]

32 	 ADD r,d,p A	–	T M5.	Loop	on	q.	r	←	p.
33 	 SUBU d,keyn,d A	–	T 	
34 	 SR q,q,1 A	–	T q	←	q/2.

35 	 ANDNL q,7 A	–	T q	←	8	·	 q/8 .

36 	 JMP 3B A	–	T 	
37 M6 SR p,p,1 T M6.	Loop	on	p.	p	←	p/2.

38 	 ANDNL p,7 T p	←	8	·	 p/8 .

39 	 PBP p,M2 T[1]

The total running time is (10A + 4B + 10C – D + 2E + 3T + 15)υ + (2B +
2C)µ. For Table 1, we have 819υ + 176µ.

Using Panny’s formula, k and s can be precomputed before entering the loop,
thereby reducing the number of tests in each loop to one. The time invested in
this optimization is, however, recovered in the loop only for large N.

[634]
34. We can avoid testing whether or not i ≤ j, as soon as we have found at least
one 0 bit and at least one 1 bit in each stage—that is, after making the first
exchange in each stage. To do so, replace lines 06–19 of Program R by

	 JMP R3B A 	
R5 LDO kj,j,8 C″	–	D″	–	X R5.	Inspect	Kj+1	for	0.

AND t,kj,b

	 AND t,kj,b C″	–	D″	–	X 	

	 BNZ t,R6B C″	–	D″	–	X[C″-D″-A] To	R6B	if	it	is	1.

	 ADDU i,j,d A	–	X 	
R7 STO ki,j,8 B R7.	Exchange	Ri,	Rj+1.

	 STO kj,i,0 B 	
R4A ADD i,i,8 D	′ R4′.	Increase	i.	i	←	i	+	1.

	 LDO ki,i,0 D	′ R3′.	Inspect	Ki	for	1.

	 AND t,ki,b D	′ 	

	 PBZ t,R4A D	′[B] To	R4A	if	it	is	0.
R6A SUBU j,j,8 D″ R6′.	Decrease	j.	j	←	j	–	1.

	 LDO kj,j,8 D″ R5′.	Inspect	Kj+1	for	0.

	 AND t,kj,b D″ 	

	 BNZ t,R6A D″[D″-B] To	R6A	if	it	is	1.

	 SUB d,i,j B 	
	 PBNP d,R7 B[A–X] To	R7	if	i	≤	j;
	 ADDU j,j,8 A	–	X 			else	adjust	j
	 JMP R8 A	–	X 			and	continue	with	R8.
R4B ADD d,d,8 C	′	–	D	′	–	A R4.	Increase	i.

	 BP d,R8 C	′	–	D	′	–	A[X	′] To	R8	if	i	>	j.

R3B LDO ki,j,d C	′	–	D	′	–	X	′ R3.	Inspect	Ki	for	1.

	 AND t,ki,b C	′	–	D	′	–	X	′ 	

	 PBZ t,R4B C	′	–	D	′	–	X	′[A-X	′] To	R4B	if	it	is	0.
R6B SUBU j,j,8 C″	–	D″	–	X	′ R6.	Decrease	j.

	 ADD d,d,8 C″	–	D″	–	X	′ 	

	 PBNP d,R5 C″	–	D″	–	X	′[X″] To	R8	if	i	>	j.

Here X = X ′ + X″ is the number of times j < i before the first exchange, C ′ +
C″ is the number of bit inspections before the first exchange, and D ′ + D″ is the
number of bit inspections after the first exchange. Assuming C ′ ≈ C″, D ′ ≈ D″,
and X ′ ≈ X″, the new program saves 3D ′ – 2A – 2B + 12X compared to
Program R. With random bits, the initial loops need an average of 2 bit-
inspections each to reach the first exchange. Neglecting the cases where the loops
end prematurely because j < i, we have ave(D ′ + D″) = C – 4A. With case (ii)
data (see page 127), the improved program is approximately (N ln N – 8N)/ ln 2
+ 6N ≈ 1.44N ln N – 5.5N cycles faster.

As an alternative, we can apply the optimizations used in Program Q; add a

key with all zeros and a key with all ones to the left and right of the array,
respectively; and finish with a final run of straight insertion sort (see also exercise
40). This yields the following program:

01 :Sort CMP t,n,M 1 R1.	Initialize.
02 	 BNP t,S1 1 To	straight	insertion	sort,	if	N	≤	M.
03 	 GET rJ,:rJ 1 	
04 	 SUBU t+1,key,8 1 l	←	0.
05 	 8ADDU t+2,n,0 1 j	←	N	+	1.
06 	 SET t+3,b 1 b	←	b.
07 	 PUSHJ t,R2 1 To	radix	exchange	sort.
08 	 PUT :rJ,rJ 1 	
09 	 JMP S1 1 To	straight	insertion	sort.
10 R2 SET i,0 A R2.	Begin	new	stage.	i	←	l.
11 	 SET r,j A r	←	j.
12 	 JMP 0F A 	

13 R7 STO ki,l,j B R7.	Exchange	Ki,	Kj.

14 	 STO kj,l,i B 	
15 R6 SUB j,j,8 C″	–	A R6.	Decrease	j.	j	←	j	–	1.

16 OH LDO kj,l,j C″ R5.	Inspect	Kj	for	0.

17 	 AND t,kj,b C″ 	

18 	 PBNZ t,R6 C″[A+B] To	R4	if	it	is	0.

19 R4 ADD i,i,8 C	′ R4.	Increase	i.	i	←	i	+	1.

20 	 LDO ki,l,i C	′ R3.	Inspect	Ki	for	1.

21 	 AND t,ki,b C	′ 	

22 	 PBZ t,R4 C	′[A+B] To	R8	if	it	is	1.

23 	 CMP t,i,j A	+	B R8.	Test	special	cases.

24 	 PBN t,R7 A	+	B[A] To	R7	if	i	<	j.

25 	 BOD b,R10 A[G] To	R10	if	m	≤	0.
26 	 SR b,b,1 A	–	G m	←	m	–	1.
27 	 SUB d,r,j A	–	G d	←	r	–	j.
28 	 CMP t,j,8*M A	–	G 	

29 	 BNP t,0F A	–	G[R] Jump	if	left	subfile	is	too	small.

30 	 CMP t,d,8*M A	–	G	–	R 	

31 	 BNP t,R2 A	–	G	–	R[L] Jump	if	right	subfile	is	too	small.

32 	 GET rJ,:rJ S Now	j	>	r	–	j	>	M	+	1.

33 	 ADDU t+1,l,j S R9.	Put	on	stack.	To	R2	with
34 	 SET t+2,d S 					l	←	l	+	j,	j	←	r	–	j,

35 	 SET t+3,b S 					2b–1,
36 	 PUSHJ t,R2 S 					and	(l,	j,	rJ)	⇒	stack.
37 	 PUT :rJ,rJ S 	
38 	 JMP R2 S To	R2	with	l	and	j.
39 OH CMP t,d,8*M+8 R 	
40 	 PBNP t,R10 R[R–K] Jump	if	right	subfile	is	too	small.
41 	 ADD l,l,j R	–	K Now	r	–	j	>	M	≥	j	–	0.
42 	 SET j,d R	–	K 	
43 	 JMP R2 R	–	K To	R2	with	l	+	j	and	r	–	j.
44 R10 POP 0,0 S R10.	Take	off	stack.
45 S1 SL j,n,3 1 S1.	Loop	on	j.

46 	 SUBU key0,key,8 1 key0	←	LOC(K0).

47 	 SUB j,j,8 1 j	←	j	–	1.
48 	 JMP 0F 1 	

49 S3 LDO ki,key,j N	–	1 S3.	ki	←	Kj.

50 	 SUB j,j,8 N	–	1 j	←	j	–	1.

51 	 LDO kj,key,j N	–	1 kj	←	Kj.

52 	 CMP t,kj,ki N	–	1 Compare	Kj	:	Ki.

53 	 BNP t,0F N	–	1[N–1–D] Done	if	Kj	≤	Kj+1.

54 	 ADD i,j,8 D i	←	j	+	1.

55 S4 STO ki,key0,i E S4.	Move	Ki.

56 	 ADD i,i,8 E Increase	i.

57 	 LDO ki,key,i E ki	←	Ki.

58 	 CMP t,kj,ki E Compare	Kj	:	Ki.

59 	 PBP t,S4 E[D] Loop	while	Kj	>	Ki.

60 	 STO kj,key0,i D S5.	Ki+1	←	Kj.

61 OH PBP j,S3 N[1] Continue	while	j	>	0.				

The program can be analyzed using the quantities A, B, C, G, R, L, K, and N as
in Program R, together with the quantities D, E, and M as in Program Q.
Looking at the innermost loop, it is clear that the asymptotic running time is the
same as in the previous program, but the O(N) part gets smaller; as a
consequence, with m = 32, M = 12, and N = 10000, it runs about 33 percent
faster.

55. Replace lines 09–10 of Program Q by

Q2 LDO kl,l,8 A Q2.	Begin	new	stage.
	 SUB r,j,8 A 	
	 LDO kr,l,r A 	
	 SR m,r,1 A 	
	 LDO k,l,m A 	
	 CMP t,kl,k A 	

	 CSP kt,t,k A Swap	Km	and	Kl	if	Kl	>	Km.

	 CSP k,t,kl A 	
	 CSP kl,t,kt A 	
	 CMP t,k,kr A 	

	 BNP t,0F A[A/3] Done	if	K	≤	Kr.

	 STO k,l,r 2A/3 	

	 SET k,kr 2A/3 K	←	Kr.

	 CMP t,kl,k 2A/3 	

	 CSP k,t,kl 2A/3 Swap	Kr	and	Kl	if	Kl	>	Kr.

	 CSP kl,t,kr 2A/3 	
0H STO kl,l,8 A 	

	 LDO kt,l,16 A 	
	 STO kt,l,m A 	
	 STO k,l,16 A 	
	 SET i,24 A

Also, change the instruction in line 25 to STO	kj,l,16 (see the remark after (27)).
On average, this modification adds A(20υ + 7 µ) to the total running time of

Program Q.
56. ·
· ·

Similarly SN = (N + 1)(5M + 3)/(2M + 3)(2M + 1) – 1 + O(N−6). The total

average running time of the program in exercise 55 is (42.5AN + 6BN + 4CN +

6DN + 5EN + 9SN + 6N + 7.5)υ + (10 AN + 2BN + CN + DN + 2EN + 2N –

2)µ. The choice M = 11 is slightly better than M = 12, producing an average
time of approximately (8.91(1 + N) ln N – 3.66N – 39.66)υ + (2.4(1 + N) ln N –
0.22N – 10.88)µ.

5.2.3.	Sorting	by	Selection

5.2.3.	Sorting	by	Selection

[640]

8. We can start the next iteration of step S2 at position i, provided that we have
remembered max(K1, . . ., Ki−1). One way to keep all of this auxiliary

information is to use a link table L1 . . . LN such that KLk is the previous boldface

element of Table 1 whenever Kk is boldface; L1 = –1. [We could get by with less

auxiliary storage, at the expense of some redundant comparisons.]
The following MMIX program has an additional parameter link ≡ LOC(L1).

The indices i, j, and k are scaled by 8, to be used as offsets. To make the inner
loop fast, the offset k ≡ 8(k – j) is relative to Kj (and Lj), keeping it in the range –

8j <= k <= 0.

01 :Sort SL j,n,3 1 S1.	Loop	on	j.	j	←	N.
02 	 SUB j,j,8 1 j	←	j	–	1.

03 	 BNP j,9F 1[0] j	>	0?

04 	 NEG t,1 1 	

05 	 STO t,link,0 1 L1	←	–1.

06 	 JMP 1F 1 	

07 2H ADDU linkj,link,j N	–	D linkj	←	LOC(Lj+1).

08 	 ADDU keyj,key,j N	–	D keyj	←	LOC(Kj+1).

09 S2 LDO kk,keyj,k A S2.	Find	max(K1,	.	.	.	,	Kj).	kk	←	Kk.

10 	 CMP t,max,kk A Compare	Ki	:	Kk.

11 	 PBNN t,0F A[N–C] If	Ki	<	Kk,

12 	 STO i,linkj,k N	–	C 							Lk	←	i,

13 	 ADD i,j,k N	–	C 							i	←	k,	and

14 	 SET max,kk N	–	C 							max	←	Kk.

15 0H ADD k,k,8 A k	←	k	+	1.
16 	 PBNP k,S2 A[N–D] Jump	if	k	≤	j.

17 S3 LDO t,key,j N	–	1 S3.	Exchange	with	Kj.

18 	 STO max,key,j N	–	1 	
19 	 STO t,key,i N	–	1 	
20 	 SUB j,j,8 N	–	1 j	←	j	–	1.
21 	 SUB k,i,j N	–	1 k	←	i.

22 LDO i,link,i

22 	
LDO i,link,i

N	–	1 i	←	Li.

23 	 PBNN i,0F N	–	1[C-1] If	there	is	no	link,

24 1H NEG k,8,j C 							k	←	1	and
25 	 SET i,0 C 							i	←	0.

26 0H LDO max,key,i N max	←	Ki.

27 	 PBNP k,2B N[D] 	
28 	 PBP j,S3 D[1] 	
29 9H POP 0,0 	

9. N – 1 +ΣN≥k≥2((k – 1)/2 – 1/k) = + N + HN. [The average values of C

and D are, respectively, HN + 1 and HN – ; hence the average running time of

the program is (1.25N2 + 21.75N + 3HN – 1.5)υ + (0.25N2 + 6.75N – 4)µ.]
Program H is much better for large N.

5.2.4.	Sorting	by	Merging

[647]

9. The following subroutine implements Algorithm S. It expects three
parameters: key ≡ LOC(K1) = LOC(R1), the location of the records to be sorted;
key2, the location of a second area where the records can be stored (which can
be LOC(RN+1); and n ≡ N, the number of records. Switching the output areas is

achieved by interchanging key and key2; a variable s is not needed. The return
value is the location of the sorted records, which will be either key or key2.

The implementation presented here maintains two pointers q ≡ LOC(Kq) and

r ≡ LOC(Kr) instead of the counters q and r. The offsets i and j are relative to q

and r. Hence, we can access the keys Ki and Kj at locations q+i and r+j,

respectively. In the inner loop, decrementing q or p is eliminated and the tests q
> 0 and r > 0 are replaced by i < 0 and j > 0. This reduces the asymptotic
running time to 8N lg N units.

01 :Sort SL n,n,3 1 S1.	Initialize.
02 	 SET p,8 1 p	←	1.

03 S2 ADDU q,key,p A S2.	Prepare	for	pass.	q	←	LOC(R1+p).

04 	 NEG i,p A i	←	1	(i	is	relative	to	q).

05 	 LDO ki,q,i A ki	←	Ki.

06 ADDU r,key,n

06 	 ADDU r,key,n A
r	←	LOC(RN+1).

07 	 SUB r,r,8 A r	←	LOC(RN).

08 	 SUB r,r,p A r	←	LOC(RN–p).

09 	 SET j,p A j	←	N	(j	is	relative	to	r).

10 	 LDO kj,r,j A kj	←	Kj.

11 	 NEG k,8 A k	←	–1.
12 	 SET l,n A l	←	N.
13 	 SET d,8 A d	←	1.

14 S3 CMP t,ki,kj C S3.	Compare	Ki	:	Kj.

15 	 BP t,S8 C[C″] If	Ki	>	Kj,	go	to	S8.

16 	 ADD k,k,d C	′ S4.	Transmit	Ri.	k	←	k	+	d.

17 	 STO ki,key2,k C	′ Rk	←	Ri.

18 	 ADD i,i,8 C	′ S5.	End	of	run?	i	←	i	+	1.

19 	 LDO ki,q,i C	′ ki	←	Ki.

20 	 PBN i,S3 C	′[B	′] If	q	>	0,	go	to	S3.

21 S6 ADD k,k,d D	′ S6.	Transmit	Rj.	k	←	k	+	d.

22 	 CMP t,k,l D	′ 	

23 	 BZ t,S13 D	′[A	′] If	k	=	l,	go	to	S13.

24 	 STO kj,key2,k D	′	–	A	′ Rk	←	Rj.

25 	 SUB j,j,8 D	′	–	A	′ S7.	End	of	run?	j	←	j	–	1.

26 	 LDO kj,r,j D	′	–	A	′ kj	←	Kj.

27 	 PBNP j,S12 D	′	–	A	′[D
′–B	′]

If	r	≤	0,	go	to	S12;

28 	 JMP S6 D	′	–	B	′ 						otherwise,	go	to	S6.

29 S8 ADD k,k,d C″ S8.	Transmit	Rj.	k	←	k	+	d.

30 	 STO kj,key2,k C″ Kk	←	Kj.

31 	 SUB j,j,8 C″ S9.	End	of	run?	j	←	j	–	1.

32 	 LDO kj,r,j C″ kj	←	Kj.

33 	 PBP j,S3 C″[B″] If	r	>	0,	go	to	S3.

34 S10 ADD k,k,d D″ S10.	Transmit	Ri.	k	←	k	+	d.

35 	 CMP t,k,l D″ 	

36 	 BZ t,S13 D″[A″] If	k	=	l,	go	to	S13.

37 	 STO ki,key2,k D″	–	A″ Rk	←	Ri.

38 	 ADD i,i,8 D″	–	A″ S11.	End	of	run?	i	←	i	+	1.

39 	 LDO ki,q,i D″	–	A″ ki	←	Ki.

40 	 BN i,S10
D″	–

A″[D″–B″]
If	q	>	0,	go	to	S10.

41 S12 SUB ji,r,q B	–	A S12.	Switch	sides.	ij	←	j	–	i.
42 	 ADDU q,q,p B	–	A q	←	p.
43 	 NEG i,p B	–	A i	is	relative	to	q.
44 	 SUB r,r,p B	–	A r	←	p.
45 	 SET j,p B	–	A j	is	relative	to	r.
46 	 NEG d,d B	–	A d	←	–d.
47 	 SET t,l B	–	A Interchange	k	↔	l.
48 	 SET l,k B	–	A 	
49 	 SET k,t B	–	A 	
50 	 CMP t,ji,p B	–	A 	

51 	 PBNN t,S3 B	–	A[E] If	j	–	i	≥	p,	go	to	S3;

52 	 JMP S10 E 					otherwise,	go	to	S10.
53 S13 ADD p,p,p A S13.	Switch	areas.	p	←	p	+	p.
54 	 CMP t,p,n A 	
55 	 BNN t,0F A[1] If	p	≥	N,	sorting	is	complete.
56 	 SET t,key2 A	–	1 Interchange	key2	↔	key.
57 	 SET key2,key A	–	1 	
58 	 SET key,t A	–	1 	
59 	 JMP S2 A	–	1 Go	to	S2.
60 0H SET $0,key2 1 Return	key2.
61 	 POP 1,0 	

The running time for N ≥ 3 is (5A + 11B – B ′ + 9C – 2C ′ + 9D + D ′ + 3E +
1)υ + (2C + 2D)µ, where A = A ′ + A″ is the number of passes, where A ′ is the
number of passes that end with step S6; B = B ′ + B″ is the number of subfile-
merge operations performed, where B ′ is the number of such merges in which
the q subfile was exhausted first; C = C ′ + C″ is the number of comparisons
performed, where C ′ is the number of such comparisons with Ki ≤ Kj; D = D ′
+ D″ is the number of elements remaining in subfiles when the other subfile has
been exhausted, where D ′ is the number of such elements belonging to the r
subfile; and D″ includes E, the number of subfiles that need no merging because
the number of subfiles was odd. Using A ≈ lg N , A ′ ≈ A/2, B = N – 1, B ′ ≈
B/2, C + D ≈ N lg N, C ′ ≈ C/2, D ≈ 1.26N + O(1) (see exercise 13), and E ≈
A/2, the asymptotic running time is 8N lg N + 12.4N + 6.5 lg N + O(1).

The innermost loop of the program contains two branch instructions: one in
line 15 and the other in line 20 or 33. On a highly pipelined processor, the first
of these branches will cause a considerable slowdown, because no branch
prediction logic will be able to achieve more than 50 percent of good guesses on
average. Using bitwise tricks and techniques, this branch can be eliminated (see
Section 7.1.3, page 181).
13. The running time for N ≥ 3 is (16A + 10B + 1B ′ + 9C – 2C ′ + 5D + 4N +
21)υ + (6A + 4B + 3C + D + N + 6)µ, where A is the number of passes; B = B ′
+ B″ is the number of subfile-merge operations performed, where B ′ is the
number of such merges in which the p subfile was exhausted first; C = C ′ + C″
is the number of comparisons performed, where C ′ is the number of such
comparisons with Kp ≤ Kq; D = D ′ +D″ is the number of elements remaining in

subfiles when the other subfile has been exhausted, where D ′ is the number of
such elements belonging to the q subfile. In Table 3 we have A = 4, B ′ = 6, B″
= 9, C ′ = 22, C″ = 22, D ′ = 10, D″ = 10, total time = 757υ + 258µ. (The
comparable Program 5.2.1L takes only 356υ + 160µ, when improved as in
exercise 5.2.1–33, so we can see that merging isn’t especially efficient when N is
small.) . . .

15. Add an extra copy of L3 and L4, replacing line 26 of Program L with

BOD p,L5 If	TAG(p)	=	0,	continue	with	L3A.

L3A CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6 If	Kp	>	Kq,	go	to	L6.

SET s,p L4.	Advance	p.	s	←	p.

LDTU p,link,p p	←	Lp.

LDT kp,key,p kp	←	Kp.

PBEV p,L3A If	TAG(p)	=	0,	return	to	L3A.

The replacement for line 38 is similar. The elimination of Ls ← p (and Ls ← q)

reduces the asymptotic running time by 0.5C to 7.5N lg N. A further
improvement can also be made, removing the assignments s ← p (and s ← q)
from the inner loop by renaming the registers! With twelve copies of the inner
loop, corresponding to the different permutations of (p,	q,	s) and the different
knowledge about Ls, we can cut the average running time to (6.5N lg N +

O(N))υ.
This is the code for steps L3, L4, and L5 (the code for steps L3, L6, and L7 is

similar):

L3pqs CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6pqs If	Kp	>	Kq,	go	to	L6pqs.

L4pqs STTU p,link,s L4.	Advance	p.	Ls	←	p.

LDTU s,link,p p	←	Lp.

LDT kp,key,s kp	←	Kp.

BOD s,L5sqp If	TAG(p)	=	1,	continue	with	L5sqp.
L34sqp CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6sqp If	Kp	>	Kq,	go	to	L6sqp.

LDTU p,link,s L4.	Advance	p.	p	←	Ls.

LDT kp,key,p kp	←	Kp.

BOD p,L5pqs If	TAG(p)	=	1,	continue	with	L5pqs.
L34pqs CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6pqs If	Kp	>	Kq,	go	to	L6pqs.

LDTU s,link,p L4.	Advance	p.	s	←	Lp.

LDT kp,key,s kp	←	Ks.

PBEV s,L34sqp If	TAG(p)	=	0,	continue	with	L34sqp.

L5sqp STTU q,link,p L5.	Complete	the	sublist.	Lp	←	q.

SET p,s Undo	permutation	of	(p,	q,	s).
JMP L5A

L4psq STTU p,link,q L4.	Advance	p.	Lq	←	p.

LDTU q,link,p q	←	Lp.

LDT kp,key,q kp	←	Kq.

BOD q,L5qsp If	TAG(q)	=	1,	continue	with	L5qsp.
L34qsp CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6qsp If	Kp	>	Kq,	go	to	L6qsp.

LDTU p,link,q L4.	Advance	p.	p	←	Lq.

LDT kp,key,p kp	←	Kp.

BOD p,L5psq If	TAG(p)	=	1,	continue	with	L5psq.
L34psq CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6psq If	Kp	>	Kq,	go	to	L6psq.

LDTU q,link,p L4.	Advance	p.	q	←	Lp.

LDT kp,key,q kp	←	Kq.

PBEV q,L34qsp If	TAG(q)	=	0,	continue	with	L34qsp.

L5qsp STTU s,link,p

L5qsp STTU s,link,p L5.	Complete	the	sublist.	Lp	←	s.

SET p,q Undo	permutation	of	(p,	q,	s).
SET q,s
JMP L5A

L4spq STTU s,link,q L4.	Advance	p.	Ls	←	p.

LDTU q,link,s q	←	Ls.

LDT kp,key,q kp	←	Kq.

BOD q,L5qps If	TAG(q)	=	1,	continue	with	L5qps.
L34qps CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6qps If	Kp	>	Kq,	go	to	L6qps.

LDTU s,link,q L4.	Advance	p.	s	←	Lq.

LDT kp,key,s kp	←	Ks.

BOD s,L5spq If	TAG(s)	=	1,	continue	with	L5spq.
L34spq CMP c,kp,kq L3.	Compare	Kp	:	Kq.

BP c,L6spq If	Kp	>	Kq,	go	to	L6spq.

LDTU q,link,s L4.	Advance	p.	q	←	Ls.

LDT kp,key,q kp	←	Kq.

PBEV q,L34qps If	TAG(q)	=	0,	continue	with	L34qps.

L5qps STTU p,link,s L5.	Complete	the	sublist.	Ls	←	p.

SET s,p Undo	permutation	of	(p,	q,	s).
SET p,q
SET q,s
JMP L5A

L4qps STTU q,link,s L4.	Advance	p.	Ls	←	q.

LDTU s,link,q s	←	Lq.

LDT kp,key,s kp	←	Ks.

PBEV s,L34spq If	TAG(s)	=	0,	continue	with	L34spq.

L5spq STTU p,link,q L5.	Complete	the	sublist.	Lq	←	p.

SET q,p Undo	permutation	of	(p,	q,	s).
SET p,s
JMP L5A

L4sqp STTU s,link,p L4.	Advance	p.	Lp	←	s.

LDTU p,link,s p	←	Ls.

LDT kp,key,p kp	←	Kp.

PBEV p,L34pqs

If	TAG(s)	=	0,	continue	with	L34pqs.

L5pqs STTU q,link,s L5.	Complete	the	sublist.	Ls	←	q.

L5A SET s,t s	←	t.
0H SET t,q t	←	q.

LDTU q,link,q q	←	Lq.

BEV q,0B Repeat	until	If	TAG(q)	=	1.

LDT kq,key,q kq	←	Kq.
JMP L8

L4qsp STTU q,link,p L4.	Advance	p.	Lp	←	q.

LDTU p,link,q p	←	Lq.

LDT kp,key,p kp	←	Kp.

PBEV p,L34psq If	TAG(p)	=	0,	continue	with	L34psq.

L5psq STTU s,link,q L5.	Complete	the	sublist.	Lq	←	s.

SET q,s Undo	permutation	of	(p,	q,	s).
JMP L5A

5.2.5.	Sorting	by	Distribution

[650]

5. In Program R, replace lines 07–10 by

NEG k,3 1 k	←	1.
SET mask,8*((1<<m)-1) 1 mask	←	8(2m	–	1)	(the	bit	mask).

0H SUBU P,P,16 N R5.	Step	to	next	record.
LDOU i,P,KEY N R3.	Extract	first	digit	of	key.
SLU i,i,3 N

AND i,i,mask N i	←	a1.

to initialize the registers k (the bitoffset) and mask (the bitmask). Here, we assume
m ≥ 3 so that in later passes the bitoffset can be adjusted by adding m. Then
replace lines 19 and 21 by

ADD k,k,m P	–	1 k	←	k	+	1.
R3 LDOU i,P,KEY N(P	–	1) R3.	Extract	kth	digit	of	key.

SRU i,i,k N(P	–	1)

AND i,i,mask N(P	–	1) i	←	ap+1	–	k.

The changes to the sort routine add (NP + 1)υ to the running time; it amounts to

((8P + 1)N + 11MP + 26P + 9)υ. For fixed N and fixed key length Pm, the
extra time spent in the sort routine will grow linearly with increasing P and the
amount of time spent in the Hook and Empty subroutines will grow exponentially
larger as P gets smaller. So for each N and key length, there will be an optimal
number of passes. For N < 10000 and keys up to 32 bits long, the changes will
always make the program slower. For N = 100000 and a full 64-bit key, the
improved program with m = 13 and P = 5 will be about 20 percent faster.

5.3.1.	Minimum-Comparison	Sorting

28. The simplest and most efficient solution starts by loading all five keys in
registers; then implements the decision tree as described in the text, using a CMP
instruction followed by a BP for each node; and finishes off by storing the five
keys.
:Sort LDB a,K,0 1

LDB b,K,1 1
LDB c,K,2 1
LDB d,K,3 1
LDB e,K,4 1
CMP t,a,b 1
BP t,0F 1[0.5] a	<	b
CMP t,c,d 1
BP t,1F 1[0.5] a	<	b,	c	<	d
CMP t,b,d 1
BP t,2F 1[0.5] a	<	b	<	d,	c	<	d
…

2H … a	<	b,	c	<	d	<	b
…

1H CMP t,b,c 1 a	<	b,	d	<	c
BP t,2F 1[0.5] a	<	b	<	c,	d	<	c
…

2H … a	<	b,	d	<	c	<	b
…

0H CMP t,c,d 1 b	<	a
BP t,1F 1[0.5] b	<	a,	c	<	d
CMP t,a,d 1
BP t,2F 1[0.5] b	<	a	<	d,	c	<	d
…

…

2H … b	<	a,	c	<	d	<	a
…

1H CMP t,a,c 1 b	<	a,	d	<	c
BP t,2F 1[0.5] b	<	a	<	c,	d	<	c
…

2H … b	<	a,	d	<	c	<	a
…

Using	3H	and	4H	to	insert	e,	using	5H	and	6H	to	insert	the	last	element	c,	and
finishing	with	120	variations	of	7H.

7H STB a,K,0 1
STB b,K,1 1
STB c,K,2 1
STB d,K,3 1
STB e,K,4 1
POP 0,0

The full 1075-line program has an average running time of 30.8υ + 10µ. Its
minimum running time is 22υ + 10µ (6 correctly predicted branches); its
maximum running time is 38υ + 10µ. The latter appears to be optimal since it is
the time for 5 LDB, 7 CMP, 7 BP (all mispredicted), and 5 STB. One should not
write such a program. If desired, one should implement a generator to produce
merge insertion programs for arbitrary (small) N.

Much shorter programs are possible at minimal extra cost. For example, the
first test and branch
CMP t,a,b 1
BP t,0F 1[0.5]

can be replaced by a test and a swap of a with b:
CMP t,a,b 1
CSP x,t,a 1 a	↔	b
CSP a,t,b 1
CSP b,t,x 1

This cuts the size of the program in half without changing the maximum running
time. The average running time will increase by 1 cycle, and the minimum
running time by 2 cycles.

A similar replacement can be done for the next test c < d. Joining the control
flow after the third test b < d requires two swaps: a	↔	c and b	↔	d. Using

Conditional-Set instructions here is less efficient than a branch. The
transformation in lines 14–21 adds 4 cycles to the maximum running time and 2
cycles to the average and minimum running times.

Next, e must be inserted in the sequence a < b < d. Swapping values as
needed, we can reduce the possibilities to two cases: a < b < e < d, c < d and a <
b < d < e, c < d. The endgame inserts c below d. The STB instructions can be
issued as soon as the final position is known, further reducing the size of the code
without affecting the running time. We obtain:

01 :Sort LDB a,K,0 1
02 LDB b,K,1 1
03 LDB c,K,2 1
04 LDB d,K,3 1
05 LDB e,K,4 1
06 CMP t,a,b 1
07 CSP x,t,a 1 a	↔	b.
08 CSP a,t,b 1
09 CSP b,t,x 1
10 CMP t,c,d 1 Here	a	<	b.
11 CSP x,t,c 1 c	↔	d.
12 CSP c,t,d 1
13 CSP d,t,x 1
14 CMP t,b,d 1 Here	c	<	d.

15 BN t,2F 1[1/2]
16 SET x,a 1/2 a	↔	c.
17 SET a,c 1/2
18 SET c,x 1/2
19 SET x,b 1/2 b	↔	d.
20 SET b,d 1/2
21 SET d,x 1/2
22 2H CMP t,e,b 1 Here	a	<	b	<	d	and	c	<	d.

23 BP t,3F 1[7/15]
24 CMP t,e,a 8/15 Here	a	<	b	<	d,	e	<	b,	and	c	<	d.
25 SET x,e 8/15 x	←	e.
26 SET e,b 8/15 e	←	b.
27 CSNP b,t,a 8/15 If	e	<	a,	b	←	a.
28 CSNP a,t,x 8/15 If	e	<	a,	a	←	x.

29 CSP b,t,x 8/15 If	e	>	a,	b	↔	e.
30 0H STB d,K,4 4/5 Here	a	<	b	<	e	<	d	and	c	<	d.
31 CMP t,c,b 4/5

32 BP t,5F 4/5[2/5]
33 STB e,K,3 2/5 Here	a	<	b	<	e	<	d	and	c	<	b.
34 1H STB b,K,2 8/15
35 CMP t,c,a 8/15

36 BP t,6F 8/15[4/15]
37 STB c,K,0 4/15 Here	c	<	a	<	b	<	e	<	d.
38 STB a,K,1 4/15
39 POP 0,0

40 6H STB a,K,0 4/15 Here	a	<	c	<	b	<	e	<	d.
41 STB c,K,1 4/15
42 POP 0,0

43 5H STB a,K,0 2/5 Here	a	<	b	<	e	<	d	and	b	<	c	<	d.
44 STB b,K,1 2/5
45 CMP t,c,e 2/5

46 BN t,6F 2/5[1/5]
47 STB e,K,2 1/5 Here	a	<	b	<	e	<	c	<	d.
48 STB c,K,3 1/5
49 POP 0,0

50 6H STB e,K,3 1/5 Here	a	<	b	<	c	<	e	<	d.
51 STB c,K,2 1/5
52 POP 0,0

53 3H CMP t,e,d 7/15 Here	a	<	b	<	d,	b	<	e,	and	c	<	d.

54 PBN t,0B 7/15[1/5]
55 STB e,K,4 1/5 Here	a	<	b	<	d	<	e	and	c	<	d.
56 STB d,K,3 1/5
57 CMP t,c,b 1/5

58 PBN t,1B 1/5[1/15]
59 STB a,K,0 1/15 Here	a	<	b	<	c	<	d	<	e.
60 STB b,K,1 1/15
61 STB c,K,2 1/15
62 POP 0,0

The above code has only 62 instructions. Its maximum running time is 42υ +

10µ, the minimum is 32υ + 10µ and the average is 37.2υ + 10µ.
On computers, such as MMIX, that have an ODIF instruction for saturating

subtraction, implementing a sorting network (see Section 5.3.4) is an attractive
alternative. When three instructions (see exercise 5–8) suffice to order two
nonnegative numbers

a and b, a sorting network for five numbers that will need nine such comparators
(see 5.3.4–(11)) can be implemented with 27 instructions. Add to this five load
and store instructions, and you obtain a sorting procedure only 37 instructions
long that takes exactly 37υ + 10µ to execute.

This will not beat the 30.8υ + 10µ average running time of the full program
with 1075 instructions, but it is much shorter than even the reduced program
with 62 instructions, beating its average running time of 37.2υ + 10µ with a
constant running time of 37υ + 10µ.

For n keys, the minimum possible average number of comparisons is
approximately lg n, while the size of the smallest sorting network for n keys is
O(n(log n)2). Obviously for large n, neither of the two methods can be
recommended.

5.5.	SUMMARY,	HISTORY,	AND	BIBLIOGRAPHY

[701]

2. For small and medium N, say N ≤ 1000, multiple list insertion; for large N,
radix list sort.

6.1.	SEQUENTIAL	SEARCHING

[702]

3. The following subroutine expects two parameters: p, the location of the first
node, and k ≡ K, the key. After a successful search, it returns the location of the
record found; otherwise, it returns zero.

01 S3 LDOU p,p,LINK C	–	S S3.	Advance.	P	←	LINK(P).

02 :Search BZ p,0F C	–	S	+	1[1	–
S]

S4.	End	of	file?

03 LDO kp,p,KEY C kp	←	KEY(P).
04 CMP t,k,kp C S2.	Compare.
05 PBNZ t,S3 C[S] If	K	=	KEY(P),	terminate	successfully.
06 0H POP 1,0 Return	p.				

The running time is (5C – 2S + 3)υ + (2C – S)µ.
5. Program Q′ takes more time than Program Q if C < S + 2 + (C – S) mod 2.

A successful search (S = 1) will take more time only for i ≤ 2; an unsuccessful
search will take more time only for N = 1.
6. We unroll the inner loop three times.

01 :Search SL i,n,3 1 Q1.	Initialize.
02 NEG i,i 1 i	←	–8N,	i	←	1.

03 SUBU key,key,i 1 key	+	i	←	LOC(KN+1).

04 ADDU key1,key,8 1 key1	+	i	←	LOC(KN+2).

05 ADDU key2,key1,8 1 key2	+	i	←	LOC(KN+3).

06 STO k,key,0 1 KN	←	K.

07 JMP Q2 1

08 Q3 ADD i,i,24 (C	–	S)/3 Q3.	Advance.	(3	times)

09 Q2 LDO ki,key,i (C	–	S)/3 	+	1 Q2.	Compare.

10 CMP t,k,ki (C	–	S)/3 	+	1

11 BZ t,Q4 (C	–	S)/3 	+	1[1	–
F]

To	Q4	if	K	=	Ki.

12 LDO ki,key1,i (C	–	S)/3 	+	F Q2.	Compare.

13 CMP t,k,ki (C	–	S)/3 	+	F

14 BZ t,0F (C	–	S)/3 	+	F[F	–
G]

To	Q4	if	K	=	Ki+1.

15

15 LDO ki,key2,i (C	–	S)/3 	+	G Q2.	Compare.

16 CMP t,k,ki (C	–	S)/3 	+	G

17 PBNZ t,Q3 (C	–	S)/3 	+	G[G] To	Q3	if	K	≠	Ki+2.

18 ADD i,i,8 G

19 0H ADD i,i,8 F

20 Q4 PBN i,Success 1[1	–	S] Q4.	End	of	file?

21 POP 0,0 Exit	if	not	in	table.

22 Success ADDU $0,key,i S Return	LOC(Ki).

23 POP 1,0

The total running time is (10 (C – S)/3 − S + 4F + 4G + 15)υ + (3 (C – S)/3 +
F + G + 2)µ. Using (C – S) mod 3 = F + G, this is about (3.33C – 4.33S +
0.67((C − S) mod 3) + 15)υ + (C – S + 2)µ.

6.2.1.	Searching	an	Ordered	Table

[705]

4. It must be an unsuccessful search with N = 127; hence by Theorem B the
answer is 84υ.
5. Program 6.1Q′ has an average running time of 1.75N + 11.5 – (N mod

2)/4N; this beats Program B if and only if N ≤ 17. [It beats Program C only for
N = 2, 4, 5, and 6.]
10. Use a “macro-expanded” program with the DELTA’s included; thus, for N =
10:

01 :Search ADDU i,key,8*5-8 i	←	DELTA[1],	DELTA[1]	=	5.

02 LDO ki,i,0 ki	←	K5.

03 CMP t,k,ki Compare	K	:	K5.

04 BZ t,Success

05 ADDU i,i,8*3 i	←	i	+	DELTA[2],	DELTA[2]	=	3.
06 SUBU l,i,2*8*3 l	←	i	–	2DELTA[2].

07 CSN i,t,l If	K	<	K5,	then	i	←	l.

08 LDO ki,i,0 ki	←	K2,8.

09 CMP t,k,ki Compare	K	:	K2,8.

10 BZ t,Success

11 ADDU i,i,8*1 i	←	i	+	DELTA[3],	DELTA[3]	=	1.

12 SUBU l,i,2*8*1

12 SUBU l,i,2*8*1 l	←	i	–	2DELTA[3].

13 CSN i,t,l If	K	<	K2,8,	then	i	←	l.

14 LDO ki,i,0 ki	←	K1,3,7,9.

15 CMP t,k,ki Compare	K	:	K1,3,7,9.

16 BZ t,Success

17 ADDU i,i,1*8 i	←	i	+	DELTA[4],	DELTA[4]	=	1.
18 SUBU l,i,2*8*1 l	←	i	–	2DELTA[4].

19 CSN i,t,l If	K	<	K1,3,7,9,	then	i	←	l.

20 LDO ki,i,0 ki	←	K0,2,2,4,6,8,8,10.

21 CMP t,k,ki Compare	K	:	K0,2,2,4,6,8,8,10.

22 BZ t,Success

23 Failure POP 0,0

24 Success POP 1,0

[Exercise 23 shows that most of the “BZ	t,Success” instructions may be
eliminated, yielding a program about 5 lg N lines long that takes only about 5 lg
N units of time; but that program will be faster only for N > 16300
(approximately).]

6.2.2.	Binary	Tree	Searching

[708]

1. Use an extra octabyte in memory to contain the location of the root node.
Call the subroutine with the location of this octabyte in parameter p and replace
the first two lines of Program T with the following:
:Search SET l,0 1 T1.	Initialize.	l	←	0.

JMP T3 1
0H SET p,q C P	←	Q.

LDO kp,p,KEY C T2.	Compare.	kp	←	KEY(P).

3. We could replace Λ by a valid address, and set KEY(Λ) ← K at the
beginning of the algorithm; then the test for Q ≠ Λ could be removed from the
inner loop. In addition, the instruction SET	p,q can be removed by duplicating
the code as in Program 6.2.1F. Thus the MMIX time would be reduced to about
5C units.

6.2.3.	Balanced	Trees

[715]

12. The maximum occurs when inserting into the second external node of (12);
C = 4, F = H = 1, S = G = J = 0, for a total time of 97υ. The minimum occurs
when inserting into the third-last external node of (13); C = 2, S = J = F = G =
H = 0, for a total time of 49υ. [The corresponding figures for Program 6.2.2T
are 57υ and 15υ.]

6.3.	DIGITAL	SEARCHING

[721]

4. Successful searches take place exactly as with the full table, but unsuccessful
searches in the compressed table may go through several additional iterations.
For example, an input argument such as ACCD will make Program T take six
iterations: The A takes the search to node (2), where the C is linked again to node
(2)! Consequently, any number of C’s in the given key will loop here. In our case,
the loop is taken just once more before the D takes the search to node (3), from
where the end of string will take the search one step further to node (12). There,
finally, the search ends unsuccessfully with a zero table entry. It is necessary to
verify that no infinite looping on zero sequences is possible. . . .
9. This subroutine has two parameters: p ≡ LOC(ROOT), a pointer to the root

node, and k ≡ K, the given key. If the search is successful, it returns the location
of the node found; otherwise, it returns zero. We use s ≡ K ′ as a shift register.

01 :Search SET s,k 1 D1.	Initialize.	K	′	←	K.
02 JMP D2 1
03 0H SET p,q C	–	1 P	←	Q.
04 SLU s,s,1 C	–	1
05 D2 LDO kp,p,KEY C D2.	Compare.	kp	←	KEY(P).
06 CMP t,k,kp C

07 BZ t,Success C[S] Exit	if	K	=	KEY(P).
08 ZSNN l,s,LLINK C	–	S l	←	b	?	LLINK	:	RLINK.
09 LDOU q,p,l C	–	S D3/4.	Move	left/right.	Q	←	LINK(b,P).

10 PBNZ q,0B C	–	S[1	–	S]
11 Continue	as	in	Program	6.2.2T.

The running time for the searching phase of this program is (8C –3S + 2)υ +
(2C	−	S)µ, where C – S is the number of bit inspections. For random data, the
approximate average running times are therefore:

Successful Unsuccessful

Successful Unsuccessful
Program	6.2.2T 			14			ln	N	–	14.92 						14			ln	N	–	4.91
This	program 			11.5	ln	N	–	6.73 						11.5	ln	N	–	0.19

(Consequently, this program is faster on a successful search if N ≥ 28 and on an
unsuccessful search if N ≥ 7.)

6.4.	HASHING

[728]

1. –4 ≤ a ≤ 58. Therefore the locations preceding and following the table
containing the keys must be guaranteed to contain no data that matches any
given argument; alternatively, the instructions ‘CMP	t,a,40;	CSNN	a,t,4’
inserted before the first POP and ‘CSN	a,a,4;	CMP	t,a,40;	CSNN	a,t,4’
inserted before the last POP will keep a in the range 0 ≤ a ≤ 39. (The middle POP
will not need such a test.) The extra tests will add 1.4 cycles to the average
running time. [Without these precautions, we might say that the method in
exercise 6.3–4 uses less space, since the boundaries of that table are never
exceeded.]
2. BLACK and DATA both hash to 4; FOR and SHE to 6; DAY and NO to 11; LOOK and
STUDENT (and PROGRAM) to 22; ALL and TRY to 27; CAN and PEOPLE to 31; THEM
and OVER to 32; ONE and WILL to 34; HIM and PART to 35; and THEY and WHAT to
37.
3. The ASCII codes satisfy A + T = O + F and B – E = O – R, so we would have

either f(AT) = f(OF) or f(BE) = f(OR). Notice that the instruction 2ADDU	a,a,a in
Table 1 resolves this dilemma rather well.

5. The hash function is bad since it assumes at most 26 different values, and
some of them occur much more often than the others. Even with double hashing
(letting h2(K) = 1 plus the second byte of K, say, and M = 257) the search will be
slowed down more than the time saved by faster hashing. Also M = 256 is too
small, since FORTRAN programs often have more than 256 distinct variables
(especially when produced by a program generator).
6. Not on MMIX, since K > M will almost always occur. In this case rR will not

contain the remainder (wK) mod M, but rather the value of register z = 0. [It
would be nice to be able to compute (wK) mod M, especially if linear probing
were being used with c = 1, but unfortunately MMIX, like most computers,
disallows this since the quotient overflows.]
12. We can store K in an extra entry KEY[m] at the end of the table, and make

the odd link that marks the end of the chain point to this entry. So we replace
line 23 by
C6 8ADDU t,m,1 1	–	S C6.	Insert	new	key.

and replace lines 09–14 by
SL t,m,3 A

STT k,key,t A KEY[M]	–	K.
JMP 3F A

0H SET p,i C	–	A Keep	previous	value	of	i.
LDT i,link,i C	–	A C4.	Advance	to	next.

3H LDT t,key,i C t	←	KEY[i].
CMP t,t,k C C3.	Compare.
BNZ t,0B C[C–A] Jump	if	KEY[i]	≠	K.
PBEV i,Success A[A–S] Exit	unless	i	is	odd.

The total running time for the searching phase of the “improved” Program is
(7C	−	S + 69)υ + (2C + 3)µ. The time saved is (C – 5S)υ – Sµ, which is actually
a net loss if S = 1 and C < 5. (An inner loop shouldn’t always be optimized!)

72.
(b) . . .
We assume that at location H, a table of 8 × 256 tetrabytes is initialized with

random numbers in the range 0 to M – 1, and that the address of H is in the
global register h ≡ LOC(H). Then we can replace lines 03 and 04 of Program L
by the following
SRU j,k,7*8-3;	LDTU	i,:h,j
SLU j,k,8;	SRU	t,j,7*8-3;	INCL	t,1*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,2*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,3*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,4*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,5*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,6*4*258;	LDTU	t,:h,t;	XOR	i,i,t
SLU j,j,8;	SRU	t,j,7*8-3;	INCL	t,7*4*258;	LDTU	t,:h,t;	XOR	i,i,t

The above code is lengthy but needs only 37υ + 8µ instead of the 61υ before.
Fig. 42 tells us that the running time of Program L is between 70υ and 80υ as
long as the load factor is within a reasonable range. In this case, the new code is
about one third faster. Under the same conditions, the speedup for Program D
will start again at one third for an empty table and will increase to about one half
as more second hashes need to be computed. The modified Program D will

benefit from a similar speedup as Program L, but over a slightly extended range.
It is possible to initialize the table of tetrabytes at H with random numbers from
the full range 0 to 232 – 1 and reduce the range to 0 to M – 1 by appending a
final AND instruction to the code. Then the same tables can be used for all M =
2m with 1 ≤ m ≤ 32.

ACKNOWLEDGMENTS

In December 1998, Vladimir Ivanović started a mailing list to coordinate the
people who had either responded to the call for volunteers on Donald Knuth’s
MMIX page or were referred by Donald Knuth. The MMIXmasters project had
started. Later he added a web page and a wiki to aid in communication and
present the submitted solutions to the public.

In the course of the following years, multiple contributions were received.
They aided in completing the collection of programs presented in this book.

Jan-Hendrik Behrmann contributed an implementation for Program 5.2.3H.
Wijtze de Boer and Kenneth Laskoski both contributed an implementation for
Program 5.2C.
Andrey Dubinchak contributed implementations for Programs 2.1-(5), 2.2.3–
(10), 2.2.3–(11), 2.2.3T, 2.2.4A, 6.1S, 6.1Q, and 6.1Q′ as well as solutions to
exercises 2.1–8, 2.1–9, 2.2.3–24, 2.2.4–11, 2.2.4–13, 2.2.4–14, and 2.2.4–15.

Evgeny Eremin contributed an implementation for Program 5.2.2B.
Armin Grodon contributed an implementation for Program 5.2.4L.
Blake Hegerle contributed an implementation for Programs 5.2.1S, 5.2.1L, and
5.2.1D as well as a solution to exercise 5.2.1–3.

Johannes Maier and Georg Schmidl together contributed implementations of
Programs 6.2.1B and 6.2.1F.
Ladislav Sladecek contributed solutions to exercises 2.2.6–15 and 2.5–27.
Michael Unverzart contributed an implementation for Program 5.2.3S and a
solution to exercise 5.2.3–8.

Chan Vinh Vong contributed implementations for Programs 2.3.2D, 6.4C,
6.4D, and 6.4L as well as solutions to exercises 2.2.3–2, 2.2.3–3, 2.2.3–8, 2.2.3–
24, 2.2.3–27, 2.3.5–4, 2.5–4, and 2.5–34.
Yuval Yarom contributed an implementation for Program 2.3.1T.
An unknown contributor submitted Program 2.3.1S.

We want to thank all of them!

INDEX

µ (average memory access time), xi.
υ (instruction cycle time), xi.
: (colon), x.
$0, x.
$255, x.
2ADDU (times 2 and add unsigned), 88, 117, 186.
4ADDU (times 4 and add unsigned), 69, 117, 157–160.
8ADDU (times 8 and add unsigned), xii, 117.
16ADDU (times 16 and add unsigned), 32, 49, 93, 117.

Acquisition, 11.
Addition, 62, 63, 156.
Addition of polynomials, 26.
Additive number generator, 50.
Address, viii, 16.

absolute, xiii, 20.
relative, xiii, 17, 20, 44, 46, 111, 142.

Algebraic formula, 39.
Alias, 20.
Alignment, xiv, 45.
Analytic derivation, 39.
ANDNH (bitwise and-not high wyde), 55, 59, 60, 151, 154, 156.
ANDNMH (bitwise and-not medium high wyde), 69, 159.
Array, ix, 36.
Assembly language, 16.
Atomic node, 44.
Atomic operation, 12.
AVAIL stack: Available space list, 18, 45, 124, 125, 140, 141.

Bad guess, xi.
Balance factor, 103.
Balanced tree insertion, 103.
Balanced tree search, 103, 105.
Base address, xii, xiii, 17, 20.

Batcher, Kenneth Edward: sorting method, 169.
Behrmann, Jan-Hendrik, 188.
BEV (branch if even), xv, 90.
Big-endian, 62.
Binary gcd algorithm, 70.
Binary search, 99.
Binary tree, 37.
Binary tree insertion, 102.
Binary tree representation, 39.
Binary tree search, 102.
Binary tree traversal, 134.
Binding, 16.
Bit stuffing, xiv.
Blocking I/O, 8.
BOD (branch if odd), xiv, 90.
Boolean operations, 72.
Boundary tag system, 46.

liberation, 142.
reservation, 140, 141.

Branch, xii.
Bubble sort, 81, 82.
Buddy system, 46.

liberation, 144.
reservation, 142, 143.

Buffer swapping, 10.
Busy wait, 9.

Call overhead, xi.
Circular linked list, 25, 36.
CMPU (compare unsigned), 157.
Coefficient, 25.
Comparison counting, 74.
Concurrent access, 12.
Constant, viii.
Consumer, 8, 121.

Coroutine, 8, 29, 33.
Critical path time, 10.
CSEV (conditional set if even), 38, 55, 151.
CSOD (conditional set if odd), 55, 103, 151.
CSWAP (compare and swap), 12, 14, 122.
Cycle counts, xi.
Cycle notation, 1, 120.

de Boer, Wijtze, 188.
Differentiation, 39, 41.
Digital search, 106.
Digital tree search and insertion, 186.
Distribution counting, 163.
Division, xi, 65.
Division, double-precision, 56.
DIVU (divide unsigned), 61, 65, 150.
Double rotation, 106.
Doubly linked list, 27, 45.
Dubinchak, Andrey, 188.
Dynamic storage allocation, 45.

Easter date, 117.
Elevator, 27.
Empty list, 25.
Entry point, x.
Eremin, Evgeny, 188.
Error handling, xviii, 23, 125.
Euclid’s algorithm, 70, 160.
Evaluation of polynomials, 161.
Evaluation of powers, 161.
Exponent, 25, 43.

Factoring into primes, 72.
Factoring with sieves, 72.
Farey, John: series, 118.
Fclose (close file operation), 20.

Fclose operation, 8, 21.
FCMPE (floating compare with respect to epsilon), 58, 152.
FDIV (floating divide), 132.
FEQLE (floating equivalent with respect to epsilon), 133.
Ferguson, David Elton, 39.
Fgets operation, 13, 14, 121.
Fibonacci hashing, 109.
Fibonaccian search, 100.
Field, viii, xiii, 15.
Field name, xiii.
First-fit method, 140.
FIX (convert floating to fixed), 57, 151.
Fixed-base addressing, 17.
Floating point instruction, xi.
Floating point number:

addition, 54, 57, 59, 152.
base, 53.
comparison, 152.
division, 56, 61.
double-precision, 58, 155.
example, 43.
excess, 53.
exponent, 58.
fix-to-float, 56.
float-to-fix, 57, 151.
fraction part, 53.
hidden bit, 53.
IEEE/ANSI Standard, 54, 58.
mod, 57, 151.
multiplication, 56, 60, 61.
normalization, 53, 54, 56, 59, 152, 153.
precision, 53, 55, 56, 61, 154.
rounding, 56, 153.
running time, 62.
sign bit, 53.

subtraction, 54, 59.
FLOT (convert fixed to floating), 57.
FLOTU (convert fixed to floating unsigned), 169, 170.
FMUL (floating multiply), 132, 133, 161.
Fopen (open file operation), 20.
Fopen operation, 8, 20.
Fputs operation, 126.
Fread (read file operation), 20.
Fread operation, 8, 20.
Fwrite (write file operation), 20.
Fwrite operation, 21.

Garbage collection, 44, 139.
Garbage collection and compacting, 46, 47, 145.
GETA (get address), xvii, 31, 34, 40, 41, 43, 126, 131, 137, 138.
Global name, x.
Global register, 17.
GO (go to location), 30, 40.
Golden number, 117.
Good guess, xi.
Greatest common divisor, 70.
GREG (allocate global register), 117.
Grodon, Armin, 188.

Halt operation, 2.
Hash table:

chained search and insertion, 111, 187.
linear probing and insertion, 112.

Hashing:
division method, 109.
double hashing, 113, 114.
English words, 108.
Fibonacci method, 109.
multiplication method, 109, 113.
open addressing, 112, 113.

secondary clustering, 114.
Head node, xiv, 36.
Heapsort, 87, 88.
Hegerle, Blake, 188.
Himult register, 48, 51, 53, 56, 60, 64, 66, 68, 117, 148, 150.
Hoare, Charles Antony Richard, iii.

I/O, 8, 20.
IEEE (The Institute of Electrical and Electronics Engineers):

floating point standard, 54, 57, 58.
Immediate constant, 30, 48.
INCH (increase by high wyde), 54, 155.
INCL (increase by low wyde), 150.
INCMH (increase by medium high wyde), 150.
INCML (increase by medium low wyde), 150.
Index variable, ix, xii.
Information structure, 15.
Inline expansion, xi, 144.
Inorder traversal, 37, 38, 134–136.
Input, 8.
Instruction count, xi.
Internal sorting, 74.
Internet, ii.
Inverse permutation, 7.
Ivanović, Vladimir Gresham, v, 188.

Josephus, Flavius, son of Matthias: problem, 119.

Kirchhoff’s law, 4, 22, 84, 86, 120.
KWIC indexing, 108.

Laskoski, Kenneth, 188.
Liberation:

boundary tag system, 46, 142.
buddy system, 46, 144.

Linked list, 18.

Linked memory, 20.
List head, 25, 28, 37, 44, 46.
List insertion sort, 78, 167, 168.
List manipulation, 44.
List merge sort, 89, 90, 92, 177.
Little-endian, 62.
Load instruction, xi.
Local name, x.
Local register, ix, xvi.
Look ahead character, 121.
Loop counter, xvi.
Loop doubling, xv, 98, 118, 167, 177.
Loop unrolling, xv, xvi, 177, 183.
Low order bits, xiv.
Lowercase, viii.

MacLaren, Malcolm Donald: sorting method, 164.
Maier, Johannes, 188.
Marginal register, xvi, xviii, 125.
Marking algorithm, 45.
Matrix:

sequential allocation, 36.
sparse allocation, 36.
triangular, 37.

Memory pool, 20.
Merge exchange sort, 169.
Method call, 39, 40.
Minimum and maximum, 162.
Minimum-comparison sorting, 180.
Minus zero, 54.
MMIXmasters, v, 188.
MMIXware document, vi.
Modulus, 48.
MOR (multiple or), 152.
Multiple exits, xviii.

Multiple list insertion sort, 79, 168.
Multiplication, xi, 64, 157.
Multiplication, double-precision, 56.
Multiplication of permutations, 1, 5.
Multiplication of polynomials, 129.
Multiprecision comparison, 162.
Mutual exclusive access, 9.
MUX (multiplex), 123, 139, 140.

Name space, x.
Names, viii.
Natural two-way merge sort, 89.
NEGU (negate unsigned), 49, 55, 151, 153.
Nested calls, xvii.
Nested subroutines, xvii.
Non-blocking I/O, 8.
NOR (bitwise not-or), 129, 169, 170.
Normal floating point number, 53, 54, 56, 59.
Numerical distribution of random numbers, 51.

ODIF (octa difference), 162, 182.
Offset, viii, ix, xiii, 20.
Operating system, 8.
Optimization:

of loops, xv, 167, 171.
tail call, xvii, 43.
tail recursion, xviii, 83.

ORH (bitwise or with high wyde), 59–61, 151, 154.
Orthogonal lists, 36.
Output, 8.
Overflow, 18, 152.

Panny, Wolfgang Christian, 170.
Parallel execution, 8.
Parameter passing, xvi.
Permutation, 1, 164.

Pipeline simulator, vii.
Pivot step, 132.
Playing cards, 15.
Polynomial, 25, 43.
Pool segment, 28.
Poolmax technique, 32, 125.
POP (pop registers and return), x, xi, xvii, xviii.
Positional number systems, 53.
Potency, 49.
Pratt, Vaughan Robert: sorting method, 81, 166.
Prediction register, 12, 14.
PREFIX specification, x.
Prime number, 72, 109, 113, 115.
Probable branch, xii, 76.
Producer, 8, 121.
Protected code, 13, 120.
PUSHGO (push registers and go), xvi, 38, 134, 135.
PUSHJ (push registers and jump), ix, xi, xvi.

Queue, 18, 28.
Quick sequential search, 97.
Quicksort, 82, 84, 86, 88, 173, 174.

Radix conversion:
binary to decimal, 68, 158, 159.
decimal to binary, 69, 160.

Radix exchange sort, 85, 86, 171, 172.
Radix list sort, 93, 179.
Radix point, 54.
Random integer, 51.
Random number, 48, 50, 147, 148, 150.
Randomizing by shuffling, 51.
rD (dividend register), 56, 65, 68, 150.
rE (epsilon register), 58, 132, 152.
Rebalancing, 106.

Recursion, xi, 85, 135.
Register, 16.
Register name, viii, x.
Register number, x.
Register stack, 30, 38.
Relative address, 17, 20, 44, 46, 111, 142.
Relative subroutine address, 39.
Release, 11, 13.
Remainder register, 48, 53, 56, 68, 70, 72, 109, 111, 114, 150, 187.
Reporting errors, xviii.
Reservation:

boundary tag system, 46, 140, 141.
buddy system, 46, 142, 143.

Resource sharing, 9.
RESUME (resume after interrupt), 30, 57.
Return value, ix, x, xvi.
rH (himult register), 48, 51, 53, 56, 60, 64, 66, 68, 117, 148, 150.
rJ (return-jump register), xvii, 38.
rM (multiplex mask register), 123, 139.
ROVER, 141.
rP (prediction register), 12, 14.
rQ (interrupt request register), 14.
rR (remainder register), 48, 53, 56, 68, 70, 72, 109, 111, 114, 150, 187.
Running time, xi.
rW (where interrupted register for trips), 30.
rX (execution register for trips), 30.
rXX (execution register for traps), 57.
rYY (Y operand register for traps), 57.
rZZ (Z operand register for traps), 57.

SADD (sideways add), 71, 131, 152.
Saturating difference, 162, 182.
Schmidl, Georg, 188.
Secondary clustering, 114.
Semaphore, 9–13, 120, 122.

Sentinel, 20, 25, 167.
Sequential:

allocation, 17.
list, 18.
search, 97, 183.
storage, xii.

SETH (set high wyde), 150.
Shared resource, 9.
Shellsort, 77, 88, 96, 165.
Sideways addition, 71, 131, 152.
Sign bit, 15.
Simulation, 28–32, 34, 35.
Single rotation, 106.
Single-precision calculations, 53.
Singleton cycle, 1.
Singleton, Richard Collom, 86, 173, 174.
Sladecek, Ladislav, 188.
Sorting:

bubble sort, 81.
by distribution, 93.
by exchanging, 81.
by insertion, 76.
by merging, 89.
by selection, 87.
comparison counting, 74, 96.
distribution counting, 96, 163.
heapsort, 87, 96.
list insertion, 78, 96, 167.
list merge, 89, 90, 96, 177.
merge exchange, 96, 169.
minimum-comparison, 180.
multiple list insertion, 79, 96.
natural two-way merge, 89.
network, 182.
quicksort, 82, 96, 173.

radix exchange, 85, 96, 171, 172.
radix list, 93, 96, 179.
shellsort, 77, 165.
straight insertion, 76, 96, 167.
straight selection, 87, 96.
straight two-way merge, 89, 175.
topological, 20.

Special register, x.
Stack, 18, 124, 125, 127, 134, 135.
Stack frame, xvi.
Standard error file, 126.
Standard input file, 2, 13, 14, 121.
Standard output file, 2, 70, 123.
STCO (store constant octabyte), 11–13, 20, 35, 64, 79, 94, 121, 129.
StdErr (standard error), 126.
StdIn (standard input), 2, 13, 14, 121.
StdOut (standard output), 2, 70, 123.
Storage pool, 44.
Store instruction, xi.
Straight insertion sort, 76, 88, 167, 172.
Straight selection sort, 87, 88.
Straight two-way merge sort, 89, 175.
Subroutine, xvi, 118, 124, 157, 162.
Subtraction, 63.
Symbol table algorithm, 7.
Symmetric successor, 38.
SYNC (synchronize), 9, 12, 120, 121.

t (temporary variable), ix, xvi.
Tag, 15, 25, 36, 37.
Tag bit, xiv, 1, 44, 45.
Tail call optimization, xvii.
Tail recursion optimization, xviii.
Temporary variable, ix.
TeX, vi.

Thread, 8, 12, 122.
Threaded tree, 37, 136.
Topological sort, 20.
TRAP (force trap interrupt), x, xi.
Trie search, 106.
TRIP (force trip interrupt), x, xi, 29.
Two’s complement, 53.

Underflow, 57, 152.
Uniform binary search, 100, 184.
Unverzart, Michael, 188.
Uppercase, viii.

Variable, viii.
Vong, Chan Vinh, 188.

Wait loop, 9, 120, 122.
WDIF (wyde difference), 129.
Where interrupted register, 30.

x (temporary variable), ix, 124, 125.
XOR (bitwise exclusive-or), 50.

Yuval, Yarom, 188.

ZSN (zero or set if negative), 102.

	About This eBook
	Title Page
	Copyright Page
	Foreword
	Preface
	Style Guide
	1. Names
	2. Temporaries
	3. Index Variables
	4. Register Numbers
	5. Local Name Spaces
	6. Instruction Counts

	Programming Techniques
	1. Index Variables
	2. Fields
	3. Relative Addresses
	4. Using the Low Order Bits of Pointers (“Bit Stuffing”)
	5. Loop Unrolling
	6. Subroutines
	7. Reporting Errors

	Contents
	Chapter One. Basic Concepts
	1.3.3. Applications to Permutations
	1.4.4. Input and Output

	Chapter Two. Information Structures
	2.1. Introduction
	2.2.2. Sequential Allocation
	2.2.3. Linked Allocation
	2.2.4. Circular Lists
	2.2.5. Doubly Linked Lists
	2.2.6. Arrays and Orthogonal Lists
	2.3.1. Traversing Binary Trees
	2.3.2. Binary Tree Representation of Trees
	2.3.3. Other Representations of Trees
	2.3.5. Lists and Garbage Collection
	2.5. Dynamic Storage Allocation

	Chapter Three. Random Numbers
	3.2.1.1. Choice of modulus
	3.2.1.3. Potency
	3.2.2. Other Methods
	3.4.1. Numerical Distributions
	3.6. Summary

	Chapter Four. Arithmetic
	4.1. Positional Number Systems
	4.2.1. Single-Precision Calculations
	4.2.2. Accuracy of Floating Point Arithmetic
	4.2.3. Double-Precision Calculations
	4.3.1. The Classical Algorithms
	4.4. Radix Conversion
	4.5.2. The Greatest Common Divisor
	4.5.3. Analysis of Euclid’s Algorithm
	4.5.4. Factoring into Primes
	4.6.3. Evaluation of Powers
	4.6.4. Evaluation of Polynomials

	Chapter Five. Sorting
	5.2. Internal Sorting
	5.2.1. Sorting by Insertion
	5.2.2. Sorting by Exchanging
	5.2.3. Sorting by Selection
	5.2.4. Sorting by Merging
	5.2.5. Sorting by Distribution
	5.3.1. Minimum-Comparison Sorting
	5.5. Summary, History, and Bibliography

	Chapter Six. Searching
	6.1. Sequential Searching
	6.2.1. Searching an Ordered Table
	6.2.2. Binary Tree Searching
	6.2.3. Balanced Trees
	6.3. Digital Searching
	6.4. Hashing

	Answers to Exercises
	1.3.2. The MMIX Assembly Language
	1.3.3. Applications to Permutations
	1.4.4. Input and Output
	2.1. Introduction
	2.2.2. Sequential Allocation
	2.2.3. Linked Allocation
	2.2.4. Circular Lists
	2.2.5. Doubly Linked Lists
	2.2.6. Arrays and Orthogonal Lists
	2.3.1. Traversing Binary Trees
	2.3.2. Binary Tree Representation of Trees
	2.3.5. Lists and Garbage Collection
	2.5. Dynamic Storage Allocation
	3.2.1.1. Choice of modulus
	3.2.1.3. Potency
	3.2.2. Other Methods
	3.4.1. Numerical Distributions
	3.6. Summary
	4.1. Positional Number Systems
	4.2.1. Single-Precision Calculations
	4.2.2. Accuracy of Floating Point Arithmetic
	4.2.3. Double-Precision Calculations
	4.3.1. The Classical Algorithms
	4.4. Radix Conversion
	4.5.2. The Greatest Common Divisor
	4.5.3. Analysis of Euclid’s Algorithm
	4.6.3. Evaluation of Powers
	4.6.4. Evaluation of Polynomials
	5. Sorting
	5.2. Internal Sorting
	5.2.1. Sorting by Insertion
	5.2.2. Sorting by Exchanging
	5.2.3. Sorting by Selection
	5.2.4. Sorting by Merging
	5.2.5. Sorting by Distribution
	5.3.1. Minimum-Comparison Sorting

	5.5. Summary, History, and Bibliography
	6.1. Sequential Searching
	6.2.1. Searching an Ordered Table
	6.2.2. Binary Tree Searching
	6.2.3. Balanced Trees
	6.3. Digital Searching
	6.4. Hashing

	Acknowledgments
	Index

