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PREFACE

| am grateful to all my friends,

and record here and now my most especial appreciation
to those friends who, after a decent interval,

stopped asking me, “How’s the book coming?”

— PETER J. GOMES (1996)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. Those volumes, alas, were subsequently
found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.1 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase (from which I will be drawing
many examples). Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on the
material that follows it, so that I can get a better feel for how much to cut.)
Section 7.2 is about generating all possibilities, and it begins with Section 7.2.1:
Generating Basic Combinatorial Patterns. That sets the stage for the main
contents of this booklet, Section 7.2.1.1, where I get the ball rolling at last by
dealing with the generation of n-tuples. Then will come Section 7.2.1.2 (about
permutations), Section 7.2.1.3 (about combinations), etc. Section 7.2.2 will deal
with backtracking in general. And so it will go on, if all goes well; an outline of
the entire Chapter 7 as currently envisaged appears on the taocp webpage that
is cited on page ii.
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iv PREFACE

Even the apparently lowly topic of n-tuple generation turns out to be sur-
prisingly rich, with ties to Sections 1.2.4, 1.3.3, 2.3.1, 2.3.4.2, 3.2.2, 3.5, 4.1,
4.3.1, 4.5.2, 4.5.3, 4.6.1, 4.6.2, 4.6.4, 5.2.1, and 6.3 of the first three volumes.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 112 exercises, a new record, even
though —believe it or not —I had to eliminate quite a bit of the interesting
material that appears in my files.

Some of the material is new, to the best of my knowledge, although I will not
be at all surprised to learn that my own little “discoveries” have been discovered
before. Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 43, 46, 47, 53,
55, 62, 66, and 83. Are these problems still open? The questions in exercises 53
and 83 might not have been posed previously, but they seem to deserve attention.
Please let me know if you know of a solution to any of these intriguing problems.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 15, 16, 31, 37, 38, 69, 73, 76, 86, 87, 89, 90, and/or 109.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Happy reading!

Stanford, California D. E. K.
August 2001 (revised, September 2001)



7.2.1.1 GENERATING ALL n-TUPLES 1

7.2. GENERATING ALL POSSIBILITIES

All present or accounted for, sir.
— Traditional American military saying

All present and correct, sir.
— Traditional British military saying

7.2.1. Generating Basic Combinatorial Patterns

Our goal in this section is to study methods for running through all of the
possibilities in some combinatorial universe, because we often face problems
in which an exhaustive examination of all cases is necessary or desirable. For
example, we might want to look at all permutations of a given set.

Some authors call this the task of enumerating all of the possibilities; but
that’s not quite the right word, because “enumeration” most often means that
we merely want to count the total number of cases, not that we actually want
to look at them all. If somebody asks you to enumerate the permutations of
{1,2, 3}, you are quite justified in replying that the answer is 3! = 6; you needn’t
give the more complete answer {123,132,213,231,312,321}.

Other authors speak of listing all the possibilities; but that’s not such a great
word either. No sensible person would want to make a list of the 10! = 3,628,800
permutations of {0,1,2,3,4,5,6,7,8,9} by printing them out on thousands of
sheets of paper, nor even by writing them all in a computer file. All we really
want is to have them present momentarily in some data structure, so that a
program can examine each permutation one at a time.

So we will speak of generating all of the combinatorial objects that we need,
and wvisiting each object in turn. Just as we studied algorithms for tree traversal
in Section 2.3.1, where the goal was to visit every node of a tree, we turn now
to algorithms that systematically traverse a combinatorial space of possibilities.

He’s got 'em on the list—

he’s got 'em on the list;

And they’ll none of 'em be missed:
they’ll none of 'em be missed.

— WILLIAM S. GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let’s start small, by considering how to
run through all 2™ strings that consist of n binary digits. Equivalently, we want
to visit all n-tuples (a1,...,a,) where each a; is either 0 or 1. This task is
also, in essence, equivalent to examining all subsets of a given set {z1,...,z,},
because we can say that x; is in the subset if and only if a; = 1.

Of course such a problem has an absurdly simple solution. All we need to
do is start with the binary number (0...00); = 0 and repeatedly add 1 until
we reach (1...11)s = 2"— 1. We will see, however, that even this utterly trivial
problem has astonishing points of interest when we look into it more deeply. And
our study of n-tuples will pay off later when we turn to the generation of more
difficult kinds of patterns.
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In the first place, we can see that the binary-notation trick extends to other
kinds of n-tuples. If we want, for example, to generate all (ay,...,a,) in which
each a; is one of the decimal digits {0,1,2,3,4,5,6,7,8,9}, we can simply count
from (0...00)1p = 0 to (9...99);0 = 10™ — 1 in the decimal number system.
And if we want more generally to run through all cases in which

0<a; <my for 1 <j<n, (1)

where the upper limits m; might be different in different components of the
vector (ay,...,a,), the task is essentially the same as repeatedly adding unity
to the number
ar, Az, ..., Qn
[ (2)
mi, M2, ..., My
in a mixed-radix number system; see Eq. 4.1-(9) and exercise 4.3.1-9.
We might as well pause to describe the process more formally:

Algorithm M (Mized-radiz generation). This algorithm visits all n-tuples
that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until
overflow occurs. Auxiliary variables ag and mg are introduced for convenience.

M1L. [Initialize.] Set a; < 0 for 0 < j < n, and set mg + 2.

MZ2. [Visit.] Visit the n-tuple (ay,...,a,). (The program that wants to examine
all n-tuples now does its thing.)

MB3. [Prepare to add one.] Set j < n.

MA4. [Carry if necessary.] If a; = m; — 1, set a; < 0, j < j — 1, and repeat this
step.

MS5. [Increase, unless done.] If j = 0, terminate the algorithm. Otherwise set
aj < aj + 1 and go back to step M2. |

Algorithm M is simple and straightforward, but we shouldn’t forget that
nested loops are even simpler, when n is a fairly small constant. When n = 4,
we could for example write out the following instructions:

For a; =0, 1, ..., my — 1 (in this order) do the following;:
For ay =0, 1, ..., my — 1 (in this order) do the following:
For a3 =0, 1, ..., mg — 1 (in this order) do the following: (3)
For ay =0, 1, ..., mqy — 1 (in this order) do the following;:

Visit (a1, as,as, aq).

These instructions are equivalent to Algorithm M, and they are easily expressed
in any programming language.

Gray binary code. Algorithm M runs through all (ay, ..., a,) in lexicographic
order, as in a dictionary. But there are many situations in which we prefer to visit
those n-tuples in some other order. The most famous alternative arrangement is
the so-called Gray binary code, which lists all 2" strings of n bits in such a way
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Fig. 10. (a) Lexicographic binary code. (b) Gray binary code.

that only one bit changes each time, in a simple and regular way. For example,
the Gray binary code for n = 4 is

0000,0001,0011,0010,0110,0111,0101, 0100,
1100,1101,1111, 1110, 1010, 1011, 1001, 1000. (1)

Such codes are especially important in applications where analog information
is being converted to digital or vice versa. For example, suppose we want to
identify our current position on a rotating disk that has been divided into 16
sectors, using four sensors that each distinguish black from white. If we use
lexicographic order to mark the tracks from 0000 to 1111, as in Fig. 10(a), wildly
inaccurate measurements can occur at the boundaries between sectors; but the
code in Fig. 10(b) never gives a bad reading.

Gray binary code can be defined in many equivalent ways. For example,
if T',, stands for the Gray binary sequence of n-bit strings, we can define T',
recursively by the two rules

Ty = ¢;

Tpyp =0T, 1TE (5)

Here € denotes the empty string, 0I',, denotes the sequence I',, with 0 prefixed to
each string, and 1T'Z denotes the sequence T, in reverse order with 1 prefixed
to each string. Since the last string of T, equals the first string of T'Z, it is clear
from (5) that exactly one bit changes in every step of I', , ; if I',, enjoys the same
property.

Another way to define the sequence I',, = ¢g(0), g(1), ..., g(2"— 1) is to give
an explicit formula for its individual elements g(k). Indeed, since I',,+1 begins
with 0T,,, the infinite sequence

o = g(o)a9(1)79(2)59(3)79(4)) s
=(0)2,(1)2, (11)2,(10)2, (110)2, . ..
is a permutation of all the nonnegative integers, if we regard each string of 0s and

1s as a binary integer with leading Os suppressed. Then I'), consists of the first
2™ elements of (6), converted to n-bit strings by means of leading 0s if needed.

(6)
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When k = 2™ 4 r, where 0 < r < 2™, relation (5) tells us that g(k) is equal
to 2" + g(2"— 1 —r). Therefore we can prove by induction on n that the integer
k whose binary representation is (...bab1bg)2 has a Gray binary equivalent g(k)
with the representation (...agajag)s2, where

aj = bj ®bjy1,  forj>0. (7)

(See exercise 6.) For example, ¢((111001000011)z) = (100101100010);. Con-
versely, if g(k) = (...aga1a9)2 is given, we can find k = (... bab1bg)2 by inverting
the system of equations (7), obtaining

bj:aj®aj+1®aj+2€a-", for j > 0; (8)

this infinite sum is really finite because a;4; = 0 for all large t.
One of the many pleasant consequences of Eq. (7) is that g(k) can be com-
puted very easily with bitwise arithmetic:

g(k) = ko [k/2]. (9)
Similarly, the inverse function in (8) satisfies
g =te /2 e/ e (10)

this function, however, requires more computation (see exercise 7.1-00). We can
also deduce from (7) that, if k£ and k' are any nonnegative integers,

gk @ K) = g(k) & g(k). (11)
Yet another consequence is that the (n+ 1)-bit Gray binary code can be written
Ty = 00, 1(T,910...0);

this pattern is evident, for example, in (4). Comparing with (5), we see that
reversing the order of Gray binary code is equivalent to complementing the first
4. n—1
bit: " ——
ry=rI,®10...0. (12)

The exercises below show that the function g(k) defined in (7), and its inverse
gl™! defined in (8), have many further properties and applications of interest.
Sometimes we think of these as functions taking binary strings to binary strings;
at other times we regard them as functions from integers to integers, via binary
notation, with leading zeros irrelevant.

Gray binary code is named after Frank Gray, a physicist who became fa-
mous for helping to devise the method long used for compatible color television
broadcasting [Bell System Tech. J. 13 (1934), 464-515]. He invented I, for
applications to pulse code modulation, a method for analog transmission of dig-
ital signals [see Bell System Tech. J. 30 (1951), 38—40; U.S. Patent 2632058 (17
March 1953); W. R. Bennett, Introduction to Signal Transmission (1971), 238
240]. But the idea of “Gray binary code” was known long before he worked on it;
for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January
1943). More significantly, I's was used in a telegraph machine demonstrated
in 1878 by Emile Baudot, after whom the term “baud” was later named. At
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about the same time, a similar but less systematic code for telegraphy was
independently devised by Otto Schéffler [see Journal Télégraphique 4 (1878),
252-253; Annales Télégraphiques 6 (1879), 361, 382-383].*

In fact, Gray binary code is implicitly present in a classic toy that has
fascinated people for centuries, now generally known as the “Chinese ring puzzle”
in English, although Englishmen used to call it the “tiring irons.” Fig. 11 shows
a seven-ring example. The challenge is to remove the rings from the bar, and
the rings are interlocked in such a way that only two basic types of move are
possible (although this may not be immediately apparent from the illustration):

a) The rightmost ring can be removed or replaced at any time;
b) Any other ring can be removed or replaced if and only if the ring to its right
is on the bar and all rings to the right of that one are off.

We can represent the current state of the puzzle in binary notation, writing 1
if a ring is on the bar and 0 if it is off; thus Fig. 11 shows the rings in state
1011000. (The second ring from the left is encoded as 0, because it lies entirely
above the bar.)

Fig. 11.
The Chinese ring puzzle.

w’i@.ﬁgr‘
HHH

?U

A French magistrate named Louis Gros demonstrated an explicit connection
between Chinese rings and binary numbers, in a booklet called Théorie du
Baguenodier [sic] (Lyon: Aimé Vingtrinier, 1872) that was published anony-
mously. If the rings are in state a,_1 ...aqg, and if we define the binary number
k= (bn_1...b9)2 by Eq. (8), he showed that exactly k more steps are necessary
and sufficient to solve the puzzle. Thus Gros is the true inventor of Gray binary
code.

Certainly no home should be without
this fascinating, historic, and instructive puzzle.

— HENRY E. DUDENEY (1901)

When the rings are in any state other than 00...0 or 10...0, exactly two
moves are possible, one of type (a) and one of type (b). Only one of these moves
advances toward the desired goal; the other is a step backward that will need to
be undone. A type (a) move changes k to k & 1; thus we want to do it when &
is odd, since this will decrease k. A type (b) move from a position that ends in
(1077 1), for 1 < j < n changes k to k @ (1711)y = k& (29+1 — 1). When & is

* Some authors have asserted that Gray code was invented by Elisha Gray, who developed a
printing telegraph machine at the same time as Baudot and Schéffler. Such claims are untrue,
although Elisha did get a raw deal with respect to priority for inventing the telephone [see
L. W. Taylor, Amer. Physics Teacher 5 (1937), 243-251].
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even, we want to decrease k by 1, which means that £ must be a multiple of 27
but not a multiple of 27*1: in other words,

i = p(k), (13)
where p is the “ruler function” of Eq. 7.1-(00). Therefore the rings follow a nice
pattern when the puzzle is solved properly: If we number them 0, 1, ..., n—1

(starting at the free end), the sequence of ring moves on or off the bar is the
sequence of numbers that ends with ..., p(4), p(3), p(2), p(1).

Going backwards, successively putting rings on or off until we reach the
ultimate state 10.. .0 (which, as John Wallis observed in 1693, is more difficult to
reach than the supposedly harder state 11...1), yields an algorithm for counting
in Gray binary code:

Algorithm G (Gray binary generation). This algorithm visits all binary n-
tuples (ap—1,-..,a1,a0) by starting with (0,...,0,0) and changing only one bit
at a time, also maintaining a parity bit a, such that
oo = Gn-1® -+ B a1 & ao. (14)

It successively complements bits p(1), p(2), p(3), ..., p(2™— 1) and then stops.
G1. [Initialize.] Set a; < 0 for 0 < j < n; also set ax < 0.
G2. [Visit.] Visit the n-tuple (an—1,-..,a1,ao).
G3. [Change parity.] Set aoo < 1 — G-
G4. [Choose j.] If asx, = 1, set j < 0. Otherwise let j > 1 be minimum such

that aj_1 = 1. (After the kth time we have performed this step, j = p(k).)
G5. [Complement coordinate j.] Terminate if j = n; otherwise set a; +— 1 —a;

and return to G2. 1
The parity bit ao, comes in handy if we are computing a sum like

Xooo — X100 — Xo10 + X110 — Xoo1 + X101 + Xo11 — X111
X(B - Xa - Xb + Xab - Xc + Xac + Xbc - Xabca

where the sign depends on the parity of a binary string or the number of elements
in a subset. Such sums arise frequently in “inclusion-exclusion” formulas such
as Eq. 1.3.3—(29). The parity bit is also necessary, for efficiency: Without it we
could not easily choose between the two ways of determining j, which correspond
to performing a type (a) or type (b) move in the Chinese ring puzzle. But the
most important feature of Algorithm G is that step G5 makes only a single
coordinate change, so that only a simple change is usually needed to the terms
X that we are summing or to whatever other structures we are concerned with
as we visit each n-tuple.

or

It is impossible, of course, to remove all ambiguity in the lowest-order digit
except by a scheme like one the Irish railways are said to have used

of removing the last car of every train

because it is too susceptible to collision damage.

— G. R. STIBITZ and J. A. LARRIVEE, Mathematics and Computers (1957)
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Fig. 12. Walsh functions wy(z) for
0 < k < 8, with the analogous trigo- wr(z)
nometric functions v/2 cos kmrx shown
in gray for comparison. ¢=0 z=; z=3; z=7 =z=1

Another key property of Gray binary code was discovered by J. L. Walsh
in connection with an important sequence of functions now known as Walsh
functions [see Amer. J. Math. 45 (1923), 5-24]. Let wo(z) = 1 for all real
numbers x, and

wi(z) = (—1)L2=1k/21 wk/2) (22), for k > 0. (15)

For example, w;(z) = (—1)?*) changes sign whenever z is an integer or an
integer plus 3. It follows that wi(z) = wy(z + 1) for all k, and that wy,(z) = +1
for all . More significantly, wi(0) = 1 and wy(x) has exactly k sign changes in
the interval (0..1), so that it approaches (—1)* as z approaches 1 from the left.
Therefore wy,(z) behaves rather like a trigonometric function cos krx or sin knz,
and we can represent other functions as a linear combination of Walsh functions
in much the same way as they are traditionally represented as Fourier series. This
fact, together with the simple discrete nature of wg(z), makes Walsh functions
extremely useful in computer calculations related to information transmission,
image processing, and many other applications.

Fig. 12 shows the first eight Walsh functions together with their trigonomet-
ric cousins. Engineers commonly call wy(z) the Walsh function of sequency k,
by analogy with the fact that cos kmz and sin k7z have frequency k/2. [See, for
example, the book Sequency Theory: Foundations and Applications (New York:
Academic Press, 1977), by H. F. Harmuth.]



8 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Although Eq. (15) may look formidable at first glance, it actually provides an
easy way to see by induction why wy,(x) has exactly k sign changes as claimed. If
k is even, say k = 21, we have wy(z) = w;(2z) for 0 < z < 1; the effect is simply
to compress the function w;(z) into half the space, so wy;(x) has accumulated
[ sign changes so far. Then wy(z) = (—1)'w;(2z2) = (—1)'w;(2z — 1) in the
range % < z < 1; this concatenates another copy of w,;(2z), flipping the sign if
necessary to avoid a sign change at x = % The function wy;y1(x) is similar, but
it forces a sign change when z = %

What does this have to do with Gray binary code? Walsh discovered that
his functions could all be expressed neatly in terms of simpler functions called

Rademacher functions [Hans Rademacher, Math. Annalen 87 (1922), 112-138],
() = (-1, (16)

which take the value (—1)—* when (... cac1¢p.c_1¢—3 . .. )2 is the binary represen-
tation of z. Indeed, we have wy(x) = r1(z), wa(z) = ri(x)ra(z), ws(z) = ra(x),
and in general

wi(x) = H rj+1(;c)bj®bf“ when k = (b1 ...b1bo)2- (17)
j=0

(See exercise 33.) Thus the exponent of r;11(x) in wg(z) is the jth bit of the
Gray binary number g(k), according to (7), and we have

w(T) = Tp)41(T) wr—1(x), for k > 0. (18)
Equation (17) implies the handy formula

w,(z) wy () = wke}k’(x)v (19)

which is much simpler than the corresponding product formulas for sines and
cosines. This identity follows easily because rj(z)? = 1 for all j and z, hence
7;(2)*® = r;(z)*t°. It implies in particular that wy(z) is orthogonal to wy: ()
when k # k', in the sense that the average value of wy (z)wy (x) is zero. We also
can use (17) to define wy(z) for fractional values of k like 1/2 or 13/8.

The Walsh transform of 2" numbers (X, ..., Xan_1) is the vector defined by
the equation (xo, ..., 2an_1)T = W, (Xo, ..., Xan_1)T, where W, is the 2™ x 2"
matrix having w;(k/2") in row j and column k, for 0 < j,k < 2". For example,
Fig. 12 tells us that the Walsh transform when n = 3 is

Zooo 11111111 Xooo

Zoo1 11111111 X001

Zo10 111117111 Xo1o

ron | _ |1 1 1 1 1 1 11 Xo11 (20)
100 11111111 X100 ’

101 1 i 1 1 I 11 1 X101

T110 1 1111111 X110

T111 1 T 1 T 1 T 1 T X111
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(Here 1 stands for —1, and the subscripts are conveniently regarded as binary
strings 000-111 instead of as the integers 0-7.) The Hadamard transform is
defined similarly, but with the matrix H,, in place of W,,, where H,, has (—1)7*
in row j and column k; here ‘5 -k’ denotes the dot product a,,—1b,—1 4+ -+ agby
of the binary representations j = (ap_1...a9)2 and k = (b,—1...b)2. For
example, the Hadamard transform for n = 3 is

00 1111111 1\ /Xon

)01 1T111711T1)(ZXn

)10 1 1T 1117171/ Xow

Ty [ |1 T T 11171 1| Xon (21)
Zh0o 111171717171 X0l

Zho1 1 T1 171171 1|| X0

20 1 1T 11T 1 1| X

zh 1 T 1T 17111 1/ \xXiy

This is the same as the discrete Fourier transform on an n-dimensional cube,
Eq. 4.6.4—(38), and we can evaluate it quickly “in place” by adapting the method
of Yates discussed in Section 4.6.4:

Given First step Second step Third step

Xooo Xooo+Xoo1 Xooot+Xoo1+Xo10+Xo11 Xooo+Xoo1+Xo10+Xo11+X100+X101+ X110+ X111
Xoo1 Xooo—Xoo1 Xooo—Xoo1+Xo10—Xo11 Xooo—Xo01+Xo10—Xo11+X100—X101+X110— X111
Xo10 Xo10tXo11 Xooo+Xoo1—Xo10—Xo11 Xooo+Xoo1—Xo10—Xo11+X100+X101—X110— X111
Xo11 Xo10—Xo11  Xooo—Xoo1—Xo10+Xo11 Xooo—Xo01—Xo10+Xo11+X100— X101 —X110+X111
X100 X100tX101 Xi00+Xi101+X110+X111  Xooo+Xoo1+Xo10+Xo11—X100— X101 —X110— X111
X101 X100—X101 X100—X101+X110—X111  Xooo—Xo01+Xo10—Xo11—X100+X101 —X110+X111
X110 X110tX111 X100+ X101 —X110—X111  Xooo+Xoo1 —Xo10—Xo11—X100—X101+X110+ X111
X111 X110—X111 X100—X101—X110+X111  Xooo—Xo01—Xo10+Xo11— X100+ X101 +X110— X111

Notice that the rows of H3 are a permutation of the rows of W3. This is true in
general, so we can obtain the Walsh transform by permuting the elements of the
Hadamard transform. Exercise 36 discusses the details.

Going faster. When we’re running through 2" possibilities, we usually want
to reduce the computation time as much as possible. Algorithm G needs to
complement only one bit a; per visit to (an—1,...,a0), but it loops in step G4
while choosing an appropriate value of j. Another approach has been suggested
by Gideon Ehrlich [JACM 20 (1973), 500-513], who introduced the notion of
loopless combinatorial generation: With a loopless algorithm, the number of
operations performed between successive visits is required to be bounded in
advance, so there never is a long wait before a new pattern has been generated.

We learned some tricks in Section 7.1 about quick ways to determine the
number of leading or trailing Os in a binary number. Those methods could be
used in step G4 to make Algorithm G loopless, assuming that n isn’t unreason-
ably large. But Ehrlich’s method is quite different, and much more versatile,
so it provides us with a new weapon in our arsenal of techniques for efficient
computation. Here is how his approach can be used to generate binary n-tuples.
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Algorithm L (Loopless Gray binary generation). This algorithm, like Algo-
rithm G, visits all binary n-tuples (a,_1,...,ao) in the order of the Gray binary
code. But instead of maintaining a parity bit, it uses an array of “focus pointers”
(fn,---,fo), whose significance is discussed below.

L1. [Initialize.] Set a; <— 0 and f; « j for 0 < j < n; also set f, < n. (A
loopless algorithm is allowed to have loops in its initialization step, as long
as the initial setup is reasonably efficient; after all, every program needs to
be loaded and launched.)

L2. [Visit.] Visit the n-tuple (an_1,...,a1,ao).

L3. [Choose j.] Set j < fo, fo < 0. (If this is the kth time we are performing
the present step, j is now equal to p(k).) Terminate if j = n; otherwise set
fj — fj+1 and fj+1 — 7+ 1.

L4. [Complement coordinate j.] Set a; < 1 — a; and return to L2. 1

For example, the computation proceeds as follows when n = 4. Elements a; have

been underlined in this table if the corresponding bit b; is 1 in the binary string
b3b2b1b0 such that azasai1apg = g(b3b2b1b0)2

a3 0 0000O00CO0T1T1T1T111F11
a2 0 0001 11111110000
aqz 001 1110000111100
a 01 1 0011001100110
faz 33 3 3 3 3 3 3 44 4 43 3 3 3
fo 2222 3 3 2 2 2 2 2 2 44 2 2
i1 1211131112111 41
fo 010 2 0103 0102010 4

Although the binary number k& = (b,_1 ...bo)2 never appears explicitly in Al-
gorithm L, the focus pointers f; represent it implicitly in a clever way, so that
we can repeatedly form g(k) = (an_1...a0)2 by complementing bit a,) as we
should. Let’s say that a; is passive when it is underlined, active otherwise. Then
the focus pointers satisfy the following invariant relations:

1) If a; is passive and a;_; is active, then f; is the smallest index j' > j such
that aj/ is active. (Bits a_; and a,, are considered to be active for purposes
of this rule, although they aren’t really present in the algorithm.)

2) Otherwise f; = j.

Thus, the rightmost element a; of a block of passive elements a;_1 ...a;11a; has
a focus f; that points to the element a; just to the left of that block. All other
elements a; have f; pointing to themselves.

In these terms, the first two operations ‘5 « fy, fo < 0’ in step L3 are
equivalent to saying, “Set j to the index of the rightmost active element, and
activate all elements to the right of a;.” Notice that if fo = 0, the operation
fo < 0is redundant; but it doesn’t do any harm. The other two operations of L3,
‘fi < fi+1, fit+1 < j+ 1, are equivalent to saying, “Make a; passive,” because
we know that a; and a;j_; are both active at this point in the computation.

10
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(Again the operation f;jy1 < j + 1 might be harmlessly redundant.) The net
effect of activation and passivation is therefore equivalent to counting in binary
notation, as in Algorithm M, with 1-bits passive and 0-bits active.

Algorithm L is almost blindingly fast, because it does only five assignment
operations and one test for termination between each visit to a generated n-tuple.
But we can do even better. In order to see how, let’s consider an application
to recreational linguistics: Rudolph Castown, in Word Ways 1 (1968), 165—
169, noted that all 16 of the ways to intermix the letters of sins with the
corresponding letters of fate produce words that are found in a sufficiently large
dictionary of English: sine, sits, site, etc.; and all but three of these words
(namely fane, fite, and sats) are sufficiently common as to be unquestionably
part of standard English. Therefore it is natural to ask the analogous question
for five-letter words: What two strings of five letters will produce the maximum
number of words in the Stanford GraphBase, when letters in corresponding
positions are swapped in all 32 possible ways?

To answer this question, we need not examine all (226)5 = 3,625,908,203,125
essentially different pairs of strings; it suffices to look at all (57257) = 16,568,646
pairs of words in the GraphBase, provided that at least one of those pairs
produces at least 17 words, because every set of 17 or more five-letter words
obtainable from two five-letter strings must contain two that are “antipodal”
(with no corresponding letters in common). For every such pair, we want to
determine as rapidly as possible whether the 32 possible subset-swaps produce
a significant number of English words.

Every 5-letter word can be represented as a 25-bit number using 5 bits per
letter, from "a" = 00000 to "z" = 11001. A table of 225 bits or bytes will then
determine quickly whether a given five-letter string is a word. So the problem
is reduced to generating the 32 bit patterns of the potential words obtainable
by mixing the letters of two given words, and looking those patterns up in the
table. We can proceed as follows, for each pair of 25-bit words w and w’:

W1. [Check the difference.] Set z < w @ w'. Reject the word pair (w,w’) if
((z—m)®z@®m)Am' # 0, where m = 220421542104 25+ 1 and m/ = 2°m;
this test eliminates cases where w and w’ have a common letter in some
position. (See 7.1-(00); it turns out that 10,614,085 of the 16,568,646 word
pairs have no such common letters.)

W2. [Form individual masks.] Set mg «+ z A (25 — 1), my + z A (219 — 2%),
ma < 2z A (21° —219) m3 « 2 A (220 — 21%) and my4 «+ 2 A (2%° —229), in
preparation for the next step.

W3. [Count words.] Set [ + 1 and Ay + w; variable [ will count the number of
words we have found so far, starting with w. Then perform the operations
swap(4) defined below.

‘W4. [Print a record-setting solution.] If [ exceeds or equals the current maxi-
mum, print A; for 0 <j <. 1

The heart of this high-speed method is the sequence of operations swap(4), which

should be expanded inline (for example with a macro-processor) to eliminate all

11
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unnecessary overhead. It is defined in terms of the basic operation
sw(j): Set w < w @ my . Then if w is a word, set A; <~ w and { | + 1.

Given sw(j), which flips the letters in position j, we define

).
swap (1) = swap(0), sw(1), swap(0);
swap(2) = swap(1), sw(2), swap(1); (22)
swap(3) = swap(2), sw(3), swap(2);
swap(4) = swap(3), sw(4), swap(3)

Thus swap(4) expands into a sequence of 31 steps sw(0), sw(1), sw(0), sw(2),
.y sw(0) = sw(p(l)), sw(p(2)), ..., sw(p(31)); these steps will be used 10
million times. We clearly gain speed by embedding the ruler function values
p(k) directly into our program, instead of recomputing them repeatedly for each
word pair via Algorithm M, G, or L.
The winning pair of words generates a set of 21, namely

ducks ducky duces dunes dunks dinks dinky
dines dices dicey dicky dicks picks picky (23)
pines piney pinky pinks punks punky pucks

If, for example, w = ducks and w’ = piney, then my = s @y, so the first
operation sw(0) changes ducks to ducky, which is seen to be a word. The next
operation sw(1) applies m;, which is k @ e in the next-to-last letter position, so
it produces the nonword ducey. Another application of sw(0) changes ducey to
duces (a legal term generally followed by the word tecum). And so on. All word
pairs can be processed by this method in at most a few seconds.

Further streamlining is also possible. For example, once we have found
a pair that yields k words, we can reject later pairs as soon as they generate
33 — k nonwords. But the method we’ve discussed is already quite fast, and it
demonstrates the fact that even the loopless Algorithm L can be beaten.

Fans of Algorithm L may, of course, complain that we have speeded up
the process only in the small special case n = 5, while Algorithm L solves the
generation problem for n in general. A similar idea does, however, work also
for general values of n > 5: We can expand out a program so that it rapidly
generates all 32 settings of the rightmost bits aqasasaiag, as above; then we can
apply Algorithm L after every 32 steps, using it to generate successive changes
to the other bits a,_1...a5. This approach reduces the amount of work done
by Algorithm L by nearly a factor of 32.

Other binary Gray codes. The Gray binary code ¢(0), g(1), ..., g(2"—1) is
only one of many ways to traverse all possible n-bit strings while changing only
a single bit at each step. Let us say that, in general, a “Gray code” on binary
n-tuples is any cycle (vg,v1,...,van_1) that includes every n-tuple and has the
property that vy differs from v(; 1) mod 2» in just one bit position. Thus, in the

12
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1011
101%

TTT*

Fig. 13. (a) Complementary Gray code. (b) Balanced Gray code.

terminology of graph theory, a Gray code is an oriented Hamiltonian circuit on
the n-cube. We can assume that subscripts have been chosen so that vg = 0...0.
If we think of the v’s as binary numbers, there are integers dg . .. Jdan 1 such

that
Vht1)modan = Uk @ 2%, for 0 < k < 2™ (24)

this so-called “delta sequence” is another way to describe a Gray code. For
example, the delta sequence for standard Gray binary when n = 3 is 01020102;
it is essentially the ruler function d; = p(k + 1) of (13), but the final value don_1
is n — 1 instead of n, so that the cycle closes. The individual elements J; always
lie in the range 0 < §; < n, and they are called “coordinates.”

Let d(n) be the number of different delta sequences that define an n-bit
Gray code, and let ¢(n) be the number of “canonical” delta sequences in which
each coordinate k appears before the first appearance of k + 1. Then d(n) =
n!c(n), because every permutation of the coordinate numbers in a delta sequence
obviously produces another delta sequence. The only possible canonical delta
sequences for n < 3 are easily seen to be

00; 0101; 01020102 and 01210121. (25)

Therefore ¢(1) = ¢(2) = 1, ¢(3) = 2; d(1) = 1, d(2) = 2, and d(3) = 12. A
straightforward computer calculation, using techniques for the enumeration of
Hamiltonian circuits that we will study later, establishes the next values,

c(4) = 112; d(4) = 2688;

6
c(5) = 15,109,096; d(5) = 1,813,091,520. (26)

No simple pattern is evident, and the numbers grow quite rapidly (see exer-
cise 45); therefore it’s a fairly safe bet that nobody will ever know the exact
values of ¢(8) and d(8).

Since the number of possibilities is so huge, people have often attempted to
find Gray codes that have additional useful properties. For example, Fig. 13(a)
shows a 4-bit Gray code in which every string aszasajag is diametrically opposite
to its complement @sasa;ag. Such codes are possible whenever the number of
bits is even (see exercise 49).

13



14 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

An even more interesting Gray code, found by G. C. Tootill [Proc. IEE 103,
Part B Supplement (1956), 435], is shown in Fig. 13(b). This one has the same
number of changes in each of the four coordinate tracks, hence all coordinates
share equally in the activities. Gray codes that are balanced in a similar way can
in fact be constructed for all larger values of n, by using the following versatile
method to extend a code from n bits to n + 2 bits:

Theorem D. Let ajjiasjs...aj; be a delta sequence for an n-bit Gray code,
where each ji Is a single coordinate, each oy, is a possibly empty sequence of
coordinates, and l is odd. Then

o, (n+1)afina,
jragnaf(nt1)ay joaz(ntl)afinas ... ji1oq(n+l)afing, (27)
(n+1)aftj_jafty .05 jiafn
is the delta sequence of an (n + 2)-bit Gray code.

For example, if we start with the sequence 01020102 for n = 3 and let the three
underlined elements be ji, ja, j3, the new sequence (27) for a 5-bit code is

01410301020131024201043401020103. (28)

Proof. Let ay have length my and let vg; be the vertex reached if we start at

0...0 and apply the coordinate changes o j1 ... a;_1jx—1 and the first £ of ay.

We need to prove that all vertices 00vgs, 01vgs, 10vgs, and 11vg; occur when (27)

is used, for 1 < k <1l and 0 <t < my. (The leftmost coordinate is n+1.)
Starting with 000...0 = 00v19, we proceed to obtain the vertices

00’[)11, ceey 00’U1m1, 10U1m1, ceey 10’[}10, 11’[}10, ey 11'Ulm1§
then j; yields 11vgg, which is followed by
11’021, ey 11’Ugm2, 10’(}27”2, ceey 10’[)20, 00’1}20, cey 00U2m2;

then comes 00v3p, etc., and we eventually reach 11v;,,,. The glorious finale then
uses the third line of (27) to generate all the missing vertices 01vy,,, ..., 01vg
and take us back to 000...0. 1|

The transition counts (co, - . ., cn—1) of a delta sequence are defined by letting
c¢; be the number of times d, = j. For example, (28) has transition counts
(12,8,4,4,4), and it arose from a sequence with transition counts (4,2,2). If we
choose the original delta sequence carefully and underline appropriate elements
Jk, We can obtain transition counts that are as equal as possible:

Corollary B. For all n > 4, there is an n-bit Gray code with transition counts
(co,c1, ..., Cn—1) that satisfy the condition

le; —ek| < 2 for 0<j<k<n. (29)

(This is the best possible balance condition, because each ¢; must be an even
number, and we must have ¢y + ¢; + -+ + ¢,—1 = 2". Indeed, condition (29)

14



7.2.1.1 GENERATING ALL n-TUPLES 15

holds if and only if n — r of the counts are equal to 2¢q and r are equal to 2q + 2,
where ¢ = |2"7!/n| and r = 2"~ mod n.)

Proof. Given a delta sequence for an n-bit Gray code with transition counts
(coy---,¢n—1), the counts for code (27) are obtained by starting with the values
(€05 -+ s Cpe1s Cpy Crg1) = (4cq, - -y 4c, 1, 141, 1+1), then subtracting 2 from ¢},
for 1 < k < [ and subtracting 4 from c;-l. For example, when n = 3 we can obtain
a balanced 5-bit Gray code having transition counts (8 — 2,16 — 10,8,6,6) =
(6,6,8,6,6) if we apply Theorem D to the delta sequence 01210121. Exercise 51

works out the details for other values of n. |

Another important class of n-bit Gray codes in which each of the coordinate
tracks has equal responsibility arises when we consider run lengths, namely the
distances between consecutive appearances of the same § value. Standard Gray
binary code has run length 2 in the least significant position, and this can lead to
a loss of accuracy when precise measurements need to be made [see, for example,
the discussion by G. M. Lawrence and W. E. McClintock, Proc. SPIE 2831
(1996), 104-111]. But all runs have length 4 or more in the remarkable 5-bit
Gray code whose delta sequence is

(0123042103210423)2. (30)

Let r(n) be the maximum value r such that an n-bit Gray code can be
found in which all runs have length > r. Clearly r(1) = 1, and r(2) = r(3) =
r(4) = 2; and it is easy to see that r(n) must be less than n when n > 2, hence
(30) proves that r(5) = 4. Exhaustive computer searches establish the values
r(6) = 4 and 7(7) = 5. Indeed, a fairly straightforward backtrack calculation
for the case n = 7 needs a tree of only about 60 million nodes to determine
that 7(7) < 6, and exercise 61(a) constructs a 7-bit code with no run shorter
than 5. The exact values of r(n) are unknown for n > 8; but r(10) is almost
certainly 8, and interesting constructions are known by which we can prove that
r(n) =n — O(logn) as n — co. (See exercises 60-64.)

*Binary Gray paths. We have defined an n-bit Gray code as a periodic sequence
Vg, U1, - . -, in which vy, is adjacent to vg41 in the n-cube for all k£ > 0, each binary
n-tuple occurs in (vg,v1,...,V2n_1), and vgyon = vg. The periodic property
is nice, but not always essential; and sometimes we can do better without it.
Therefore we say that an n-bit Gray path is any ordering vg, vy, ..., van_1 of the
2" possible n-tuples in such a way that vy is adjacent to vg4q for 0 < k < 2™ —1.
In other words, a Gray code is a Hamiltonian circuit on the vertices of the
n-cube, but a Gray path is simply a Hamiltonian path on that graph.

The most important binary Gray paths that are not also Gray codes are
n-bit paths vg, v1, ..., von_1 that are monotonic, in the sense that

v(vg) < v(vkt2) for0 <k <2"—2. (31)

(Here, as elsewhere, we use v to denote the “weight” or the “sideways sum” of a
binary string, namely the number of 1s that it has.) Trial and error shows that

15



16 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Fig. 14. Examples of
8-bit Gray paths:

a) standard;

b) balanced;
complementary;
long-run;
nonlocal;
monotonic;
trend-free.

c
d
e
f

)
)
)
)
)
)

g
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there are essentially only two monotonic n-bit Gray paths for each n < 4, one
starting with 0 and the other starting with 0»~'1. The two for n = 3 are

000, 001, 011, 010, 110, 100, 101, 111; (32)
001, 000, 010, 110, 100, 101, 111, 011. (33)

The two for n = 4 are slightly less obvious, but not really difficult to discover.

Since v(vgy1) = v(vg) £ 1 whenever vy, is adjacent to vyi1, we obviously
can’t strengthen (31) to the requirement that all n-tuples be strictly sorted by
weight. But relation (31) is strong enough to determine the weight of each vy,
given k and the weight of vy, because we know that exactly (?) of the n-tuples
have weight j.

Fig. 14 summarizes our discussions so far, by illustrating seven of the zillions
of Gray codes and Gray paths that make a grand tour through all 256 of the
possible 8-bit bytes. Black squares represent ones and white squares represent
zeros. Fig.14(a) is the standard Gray binary code, while Fig. 14(b) is balanced
with exactly 256/8 = 32 transitions in each coordinate position. Fig.14(c)
is a Gray code analogous to Fig.13(a), in which the bottom 128 codes are
complements of the top 128. In Fig.14(d), the transitions in each coordinate
position never occur closer than five steps apart; in other words, all run lengths
are at least 5. The code in Fig.14(e) is nonlocal in the sense of exercise 59.
Fig. 14(f) shows a monotonic path for n = 8; notice how black it gets near the
bottom. Finally, Fig. 14(g) illustrates a Gray path that is totally nonmonotonic,
in the sense that the center of gravity of the black squares lies exactly at the
halfway point in each column. Standard Gray binary code has this property
in seven of the coordinate positions, but Fig. 14(g) achieves perfect black-white
weight balance in all eight. Such paths are called trend-free; they are important
in the design of agricultural and other experiments (see exercises 75 and 76).

Carla Savage and Peter Winkler [J. Combinatorial Theory A70 (1995),
230-248] found an elegant way to construct monotonic binary Gray paths for
all n > 0. Such paths are necessarily built from subpaths P,; in which all
transitions are between n-tuples of weights j and j + 1. Savage and Winkler
defined suitable subpaths recursively by letting Pjo = 0,1 and, for all n > 0,

Plut1y; = 1P )5 0P, (34)
P,j=0 ifj<0orj>n. (35)

Here 7, is a permutation of the coordinates that we will specify later, and the
notation P™ means that every element a,,_1 ...ajaq of the sequence P is replaced
by bp_1...b1bo, where bjr = aj. (We don’t define P™ by letting bj = ajnr,
because we want (27)7 to be 277.) Tt follows, for example, that

Pyg = 0Py9 =00, 01 (36)
because Py(_p) is vacuous; also

Py = 1P =10, 11 (37)

17



18 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

because P;; is vacuous and m; must be the identity permutation. In general,
P,; is a sequence of n-bit strings containing exactly (”;1) strings of weight j
interleaved with (”;1) strings of weight j + 1.

Let a,; and wy,; be the first and last elements of P,;. Then we easily find

Wy = 0PI for0 << m; (38)
o = 0™, for n > 0; (39)
Qpj = laz:‘:i)(jfl), for1<j<n. (40)

In particular, ay,; always has weight j, and w,,; always has weight j 4 1. We will
define permutations 7, of {0,1,...,n — 1} so that both of the sequences

P, PR P, PE .. (41)
and P%, P, PR P, .. (42)
are monotonic binary Gray paths for n =1, 2, 3, .... In fact, the monotonicity

is clear, so only the Grayness is in doubt; and the sequences (41), (42) link up
nicely because the adjacencies

Qno —— Opl — "7 Qn(n-1), Wno —— Wnl1— """~ Wnp(n-1) (43)

follow immediately from (34), regardless of the permutations m,. Thus the
crucial point is the transition at the comma in formula (34), which makes P, {1);
a Gray subpath if and only if

w’r a, for 0 < j < n. (44)

n(j—1) — %nj

For example, when n = 2 and j = 1 we need (01)™ = ag; = 10, by (38)-
(40); hence 7o must transpose coordinates 0 and 1. The general formula (see
exercise 71) turns out to be

Ty = o'nﬂ-'?zflv (45)
where o, is the n-cycle (n—1 ... 10). The first few cases are therefore
7'('1:(0), 71'4:(03),
7T2:(01), 7T5:(04321),
m3 = (021), 6 = (052413);

no simple “closed form” for the magic permutations m, is apparent. Exercise 73
shows that the Savage—Winkler paths can be generated efficiently.

Nonbinary Gray codes. We have studied the case of binary n-tuples in
great detail, because it is the simplest, most classical, most applicable, and
most thoroughly explored part of the subject. But of course there are numerous
applications in which we want to generate (ai,...,a,) with coordinates in the
more general ranges 0 < a; < mj, as in Algorithm M. Gray codes and Gray
paths apply to this case as well.

Consider, for example, decimal digits, where we want 0 < a; < 10 for
each j. Is there a decimal way to count that is analogous to the Gray binary
code, changing only one digit at a time? Yes; in fact, two natural schemes are

18



7.2.1.1 GENERATING ALL n-TUPLES 19

available. In the first, called reflected Gray decimal, the sequence for counting
up to a thousand with 3-digit strings has the form

000,001, . ..,009,019,018, . ..,011,010,020,021,...,091,090, 190, 191, ..., 900,

with each coordinate moving alternately from 0 up to 9 and then back down from
9 to 0. In the second, called modular Gray decimal, the digits always increase
by 1 mod 10, therefore they “wrap around” from 9 to 0:

000,001, . ..,009, 019,010, . ..,017, 018,028,029, ...,099, 090, 190, 191, . . ., 900.

In both cases the digit that changes on step k is determined by the radix-ten
ruler function p1g(k), the largest power of 10 that divides k. Therefore each
n-tuple of digits occurs exactly once: We generate 107 different settings of the
rightmost j digits before changing any of the others, for 1 < j < n.

In general, the reflected Gray code in any mixed-radix system can be re-
garded as a permutation of the nonnegative integers, a function that maps an
ordinary mixed-radix number

bpn_1, ..., b1, b
k:[ 1 1, Yo

i| = bnflmnfz o.omymg+ -+ b1m0 + bg (46)
Mp—1,--., M1, Mo

into its reflected-Gray equivalent

n-1, ---, G1, G
rg(k) = [ ot b0 } = Ap—1Mp—2...M1Mo + -+ a1mg + ao, (47)
Mp—1,...,M1, Mo
just as (7) does this in the special case of binary numbers. Let
Ap—1y «voy Q4 b,1 ¥
A= [ ] gy [ (48)
Mp—1,--.,M; Mp—1y ...,
so that
Aj = mjAj+1 =+ a; and Bj = ijj+1 + bj. (49)

The rule connecting the a’s and b’s is not difficult to derive by induction:

(50)

b; if Bjy1 is even;
%= mj; — 1-— b]‘, if Bj+1 is odd.

(Here we are numbering the coordinates of the n-tuples (an_1,...,a1,a9) and
(bn-1,-..,b1,b0) from right to left, for consistency with (7) and the conven-
tions of mixed-radix notation in Eq. 4.1-(9). Readers who prefer notations like
(a1,...,a,) can change j to n — j in all the formulas if they wish.) Going the
other way, we have

aj, if aj41 + ajqpo + - is even;

m; —1—a;, 1Majy1+ajpo+ -+ 18 odd.
Curiously, rule (50) and its inverse in (51) are exactly the same when all of the
radices m; are odd. In Gray ternary code, for example, when mg =m; =--- =3,

we have rg((10010211012)3) = (12210211010)3 and also rg((12210211010)5) =
(10010211012)3. Exercise 78 proves (50) and (51), and discusses similar formulas
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20 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

that hold in the modular case. People often call these sequences “Gray codes,”
although strictly speaking they might only be Gray paths (see exercise 79).

We can in fact generate such Gray sequences looplessly, generalizing Algo-
rithms M and L:

Algorithm H (Loopless reflected mized-radiz Gray generation). This algorithm
visits all n-tuples (an_1,...,a0) such that 0 < a; < m; for 0 < j < n, changing
only one coordinate by £1 at each step. It maintains an array of focus pointers
(fns---» fo) to control the actions as in Algorithm L, together with an array of
directions (dn—1,-..,do). We assume that each radix m; is > 2.

H1. [Initialize.] Set a; < 0, f; < j, and d; < 1, for 0 < j < n; also set f,, « n.

H2. [Visit.] Visit the n-tuple (an—1,-..,a1,a0).

H3. [Choose j.] Set j « fo and fo < 0. (As in Algorithm L, j was the rightmost
active coordinate; all elements to its right have now been activated.)

H4. [Change coordinate j.] Terminate if j = n; otherwise set a; < a; + d;.

HS5. [Reflect?] If a; = 0 or a;j = m; — 1, set d; « —d;, f; < fj+1, and
fj+1 < j + 1. (Coordinate j has thus become passive.) Return to H2. 1

A similar algorithm generates the modular variation (see exercise 77).

*Subforests. An interesting and instructive generalization of Algorithm H,
discovered by Y. Koda and F. Ruskey [J. Algorithms 15 (1993), 324-340], sheds
further light on the subject of Gray codes and loopless generation. Suppose we
have a forest of n nodes, and we want to visit all of its “principal subforests,”
namely all subsets of nodes S such that if z is in S and z is not a root, the
parent of z is also in S. For example, the 7-node forest 30’}\3 has 33 such subsets,
corresponding to the black nodes in the following 33 diagrams:

DD SR SR SIRD WD SR SEED SRS S SR

I{};\c I{}% Ia}% Ia}& 3{}\. 3“6‘0 3(}% 3(}& I/:)\. I{)\o I(}% (52)

D IS SR SR IR SERD SEED SERD QIR SRS SRR
Notice that if we read the top row from left to right, the middle row from right
to left, and the bottom row from left to right, the status of exactly one node
changes at each step.

If the given forest consists of degenerate nonbranching trees, the principal

subforests are equivalent to mixed-radix numbers. For example, a forest like

i O % @]
has 3 x 2 x 4 x 2 principal subforests, corresponding to 4-tuples (z1,z2,x3,x4)

such that 0 < z; <3,0< 2 < 2,0 <23 <4, and 0 < x4 <2; the value of z;
is the number of nodes selected in the jth forest. When the algorithm of Koda
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and Ruskey is applied to such a forest, it will visit the subforests in the same
order as the reflected Gray code on radices (3,2,4,2).

Algorithm K (Loopless reflected subforest generation). Given a forest whose
nodes are (1,...,n) when arranged in postorder, this algorithm visits all binary
n-tuples (ai,...,ay) such that a, > a, whenever p is a parent of g. (Thus,
a, = 1 means that p is a node in the current subforest.) Exactly one bit a;
changes between one visit and the next. Focus pointers (fo, f1, ..., fn) analogous
to those of Algorithm L are used together with additional arrays of pointers
(lo,l1,...,1,) and (7,71, ..., 7s), which represent a doubly linked list called the
“current fringe.” The current fringe contains all nodes of the current subforest
and their children; r¢ points to its leftmost node and [y to its rightmost.

An auxiliary array (co,c1,...,c,) defines the forest as follows: If p has no
children, ¢, = 0; otherwise ¢, is the leftmost (smallest) child of p. Also ¢y is the
leftmost root of the forest itself. When the algorithm begins, we assume that
rp = q and [, = p whenever p and g are consecutive children of the same family.
Thus, for example the forest in (52) has the postorder numbering

en

therefore we should have (cy, .. = (2,0,1,0,0,0,4,3) and ro = 7, Iz = 2,

r3=206,l¢ =3,74=05,and 5 = 4 at the beglnnmg of step Kl in this case.

K1. [Initialize.] Set aj - 0 and f; - j for 1 < j < n, thereby making the initial
subforest empty and all nodes active. Set fo < 0, lp < n, 7, < 0, ro < co,
and [, < 0, thereby putting all roots into the current fringe.

K2. [Visit.] Visit the subforest defined by (a1, ..., an)-

K3. [Choose p.] Set g < ly, p < fq. (Now p is the rightmost active node of the
fringe.) Also set f, < ¢ (thereby activating all nodes to p’s right).

K4. [Check a,.] Terminate the algorithm if p = 0. Otherwise go to K6 if a, = 1.

K5. [Insert p’s children.] Set a, <— 1. Then, if ¢, # 0, set ¢ < rp, Iy < p— 1,
Tp—1 < @, Tp ¢ Cp, l, < p (thereby putting p’s children to the right of p
in the fringe). Go to K7.

K6. [Delete p’s children.] Set a, < 0. Then, if ¢, # 0, set g < rp—1, Tp < ¢,
lq < p (thereby removing p’s children from the fringe).

K7. [Make p passive.] (At this point we know that p is active.) Set f, < fi,
and flp < [,. Return to K2. 1

The reader is encouraged to play through this algorithm on examples like (52),
in order to understand the beautiful mechanism by which the fringe grows and
shrinks at just the right times.
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*Shift register sequences. A completely different way to generate all n-tuples of
m-ary digits is also possible: We can generate one digit at a time, and repeatedly
work with the n most recently generated digits, thus passing from one n-tuple
(zo,21,-..,Zn—1) to another one (z1,...,Tn_1,%,) by shifting an appropriate
new digit in at the right. For example, Fig. 15 shows how all 5-bit numbers can
be obtained as blocks of 5 consecutive bits in a certain cyclic pattern of length 32.
This general idea has already been discussed in some of the exercises of Sections
2.3.4.2 and 3.2.2, and we now are ready to explore it further.

A3 28 o
AN O
222253588
9, G222 7T IS

Fig. 15. N
g. 15 /\:\Q’SN ?,zo
.. Lol %
A de Bruijn cycle 535232 2
: S 5o 2 ¥
for 5-bit numbers. © = ©

Algorithm S (Generic shift register generation). This algorithm visits all n-
tuples (a1, ...,a,) such that 0 < a; < m for 1 < j < n, provided that a suitable
function f is used in step S3.

S1. [Initialize.] Set a; < 0 for —n < j < 0 and k «+ 1.

S2. [Visit.] Visit the n-tuple (ag—_n,...,ar—1). Terminate if & = m™.

S3. [Advance.] Set ay, + f(ag—n,---,ak—1), k < k+ 1, and return to S2. |

Every function f that makes Algorithm S valid corresponds to a cycle of
m” radix-m digits such that every combination of n digits occurs consecutively
in the cycle. For example, the case m = 2 and n = 5 illustrated in Fig. 15
corresponds to the binary cycle

00000100011001010011101011011111; (53)
and the first m? digits of the infinite sequence
0011021220313233041424344... (54)

yield an appropriate cycle for n = 2 and arbitrary m. Such cycles are commonly
called m-ary de Bruijn cycles, because N. G. de Bruijn treated the binary case
for arbitrary n in Indagationes Mathematicae 8 (1946), 461-467.

Exercise 2.3.4.2-23 proves that exactly m!m"77m" functions f have the
required properties. That’s a huge number, but only a few of those functions are
known to be efficiently computable. We will discuss three kinds of f that appear
to be the most useful.
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Table 1
PARAMETERS FOR ALGORITHM A
3:1 8:1,5 13:1,3 18:7 23:5 28:3
4:1 9:4 14:1,11 19:1,5 24:1,3 29:2
5:2 10:3 15:1 20:3 25:3 30:1,15
6:1 11:2 16:2,3 21:2 26:1,7 31:3
7:1 12: 3,4 17:3 22:1,7 27:1,7 32:1,27

The entries ‘n : s’ or ‘n : s,t’ mean that the polynomials ™ + 2° + 1 or ™ + (z° + 1)(z* + 1)
are primitive modulo 2. Additional values up to n = 168 have been tabulated by W. Stahnke,
Math. Comp. 27 (1973), 977-980.

The first important case occurs when m is a prime number, and f is the
almost-linear recurrence

i, if (z1,22,...,2,) = (0,0,...,0);
flz1, ... zn) =< 0, if (z1,22,...,2,) = (1,0,...,0); (55)
(c1zy + coxo + -+ - + cpx,) mod m, otherwise.
Here the coefficients (cy, ..., ¢,) must be such that
" —cp" T = — (56)

is a primitive polynomial modulo m, in the sense discussed following Eq. 3.2.2—
(9). The number of such polynomials is ¢(m™ — 1)/n, large enough to allow us
to find one in which only a few of the ¢’s are nonzero. [This construction goes
back to a pioneering paper of Willem Mantel, Nieuw Archief voor Wiskunde (2)
1 (1897), 172-184.)

For example, suppose m = 2. We can generate binary n-tuples with a very
simple loopless procedure:

Algorithm A (Almost-linear bit-shift generation). This algorithm visits all n-

bit vectors, by using either a special offset s [Case 1] or two special offsets s and ¢

[Case 2], as found in Table 1.

A1. [Initialize.] Set (zo,Z1,...,2Zn-1) < (1,0,...,0) and k «+ 0, j + s. In
Case 2, also set i <t and h + s+ t.

A2, [Visit.] Visit the n-tuple (zx_1,...,Z0,Tn—1, .-, Tkt+1, Tk)-

A3. [Test for end.] If 24 # 0, set r + 0; otherwise set 7 + r 4+ 1, and go to A6
if r =n — 1. (We have just seen r consecutive zeros.)

A4. [Shift.] Set k + (k—1)modn and j + (j — 1) modn. In Case 2 also set
i+ (i—1)modn and h < (h — 1) mod n.

A5. [Compute a new bit.] Set xy < z1 ® z; [Case 1] or xy < z1, Dx; Bz D ),
[Case 2]. Return to A2.

AB6. [Finish.] Visit (0,...,0) and terminate. |

Appropriate offset parameters s and possibly ¢ almost certainly exist for all n,

because primitive polynomials are so abundant; for example, eight different
choices of (s,t) would work when n = 32, and Table 1 merely lists the smallest.
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However, a rigorous proof of existence in all cases lies well beyond the present
state of mathematical knowledge.

Our first construction of de Bruijn cycles, in (55), was algebraic, relying for
its validity on the theory of finite fields. A similar method that works when m
is not a prime number appears in exercise 3.2.2-21. Our next construction, by
contrast, will be purely combinatorial. In fact, it is strongly related to the idea
of modular Gray m-ary codes.

Algorithm R (Recursive de Bruijn cycle generation). Suppose f() is a coroutine
that will output the successive digits of an m-ary de Bruijn cycle of length m™,
beginning with n zeros, when it is invoked repeatedly. This algorithm is a similar
coroutine that outputs a cycle of length m™*1, provided that n > 2. It maintains
three private variables x, y, and t; variable x should initially be zero.

R1. [Output.] Output z. Go to R3 if z # 0 and ¢t > n.

R2. [Invoke f.] Set y + f().

R3. [Count ones.] If y = 1, set t + t + 1; otherwise set ¢t + 0.

RA4. [Skip one?] If t = n and x # 0, go back to R2.

R5. [Adjust z.] Set z < (z + y) mod m and return to R1. |

For example, let m = 3 and n = 2. If f() produces the infinite 9-cycle

001102122 001102122 0O..., (57)

then Algorithm R will produce the following infinite 27-cycle at step R1:
y= 001021220011110212200102122 001...
t 001001000012340010000100100 001...
z=000110102220120020211122121 0001...

The proof that Algorithm R works correctly is interesting and instructive (see
exercise 93). And the proof of the next algorithm, which doubles the window
size n, is even more so (see exercise 95).

Algorithm D (Doubly recursive de Bruijn cycle generation). Suppose f() and
g() are coroutines that each will output the successive digits of m-ary de Bruijn
cycles of length m™ when invoked repeatedly, beginning with n zeros. (The two
cycles might be identical, but they must be generated by independent coroutines
because we will consume their values at different rates of speed.) This algorithm
is a similar coroutine that outputs a cycle of length m?”. It maintains six private
variables z, y, t, 2/, ¥/, and t; variables z and z’ should initially be m.

The special parameter » must be set to a constant value such that

0<r<m and ged(m™ —r, m™ + 1) = 2. (58)
The best choice is usually » = 1 when m is odd and r = 2 when m is even.
D1. [Possibly invoke f.] If t £ n or & > r, set y <+ f().
D2. [Count repeats.] If x # y, set © < y and ¢ < 1. Otherwise set ¢ < ¢ + 1.
D3. [Output from f.] Output the current value of x.
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DA4. [Invoke g.] Set y' + g().
D5. [Count repeats.] If 2’ # ¢/, set 2’ < y’ and t' < 1. Otherwise set t' + t'+1.

D6. [Possibly reject g.] If ¢’ = n and 2’ < r and either ¢t < n or ' < z, go to
D4. If ! =n and 2’ < r and 2’ = z, go to D3.

D7. [Output from g.] Output the current value of z’. Return to D3 if ¢’ = n
and x’ < r; otherwise return to D1. |

The basic idea of Algorithm D is to output from f() and g() alternately, making
special adjustments when either sequence generates n consecutive z’s for x < r.
For example, when f() and g() produce the 9-cycle (57), we take r = 1 and get

tinstep D2: 12 31211112 12312111 12123121 11121231 21111212

z in step D3: 00001102122 00011021 22000110 21220001 102122000 ...
t’ in step D6: 121211112121211112121211112121211112121211112121 ...
x' in step D7: 0 11021220 11021220 11021220 11021220 11021220 1 ...;

so the 81-cycle produced in steps D3 and D7 is 00001011012...2222 00001....

The case m = 2 of Algorithm R was discovered by Abraham Lempel [IEEE
Trans. C-19 (1970), 1204-1209]; Algorithm D was not discovered until more than
25 years later [C. J. Mitchell, T. Etzion, and K. G. Paterson, IEEE Trans. IT-
42 (1996), 1472-1478]. By using them together, starting with simple coroutines
for n = 2 based on (54), we can build up an interesting family of cooperating
coroutines that will generate a de Bruijn cycle of length m™ for any desired m > 2
and n > 2, using only O(logn) simple computations for each digit of output.
(See exercise 96.) Furthermore, in the simplest case m = 2, this combination
“R&D method” has the property that its kth output can be computed directly,
as a function of k, by doing O(nlogn) simple operations on n-bit numbers.
Conversely, given any n-bit pattern 3, the position of 5 in the cycle can also be
computed in O(nlogn) steps. (See exercises 97-99.) No other family of binary
de Bruijn cycles is presently known to have the latter property.

Our third construction of de Bruijn cycles is based on the theory of prime
strings, which will be of great importance to us when we study pattern matching
in Chapter 9. Suppose v = af is the concatenation of two strings; we say that
a is a prefix of v and B is a suffiz. A prefix or suffix of v is called proper if its
length is positive but less than the length of . Thus (8 is a proper suffix of a3
if and only if a # € and 8 # e.

Definition P. A string is prime if it is nonempty and (lexicographically) less
than all of its proper suffixes.

For example, 01101 is not prime, because it is greater than 01; but 01102 is
prime. (We assume that strings are composed of letters, digits, or other symbols
from a linearly ordered alphabet. Lexicographic or dictionary order is the normal
way to compare strings, so we write « < § and say that « is less than 8 when
« is lexicographically less than (. In particular, we always have a < af3, and
a < af if and only if 8 # €.)
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Prime strings have often been called Lyndon words, because they were
introduced by R. C. Lyndon [Trans. Amer. Math. Soc. 77 (1954), 202-215];
Lyndon called them “standard sequences.” The simpler term “prime” is justified
because of the fundamental factorization theorem in exercise 101. We will,
however, continue to pay respect to Lyndon implicitly by often using the letter A
to denote strings that are prime.

Several of the most important properties of prime strings were derived by
Chen, Fox, and Lyndon in an important paper on group theory [Annals of Math.
68 (1958), 81-95], including the following easy but basic result:

Theorem P. A nonempty string that is less than all its cyclic shifts is prime.
(The cyclic shifts of a; ...a, are ag...ana1, a3 ...ana102, ..., GrG]1 ... Qp_1.)

Proof. Suppose v = af3 is not prime, because a # € and v > ( # ¢; but suppose
v is also less than its cyclic shift Sa. Then the conditions 8 < v < Ba imply
that v = 0 for some string § < a. Therefore, if v is also less than its cyclic
shift 63, we have § < a < aff < 3. But that is impossible, because o and 6
have the same length. |

Let Ly, (n) be the number of m-ary primes of length n. Every string a; ... a,,
together with its cyclic shifts, yields d distinct strings for some divisor d of n,
corresponding to exactly one prime of length d. For example, from 010010 we
get also 100100 and 001001 by cyclic shifting, and the smallest of the periodic
parts {010, 100,001} is the prime 001. Therefore we must have

ZdLm(d) = m", for all m,n > 1. (59)
d\n
This family of equations can be solved for L,,(n) using exercise 4.5.3-28(a), and
we obtain

Li(n) = + 3 pld)m/ (60)
d\n

During the 1970s, Harold Fredricksen and James Maiorana discovered a
beautifully simple way to generate all of the m-ary primes of length n or less,
in increasing order [Discrete Math. 23 (1978), 207-210]. Before we are ready to
understand their algorithm, we need to consider the n-extension of a nonempty
string A\, namely the first n characters of the infinite string AAX . ... For example,
the 10-extension of 123 is 1231231231. In general if |A\| = k, its n-extension is
A/EIN where ) is the prefix of A\ whose length is n mod k.

Definition Q. A string is preprime if it is a nonempty prefix of a prime.

Theorem Q. A string of length n > 0 is preprime if and only if it is the n-
extension of a prime string A of length k < n. This prime string is uniquely
determined.

Proof. See exercise 105. 1|
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Theorem Q states, in essence, that there is a one-to-one correspondence between
primes of length < n and preprimes of length n. The following algorithm
generates all of the m-ary ones, in increasing order.

Algorithm F (Prime and preprime string generation). This algorithm visits

all m-ary n-tuples (ay, ..., an) such that the string a; ... a, is preprime. It also

identifies the index j such that a; ...a, is the n-extension of the prime a; ... a;.

F1. [Initialize.] Set ag <~ —1, a3 < -+ < ap < 0, and j < 1.

F2. [Visit.] Visit (a1,...,a,) with index j.

F3. [Prepare to increase.] Set j <= n. Then if a; = m — 1, decrease j until
finding a; <m — 1.

F4. [Add one.] Terminate if j = 0. Otherwise set a; < a; +1. (Now a1 ...a; is
prime, by exercise 105(a).)

F5. [Make n-extension.] For k <— j + 1, ..., n (in this order) set ar + ar—;.
Return to F2. 1

For example, Algorithm F visits 32 ternary preprimes when m = 3 and n = 4:

0000 0011 0022 0111 0122 0212 1111 1212
0001, 0012 0101 0112 0202 0220 1112 1221
0002 0020 0102 0120 0210 0221 1121 1222
0010 0021 0110 0121 0211 0222 1122 2222

(61)

(The digits preceding ‘  are the prime strings 0, 0001, 0002, 001, 0011, ..., 2.)

Theorem Q explains why this algorithm is correct, because steps F3 and F4
obviously find the smallest m-ary prime of length < n that exceeds the previous
preprime aj ...a,. Notice that after a; increases from 0 to 1, the algorithm
proceeds to visit all the (m — 1)-ary primes and preprimes, increased by 1...1.

Algorithm F is quite beautiful, but what does it have to do with de Bruijn
cycles? Here now comes the punch line: If we output the digits a;, ..., a; in
step F2 whenever j is a divisor of n, the sequence of all such digits forms a de
Bruijn cycle! For example, in the case m = 3 and n = 4, the following 81 digits
are output:

00001 0002001100120021002201010201110112
012101220202110212022102221111211221212222. (62)

(We omit the primes 001, 002, 011, ..., 122 of (61) because their length does
not divide 4.) The reasons underlying this almost magical property are explored
in exercise 108. Notice that the cycle has the correct length, by (59).

There is a sense in which the outputs of this procedure are actually equiva-
lent to the “granddaddy” of all de Bruijn cycle constructions that work for all m
and n, namely the construction first published by M. H. Martin in Bull. Amer.
Math. Soc. 40 (1934), 859-864: Martin’s original cycle for m = 3 and n = 4
was 2222122202211 ..10000, the twos’ complement of (62). In fact, Fredricksen
and Maiorana discovered Algorithm F almost by accident while looking for a
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simple way to generate Martin’s sequence; the explicit connection between their
algorithm and preprime strings was not noticed until many years later, when
Ruskey, Savage, and Wang carried out a careful analysis of the running time
[J. Algorithms 18 (1992), 414-430]. The principal results of that analysis appear
in exercise 107, namely
i) The average value of n — j in steps F3 and F5 is approximately m/(m —1)2.
ii) The total running time to produce a de Bruijn cycle like (62) is O(m™).

EXERCISES
1. [10] Explain how to generate all n-tuples (a1, ..., a,) in which I; < a; < uj, given
lower bounds l; and upper bounds u; for each coordinate. (Assume that [; < u;.)

2. [15] What is the 1000000th n-tuple visited by Algorithm M if n = 10 and m; = j

for 1 <j<n? Hint: [P0 22021 L 01 =1000000.

3. [M20] How many times does Algorithm M perform step M4?

4. [18] On most computers it is faster to count down to O rather than up to m.
Revise Algorithm M so that it visits all n-tuples in the opposite order, starting with
(m1—1,...,mp — 1) and finishing with (0,...,0).

5. [20] Algorithms such as the “fast Fourier transform” (exercise 4.6.4-14) often
end with an array of answers in bit-reflected order, having A[(bo . .. bn—1)2] in the place
where A[(bn_1...bo)2] is desired. What is a good way to rearrange the answers into
proper order? [Hint: Reflect Algorithm M.]

6. [M17] Prove (7), the basic formula for Gray binary code.

7. [20] Fig. 10(b) shows the Gray binary code for a disk that is divided into 16
sectors. What would be a good Gray-like code to use if the number of sectors were 12
or 60 (for hours or minutes on a clock), or 360 (for degrees in a circle)?

8. [15] What’s an easy way to run through all n-bit strings of even parity, changing
only two bits at each step?

9. [16] What move should follow Fig. 11, when solving the Chinese ring puzzle?

10. [M21] Find a simple formula for the total number of steps A,, or B, in which a
ring is (a) removed or (b) replaced, in the shortest procedure for removing n Chinese
rings. For example, A3 =4 and B3 = 1.

11. [M22] (H. J. Purkiss, 1865.) The two smallest rings of the Chinese ring puzzle
can actually be taken on or off the bar simultaneously. How many steps does the puzzle
require when such accelerated moves are permitted?

12. [28] The compositions of n are the sequences of positive integers that sum to n.
For example, the compositions of 4 are 1111, 112, 121, 13, 211, 22, 31, and 4. An integer
n has exactly 2" 7! compositions, corresponding to all subsets of the points {1,...,n—1}
that might be used to break the interval (0..n) into integer-sized subintervals.
a) Design a loopless algorithm to generate all compositions of n, representing each
composition as a sequential array of integers s1sz2...s;.
b) Similarly, design a loopless algorithm that represents the compositions implicitly
in an array of pointers goqi ...q:, where the elements of the composition are
(o — q1)(¢1 — q2) ...(gt—1 — q+) and we have ¢o = n, ¢+ = 0. For example, the
composition 211 would be represented under this scheme by the pointers go = 4,
@1 =2,q2=1, g3 =0, and with ¢ = 3.

28



v

v

7.2.1.1 GENERATING ALL n-TUPLES 29

13. [21] Continuing the previous exercise, compute also the multinomial coefficient
C = for use as the composition s ...s; is being visited.

14. [20] Design an algorithm to generate all strings a; ...a; such that 0 < j < n and
0 <a; <m; for 1 <i < j, in lexicographic order. For example, if mi = mo =n =2,
your algorithm should successively visit €, 0, 00, 01, 1, 10, 11.

")
81,..0,85

15. [25] Design a loopless algorithm to generate the strings of the previous exercise.
All strings of the same length should be visited in lexicographic order as before, but
strings of different lengths can be intermixed in any convenient way. For example,
0, 00, 01, ¢, 10, 11, 1 is an acceptable order when m1 = mo =n = 2.

16. [23] A loopless algorithm obviously cannot generate all binary vectors (a1,...,an)
in lexicographic order, because the number of coordinates a; that need to change
between successive visits is not bounded. Show, however, that loopless lexicographic
generation does become possible if a linked representation is used instead of a sequential
one: Suppose there are 2n nodes {1:0,1:1,2:0,2:1,...,n:0,n:1}, each containing a DIGIT
field and a LINK field, where DIGIT(j:b) = b for 1 < j < mn and 0 < b < 1. An n-tuple
like (0, 1,0) is represented by

LINK(0:0) = 1:0, LINK(1:0) =2:1, LINK(2:1)=3:0, LINK(3:0)=A,

where 0:0 is a special header node; the other LINK fields can have any convenient values.

17. [20] A well-known construction called the Karnaugh map [M. Karnaugh, Amer.
Inst. Elect. Eng. Trans. 72, part I (1953), 593-599] uses Gray binary code in two
dimensions to display all 4-bit numbers in a 4 X 4 torus:

0000 0001 0011 0010
0100 0101 0111 0110
1100 1101 1111 1110
1000 1001 1011 1010

(The entries of a torus “wrap around” at the left and right and also at the top and
bottom — just as if they were tiles, replicated infinitely often in a plane.) Show that,
similarly, all 6-bit numbers can be arranged in an 8 X 8 torus so that only one coordinate
changes when we move north, south, east, or west from any point.

18. [20] The Lee weight of a vector u = (u1,...,ur), where each component satisfies
0 < uj < my, is defined to be

n
vi(u) =) min(uj, m; —u;);
=1

and the Lee distance between two such vectors u and v is
dr(u,v) =vr(u —v), where u — v = ((u1 — v1) mod ma, ..., (un — v,) mod my,).

(This is the minimum number of steps needed to change u to v if we adjust some
component u; by +1 (modulo m;) in each step.)

A quaternary vector has m; = 4 for 1 < j < n, and a binary vector has all m; = 2.
Find a simple one-to-one correspondence between quaternary vectors u = (uq, ..., u,)
and binary vectors ' = (ui,...,us,), with the property that vr(u) = v(u') and
dr(u,v) = v(u' ®v').
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19. [21] (The octacode.) Let g(x) = 2 4 22® + z — 1.
a) Use one of the algorithms in this section to evaluate Y 2wy Zu; Zus Zus Zug Zus Zug Zuce »
summed over all 256 polynomials

(vo Lozt vgx’ +v3x3)g(a:) mod 4 = ug +ur 2+ usz? + uzz® +usxt +usz® +ugz’®

for 0 < vo,wv1,v2,v3 < 4, where uo is chosen so that 0 < us < 4 and (uo +u1 +
u2 + uz + us + us + us + Uoo) mod 4 = 0.

b) Construct a set of 256 16-bit numbers that differ from each other in at least six
different bit positions. (Such a set, first discovered by Nordstrom and Robinson
[Information and Control 11 (1967), 613—616], is essentially unique.)

20. [M36] The 16-bit codewords in the previous exercise can be used to transmit 8
bits of information, allowing transmission errors to be corrected if any one or two bits
are corrupted; furthermore, mistakes will be detected (but not necessarily correctable)
if any three bits are received incorrectly. Devise an algorithm that either finds the
nearest codeword to a given 16-bit number u’ or determines that at least three bits of
u’ are erroneous. How does your algorithm decode the number (1100100100001111)5?
[Hint: Use the facts that 27 = 1 (modulo g(z) and 4), and that every quaternary
polynomial of degree < 3 is congruent to xJ 4+ 2z* (modulo g(z) and 4) for some
J,k€{0,1,2,3,4,5,6, 00}, where 2> = 0.]

21. [M30] A t-subcube of an n-cube can be represented by a string like #x10xx0x,
containing t asterisks and n — t specified bits. If all 2" binary n-tuples are written in
lexicographic order, the elements belonging to such a subcube appear in 2¢' clusters
of consecutive entries, where ' is the number of asterisks that lie to the left of the
rightmost specified bit. (In the example given, n = 8, t = 5, and ¢’ = 4.) But if the
n-tuples are written in Gray binary order, the number of clusters might be reduced.
For example, the (n — 1)-subcubes *...*0 and *...*1 occur in only 2""2 41 and 272
clusters, respectively, when Gray binary order is used, not in 2"~ of them.

a) Explain how to compute C(a), the number of Gray binary clusters of the subcube

defined by a given string « of asterisks, 0s, and 1s. What is C/(**10%x0x%)?
b) Prove that C(a) always lies between 2¢'~1 and 2, inclusive.
c) What is the average value of C(a), over all 2"~*("}) possible t-subcubes?

22. [22] A “right subcube” is a subcube such as 0110 in which all the asterisks
appear after all the specified digits. Any binary trie (Section 6.3) can be regarded as a
way to partition a cube into disjoint right subcubes, as in Fig. 16(a). If we interchange
the left and right subtries of every right subtrie, proceeding downward from the root,
we obtain a Gray binary trie, as in Fig. 16(b).

Prove that if the “lieves” of a Gray binary trie are traversed in order, from left to
right, consecutive lieves correspond to adjacent subcubes. (Subcubes are adjacent if
they contain adjacent vertices. For example, 00 is adjacent to 011% because the first
contains 0010 and the second contains 0110; but 011* is not adjacent to 10%x.)

00#x* 11xx 00#*

010« O011x 100x% 011x 010 100
1010 1011 1010 1011
Fig. 16.  (a) Normal binary trie. (b) Gray binary trie.
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23. [20] Suppose g(k) ® 27 = g(I). What is a simple way to find [, given j and k?
24. [M21] Consider extending the Gray binary function g to all 2-adic integers (see
exercise 4.1-31). What is the corresponding inverse function g7

25. [M25] Prove that if g(k) and g(I) differ in ¢ > 0 bits, and if 0 < k,I < 2", then
[29/3] < [k — 1] < 2" — [2V/3].

26. [25] (Frank Ruskey.) For which integers N is it possible to generate all of the
nonnegative integers less than N in such a way that only one bit of the binary repre-
sentation changes at each step?

27. [20] Let So = {1} and Sn4+1 =1/(2+ S»)U1/(2 — S,); thus, for example,

1 1 1 1 313
S2: 2t 1 ;2+ 1 ) ~ 1 ) ~ 1 :{?757351}a
241 2—1 241 2—1

and S,, has 2" elements that lie between % and 1. Compute the 10'°th smallest element
Of SIOO-

28. [M26] A median of n-bit strings {a1,...,a:}, where o has the binary represen-
tation ax = @r(n—1)-.-aro, is a string & = an—1...a0 whose bits a; for 0 < j < n
agree with the majority of the bits ap; for 1 < k < ¢t. (If t is even and the bits
ay; are half 0 and half 1, the median bit a; can be either 0 or 1.) For example, the
strings {0010, 0100, 0101,1110} have two medians, 0100 and 0110, which we can denote
by 01x0.
a) Find a simple way to describe the medians of G¢ = {g(0),...,9(t — 1)}, the first ¢
Gray binary strings, when 0 < ¢ < 2".
b) Prove that if &« = a,,_1...a¢ is such a median, and if @' = al,_;...a is any
element of Gy with a} # a;, then the string 8 obtained from « by changing a; to
a;- is also an element of Gy.

29. [M2/] If integer values k are transmitted as n-bit Gray binary codes g(k) and
received with errors described by a bit pattern p = (pn—1...po)2, the average numerical
error is

2" -1

1

on
k=0

(g7 (k) ®p) K|,

assuming that all values of k are equally likely. Show that this sum is equal to
Zi:)l (k @ p) — k|/2", just as if Gray binary code were not used, and evaluate it
explicitly.

30. [M27] (Gray permutation.) Design a one-pass algorithm to replace the array
elements (Xo, X1, Xz, ey X2"—1) by (Xg(o),Xg(l),Xg(z), ey Xg(gn,l)), using Ol’lly a
constant amount of auxiliary storage. Hint: Considering the function g(n) as a per-
mutation of all nonnegative integers, show that the set

L =1{0,1,(10)2, (100)2, (100%)2, (1000)2, (100%0%)2, . . . }

is the set of cycle leaders (the smallest elements of the cycles).

31. [HM35] (Gray fields.) Let fn(z) = g(r.(z)) denote the operation of reflecting
the bits of an n-bit binary string as in exercise 5 and then converting to Gray binary
code. For example, the operation fs(z) takes (001)2 — (110)2 — (010)z — (011); —
(101)3 + (111)2 + (100)2 + (001)2, hence all of the nonzero possibilities appear in
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a single cycle. Therefore we can use f3 to define a field of 8 elements, with @ as the
addition operator and with multiplication defined by the rule

W) x f190) = 179 = 77 (A0 ).

The functions f2, fs, and fs have the same nice property. But fs does not, because
f4((1011)2) = (1011)a.
Find all n < 100 for which f,, defines a field of 2" elements.

32. [M20] True or false: Walsh functions satisfy wy(—x) = (—1)Fws(z).
33. [M20] Prove the Rademacher-to-Walsh law (17).
34. [M21] The Paley functions pi(x) are defined by

po(z) =1 and  pi(z) = (~1)2Fp 0 (22).

Show that pi(x) has a simple expression in terms of Rademacher functions, analogous
to (17), and relate Paley functions to Walsh functions.

35. [HM23] The 2" x 2" Paley matrix P, is obtained from Paley functions just as
the Walsh matrix W, is obtained from Walsh functions. (See (20).) Find interesting
relations between P,,, W,,, and the Hadamard matrix H,. Prove that all three matrices
are symmetric.

36. [21] Spell out the details of an efficient algorithm to compute the Walsh transform
(zo,...,2an_1) of a given vector (Xo,...,Xan_1).

37. [HM23] Let zi; be the location of the [th sign change in wy(z), for 1 <1 < k and
0 < 21y < 1. Prove that |zx — I/(k + 1)| = O((log k) /k).

38. [M25] Devise a ternary generalization of Walsh functions.

39. [HM30] (J. J. Sylvester.) The rows of (§ °,) are orthogonal to each other and
have the same magnitude; therefore the matrix identity

A ) (GG )G ()

_(Aa+ Bb Ab— Ba) (aA+bB
- bA —aB

implies the sum-of-two-squares identity (a”® +b%)(A% + B?) = (aA +bB)* 4 (bA —aB)>.
Similarly, the matrix

c —d —a b
leads to the sum-of-four-squares identity
(a®>+b° 4+ +d*) (A +B*+C? +D?) = (aA+bB+cC+dD)* + (bA—aB+dC —cD)?
+ (dA+ ¢B —bC — aD)” + (cA — dB — aC + bD)>.
a) Attach the signs of the matrix Hs in (21) to the symbols {a,b,¢,d, e, f,g,h},

obtaining a matrix with orthogonal rows and a sum-of-eight-squares identity.
b) Generalize to H; and higher-order matrices.

40. [21] Would the text’s five-letter word computation scheme produce correct an-
swers also if the masks in step W2 were computed as m; = z A (257 —1) for 0 < 57 < 57
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41. [25] If we restrict the five-letter word problem to the most common 3000 words —
thereby eliminating ducky, duces, dunks, dinks, dinky, dices, dicey, dicky, dicks,
picky, pinky, punky, and pucks from (23) —how many valid words can still be gener-
ated from a single pair?

42. [35] (M. L. Fredman.) Algorithm L uses ©(nlogn) bits of auxiliary memory for
focus pointers as it decides what Gray binary bit a; should be complemented next.
On each step L3 it examines O(logn) of the auxiliary bits, and it occasionally changes
Q(log n) of them.

Show that, from a theoretical standpoint, we can do better: The n-bit Gray binary
code can be generated by changing at most 2 auxiliary bits between visits. (We still
allow ourselves to examine O(logn) of the auxiliary bits on each step, so that we know
which of them should be changed.)

43. [47] Determine d(6), the number of 6-bit Gray codes.

44. [M35] How many of the delta sequences for n-bit Gray codes have the property
that exactly (a) one or (b) two of the coordinate names occur only twice? Express your
answers in terms of d(n — 1) and d(n — 2).

45. [M25] Show that the sequence d(n) has doubly exponential growth: There is a
constant A > 1 such that d(n) = Q(A2").

46. [HM48) Determine the asymptotic behavior of d(n)'/?" as n — co.

47. [M46] (Silverman, Vickers, and Sampson.) Let S, = {g(0),...,9(k — 1)} be the
first k elements of the standard Gray binary code, and let H(k,v) be the number
of Hamiltonian paths in S that begin with 0 and end with v. Prove or disprove:
H(k,v) < H(k,g(k—1)) for all v € Sy that are adjacent to g(k).

48. [36] Prove that d(n) < 4(n/2)*" if the conjecture in the previous exercise is true.
[Hint: Let d(n, k) be the number of n-bit Gray codes that begin with ¢g(0)...g(k — 1);
the conjecture implies that d(n) < cn1...cnk—1)d(n, k), where cn is the number of
vertices adjacent to g(k — 1) in the n-cube but not in Sk.]

49. [20] Prove that for all n > 1 there is a 2n-bit Gray code in which v, 92n—1 is the
complement of vy, for all &£ > 0.

50. [21] Find a construction like that of Theorem D but with [ even.

51. [M24] Complete the proof of Corollary B to Theorem D.

52. [M20] Prove that if the transition counts of an n-bit Gray code satisfy co < c1 <
<o+ < ep—1, we must have co + -+ + ¢j—1 > 27, with equality when j = n.

53. [M46] If the numbers (co,...,cn—1) are even and satisfy the condition of the
previous exercise, is there always an n-bit Gray code with these transition counts?
54. [M20] (H.S. Shapiro, 1953.) Show that if a sequence of integers (a1, ..., asn) con-
tains only n distinct values, then there is a subsequence whose product axt+i1ar+2 ... a;

is a perfect square, for some 0 < k < [ < 2". However, this conclusion might not be
true if we disallow the case | = 2".

55. [47] (F. Ruskey and C. Savage, 1993.) If (vg,...,v2n_1) is an n-bit Gray code,
the pairs {{Uzk, Vak41} | 0<k< gn—1 } form a perfect matching between the vertices
of even and odd parity in the n-cube. Conversely, does every such perfect matching
arise as “half” of some n-bit Gray code?

56. [M30] (E.N. Gilbert, 1958.) Say that two Gray codes are equivalent if their delta
sequences can be made equal by permuting the coordinate names, or by reversing the

33



v

34 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

cycle and/or starting the cycle at a different place. Show that the 2688 different 4-bit
Gray codes fall into just 9 equivalence classes.

57. [32] Consider a graph whose vertices are the 2688 possible 4-bit Gray codes,
where two such Gray codes are adjacent if they are related by one of the following

simple transformations:

Before After Type 1 After Type 2 After Type 3 After Type 4

(Type 1 changes arise when the cycle can be broken into two parts and reassembled
with one part reversed. Types 2, 3, and 4 arise when the cycle can be broken into three
parts and reassembled after reversing 0, 1, or 2 of the parts. The parts need not have
equal size. Such transformations of Hamiltonian circuits are often possible.)

Write a program to discover which 4-bit Gray codes are transformable into each
other, by finding the connected components of the graph; restrict consideration to only
one of the four types at a time.

58. [21] Let a be the delta sequence of an n-bit Gray code, and obtain 8 from « by
changing ¢ occurrences of 0 to n, where ¢ is odd. Prove that 83 is the delta sequence
of an (n + 1)-bit Gray code.
59. [22] The 5-bit Gray code of (30) is nonlocal in the sense that no 2° consecutive
elements belong to a single ¢-subcube, for 1 < £ < n. Prove that nonlocal n-bit Gray
codes exist for all n > 5. [Hint: See the previous exercise.]
60. [20] Show that the run-length-bound function satisfies r(n + 1) > r(n).
61. [M30] Show that r(m+n) > r(m)+r(n)—1if (a) m =2 and 2 < r(n) < §; or
(b) m < n and 7(n) < 2™m73,
62. [46] Does r(8) = 67
63. [30] (Luis Goddyn.) Prove that r(10) > 8.
64. [HM35] (L. Goddyn and P. Gvozdjak.) An n-bit Gray stream is a sequence of
permutations (oo, 01,...,0;—1) where each o}, is a permutation of the vertices of the
n-cube, taking every vertex to one of its neighbors.

a) Suppose (uo,-..,usm_1) is an m-bit Gray code and (09,01, ...,02m_1) is an n-bit

Gray stream. Let vo = 0...0 and vgy1 = Vg0, Where 0 = Ok mod 2m if k > 2™

Under what conditions is the sequence

W = (uovo, UoU1, U1V1, UIV2, - .., Ugmtn—1_1Vgmtn—1_1, Ugmtn—1_1VUgm+n—1)

an (m + n)-bit Gray code?
b) Show that if m is sufficiently large, there is an n-bit Gray stream satisfying the
conditions of (a) for which all run lengths of the sequence (vo, v1,...) are > n —2.
c) Apply these results to prove that r(n) > n — O(logn).
65. [30] (Brett Stevens.) In Samuel Beckett’s play Quad, the stage begins and ends
empty; n actors enter and exit one at a time, running through all 2" possible subsets,
and the actor who leaves is always the one whose previous entrance was earliest. When
n = 4, as in the actual play, some subsets are necessarily repeated. Show, however,
that there is a perfect pattern with exactly 2" entrances and exits when n = 5.
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66. [/0] Is there a perfect Beckett—Gray pattern for 8 actors?

67. [20] Sometimes it is desirable to run through all n-bit binary strings by changing
as many bits as possible from one step to the next, for example when testing a physical
circuit for reliable behavior in worst-case conditions. Explain how to traverse all binary
n-tuples in such a way that each step changes n or n — 1 bits, alternately.

68. [21] Peter Q. Perverse decided to construct an anti-Gray ternary code, in which
each n-trit number differs from its neighbors in every digit position. Is such a code
possible for all n?

69. [M25] Modify the definition of Gray binary code (7) by letting
h(k) = (... (bs @ bs)(bs ® ba) (ba ® bs @ ba ® bo) (bs ® bo) (b2 ® br D bo)b1),,

when k = ( . b5b4b3b2b1b0)2.
a) Show that the sequence h(0), h(1), ..., h(2" — 1) runs through all n-bit numbers
in such a way that exactly 3 bits change each time, when n > 3.
b) Generalize this rule to obtain sequences in which exactly ¢ bits change at each
step, when ¢ is odd and n > t.

70. [21] How many monotonic n-bit Gray paths exist for n = 5 and n = 67

71. [M22] Derive (45), the recurrence that defines the Savage—Winkler permutations.
72. [20] What is the Savage—Winkler path from 00000 to 111117

73. [32] Design an efficient algorithm to construct the delta sequence of an n-bit
monotonic Gray path.

74. [M25] (Savage and Winkler.) How far apart can adjacent vertices of the n-cube
be, in a monotonic Gray path?

75. [82] Find all 5-bit Gray paths vo, ..., vs1 that are trend-free, in the sense that

zlzo k(—1)"*i = 0 in each coordinate position j.

76. [M25] Prove that trend-free n-bit Gray paths exist for all n > 5.

77. [21] Modify Algorithm H in order to visit mixed-radix n-tuples in modular Gray
order.

78. [M26] Prove the conversion formulas (50) and (51) for reflected mixed-radix Gray
paths, and derive analogous formulas for the modular case.

79. [M22] When is the last n-tuple of the (a) reflected (b) modular mixed-radix Gray
path adjacent to the first?

80. [M20] Explain how to run through all divisors of a number, given its prime
factorization pit...pst, repeatedly multiplying or dividing by a single prime at each
step.

81. [M21] Let (ao,bo), (a1,b1), ..., (@m2_1,b,,2_1) be the 2-digit m-ary modular
Gray code. Show that, if m > 2, every edge (z,y) — (z, (y + 1) mod m) and (z,y) —
((z + 1) mod m, y) occurs in one of the two cycles

(ao,bo)i (a17b1)7' T (amQ—lvbmz—l)i(aovbO)a
(bo,a0) — (b1,a1) — - — (b2 _1,ap2_1) — (bo, ao).

82. [M25] (G. Ringel, 1956.) Use the previous exercise to deduce that there exist four
8-bit Gray codes that, together, cover all edges of the 8-cube.

83. [M46] Can four balanced 8-bit Gray codes cover all edges of the 8-cube?
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» 84. [25] (Howard L. Dyckman.) Fig. 17 shows a fascinating puzzle called Loony Loop
or the Gordian Knot, in which the object is to remove a flexible cord from the rigid
loops that surround it. Show that the solution to this puzzle is inherently related to
the reflected Gray ternary path.

i,

AN

Q4

\4

Fig. 17. The Loony Loop puzzle.

> 85. [M25] (Dana Richards.) IfI" = («yg, ..., @;_1) is a sequence of ¢ strings of length n
and I'' = (ag,...,ap_;) is a sequence of ¢ strings of length n’, the boustrophedon
product T =T’ is the sequence of tt' strings of length n + n’ that begins

i ! ! U 7 7 U
(aﬂaﬂa BN e 7116 THa RY O K& T EIEERE e S Ko TiPNe 10 1 PRINEIPNC 31 TN PN £:10 T2 PR )

and ends with a;_;«f if t is even, a;_ja}/_; if t is odd. For example, the basic definition
of Gray binary code in (5) can be expressed in this notation as I', = (0,1)RI',_1 when
n > 0. Prove that the operation R is associative, hence 'y, 4, = 'y, BT,

» 86. [26] Define an infinite Gray path that runs through all possible nonnegative
integer m-tuples (ai,...,a,) in such a way that max(a,,...,a,) < max(aj,...,ay)
when (ay,...,a,) is followed by (ai,...,a}).

87. [27] Continuing the previous exercise, define an infinite Gray path that runs
through all integer n-tuples (ai,...,an), in such a way that max(|ai|,-..,|a,|) <
max(|ai],-..,|ay|) when (ai,...,a,) is followed by (ai,...,a,).

v

88. [25] After Algorithm K has terminated in step K4, what would happen if we
immediately restarted it in step K27

» 89. [25] (Gray code for Morse code.) The Morse code words of length n (exercise
4.5.3-32) are strings of dots and dashes, where n is the number of dots plus twice the
number of dashes.

a) Show that it is possible to generate all Morse code words of length n by successively
changing a dash to two dots or vice versa. For example, the path for n = 3 must
be ¢ —, ese —. oOr its reverse.

b) What string follows « — —++— —+«—+ in your sequence for n = 157

90. [26] For what values of n can the Morse code words be arranged in a cycle, under
the ground rules of exercise 89?7 [Hint: The number of code words is Fy41.]

» 91. [34] Design a loopless algorithm to visit all binary n-tuples (a1,. .., a») such that
a1 < az > az < ag > ---. [The number of such n-tuples is Fy42.]

92. [M30] Is there an infinite sequence ®, whose first m" elements form an m-ary de
Bruijn cycle, for all m? [The case n = 2 is solved in (54).]

> 93. [M28] Prove that Algorithm R outputs a de Bruijn cycle as advertised.

94. [22] What is the output of Algorithm D when m =5, n =1, » = 3, and both f()
and g() are the trivial cycles 01234 01234 01...7
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> 95. [M23] Suppose an infinite sequence agaias ... of period p is interleaved with an
infinite sequence bgob1b2 ... of period ¢ to form the infinite cyclic sequence

CpC1C2C3C4C5 ... = a0b0a161a2b2 P

a) Under what circumstances does cocicz ... have period pg? (The “period” of a
sequence agaiaz . . ., for the purposes of this exercise, is the smallest integer p > 0
such that ar = ax, for all k > 0.)

b) Which 2n-tuples would occur as consecutive outputs of Algorithm D if step D6
were changed to say simply “If t' =n and 2’ < r, go to D4”7

c) Prove that Algorithm D outputs a de Bruijn cycle as advertised.

> 96. [M23] Suppose a family of coroutines has been set up to generate a de Bruijn

cycle of length m™ using Algorithms R and D, based recursively on simple coroutines
for the base case n = 2.

a) How many coroutines of each type will there be?

b) What is the maximum number of coroutine activations needed to get one top-level

digit of output?

97. [M29] The purpose of this exercise is to analyze the de Bruijn cycles constructed
by Algorithms R and D in the important special case m = 2. Let fn(k) be the (k+1)st
bit of the 2"-cycle, so that f,(k) = 0 for 0 < k < n. Also let j, be the index such that
0<jn<2"and fn(k) =1 for j, <k < jn+n.

a) Write out the cycles (f,(0)... fo(2"— 1)) for n =2, 3, 4, and 5.

b) Prove that, for all even values of n, there is a number §,, = £1 such that we have

f (k): Efn(k): 1f0<k§]n or 2n+jn<k§2n+17
T T VL S (k4 6), i jn < k < 2% i,

where the congruence is modulo 2. (In this formula X f stands for the summation
function X f(k) = Zf;é f(j).) Hence jni1 = 2" — §, when n is even.

¢) Let (¢n(0)cn(1)...cn(2°™— 5)) be the cycle produced when the simplified version
of Algorithm D in exercise 95(b) is applied to f,.(). Where do the (2n — 1)-tuples
1?71 and (01)™7'0 occur in this cycle?

d) Use the results of (c) to express fan(k) in terms of f,().

e) Find a (somewhat) simple formula for j, as a function of n.

98. [M34] Continuing the previous exercise, design an efficient algorithm to compute
fn(k), given n > 2 and k > 0.
> 99. [M23] Exploit the technology of the previous exercises to design an efficient
algorithm that locates any given n-bit string in the cycle (£(0) fn(1)... f2(2"—1)).
100. [40] Do the de Bruijn cycles of exercise 97 provide a useful source of pseudo-
random bits when n is large?
> 101. [M30] (Unique factorization of strings into nonincreasing primes.)
a) Prove that if A and \" are prime, then A\’ is prime if A < X
b) Consequently every string a can be written in the form

a=AA2... A\, AL > A2 > > Ay, where each \; is prime.

¢) In fact, only one such factorization is possible. Hint: Show that A\; must be the
lexicographically smallest nonempty suffix of a.

d) True or false: A; is the longest prime prefix of a.

e) What are the prime factors of 31415926535897932384626433832795028841977
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102. [HM28] Deduce the number of m-ary primes of length n from the unique fac-
torization theorem in the previous exercise.

103. [M20] Use Eq.(59) to prove Fermat’s theorem that m” = m (modulo p).

104. [17] According to formula (60), about 1/n of all n-letter words are prime. How
many of the 5757 five-letter GraphBase words are prime? Which of them is the smallest
nonprime? The largest prime?
105. [M31] Let a be a preprime of length n.
a) Show that if the final letter of « is increased, the resulting string is prime.
b) If o has been factored as in exercise 101, show that it is the n-extension of A;.
¢) Furthermore a cannot be the n-extension of two different primes.

106. [M30] By reverse-engineering Algorithm F, design an algorithm that visits all
m-ary primes and preprimes in decreasing order.

107. [HMS30] Analyze the running time of Algorithm F.

108. [M35] Let A1 < --- < A; be the m-ary prime strings whose lengths divide n, and
let ai ...an be any m-ary string. The object of this exercise is to prove that a; ...an,
appears in A1 ...A:A\1A2; hence A1 ...\ is a de Bruijn cycle (since it has length m™).
For convenience we may assume that m = 10 and that strings correspond to decimal
numbers; the same arguments will apply for arbitrary m > 2.

a) Show that if a1 ...a, = af is distinct from all its cyclic shifts, and if Ba = A is
prime, then o/ is a substring of AgAs41, unless o = 97 for some j > 1.

b) Where does af8 appear in A1 ...\, if B« is prime and « consists of all 9s? Hint:
Show that if ant1—j...an = 9' in step F2 for some [ > 0, and if j is not a divisor
of n, the previous step F2 had a,_;...a, = 9'T1.

¢) Now consider n-tuples of the form (a8)?, where d > 1 is a divisor of n and
Ba = A is prime.

d) Identify the positions of 899135, 997879, 913131, 090909, 909090, and 911911
when n = 6.

109. [M22] An m-ary de Bruijn torus of size m? x m? for 2 x 2 windows is a matrix
of m-ary digits a;; such that each of the m* submatrices

< Qij Ai(541) > , 0< i,j < m2
A(i+1)j  A(i4+1)(j+1)

is different, where subscripts wrap around modulo m?. Thus every possible m-ary 2 x 2
submatrix occurs exactly once; Ian Stewart [Game, Set, and Math (Oxford: Blackwell,
1989), Chapter 4] has therefore called it an m-ary ourotorus. For example,

0 01 0
0 0 01
01 1 1
1 011

is a binary ourotorus; indeed, it is essentially the only such matrix when m = 2, except
for shifting and/or transposition.
Consider the infinite matrix A whose entry in row ¢ = (...a2a1a0)2 and column
j = ( .. b2b1b0)2 is Qi; = ( .. 026160)2, where
co = (ao ® bo)(a1 @ b1) @ by;
¢k = (a2kao0 ® bax)bo ® (a2rt+1a0 @ baks1)(bo 1), for k> 0.

Show that the upper left 22" x 2*™ submatrix of A is a 2™-ary ourotorus for all n > 0.
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110. [M25] Continuing the previous exercise, construct m-ary ourotoruses for all m.

111. [20] We can obtain the number 100 in twelve ways by inserting + and — signs
into the sequence 123456789; for example, 100 = 1 4+23 —44+54+6+ 78 —9 =
123 -45-67+89=—-1+2-3+4+5+6+78+09.
a) What is the smallest positive integer that cannot be represented in such a way?
b) Consider also inserting signs into the 10-digit sequence 9876543210.

» 112. [25] Continuing the previous exercise, how far can we go by inserting signs into
123456789876543217 For example, 100 = —1234 —5 — 6 4 7898 — 7 — 6543 — 2 — 1.
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ANSWERS TO EXERCISES

All that heard him were astonished
at his understanding and answers.

— Luke 2:47

SECTION 7.2.1.1

1. Let mj; = u; —l;+1, and visit (a1 +11,...,an +15) instead of visiting (a1,...,an)
in Algorithm M. Or, change ‘a; - 0’ to ‘a; < l;’ and ‘aj = m; — 1’ to ‘a; = u;’ in
that algorithm, and set lop <— 0, ug < 1 in step M1.

2. (0,0,1,2,3,0,2,7,0,9).

3. Step M4 is performed mims...m; times when j = k; therefore the total is
> reo Hle m; =mi...mp(1+1/mp+1/mump_1+---+1/mp...mq). If all m;
are 2 or more, this is less than 2m; ... m,. [Thus, we should keep in mind that fancy
Gray-code methods, which change only one digit per visit, actually reduce the total
number of digit changes by at most a factor of 2.]

4. N1. [Initialize.] Set a;j - m; — 1 for 0 < j < n, where my = 2.

N2. [Visit.] Visit the n-tuple (a1,...,an).

N3. [Prepare to subtract one.] Set j < n.

N4. [Borrow if necessary.] If a; = 0, set a; < m; — 1, j < j — 1, and repeat this
step.

N5. [Decrease, unless done.] If j = 0, terminate the algorithm. Otherwise set
aj < a; — 1 and go back to step N2. |

5. Bit reflection is easy on a machine like MMIX, but on other computers we can
proceed as follows:

R1. [Initialize.] Set j < k + 0.

R2. [Swap.] Interchange A[j + 1] < A[k + 2"7']. Also, if j > k, interchange
Alj] < Alk] and A[j + 2" + 1] & Ak + 2" +1].

R3. [Advance k.] Set k < k + 2, and terminate if k > 2" %

R4. [Advance j.] Set h < 2" 2. If j > h, repeatedly set j < j — h and h < h/2
until j < h. Then set j < j+h. (Now j = (bg...bn—1)2 if k = (bn—=1...bo)2.)
Return to R2. |

6. Ifg((_()bn 1. blbo ) = ( (b2 @b1)£b1 @_1)0))2 then g(glbn—l . b1b0)2) =
2" + g((Ob,Hl blbo ) = ( bz (&) bl)(bl (&) bo))2, where b=b@ 1.
40
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7. To accommodate 2r sectors one can use g(k) for 2" —r < k < 2" 4+ r, where
n = [lgr], because g(2" —r) ® g(2" +r — 1) = 2" by (5). [G. C. Tootill, Proc. IEE
103, Part B Supplement (1956), 434.] See also exercise 26.

8. Use Algorithm G with n + n—1 and include the parity bit ac at the right. (This
yields ¢(0), ¢g(2), g(4), ... .)

9. Replace the rightmost ring, since ~(1011000) is odd.

10. A, + B, = g7 (2" —1) = [2"*"/3] and A,, = B,, +n. Hence A,, = [2"/3 +n/2|
and B, = [2"/3 —n/2].

Historical notes: The early Japanese mathematician Yoriyuki Arima (1714-1783)
treated this problem in his Shiiki Sanpé (1769), Problem 44, observing that the n-
ring puzzle reduces to an (n — 1)-ring puzzle after a certain number of steps. Let
C, = A, — A,_1 = B, — B,_1 + 1 be the number of rings removed during this
reduction. Arima noticed that C, = 2Cn_1 — [n even]; thus he could compute A, =
C1+Cy+ -+ C, for n =9 without actually knowing the formula C,, = [2”*1/3].

More than two centuries earlier, Cardano had already mentioned the “complicati
annuli” in his De Subtilitate Libri XXI (Nuremberg: 1550), Book 15. He wrote that
they are “useless yet admirably subtle,” stating erroneously that 95 moves are needed
to remove seven rings and 95 more to put them back. John Wallis devoted seven
pages to this puzzle in the Latin edition of his Algebra 2 (Oxford: 1693), Chapter 111,
presenting detailed but nonoptimum methods for the nine-ring case. He included the
operation of sliding a ring through the bar as well as putting it on or off, and he hinted
that shortcuts were available, but he did not attempt to find a shortest solution.

11. The solution to S, = Sn—2+ 1+ S,_2 +S,-1 when S; = S, = 11is S, =
2"~ _ [n even]. [Math. Quest. Educational Times 3 (1865), 66—67.]

12. (a) The theory of n — 1 Chinese rings proves that Gray binary code yields the
compositions in a convenient order (4, 31, 211, 22, 112, 1111, 121, 13):

A1. [Initialize.] Set ¢t - 0, j < 1, s1 < n. (We assume that n > 1.)

A2. [Visit.] Visit s1...s;. Then set t < 1 —¢, and go to A4 if ¢t = 0.

A3.]0dd step.] If s; > 1, set s; < s; — 1, 841 < 1, j < j + 1; otherwise set
j<j—1and s; < s; + 1. Return to A2.

A4. [Even step.] If s;_1 > 1,set sj_1 ¢ 851 —1, 841+ 85,85 < 1,5+ j+1;
otherwise set j «+ j — 1, s; < sjt1, Sj—1 < Sj—1 + 1 (but terminate if
j—1=0). Return to A2. |

(b) Now g1, ..., gi—1 represent rings on the bar:

B1. [Initialize.] Set t < 1, go < n. (We assume that n > 1.)

B2. [Visit.] Set g+ < 0 and visit (go —q1) . --(g¢t—1 — q+). Go to B4 if ¢ is even.

B3. [Odd step.] If g:—1 = 1, set t + t — 1; otherwise set g: + 1 and t + ¢t + 1.
Return to step B2.

BA4. [Even step.] If qz1—2 = q:—1 + 1, set gt—2 < gi—1 and t < t — 1 (but terminate
if t = 2); otherwise set q; — gt—1, gt—1 < q¢ + 1, t + t + 1. Return to B2. |

These algorithms [see J. Misra, ACM Trans. Math. Software 1 (1975), 285] are loopless
even in their initialization steps.

13. In step Al, also set C <+ 1. In step A3, set C « s;C if s; > 1, otherwise
C + C/(sj—1+1). Instep A4, set C + s;_1C if s;_1 > 1, otherwise C' + C/(sj_2+1).
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Similar modifications apply to steps B1, B3, B4. Sufficient precision is needed to
accommodate the value C' = n! for the composition 1...1; we are stretching the
definition of looplessness by assuming that arithmetic operations take unit time.
14. S1. [Initialize.] Set j < 0.
S2. [Visit.] Visit the string a1 ... a;.
S3. [Lengthen.] If j < n, set j < j + 1, a; < 0, and return to S2.
S4. [Increase.] If a; < m; — 1, set a; < a; + 1 and return to S2.
S5. [Shorten.] Set j < j — 1, and return to S4 if j > 0. |
15. T1. [Initialize.] Set j + 0.
T2. [Even visit.] If j is even, visit the string a1 ...a;.
T3. [Lengthen.] If j < n, set j + j + 1, a; < 0, and return to T2.
T4. [Odd visit.] If j is odd, visit the string a; .. .a;.
T5. |
T6. |

Increase.] If a; < mj — 1, set aj < a; + 1 and return to T2.

Shorten.] Set j «— 7 — 1, and return to T4 if 5 > 0. |

This algorithm is loopless, although it may appear at first glance to contain loops,
because four steps separate consecutive visits. The basic idea is related to exercise
2.3.1-5 and to “prepostorder” traversal (exercise 7.2.1.3-00).

16. Suppose LINK(j—1:b) = j:(b® a;) for 1 < j < n, and LINK(n:b) = A. These links
represent (b1,...,b,) if and only if g(b1...bn) = a1...an, SO we can use a loopless
Gray binary generator to achieve the desired result.

17. Put the concatenation of 3-bit codes (g(j),g(k)) in row j and column k, for 0 <
Jyk < 8. [It is not difficult to prove that this is essentially the only solution, except
for permuting and/or complementing coordinates and/or rotating rows, because the
coordinate that changes when moving north or south depends only on the row, and a
similar statement applies to columns. Karnaugh’s isomorphism between the 4-cube and
the 4 X 4 torus can be traced back to The Design of Switching Circuits by W. Keister,
A. E. Ritchie, and S. H. Washburn (1951), page 174. Incidentally, Keister went on to
design an ingenious variant of Chinese rings called SpinOut, and a generalization called
The Hexadecimal Puzzle, U.S. Patents 3637215-3637216 (1972).]

18. Use 2-bit Gray code to represent the digits u; = (0,1, 2, 3) respectively as the bit
pairs ub; _jup; = (00,01,11,10). [C. Y. Lee introduced his metric in IEEE Trans. IT-4
(1958), 77-82. A similar m/2-bit encoding works for even values of m; for example,
when m = 8 we can represent (0,1,2,3,4,5,6,7) by (0000,0001,0011,0111,1111,1110,
1100, 1000). But such a scheme leaves out some of the binary patterns when m > 4.]
19. (a) A modular Gray quaternary algorithm needs slightly less computation than
Algorithm M, but it doesn’t matter because 256 is so small. The result is z§ + 2§ +
28+ 28 F 142525 + 2123) + 5620212223(25 + 23) (27 + 23).

(b) Replacing (20, 21, 22, 23) by (1, 2,2%,2) gives 1+ 1122% + 3028 + 1122'° + 26,
thus all of the nonzero Lee weights are > 6. Now use the construction in the previous
exercise to convert each (uo,u1,u2,us, us, us, Us, Uss ) into a 16-bit number.

20. Recover the quaternary vector (ug,u1,uz,us, us, Us, Us, Ueo) from ', and use Al-
gorithm 4.6.1D to find the remainder of ug 4+ uix + - - - + uez® divided by g(z), mod 4;
that algorithm can be used in spite of the fact that the coefficients do not belong to a
field, because g(x) is monic. Express the remainder as 27 + 22" (modulo g(z) and 4),
and let d = (k— j)mod 4, s = (uo + - - - + us + Uoso) mod 4.
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Case 1, s = 1: If k = oo, the error was x7 (in other words, the correct vector has
u;j  (uj — 1) mod 4); otherwise there were three or more errors.

Case 2, s = 3: If j = k the error was z7; otherwise > 3 errors occurred.

Case 3, s = 0: If j = k = 00, no errors were made; if j = oo and k£ < oo,
at least four errors were made. Otherwise the errors were z* — z°, where a = (5 +
(00,3,6,1,5,4,2,0)) mod 7 according as d = (0,1,2,3,4,5,6,00), and b = (j+2d) mod 7.

Case 4, s = 2: If j = oo the errors were 2z*. Otherwise the errors were

zd + 2%, if k = oo;
—zd — 2%, ifd=0;

2@ 4z if d € {1,2,4}, a = (j —3d)mod 7, b= (j — 2d) mod 7;
—z* —zb, ifd € {3,5,6}, a= (j —3d) mod 7, b= (j —d) mod 7.

Given v’ = (1100100100001111)2, we have u = (2,0,3,1,0,0,2,2) and 2 + 3z> +
22 4+ 22 = 1+ 3z + 322 = 2° + 22°% also s = 2. Thus the errors are z2 + 23,
and the nearest errorfree codeword is (2,0,2,0,0,0,2,2). Algorithm 4.6.1D tells us
that 2 4 22% + 225 = (2 4+ 22 + 22%)g(2) (modulo 4); so the eight information bits are
(11110011)3, corresponding to (vo, v1,v2,v3) = (2,2,0,2). [A more intelligent algorithm
would also say, “Aha: The first 16 bits of 7.”]

For generalizations to other efficient coding schemes based on quaternary vectors,
see the classic paper by Hammons, Kumar, Calderbank, Sloane, and Solé, IEEE Trans.
IT-40 (1994), 301-319.

21. (a) C(e) = 1, C(0a) = C(la) = C(a), and C(xa) = 2C(a) — [10...0€a].

Iterating this recurrence gives C(a) = 2! — 217te; — 287%¢,1 — --- — 2%, where
e; = [10...0 € a;] and «; is the suffix of a following the jth asterisk. In the example
we have a1 = *10%*%0%, az = 10%*%0%, ..., a5 = ¢; thuse; =0, ea =1,e3 =1, e4 =0,

and es = 1 (by convention), hence C(#10%x0%) = 2% — 2* — 2% — 2! = 10.

(b) We may remove trailing asterisks so that ¢ = t'. Then e; = 1 implies e;_1 =
.. =e; = 0. [The case C(a) = 2t~ occurs if and only if o ends in 107+ .]

(c) To compute the sum of C(a) over all t-subcubes, note that () clusters begin at
the n-tuple 0...0, and (";1) begin at each succeeding n-tuple (namely one cluster for
each t-subcube containing that n-tuple and specifying the bit that changed). Thus the
average is ((}) + (2" —1)(";"))/2" " (}) = 2'(1—t/n)+2"""(t/n). [The formula in (c)
holds for any n-bit Gray path, but (a) and (b) are specific to the reflected Gray binary
code. These results are due to C. Faloutsos, IEEE Trans. SE-14 (1988), 1381-1393.]

22. Let ax? and Bx* be consecutive lieves of a Gray binary trie, where a and 3 are
binary strings and j < k. Then the last k — j bits of « are a string o’ such that «
and (o’ are consecutive elements of Gray binary code, hence adjacent. [Interesting
applications of this property to cube-connected message-passing concurrent computers
are discussed in A VLSI Architecture for Concurrent Data Structures by William J.
Dally (Kluwer, 1987), Chapter 3.]

23. 27 = g(k) ® g(I) = g(k ® 1) implies that | = k® g""¥(27) = k@ (27t —=1). In
other WOI‘dS, if k = (bnfl P b())g we have l = (bn,1 . bj+15j .. .60)2.

24. Defining g(k) = k@ | k/2] as usual, we find g(k) = g(—1 — k); hence there are two
2-adic integers k such that g(k) has a given 2-adic value [. One of them is even, the
other is odd. We can conveniently define g[_l] to be the solution that is even; then
(8) is replaced by b; = a;_1 @ --- @ ag, for j > 0. For example, g{=(1) = —2 by this
definition; when [ is a normal integer, the “sign” of g!=(l) is the parity of I.
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25. Let p = kD ; exermse 7.1-00 tells us that 2UePI*t —p < |k — 1] < p. We
have v(g(p)) = v(g(k) @ g(l)) = t if and only if there are positive integers ji, ..., j:
such that p = (I“OJ2 193 ... (0 or 1)7),. The largest possible p < 2" occurs when
ji=n+1—tand j2 =---=j; = 1, yielding p = 2" — [2¢/3]. The smallest possible
gUepl+1 _ = (192093 . (1 or 0)*)s + 1 occurs when jo = --- = j; = 1, yielding

p = [2%/3]. [C. K. Yuen, IEEE Trans. IT-20 (1974), 668; S. R. Cavior, IEEE Trans.
IT-21 (1975), 596.]

26. Let N = 2"t + --- + 2™ where nt > --- > n1 > 0; also, let T';, be any Gray code
for {0,1,...,2" — 1} that begins at 0 and ends at 1, except that 'y is simply 0. Use

DR o™, oo, 2™ 2™ TR 9™ 12" T, i £ s even;
Dp,, 2™ 4R o, 2™ 2™ TR 2™ 1 2™ 4 T, i ¢ is odd.
27. In general, if kK = (bn—1...bo)2, the (k + 1)st largest element of S, is equal to

1/(2 - (10)"/(2— /2= (-D)™/@2~ (-1)*))...),

corresponding to the sign pattern g(k) = (an—_1-...a0)2. Thus we can compute any ele-
ment of S,, in O(n) steps, given its rank. Setting k = 2'°° —10'° and n = 100 yields the
answer 373065177/1113604409. [Whenever f(z) is a positive and monotonic function,
the 2" elements f(£f(...+f(£z)...)) are ordered according to Gray binary code, as
observed by H. E. Salzer, CACM 16 (1973), 180. In this particular case there is, how-
ever, another way to get the answer, because we also have S, = //2,+2,...,£2,+£1//
using the notation of Section 4.5.3; continued fractions in this form are ordered by
complementing alternate bits of k.]

28. (a) Ast =1, 2,..., bit a; of median(G;) runs through the periodic sequence
0,...,0,%,1,...,1,%0,...,0,%, ...

with asterisks at every 2'*7th step. Thus the strings that correspond to the binary
representations of |(t — 1)/2] and |t/2]| are medians. And those strings are in fact
“extreme” cases, in the sense that all medians agree with the common bits of | (t—1)/2]
and [t/2], hence asterisks appear where they disagree. For example, when ¢t = 100 =
(01100100)2 and n = 8, we have median(G1go) = 001100xx.

(b) If a is g(p) and B is g(q) in Gray binary, we have p = (pn—1...po)2 and
g= (Pn-1...Pj+1Dj---Po)2, Where p; 1 ® p; = a; # a;. By (a), either t or ¢ — 1 lies
in (@n—1-..a0%)2. Now if p; =1, clearly ¢ < p < t. And if p; = 0 we have p;+1 = @ ;
hence p < t implies g < t. [See A. J. Bernstein, K. Steiglitz, and J. E. Hopcroft, IEEE
Trans. TT-12 (1966), 425-430.]

29. Assuming that p # 0, let I = |lgp| and S, = {s | 2'a < s < 2!(a + 1)} for
0<a<2"" Then (k®p) — k has a constant sign for all k € S,, and

>

ke€Sa

Also g=(g(k) @ p) = k @ ¢!~ (p), and [1g¢'~"(p)] = lgp]. Therefore

(k@ p) - K| = 215 = 2*

1 on_ on—l_q on—l_q
EDMETCEREEER S D ol (LY EE S S
k=0 a=0 keSS,

[See Morgan M. Buchner, Jr., Bell System Tech. J. 48 (1969), 3113-3130.]
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30. The cycle containing k > 1 has length 2U818*1+1 hecause it is easy to show from
Eq. (7) that if k = (bp—1...bo)2 we have

L
g[z ](k) = (Cnfl .. 00)2, where cj = bj (&) bj+l+1.

To permute all elements k such that |lg k| = ¢, there are two cases: If ¢ is a power of 2,
the cycle containing 2| k/2] also contains 2|k/2|+1, so we must double the cycle leaders
for ¢t — 1. Otherwise the cycle containing 2|k/2| is disjoint from the cycle containing
21k/2] +1, s0 Ly = (2L4—1) U (2L4—1 + 1) = (Ly—1%)2. This argument, discovered by
Jorg Arndt in 2001, establishes the hint and yields the following algorithm:

P1. [Initialize.] Set ¢t < 1, m < 0. (We may assume that n > 2.)

P2. [Loop through leaders.] Set r <~ m. Perform Algorithm Q with k = 2¢ + r;
then if r > 0, set r < (r —1) Am and repeat until » = 0. [See exercise 7.1-00.]

P3. [Increase lgk.] Set ¢t <— ¢t + 1. Terminate if ¢ is now equal to n; otherwise set
m < 2m+ [t A (t — 1) #0] and return to P2. |

Q1. [Begin a cycle.] Set s + X, I« k, j < [ D [1/2].

Q2. [Follow the cycle.] If j # k set X; < X, l < j, j < 1 ® [l/2], and repeat
until j = k. Then set X; + s. 1|

31. We get a field from f, if and only if we get one from f,[?], which takes (an—1...a0)2
to ((an—1 ® an—2)(an—1® an—3)(an_2 ® an_4)...(az & ao)(al))z. Let cn(z) be the
characteristic polynomial of the matrix A defining this transformation, mod 2; then
ci(x) =z +1,co(x) =2 + 241, and cpr1(2) = zcn(z) + cn_1(x). Since ¢, (A) is the
zero matrix, by the Cayley—Hamilton theorem, a field is obtained if and only if ¢, (z) is
a primitive polynomial, and this condition can be tested as in Section 3.2.2. The first
such values of n are 1, 2, 3, 5, 6, 9, 11, 14, 23, 29, 30, 33, 35, 39, 41, 51, 53, 65, 69, 74,
81, 83, 86, 89, 90, 95.

[Running the recurrence backwards shows that c_;j_2(z) = c¢j(x), hence c;j(z)
divides c(2j41)k+;(); for example, c3g11(x) is always a multiple of z+1. All numbers n
of the form 25k + j + k are therefore excluded when j > 0 and &£ > 0. The polynomials
c18(x), cso(z), cos(z), and cgo(z) are irreducible but not primitive.]

32. Mostly true, but false at the points where z changes sign. (Walsh originally
suggested that wy(z) should be zero at such points; but the convention adopted here
is better, because it makes simple formulas like (15)—(19) valid for all z.)

33. By induction on k, we have

wi(x) = w2 (2x) =™ (22)P1 020 (22) 0208 L =y ()P0t Py (2) P2 P2y () P2 O

for 0 < z < 1, because 7;(2z) = rj41(z) and ri(z) = 1 in this range. And when

wi(z) = (~ 1) w0 (22 — 1) = r1(2)0 e (22 — 1) (22 — 1) L
— Tl(a:)b0+b1 2 (2 )b1+b2r3(m)b2+b3
because [k/2] = bo +b1 (modulo 2) and r;(2z — 1) = rjp1(z — 3) = rj41(z) for j > 1.

34. pi(z) =[L;507 J+1’ hence wi(x) = pr.(2)p|r/2) () = Pgry(z). [R. E. A. C. Paley,
Proc. London Math. Soc. (2) 34 (1932), 241-279.]
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35. If j = (@an—1...a0)2 and k = (bp—1...bo)2, the element in row j and column k is
(=1)70R) | where f(j, k) is the sum of all a,b, such that: r = s (Hadamard); r4s = n—1
(Paley); r+ s =mn or n — 1 (Walsh).

Let R,, F,, and G, be permutation matrices for the permutations that take
] = (an_l...ao)g to k = (ag...an_l)z, k=2"-1 -7 = (En,l...ao)% and k =
g"1(G) = ((@n-1)..-(a@n-1 ® -+ ® ao)),, respectively. Then, using the Kronecker
product of matrices, we have the recursive formulas

_ (R.®(10) B 0 1 (G. 0
Rn+1—<Rn®(01)>, Fn+1—Fn®<1 0>, Gn+1_<0 GnFn),

ta=mo(} 1) P (5200), w= (25200

Thus W,, = GtP, = P,G,; H, = P,R, = R,P,; and P, = W,,GL = G, W, =
H.R, = R, H,.

36. W1. [Hadamard transform.] For k =0, 1, ..., n — 1, replace the pair (X;, X;j2r)
by (X; + Xjia%, Xj — Xj12%) for all j with |5/2%] even, 0 < j < 2". (These
operations effectively set X7 + H,X™.)

W2. [Bit reversal.] Apply the algorithm of exercise 5 to the vector X. (These
operations effectively set XT < R, X7, in the notation of exercise 35.)

W3. [Gray binary permutation.] Apply the algorithm of exercise 30 to the vec-
tor X. (These operations effectively set X < GL X™.) 1

If n has one of the special values in exercise 31, it may be faster to combine steps W2
and W3 into a single permutation step.

37. Ifk=2°14...42° withe; > -+ > e; > 0, the sign changes occur at Se, U- - -US,,,

where
1 13 2j +1 }
=4J= =432 . = <j
5o {2} 51 {4’4}’ » 5 { ‘0 <

Therefore the number of sign changes in (0. . z) is Zj.:l |29 z+1 |. Setting x = /(k+1)
gives [+O(t) changes; so the [th is at a distance of at most O(v(k))/2"8*) from 1/(k+1).

[This argument makes it plausible that infinitely many pairs (k,l) exist with
|zee — 1/(k + 1)| = Q((logk)/k). But no explicit construction of such “bad” pairs
is immediately apparent.]

38. Let to(z) = 1 and tg(z) = w!® rzk/S]th/SJ (3x), where w = e*™/3. Then t;(z)
winds around the origin 2k times as a increases from 0 to 1. If si(z) = w!3"=] is the
ternary analog of the Rademacher function 7 (z), we have tx(z) = [[;5¢ sj+1 ()i —bi+1
when k = (bn—1...bo)s, as in the modular ternary Gray code.

39. Let’s call the symbols {z¢, z1,...,z7} instead of {a,b,c,d,e, f,g,h}. We want to
find a permutation p of {0,1,...,7} such that the matrix with (—=1)7*z,; gk in row j
and column k has orthogonal rows; this condition is equivalent to requiring that

G+3)- (p(5) +p(j’)) = 1 (modulo 2), for0<j<j <8.

One solution is p(0)...p(7) = 01725634, yielding the identity (a® + b* + ¢® + d* +
€2+f2+g2+h2)(A2+B2+C2+D2+E2+F2+G2+H2):A2+B2+C2+D2+
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E2 4+ F?2 4+ G® + M2, where

A a b c d e f g h A
B b —a d - f —e h -—g B
C h g —f —e d c —b —a C
D _ c —d —a b g —-h —e f D
E|l | f e h g —-b —a —-d -c E
F g —h e —f — d -—a F
g d ¢ —-b —-a —-h —g f G
H e —f —g h —a b c —d H

(b) There is no 16 X 16 solution. The closest one can come is
p(0)...p(15) = 01112141513491071256 38,

which fails if and only if j @ j' = 5. [See Philos. Mag. 34 (1867), 461-475. In §9, §10,
8§11, and §13 of this paper, Sylvester stated and proved the basic results about what
has somehow come to be known as the Hadamard transform —although Hadamard
himself gave credit to Sylvester [Bull. des Sciences Mathématiques (2) 17 (1893), 240-
246]. Moreover, Sylvester introduced transforms of m™ elements in §14, using mth
roots of unity.]

40. Yes; this change would in fact run through the swapped subsets in lexicographic
binary order rather than in Gray binary order. (Any 5 x 5 matrix of Os and 1s that
is nonsingular mod 2 will generate all 32 possibilities when we run through all linear
combinations of its rows.) The most important thing is the appearance of the ruler
function, or some other Gray code delta sequence, not the fact that only one a; changes
per step, in cases like this where any number of the a; can be changed simultaneously
at the same cost.

41. At most 16; for example, fired, fires, finds, fines, fined, fares, fared, wares,
wards, wands, wanes, waned, wines, winds, wires, wired. We also get 16 from paced/
links and paled/mints; perhaps also from a word mixed with an antipodal nonword.

42. Suppose n < 22" 44 1, and let s = 2". We use an auxiliary table of 2" bits f;
for 0 < j < 2° and 0 < k < s, representing focus pointers as in Algorithm L, together
with an auxiliary s-bit “register” j = (js—1...jo)2 and an (r+2)-bit “program counter”
p = (Pr41...p0)2. At each step we examine the program counter and possibly the j
register and one of the f bits; then, based on the bits seen, we complement a bit of the
Gray code, complement a bit of the program counter, and possibly change a j or f bit,
thereby emulating step L3 with respect to the most significant n — r — 2 bits.
For example, here is the construction when r = 1:

p2p1po Change Set p2p1po Change Set
000 ao,po jo ¢ foo } , 110 ao,po fio ¢ fi+1)0 }
001 a1,p1 ji1 <4 for J<fo 111 anp fin & fgen fi < fin

01 ao,po foo « 0 }fo o Y01 anpo firno = (1o
01

1
. it1 +— J+1
0 a2,p2 fo1+0 100 ajy3,p2 fie1 + (G+1)1 } Fren &gt

The process stops when it attempts to change bit a,.

[In fact, we need change only one auxiliary bit per step if we allow ourselves to
examine some Gray binary bits as well as the auxiliary bits, because p, ...po = ar ... ao,
and we can set fo < 0 in a more clever way when j doesn’t have its final value 2° — 1.
This construction, suggested by Fredman in 2001, improves on another that he had
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published in SICOMP 7 (1978), 134-146. With a more elaborate construction it is
possible to reduce the number of auxiliary bits to O(n).]

43. This number was estimated by Silverman, Vickers, and Sampson [IEEE Trans. IT-
29 (1983), 894-901] to be about 7 x 10?2, Exact calculation might be feasible because
every 6-bit Gray code has only five or fewer segments that lie in a 5-cube corresponding
to at least one of the six coordinates. (In unpublished work, Steve Winker had used a
similar idea to evaluate d(5) in less than 15 minutes on a “generic” computer in 1972.)

44. All (n + 1)-bit delta sequences with just two occurrences of the coordinate j are
produced by the following construction: Take m-bit delta sequences dg...d2n_1 and
€o...€2n—1 and find an index k with d; = e¢. Form the cycle

60 e 6k,1n€1 .. .62n,1n5k+1 e (527171

and then interchange n < j.

All (n — 2)-bit delta sequences with just two occurrences of coordinates h and j
(with h before j) are, similarly, produced from four n-bit sequences d ...dan_1, ...,
No...n2n_1 and an index k with dy = €0 = (o = no, by interchanging n <+ h and
n+lsjin

(50 .. .(51@717161 .. .Egnfl(’n-l-l)cl .. .anflnnl .- .n2n71(n+1)6k+1 .. .(5271,1.

Let a(n) and b(n) be the answers to (a) and (b), for n > 1. The first construction
shows that a(n + 1) + 2b(n 4+ 1) = 2™(n + 1)d(n)?*/n, because it produces the delta
sequences enumerated by b(n + 1) in two ways. The second construction shows that
b(n +2) =2"(n +2)(n + 1)d(n)*/n®.

45. We have d(n + 1) > 2"d(n)?*/n, because 2"d(n)?/n is the number of (n 4 1)-bit
delta sequences with exactly two appearances of 0. Hence d(n) > 222" for n > 5, by
induction on n.

Indeed, we can establish even faster growth by using the previous exercise, because
din+1) > a(n+ 1)+ b(n + 1) and b(n + 1) < 2(n + 1)d(n)*/n for n > 5. Hence
d(n+1) > (2" — 22)(n+1)d(n)?*/n for n > 5, and iteration of this relation shows that

n [o'e) 2 1/2n+1 1 1/2n+1
lim d(n)"/*" > d(5)"/* ] (2" - 5) (" + ) ~ 2.3606.
n=>5

n— oo 6_4 n

[See R. J. Douglas, Disc. Math. 17 (1977), 143-146; M. Mollard, European J. Comb.
9 (1988), 49-52.] But the true value of this limit is probably occ.

46. Leo Moser (unpublished) has conjectured that it is ~ n/e. So far only an upper
bound of about n/+/2 has been established; see the references in the previous answer.
48. If d(n, k,v) of the codes begin with ¢g(0)...g(k — 1)v, the conjecture implies that
d(n,k,v) < d(n,k,g(k)), because the reverse of a Gray code is a Gray code. Thus the
hint follows from d(n) = d(n, 1) and

d(n,k) =Y {d(n,k,v) | v—g(k—1),v ¢ Sk} < card(n, k,g(k)) = d(n, k +1).
Finally, d(n,2") = 1, hence d(n) < [I2* e = [17_y k() = n [TP22 (k(n—k)) ()72 <
n 1= (n/2)(%) = n(n/2)>" 2. [IEEE Trans. TT-29 (1983), 894-901.]

49. Take any Hamiltonian path P from 0...0 to 1...1 in the (2n — 1)-cube, such

as the Savage-Winkler path, and use 0P, 1P%. (All such codes are obtained by this
construction when n =1 or n = 2, but many more possibilities exist when n > 2.)
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50. ai(n+l)afnaijiaznad(ndl)a,...5_1oqnal(n+)analj_, ... jrafn.

51. We can assume that n > 3 and that we have an n-bit Gray code with transition
counts ¢; = 2[ (2"~ 4 j)/n]; we want to construct an (n + 2)-bit code with transition
counts ¢j = 2|(2""! + j)/(n + 2)|. If 2" mod (n + 2) > 2, we can use Theorem D
with [ = 2]2""!/(n + 2)] + 1, underlining b; copies of j where b; = 4| (2" + j)/n] —
[(2" +75)/(n+2)| —[j =0] and putting an underlined 0 last. This is always easy to do
because |b; —2"1?/n(n+2)| < 5. A similar construction works if 2"*! mod (n+2) < n,
with [ = 2[2""/(n+2)| -1 and b; = 4[ (2" *+4)/n| — (2" +j+2)/(n+2)| —[5 =0].
In fact, 2" ™! mod (n +2) is always < n [see K. Kedlaya, Electronic J. Combinatorics 3
(1996), comment on #R25 (9 April 1997)]. The basic idea of this proof is due to J. P.
Robinson and M. Cohn [IEEE Trans. C-30 (1981), 17-23].

52. The number of different code patterns in the smallest j coordinate positions is at
most co +---+¢j-1.

53. Notice that Theorem D produces only codes with ¢; = ¢;j4+1 for some j, so it
cannot produce the counts (2,4,6,8,12). The extension in exercise 50 gives also
¢j = ¢j+1 — 2, but it cannot produce (6,10,14,18,22,26,32). The sets of numbers
satisfying the conditions of exercise 52 are precisely those obtainable by starting with
{2,2,4,...,2" '} and repeatedly replacing some pair {c;, cx} for which ¢; < cx by the
pair {¢; + 2,cx — 2}.

54. Suppose the values are {pi,...,pn}, and let z;; be the number of times p; occurs
in (a1,...,ar). We must have (z1k,...,Znk) = (Z11,.- ., Zn) (modulo 2) for some k < I.
But if the p’s are prime numbers, varying as the delta sequence of an n-bit Gray code,
the only solution is £ = 0 and [ = 2". [AMM 60 (1953), 418; 83 (1976), 54.]

56. [Bell System Tech. J. 37 (1958), 815-826.] The 112 canonical delta sequences yield

Class  Example t Class Example t Class Example t
A 0102101302012023 2 D 0102013201020132 4 G 0102030201020302 8
B 0102303132101232 2 E 0102032021202302 4 H 0102101301021013 8
C 0102030130321013 2 F 0102013102010232 4 I 0102013121012132 1

Here B is the balanced code (Fig. 13(b)), G is standard Gray binary (Fig. 10(b)), and
H is the complementary code (Fig. 13(a)). Class H is also equivalent to the modular
(4,4) Gray code under the correspondence of exercise 18. A class with ¢ automorphisms
corresponds to 32 X 24/t of the 2688 different delta sequences §pd1 . .. d15.

Similarly (see exercise 7.2.3-00), the 5-bit Gray codes fall into 237,675 different
equivalence classes.

57. With Type 1 only, 480 vertices are isolated, namely those of classes D, F', G in
the previous answer. With Type 2 only, the graph has 384 components, 288 of which
are isolated vertices of classes F' and G. There are 64 components of size 9, each
containing 3 vertices from E and 6 from A; 16 components of size 30, each with 6
from H and 24 from C'; and 16 components of size 84, each with 12 from D, 24 from B,
48 from I. With Type 3 (or Type 4) only, the entire graph is connected. [Similarly, all
91,392 of the 4-bit Gray paths are connected if path af is considered adjacent to path
a®B. Vickers and Silverman, ITEEE Trans. C-29 (1980), 329-331, have conjectured
that Type 3 changes will suffice to connect the graph of n-bit Gray codes for all n > 3.]

58. If some nonempty substring of 53 involves each coordinate an even number of
times, that substring cannot have length |3|, so some cyclic shift of 8 has a prefix v
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with the same evenness property. But then a doesn’t define a Gray code, because we
could change each n of v back to 0.

59. If « is nonlocal in exercise 58, so is 83, provided that ¢ > 1 and that 0 occurs
more than ¢ + 1 times in . Therefore, starting with the « of (30) but with 0 and 1
interchanged, we obtain nonlocal codes for n > 5 in which coordinate 0 changes exactly
6 times. [Mark Ramras, Discrete Math. 85 (1990), 329-331.] On the other hand, a
4-bit Gray code cannot be nonlocal because it always has a run of length 2; if 6, = dx+2,
elements {vk—1, Uk, Vk+1, Ve+2} form a 2-subcube.

60. Use the construction of exercise 58 with ¢ = 1.

61. The idea is to interleave an m-bit code U = (uo, u1,uz,...) with an n-bit code

V = (vo,v1,v2,...), by forming concatenations
W = (UigVjo, WirVjy, WixUja, -« ), igx=a0+---+ar-1, Jr=ao+---+ar_1,
where apaias ... is a periodic string of control bits aac«...; we advance to the next

element of U when axr = 0, otherwise to the next element of V.

If « is any string of length 2™ < 2", containing s bits that are 0 and ¢t = 2™ — s
bits that are 1, W will be an (m + n)-bit Gray code if s and t are odd. For we have
ik+1 = i (modulo 2™) and jry1 = jr (modulo 2™) only if I is a multiple of 2™, since
ix + jr = k. Suppose [ = 2™¢; then jry; = ji + tc, so ¢ is a multiple of 2™.

(a) Let o = 0111; then runs of length 8 occur in the left 2 bits and runs of length
> | 37(n)] occur in the right n bits.

(b) Let s be the largest odd number < 2™r(m)/(r(m)+r(n)). Also let t =2™ —s
and ar = |(k + 1)t/2™] — |kt/2™], so that i, = [ks/2™] and j, = |kt/2™]|. If
a run of length [ occurs in the left m bits, we have igy;41 > ix + r(m) + 1, hence
l+1>2Mr(m)/s > r(m)+r(n). And if it occurs in the right n bits we have jrpii41 >
Jk + r(n) + 1, hence

I+1>2™r(n)/t > 2™r(n)/(2"r(n)/(r(m) + r(n)) + 2)

)
2(r(m) +r(n))”
2mr(n) + 2(r(m) 4 r(n))

=r(m)+r(n) — >r(m)+r(n)—1
because r(m) < r(n).

The construction often works also in less restricted cases. See the paper that
introduced the study of Gray code runs: L. Goddyn, G. M. Lawrence, and E. Nemeth,
Utilitas Math. 34 (1988), 179-192.

63. Set ap < kmod4 for 0 < k < 2'°, except that ar = 4 when kmod 16 = 15 or
kmod 64 = 42 or kmod 256 = 133. Also set (jo, j1,72,J3,74) + (0,2,4,6,8). Then
for k =0, 1, ..., 1023, set dr < ja, and jo, < 1+ 4ar — ja,. (This construction
generalizes the method of exercise 61.)

64. (a) Each element ux appears together with {vi,vktam,...,Vgqom@n-1_1)} and
{Vk+1,Vkt142m, ..., Vg 149m(an-1_1)}. Thus the permutation op...o2m_1 must be a
2"~ 1_cycle containing the n-bit vertices of even parity, times an arbitrary permutation
of the other vertices. This condition is also sufficient.

(b) Let 7; be the permutation that takes v — v @ 27, and let m;(u,w) be the
permutation (uw)7;. If u@w = 2°+27 then 7;(u, w) takes u — u® 2" and w — wH 2",
while v — v @ 27 for all other vertices v, so it takes each vertex to a neighbor.

If S is any set C {0,...,n — 1}, let o(S) be the stream of all permutations 7; for
all j € {0,...,n—1}\ S, in increasing order of j, repeated twice; for example, if n = 5

50



7.2.1.1 ANSWERS TO EXERCISES 51

we have 0({1,2}) = 7om374707374. Then the Gray stream

(i, g, u) = o({i, })m;(u, ud2'®2”) o ({i, j}) 0 ({4})

consists of 6n — 8 permutations whose product is the transposition (u u@?ieﬂj).
Moreover, when this stream is applied to any n-bit vertex v, its runs all have length
>n—2.

We may assume that n > 5. Let dp...d2n_1 be the delta sequence for an n-bit
Gray code (vg,v1,...,v2n_1) with all runs of length 3 or more. Then the product of
all permutations in

on—-1_1

Y= H (Z(82k-1, 2k, V2r—1) Z(F2k, O2k+1, V2k))

k=1

is (Ul ’1)3)(1)2 ’04) L. (Uznfg U2n71)(v2n72 1)0) = (Ugnfl L. 1}1)(’021172 L. Uo), so it satisfies
the cycle condition of (a).

Moreover, all powers (o(#)X)" produce runs of length > n — 2 when applied to
any vertex v. By repeating individual factors o({i,j}) or o({j}) in ¥ as many times
as we wish, we can adjust the length of o()%, obtaining 2n + (2"~! — 1)(12n — 16) +
2(n—2)a+2(n—1)b for any integers a,b > 0; thus we can increase its length to exactly
2™, provided that 2™ > 2n + (277! — 1)(12n — 16) + 2(n* — 5n + 6), by exercise 5.2.1-
21.

(c) The bound r(n) > n — 4lgn + 8 can be proved for n > 5 as follows. First
we observe that it holds for 5 < n < 33 by the methods of exercises 60—63. Then we
observe that every integer N > 33 can be written as N =m+nor N =m+n+1, for
some m > 20, where

n=m— [4lgm] + 10.

If m > 20, 2™ is sufficiently large for the construction in part (b) to be valid; so we
have

r(N) > r(m+mn) > 2min(r(m),n — 2) > 2(m — [4lgm| +8)
=m+n+1—|4lglm+n)—1+¢+8
>N —4lgN +8

where € = 41g(2m/(m + n)) < 1. [To appear.] Recursive use of (b) gives, in fact,
r(1024) > 1000.

65. A computer search reveals that eight essentially different patterns (and their
reverses) are possible. One of them has the delta sequence 01020314203024041234
214103234103, and it is close to two of the others.

66. (Solution by Mark Cooke.) One suitable delta sequence is 012345607012132435
65760710213534626701537412362567017314262065701342146560573102464537
57102043537614073630464273703564027132750541210275641502403654250136
02541615604312576032572043157624321760452041751635476703564757062543
7242132624161523417514367143164314.

67. Let vagt1 = Uax and var = Ougk, where (uo,u1,...,u2n_1) is any (n — 1)-bit Gray
code. [See Robinson and Cohn, IEEE Trans. C-30 (1981), 17-23.]

68. Yes. The simplest way is probably to take (n — 1)-trit modular Gray ternary code
and add 0...0,1...1, 2...2 to each string (modulo 3). For example, when n = 3 the
code is 000, 111, 222, 001, 112, 220, 002, 110, 221, 012, 120, 201, ..., 020, 101, 212.
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69. (a) We need only verify the change in h when bits b;_1...bo are simultaneously
complemented, for j = 1, 2, ...; and these changes are respectively (1110)z, (1101),
(0111)2, (1011)2, (10011)2, (100011)2, .... To prove that every n-tuple occurs, note
that 0 < h(k) < 2" when 0 < k < 2" and n > 3; also h[fll((anfl . ..a0)2) =
(br—1...bo)2, where bp = ao ® a1 Daz @ -+, b1 = ao, bo = a2 P as Pas P -+,
bs=ao®a1 ®azs®---,and b; =a; Daj41 G- for j > 4.

(b) Let h(k) = ( .. a2a1a0)2 where a; = bj (&) bj+1 (&) bo[] St] (&) btfl[t —1<5< t}.
70. As in (32) and (33), we can remove a factor of n! by assuming that the strings of
weight 1 occur in order. Then there are 14 solutions for n = 5 starting with 00000, and
21 starting with 00001. When n = 6 there are 46,935 of each type (related by reversal
and complementation). When n = 7 the number is much, much larger, yet very small
by comparison with the total number of 7-bit Gray paths.
71. Suppose that o, (j41) differs from ay; in coordinate ¢;, for 0 < j < n — 1. Then
t; = jmn, by (44) and (38). Now Eq. (34) tells us that to =n—1;and if 0 < j<n—1
we have t; = ((j — 1)mn—1)mn_1 by (40). Thus t; = jonm ; for 0 < j < n—1, and
the value of (n — 1), is whatever is left. (Notations for permutations are notoriously
confusing, so it is always wise to check a few small cases carefully.)
72. The delta sequence is 0102132430201234012313041021323.

73. Let Q,; = P and denote the sequences (41), (42) by S, and T,. Thus S, =
ProQn1Pna... and Ty, = QnoPni1Q@n2 ..., if we omit the commas; and we have
Sn+1 = OPnO Oin ]-QZO 1 ‘:Lrl OPnZ OQnB 1QZ2 1 771,‘-3 0Pn4 vy
Tn+1 = OQnO 1 177.r0 OPnl 0Qn2 1Q21 1 :2 0Pn3 0Qn4 ]-QZS ER}
where m = m,,, revealing a reasonably simple joint recursion between the delta sequences
A,, and E,, of S,, and T;,. Namely, if we write
A, = ¢1 ay ¢2 az ... ¢n—1 An—1 ¢n, E, = wl b1 1/12 ba... wn—l bn-1 ¢n,

where each ¢; and v; is a string of length 2(?:11) — 1, the next sequences are

Apt1 = @1 a1 G2 n U1 i Yo NP3 a3 Pa N s baw Yamr L. .
Ept1 = U1 n @1 n 2 ba Y3 N dom aam P3m N ha by s N aw aam PsmTN L ..
For example, we have A3 = 0102101 and F3 = 0212021, if we underline the a’s
and b’s to distinguish them from the ¢’s and ’s; and
Ay=0102130r27r 1727 0r31317r=010213210123130,
Es=030r31202130r27r 17 0r1r=032312021321020;
here az¢s4 and b3y are empty. Elements have been underlined for the next step.

Thus we can compute the delta sequences in memory as follows. Here p[j] = jm,

for 1 < j < n; s = Ok, tk = €k, and up = [0 and ej, are underlined], for 0 < k < 2"—1.
R1. [Initialize.] Set n < 1, p[0] + 0, so < to < uo < 0.

/

R2. [Advance n.] Perform Algorithm S below, which computes the arrays s', ¢/,
and v’ for the next value of n; then set n < n + 1.

R3. [Ready?] If n is sufficiently large, the desired delta sequence A, is in array s';
terminate. Otherwise keep going.

RA4. [Compute ,.] Set p'[0] =n — 1, and p'[j] = p[p[j — 1]] for 1 < j < n.

R5. [Prepare to advance.] Set p[j] < p'[j] for 0 < j < n; set s;, < sk, tp < th,
and uy, < uj, for 0 < k < 2" — 1. Return to R2. |
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In the following steps, “Transmit stuff(l,j) while u; = 0” is an abbreviation for “If
u; = 0, repeatedly stuff(l,j), l <~ 1+ 1, j + j+ 1, until u; # 0.”

S1. [Prepare to compute Apy1.] Set j < k<1 <+ 0 and ugn_1 < —1.

S2. [Advance j.] Transmit s; < s; and u; < 0 while u; = 0. Then go to S5 if
u; < 0.

S3. [Advance j and k.] Set s; < s;, u; < 1,141+ 1, j + j+ 1. Then transmit
s; < s; and uj < 0 while u; = 0. Then set s <~ n, u; < 0, [ < 1+ 1. Then
transmit s; < p[tx] and u} < 0 while u;, = 0. Then set s} < p[tk], u; < 1,
I+ 1+1,k+ k+1. And once again transmit s; < p[t;] and u} < 0 while
Uk = 0.

S4. [Done with A,4+1?] If ur, < 0, go to S6. Otherwise set s} < n, u} + 0,
l—1+1,j+j+1, k< k+1, and return to S2.

S5. [Finish A,,11.] Set s} < n, uj < 1,1 < 1+ 1. Then transmit s; < p[t[k]] and
u} + 0 while ug = 0.

S6. [Prepare to compute E,t1.] Set j < k < | < 0. Transmit t; < ¢, while
ur = 0. Then set t); < n, | + [+ 1.

S7. [Advance j.] Transmit t; < p[s;] while u; = 0. Then terminate if u; < 0;
otherwise set tj < n, I+ 1+ 1,5+ j+1, k< k+1.

S8. [Advance k.| Transmit t; < t, while uy = 0. Then go to S10 if u < 0.

S9. [Advance k and j.] Set t; < tx, l < 1+ 1, k < k+ 1. Then transmit ¢} < ¢,

while ux = 0. Then set ¢; + n, | < [ + 1. Then transmit ¢; « p[s;] while
uj = 0. Then set t} < p[s;], l < 1+ 1, j < j+ 1. Return to S7.

S10. [Finish Fy41.] Set ¢} <— n, [ < [+1. Then transmit ¢ < p[s;] while u; = 0. 1

To generate the monotonic Savage—Winkler path for fairly large n, one can first generate
Ao and FEio, say, or even Agg and Fao. Using these tables, a suitable recursive pro-
cedure will then be able to reach higher values of n with very little computational
overhead per step, on the average.

74. If the monotonic path is vo, ..., van 1 and if vx has weight j, we have
" n
2> j d2) <k<2 : d2)—2.
t>0<j72t>+((]+y(v0))m0 ) <k< ;(j72t>+((]+y(”°))m0 )

Therefore the maximum distance between vertices of respective weights j and j + 1

is 2((;‘:11) + (n]—l) + (?;11)) — 1. The maximum value, approximately 3 - 2"/v/27n,
occurs when j is approximately n/2. [This is only about three times the smallest value
achievable in any ordering of the vertices, which is 27:_01 (U;2 J) by exercise 7.10-00.]
75. There are only five essentially distinct solutions, all of which turn out in fact to
be Gray codes. The delta sequences are

0123012421032101210321040123012(1)
0123012421032101301230141032103(1)
0123012421032102032103242301230(2)
0123012423012302012301242301230(2)
0123410121030143210301410123410(3)
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76. If vy, ..., van_1 is trend-free, so is the (n 4 1)-bit code Ovo, 1lvg, lvi, Ovi, Ova,
1va, ..., lugn_1, Oven_1. Fig. 14(g) shows a somewhat more interesting construction,
which generalizes the first solution of exercise 75 to an (n + 2)-bit code

oor”®, o1r’'®, 11r’, 1or”, 1or, 11, oir’”’®, oor”

where T is the n-bit sequences g(1), ..., g(2" ') and T" =T @ g(1), I =T @ g(2"!),
" =T@g(2" "' 4+ 1). [An n-bit trend-free design that is almost a Gray code, having
just four steps in which v(vy @ vg+1) = 2, was found for all n > 3 by C. S. Cheng,
Proc. Berkeley Conf. Neyman and Kiefer 2 (Hayward, Calif.: Inst. of Math. Statistics,
1985), 619-633.]

77. Replace the array (d,—_1,-..,do) by an array of sentinel values (sn_1, ..., S0), with
sj < mj — 1 in step H1. Set a; + (a; + 1) mod m; in step H4. If a; = s; in step H5,
set 85 < (Sj — ].) mod my, fj — fj+1, fj+1 —J+ 1.
78. For (50), notice that Bji1 is the number of times reflection has occurred in
coordinate j, because we bypass coordinate j on steps that are multiples of m; ... mo.
Hence, if b; < mj, an increase of b; by 1 causes a; to increase or decrease by 1 as
appropriate. Furthermore, if b; = m; — 1 for 0 < i < j, changing all these b; to 0 when
incrementing b; will increase each of By, ..., B; by 1, thereby leaving the values ao,
.., aj—1 unchanged in (50).
For (51), note that Bj = ijj+1 +bj = ijj+1 +aj; + (mj — ].)Bj+1 = aj +Bj+1

(modulo 2); hence B; = a; +aj+1+ -+, and (51) is obviously equivalent to (50).
In the modular Gray code for general radices (my,_1,-..,mo), let
an-1, -.., A2, ai, Ao
mg(k) = }
Mp—1y ..., M2, M1, Mo

when k is given by (46). Then a; = (b; — Bj4+1) mod m;, because coordinate j has
increased modulo m; exactly B; — Bj41 times if we start at (0,...,0). The inverse
function, which determines the b’s from the modular Gray a’s, is b; = (a; + aj+1 +
ajt+2 + -+ ) mod m; in the special case that each m; is a divisor of m;41 (for example,
if all m; are equal). But the inverse has no simple form in general; it can be computed
by using the recurrences b; = (a; + Bj+1) modmj, B; = m;jBji1 +b; for j =n —1,
..., 0, starting with B, = 0.

[Reflected Gray codes for radix m > 2 were introduced by Ivan Flores in IRE
Trans. EC-5 (1956), 79-82; he derived (50) and (51) in the case that all m; are
equal. Modular Gray codes with general mixed radices were implicitly discussed by
Joseph Rosenbaum in AMM 45 (1938), 694-696, but without the conversion formulas;
conversion formulas when all m; have a common value m were published by Martin
Cohn, Info. and Control 6 (1963), 70-78.]

79. (a) The last n-tuple always has an—1 = mn—1 — 1, so it is one step from (0, ...,0)
only if mn,_1 = 2. And this condition suffices to make the final n-tuple (1,0,...,0).
[Similarly, the final subforest output by Algorithm K is adjacent to the initial one if
and only if the leftmost tree is an isolated vertex.]

(b) The last n-tuple is (mn—1—1,0,...,0) if and only if m,_; ... m;j41 mod m; = 0
for 0 < j <n—1, because bj =mj; —1 and Bj = mp_1...m; — 1.
80. Run through pi*'...p}¢ using reflected Gray code with radices m; = e; + 1.

81. The first cycle contains the edge from (z,y) to (z,(y + 1) mod m) if and only if
(z 4+ y) mod m # m — 1 if and only if the second cycle contains the edge from (z,y) to
((z + 1) mod m, y).
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82. There are two 4-bit Gray codes (uo, - - ., u15) and (vo, - . ., v15) that cover all edges of
the 4-cube. (Indeed, the non-edges of classes A, B, D, H, and I in exercise 56 form Gray
codes, belonging to the same class as their complement.) Therefore with 16-ary modular
Gray code we can form the four desired cycles (uouo, uot1, . . ., UoU1s, U1U15, - .« . , U15U0),
UoUQ, U1UQ,y - - -, U15UQ, UTI5UL, - - - ,u0u15), (U()Uo, . ,v15u0), (Uovo, . ,’1)01)15).

In a similar way we can show that n/2 edge-disjoint n-bit Gray codes exist when
n is 16, 32, 64, etc. [Abhandlungen Math. Sem. Hamburg 20 (1956), 13-16.] J. Aubert
and B. Schneider [Discrete Math. 38 (1982), 7-16] have proved that the same property
holds for all even values of n > 4, but no simple construction is known.

84. Calling the initial position (2,2), the 8-step solution in Fig. A-1 shows how the
sequence progresses down to (0,0). In the first move, for example, the front half of the
cord passes around and behind the right comb, then through the large right loop. The
middle line should be read from right to left. The generalization to n pairs of loops

would, similarly, take 3™ — 1 steps.
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Fig. A-1.

[The origin of this delightful puzzle is obscure. The Book of Ingenious & Diabolical
Puzzles by Jerry Slocum and Jack Botermans (1994) shows a 2-loop version carved from
horn, probably made in China about 1850 [page 101], and a modern 6-loop version
made in Malaysia about 1988 [page 93]. Slocum also owns a 4-loop version made from
bamboo in England about 1884. He has found it listed in Henry Novra’s Catalogue of
Conjuring Tricks and Puzzles (1858 or 1859) and W. H. Cremer’s Games, Amusements,
Pastimes and Magic (1867), as well as in Hamleys’ catalog of 1895, under the name
“Marvelous Canoe Puzzle.” Dyckman noted its connection to reflected Gray ternary
in a letter to Martin Gardner, dated 2 August 1972.]

55



56 ANSWERS TO EXERCISES 7.2.1.1

85. By (50), element [i’ i’:] of TRIV is o, ), if rg( : i’:]) = [’Z ‘tl,/] in the reflected Gray

code for radices (t,t'). We can now show that element [» b, b”] of both (TwI")=I”

t, b, !
and ' (I"=T") is a al ally if rg([i’ i’: i’::]) = [‘Z ‘:,’ ‘t‘,l,’] in the reflected Gray code
for radices (t,t',t"). See exercise 4.1-10, and note also the mixed-radix law
{wl,...,xn} {ml—l—zl,...,mn—l—xn
mi...Mp—1— = .
mi, ..., Mn mi, ey Mmn
In general, the reflected Gray code for radices (ma,...,m,) is (0,...,m1 — )R-+ &

(0,...,mn — 1). [Information Processing Letters 22 (1986), 201-205.]
86. Let I'),,, be the reflected m-ary Gray path, which can be defined by I'y,0 = € and

Pm(n_H)Z(O,l,...,m—l)IXlan, n > 0.

This path runs from (0,0,...,0) to (m—1,0,...,0) when m is even. Consider the Gray
path II,,, defined by IL,,0 = () and

- 0,1,...,m—1)&ll,, ., mI'% ., ifmisodd;
m(n+1) —
(1) 0,1,...,m)&Il,,,, mI'E,, if m is even.

This path traverses all of the (m + 1) — m™ nonnegative integer n-tuples for which
max(ai,...,an) = m, starting with (0,...,0,m) and ending with (m,0,...,0). The
desired infinite Gray path is o, II%,, II,,,, II&,, ... .

87. This is impossible when n is odd, because the n-tuples with max(|a1],...,|an]) =1
include %(3" + 1) with odd parity and %(3™ — 3) with even parity. When n = 2
we can use a spiral ¥o, X1, X2, ..., where X,, winds clockwise from (m,1 — m) to
(m,—m) when m > 0. For even values of n > 2, if T,, is a path of n-tuples from
(m,1—=m,m—-1,1—-m,...,m—1,1—m) to (m, —m, m, —m, ..., m,—m), we can use
L ® (L0, .., Tn—1),(Z0, ..., Zm)F BT for (n + 2)-tuples with the same property,
where & is the dual operation

1-\—1-\/ _ ’ ’ / ’ / ’ /
B = (o, - -, 100, 4101, -+, QL QpQg, - - - Ay _1Qp, A 103, - -+ )-

[Infinite n-dimensional Gray paths without the magnitude constraint were first con-
structed by E. Vazsonyi, Acta Litterarum ac Scientiarum, sectio Scientiarum Mathe-
maticarum 9 (Szeged: 1938), 163-173.]

88. It would visit all the subforests again, but in reverse order, ending with (0, ...,0)
and returning to the state it had after the initialization step K1. (This reflection
principle is, in fact, the key to understanding how Algorithm K works.)

89. (a) Let Mo =€, M1 = «, and Mp42 = » f_H, — MZE. This construction works
because the last element of M,ﬁl is the first element of M, 41, namely a dot followed
by the first element of M;?.

(b) Given a string d; ...d; where each d; is « or —, we can find its successor by
letting k = I — [d; = «] and proceeding as follows: If k is odd and d = », change dirdi+1
to —; if k is even and di = —, change di to ««; otherwise decrease k by 1 and repeat

until either making a change or reaching & = 0. The successor of the given word is

90. A cycle can exist only when the number of code words is even, since the number
of dashes changes by +1 at each step. Thus we must have nmod 3 = 2. The Gray
paths M, of exercise 89 are not suitable; they begin with (- —)L"/SJ nmed3 and end
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with (—«)ln/3) [nmed 3=1] _[nmed3=2] gyt pf, o M — is a Hamiltonian circuit

in the Morse code graph when n = 3k + 2.

91. Equivalently, the n-tuples a1a2asas ... have no two consecutive 1s. Such n-tuples
correspond to Morse code sequences of length n + 1, if we append 0 and then represent
« and +— respectively by 0 and 10. Under this correspondence we can convert the path
M, +1 of exercise 89 into a procedure like Algorithm K, with the fringe containing the
indices where each dot or dash begins (except for a final dot).

QL. [Initialize.] Set a; + [(( — 1) mod 6)/3] and f; < j for 1 < j < n. Also set
fo< 0,70 < 1,11 < 0,75 < j+(jmod 3) and [; (j moa 3) + j for 1 < j < m,
except if j+ (j mod 3) > n set r; + 0 and g + j. (The “fringe” now contains
1,2,4,5,7,8,....)

Q2. [Visit.] Visit the n-tuple (a1,...,an).
Q3. [Choose p.] Set g + lo, p < fq, fa < q-

4. [Check a,.] Terminate the algorithm if p = 0. Otherwise set a, <+ 1—a, and
P g P P
go to Q6 if ap + p is now even.

Q5. [Insert p+1.] If p < n, set q < rp, lg < p+1, rpt1 < q, 7p < D+ 1, lpy1 < .
Go to Q7.

Q6. Delete p+ 1.] If p < m, set g < rpt1, Tp < ¢, lg < p.
Q7. [Make p passive.] Set f, « fi, and fi, < I,. Return to Q2. |

This algorithm can also be derived as a special case of a considerably more general
method due to Gang Li, Frank Ruskey, and D. E. Knuth, which extends Algorithm K by
allowing the user to specify either a, > a4 or a, < aq4 for each (parent, child) pair (p, q).
[See Knuth and Ruskey, “Deconstructing coroutines,” to appear.] A generalization in
another direction, which produces all strings of length n that do not contain certain
substrings, has been discovered by M. B. Squire, Electronic J. Combinatorics 3 (1996),
#R17, 1-29.

92. Yes, because the digraph of all (n—1)-tuples (z1,...,Zn—1) with z1,..., 21 < m
and with arcs (z1,...,Zn—1) — (%2,...,2,) whenever max(z1i,...,2,) = m is con-
nected and balanced; see Theorem 2.3.4.2G. Indeed, we get such a sequence from
Algorithm F if we note that the final £" elements of the prime strings of length
dividing n, when subtracted from m — 1, are the same for all m > k. When n = 4, for
example, the first 81 digits of the sequence ®,4 are 2 — o™ = 00001010011..., where
a is the string (62). [There also are infinite m-ary sequences whose first m™ elements
are de Bruijn cycles for all n, given any fixed m > 3. See L. J. Cummings and D.
Wiedemann, Cong. Numerantium 53 (1986), 155-160.]

93. The cycle generated by f() is a cyclic permutation of al, where o has length m™ —1
and ends with 1" !, The cycle generated by Algorithm R is a cyclic permutation of
Y = ¢€o...Cpnt+i_q, Where cx = (co + bo + -+ + br—1) modm and bg...b,nt1_; =
B=am™1™.

If o ...z, occurs in v, say ; = cg4j for 0 < j < n, then y; = b4, for 0 < j < n,
where y; = (41 — ;) mod m. [This is the connection with modular m-ary Gray code;
see exercise 78.] Now if yo...yn—1 = 1™ we have m't —m—n<k < mntl — n;
otherwise there is an index k' such that —n < k' < m™ —n and yo...yn_1 occurs in
B at positions k = (k' + r(m™ — 1)) mod m"™** for 0 < r < m. In both cases the m
choices of k have different values of zo, because the sum of all elements in o is m — 1
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(modulo m) when n > 2. [Algorithm R is valid also for n = 1 if m mod 4 # 2, because
m L > « in that case.]

94. 0010203041121314223243344. (The underlined digits are effectively inserted

into the interleaving of 00112234 with 34. Algorithm D can be used in general when
n=1and r =m —2 > 0; but it is pointless to do so, in view of (54).)

95. (a) Let cocice ... have period 7. If r is odd we have p = ¢ = r, so r = pq only in
the trivial case when p = ¢ = 1 and ap = bg. Otherwise r/2 = lem(p, q) = pq/ ged(p, q)
by 4.5.2—(10), hence gcd(p,q) = 2. In the latter case the 2n-tuples cici41 ... Citan—1
that occur are a;by ...aj4n—1bk4n—1 for 0 < j <p, 0 <k < g, j =k (modulo 2), and
braj ... bktn—10j4n—1 for 0 < j <p, 0< k < gq, j #Zk (modulo 2).

(b) The output would interleave two sequences agas ... and bgb; ... whose periods
are respectively m™ 4+ r and m™ — r; the a’s are the cycle of f() with 2™ changed to
™! and the b’s are the cycle of g() with 2™ changed to "™ !, for 0 < = < r. By
(58) and part (a), the period length is m®™® — r?, and every 2n-tuple occurs with the
exception of (zy)" for 0 < z,y <.

(c) The real step D6 alters the behavior of (b) by going to D3 when ¢t > n and
0 < &’ = & < 7; this emits an extra x at the time when "' has just been output and
b is about to be emitted, where b is the digit following z™ in g’s cycle. D6 also allows
control to pass to D7 and then D3 with ' = n in the case that t >n and z < 2’ < r;
this emits an extra 'z at the time when (xz’)™ 'z has just been output and b will be
next. These r? extra bits provide the r*> missing 2n-tuples of (b).

96. (a) The recurrences Sz = 1, Sant1 = S2n = 2S,, R2 = 0, Rony1 = 1 + Ray,
Ron = 2R,, Dy = 0, Dypi1 = Dy, = 1+ 2D,, have the solution S, = 2Usn—1,
R,=n-2S,,D,=S,—1. Thus S,, + R, + D,, =n — 1.

(b) Each top-level output usually involves |lgn| — 1 D-activations and v(n) — 1
R-activations, plus one basic activation at the bottom level. But there are exceptions:
Algorithm R might invoke its f() twice, if the first activation completed a sequence 1™;
and sometimes Algorithm R doesn’t need to invoke f() at all. Algorithm D might
invoke its g() twice, if the first activation completed a sequence (z')"; but sometimes
Algorithm D doesn’t need to invoke either f() or g().

Algorithm R completes a sequence ™' if and only if its child f() has just
completed a sequence 0". Algorithm D completes a sequence z>" for z < r if and
only if it has just jumped from D6 to D3 without invoking any child.

From these observations we can conclude that at most |lgn|+v(n)+1 activations
are possible per top-level output, if » > 1; such a case happens when Algorithm D
for n = 6 goes from D6 to D4. But when r = 1 we can have as many as 2|lgn| + 3
activations, for example when Algorithm R for n = 25 goes from R4 to R2.

97. (a) (0011), (00011101), (0000101001111011), and (00000110001011011111
001110101001). Thus jo =2, js =3, ja =9, js = 15.

(b) We obviously have fnpy1(k) = Xfn(k) mod2 for 0 < k < j, +n. The next
value, fnt1(jn + n), depends on whether step R4 jumps to R2 after computing y =
fr(jn+n—1). If it does (namely, if f,41(jn+n—1) # 0), we have fry1(k) = 1+X(k+1)
for jn, +n < k < 2"+ j, + n; otherwise we have f,11(k) = 1+ X(k — 1) for those
values of k. In particular, frt1(k) = 1 when 2" < k+ 0, < 2"+n. The stated formula,
which has simpler ranges for the index k, holds because 1+ X(k £ 1) = X (k) when
Jn <k <jgnt+nor2'+j, <k<2"+jn+n.
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(c) The interleaved cycle has c,(2k) = f; (k) and c,(2k + 1) = f,, (k), where

k) = fn(k—=1), if 0 < k < jn+1; (k) = Fu(k4+1), if 0 < k < jin;
P fak—2), if a1 <k <2742, " | fu(k42), if . <k <2"-2;

(k) = £ (kmod (2" +2)), f7 (k) = f (kmod (2" — 2)). Therefore the subsequence
1?"~1 begins at position k, = (2" ' — 2)(2"+ 2) + 2j, + 2 in the ¢, cycle; this will
make jon, odd. The subsequence (01)™'0 begins at position I,, = (27" +1)(j, — 1) if
jnmod4d =1, at l, = (2”_1 +1)(2"+ jn — 3) if jo mod4 = 3. Also k2 =6, I2 = 2.

(d) Algorithm D inserts four elements into the ¢, cycle; hence

when j, mod 4<3 (I, <kn): when j, mod 4=3 (k,<l,):
en(k—1), if 0<k<ln+2; en(k—1), if 0<k<kn+1;
fon(k)={ ca(k=3), if ln+2<k<kn+3; ={ ca(k—2), if kn+1<k<l,+3;
cn(k—4), if kn+3<k<2?™; cn(k—4), if I, +3<k <2,

(e) Consequently jon = kn + 1 + 2[j, mod 4 < 3]. Indeed, the elements preceding
consist of 2”72 — 1 complete periods of f;() interleaved with 2”72 complete
periods of f,, (), with one 0 inserted and also with 10 inserted if I,, < ky, followed
by fn(1) fn(1) fa(2) fr(2) ... fn(n —1) fa(jn —1). The sum of all these elements is odd,
unless [, < ky; therefore §2, =1 — 2[j,, mod 4 =3].

Let n = 2'q, where ¢ is odd and n > 2. The recurrences imply that, if ¢ = 1, we
have j, = 2" '+ b, where b, = 2t/3 — (=1)!/3. And if ¢ > 1 we have j, = 2" 14 by,
where the + sign is chosen if and only if [lgq| + [|4q/2"8 4 | =5] is even.

12n

98. If f(k) = g(k) when k lies in a certain range, there’s a constant C' such that
Yf(k) = C + Xg(k) for k in that range. We can therefore continue almost mindlessly
to derive additional recurrences: If n > 1 we have

Y fon(k), when j, mod4 < 3 (In < kn): when j, mod4 =3 (kn, <Il,):

Yen(k—1), f0<k<Il,+2; Sen(k—1), f0<k<kn,+1;
= 143cn(k—3), f l,+2<k<kn+3; = 14+Xca(k—2), if kn+1<k<Il,+3;
Sen(k—4),  if kn+3 <k <2 Sen(k—4),  if ln+3 < k<22,
Sen(k) = 2£.5(Tk/21) + 2f2 (Lk/2]).
Sfa(k—1), if 0<k<jn+1; _ Tfn(k+1),  if 0<k<jn;
srpey={ P Eo D HOSkSia bl g [ShKD, i 0Sk<
14+3fn(k—2), if jn+1<k<2"+2; 142 fn(k+2), if j,<k<2"—2;
SfEE) = [k/(2" £2)] + SfF (kmod (2" £2));  Sfu(k) = Sf.(k mod 2").
> _ [ EZfon(k), if 0 < k < jon or 22" + jon, < k < 22T
f2n+1(k‘) = . . 2n .
1+ k+XZfon(k + d2n), if jon < k < 2°" + jon.
Y% fon(k), when j, mod 4<3 (I, <k,): when j, mod 4=3 (k,<l,):
Nen(k—1), if 0<k<ln+2; N¥en(k—1), if 0<k<kn+1;
=q 1+k+323c, (k=3), if L, +2<k<k,+3; =Q 1+k+3c,(k—2), if by, +1<k<l,+3;
Y¥en (k—4), if kp+3<k<2?™; 14+ X%, (k—4), ifl,+3<k<2%™,

Y fon (k) = [jn mod 4 < 3]|k/2°"| + BT fon, (k mod 2°™).

And then, aha, there is closure:

Y¥c,(2k) = Zf.T(k), Y¥cn(2k 4+ 1) = Zf, (k).
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If n = 2'q where q is odd, the running time to evaluate f,(k) by this system of
recursive formulas is O(t + S(q)), where S(1) =1, S(2k) =1+ 2S(k), and S(2k+1) =
1+ S(k). Clearly S(k) < 2k, so the evaluations involve at most O(n) simple operations
on n-bit numbers. In fact, the method is often significantly faster: If we average S(k)
over all k with [lgk| = s we get (3°+' —2°+1)/2° which is less than 3k'8(/?) < 3£0-5%,
(Incidentally, if k = 271 —1 — (297°1 4 2°7°2 4 ... 4 2°7°) we have S(k) = s+ 1 +
et +2ei 1 +4e; 2+ +2%1)

99. A string that starts at position k in f, () starts at position Et=k+1+ [k > jn] in
fF() and at position k= =k — 1 — [k>j,] in f, (), except that 0" and 1™ occur twice
in f;7() but not at all in f, ().

To find v = aobo - ..an_1b,—1 in the cycle fon(), let @« = ag...an—1 and g =
bo...bn—1. Suppose « starts at position j and S at position k in f,(), and assume
that neither o nor 3 is 0" or 1™. If ;7 = k™ (modulo 2), let /2 be a solution to the
equation 57 + (2"+ 2)z = k~ + (2" — 2)y; we may take [/2 =k + (2" —2)(2"3(j — k)
mod (2"7! + 1)) if j > k, otherwise 1/2 = j + (2" + 2)(2"73(k — j) mod (2™~! — 1)).
Otherwise let (I —1)/2 = k* + (2"+2)z = j~ + (2" — 2)y. Then ~ starts at position !
in the cycle ¢, (); hence it starts at position { + 1+ [l > k,]+2[l > 1,] in the cycle f2, ().
Similar formulas hold when o € {0",1"} or 8 € {0",1"} (but not both). Finally,
0%", 12", (01)", and (10)™ start respectively in positions 0, jan, In + 1 + [kn <1n], and
ln+ 2+ [kn <ln].

To find B = boby...bn in fry1() when n is even, suppose that the n-bit string
(bo ®b1)...(bn—1 @ bn) starts at position j in f,(). Then [ starts at position k =
J = 6nli>dn] + 2" =4n][0n = 1] if fni1(k) = bo, otherwise at position k + (2" — §,,
On, 2"+ pn) according as (j<jn,j=Jn,J>ljn)-

The running time of this recursion satisfies T'(n) = O(n) + 27(|n/2]), so it is
O(nlogn). [Exercises 97-99 are based on the work of J. Tuliani, who also has developed
methods for certain larger values of m; see Discrete Math. 226 (2001), 313-336.]

100. No obvious defects are apparent, but extensive testing should be done before any
sequence can be recommended. By contrast, the de Bruijn cycle produced implicitly
by Algorithm F is a terrible source of supposedly random bits, even though it is n-
distributed in the sense of Definition 3.5D, because 0s predominate at the beginning.
Indeed, when n is prime, bits tn + 1 of that sequence are zero for 0 < ¢t < (2" — 2)/n.

101. (a) Let B be a proper suffix of A\ with 3 < A)'. Either 3 is a suffix of \’, whence
A< XN <B,or B=a) and we have A < a < 3.

Now A < B < A\ implies that 3 = Ay for some v < \'. But 7 is a suffix of 3 with
1 < |yl = 18] = |A| < |X'|; hence 7 is a proper suffix of X', and A\’ < «y. Contradiction.

(b) Any string of length 1 is prime. Combine adjacent primes by (a), in any
order, until no further combination is possible. [See the more general results of M. P.
Schiitzenberger, Proc. Amer. Math. Soc. 16 (1965), 21-24.]

(c) If t # 0, let A be the smallest suffix of A1 ... A¢. Then A is prime by definition,
and it has the form v where 3 is a nonempty suffix of some A;. Therefore Ay < A\; <
B < By =A< A, so we must have A = A;. Remove \; and repeat until ¢ = 0.

(d) True. For if we had a = AB for some prime X with |A] > |\1], we could
append the factors of 8 to obtain another factorization of a.

(e) 3-1415926535897932384626433832795 - 02884197. (Knowing more digits of m
would not change the first two factors. The infinite decimal expansion of any number
that is “normal” in the sense of Borel (see Section 3.5) factors into primes of finite
length.)
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102. We must have 1/(1 — mz) = 1/[[22,(1 — z")“=(™ . This implies (60) as in
exercise 4.6.2—4.

103. When n = p is prime, (59) tells us that L,,(1) + pL..(p) = mP, and we also
have L,,(1) = m. [This combinatorial proof provides an interesting contrast to the
traditional algebraic proof of Theorem 1.2.4F ]

104. The 4483 nonprimes are abaca, agora, ahead, ...; the 1274 primes are ..., rusts,
rusty, rutty. (Since prime isn’t prime, we should perhaps call prime strings lowly.)
105. (a) Let o’ be a with its last letter increased, and suppose o’ = 37" where a = Sy
and 8 # €, v # €. Let 0 be the prefix of a with |0] = |y|. By hypothesis there is a string
w such that aw is prime; hence 6 < aw < yw, so we must have § < . Consequently
f < ~', and we have o’ <+’

(b) Let @« = A1 = a1...an where \1SBw is prime. The condition A\ifw < Bw
implies that a; < aj4r for 1 < j < n—r, where r = |\1]. But we cannot have a; < a;4r;
otherwise a would begin with a prime longer than A1, contradicting exercise 101(d).

(c) If a is the n-extension of both A and )\, where |A\| > |\|, we must have
A = (X\')?0 where 0 is a proper prefix of \’. But then § < X' < X < 6.

106. B1. [Initialize.] Set a1 <+ < an < m — 1, an41 <+ —1, and j < 1.

B2. [Visit.] Visit (a1,...,an) with index j.

B3. [Subtract one.] Terminate if a; = 0. Otherwise set a; + a; — 1, and

ar < m—1for j <k <n.
B4. [Prepare to factor.] (According to exercise 105(b), we now want to find the
first prime factor A1 of a1 ...an.) Set j < 1 and k + 2.

B5. [Find the new j.| (Now ai...ak—1 is the (kK — 1)-extension of the prime
ai...a;.) If ax—; > ax, return to B2. Otherwise, if ax—; < ax, set j < k.
Then increase k£ by 1 and repeat this step. |

The efficient factoring algorithm in steps B4 and B5 is due to J. P. Duval, J. Algorithms
4 (1983), 363-381. For further information, see Cattell, Ruskey, Sawada, Serra, and
Miers, J. Algorithms 37 (2000), 267-282.

107. The number of n-tuples visited is Prm(n) = >_7_; Lm(j). Since L (n) = Im™ +
O(m™?/n), we have Pp,(n) = Q(m,n) + O(Q(y/m,n)), where

Z . :TR(m n);

n—1 _k n/2 —k

B(m,n) = Z 1T:Lk’/n Zo 171Lk/n +0(nm™""%)
m o1 j m! —
_m—1j§E;<l>(m—1)j+O(n )

The main contributions to the running time come from the loops in steps F3 and F5,
which cost n — j for each prime of length j, hence a total of nP(n) —>°7 | jLm(j) =
m"™*/((m —1)%n) + O(1/(mn?)). This is less than the time needed to output the m”™
individual digits of the de Bruijn cycle.

108. (a) f @ #9...9, we have A1 < 39%!, because the latter is prime.
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(b) We can assume that 3 is not all Os, since 970" 7 isa substring of At—1AtA1 A2 =
89™0"1. Let k be maximal with 8 < Ag; then A\x < Ba, so § is a prefix of Ag. Since
3 is a preprime, it is the |3|-extension of some prime 3’ < 3. The preprime visited by
Algorithm F just before 8’ is (8’ — 1)9"_‘B’|, by exercise 106, where 3’ — 1 denotes the
decimal number that is one less than 8’. Thus, if 8’ is not Ax_1, the hint (which also
follows from exercise 106) implies that A;_1 ends with at least n — |8'| > n — |B] 9s,
and « is a suffix of A\x_1. On the other hand if 3’ = A\x_1, o is a suffix of A\;_2, and 3
is a prefix of Ax_1Ak.

(c) f a #9...9, we have Ap41 < (Ba)d_IBQ“’l, because the latter is prime.
Otherwise A\x_; ends with at least (d — 1)|3a| 9s, and Apy1 < (Ba)? 19! so (aB)?
is a substring of Ax—1AeAk41-

(d) Within the primes 135899135914, 787899787979, 12999913131314, 09090911,
089999 09 090911, 089999 119119122.

[In all cases, the position of a; ... a, precedes the position of a1 ...an—1(an +1),
if 0 < a, < 9 (and if we assume that strings like 990™77 occur at the beginning).
Furthermore 970"~ occurs only after 970" 74 has appeared for 1 < a < 9, so we
must not place 0 after 990" 9!, Therefore no m-ary de Bruijn cycle of length m™ can
be lexicographically smaller than A;...\;.]

109. Suppose we want to locate the submatrix
(wnfl...wlwo)g (wnfl...mlwo)g
(Yn-1---11%0)2  (zn-1-..2120)2 )

The binary case n = 1 is the given example, and if n > 1 we can assume by induction
that we only need to determine the leading bits asn—1, a2n—2, ban—1, and ba,_2. The
case n = 3 is typical: We must solve

bs = wo, by =w2, as@®bs =y2, agPby =22, ifao=0,by=0;
by = wo, bs =2, ay Dby =12, asDbs =1z, ifag=0,by=1;
as ® by = w2, ay ®by = xa, bs = y2, by = z2, ifap =1, by =0;
a; by = w2, as®bs = xa, by = ya, bs = 22, ifag=1,bo =1

here b5 = bs @ byb3b2b; takes account of carrying when j becomes j + 1.

110. Let aqa, ...a,,2_; be an m-ary de Bruijn cycle, such as the first m? elements of
(54). If m is odd, let a;; = a; when i is even, a;j = a(j4(—1)/2) mod m2 When i is odd.
[The first of many people to discover this construction seems to have been John C.
Cock, who also constructed de Bruijn toruses of other shapes and sizes in Discrete
Math. 70 (1988), 209-210.]

If m = m'm” where m’ L m”, we use the Chinese remainder theorem to define

a;; = aj; (modulo m’) and a;; = ag; (modulo m'")

in terms of matrices that solve the problem for m’ and m’”. Thus the previous exercise
leads to a solution for arbitrary m.

Another interesting solution for even values of m was found by Zoltdn Téth
[2nd Conf. Automata, Languages, and Programming Systems (1988), 165-172; see also
Hurlbert and Tsaak, Contemp. Math. 178 (1994), 153-160]. The first m? elements a;
of the infinite sequence

0011 021331203223 04152435534251405445 0617263746577564 ... 0766708 . . .
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define a de Bruijn cycle with the property that the distance between the appearances
of ab and ba is always even. Then we can let a;; = a; if i + j is even, a;; = a; if i 4 j
is odd. For example, when m = 4 we have

0010021220302232 0010001030203020
0001020320212223 0001020301000203
0111031321312333 0111011131213121
1011121330313233 1011121311101213
0010021220302232 0010001030203020
0203000122232021 2021222321202223
0111031321312333 0111011131213121

1213101132333031
0010021220302232

3031323331303233

(exercise 109); | 1513031333233323

(Téth).

2021222300010203 1011121311101213
0111031321312333 0212021232223222
3031323310111213 0001020301000203
0010021220302232 0313031333233323
2223202102030001 2021222321202223
0111031321312333 0212021232223222
3233303112131011 3031323331303233

111. (a)Letd; = jand 0 < a; < 3for1 <j <9, ag # 0. Form sequences s;, t; by the
rules s1 = 0,t1 = d1; tj+1 = dj+1 —+ 10tj[aj ZO] for 1 < ] < 9; Sj+1 = 85 + (O,tj, —tj)
for a;j = (0,1,2) and 1 < j < 9. Then s10 is a possible result; we need only remember
the smallish values that occur. More than half the work is saved by disallowing a, = 2
when si = 0, then using |s10| instead of s10. Since fewer than 3% = 6561 possibilities
need to be tried, brute force via the ternary version of Algorithm M works well; fewer
than 24,000 mems and 1600 multiplications are needed to deduce that all integers less
than 211 are representable, but 211 is not.

Another approach, using Gray code to vary the signs after breaking the digits
into blocks in 28 possible ways, reduces the number of multiplications to 255, but at
the cost of about 500 additional mems. Therefore Gray code is not advantageous in
this application.

(b) Now (with 73,000 mems and 4900 multiplications) we can reach all numbers
less than 241, but not 241. There are 46 ways to represent 100, including the remarkable
9—87+6+5—43 + 210.

[H. E. Dudeney introduced his “century” problem in The Weekly Dispatch (4 and
18 June 1899); see also The Numerology of Dr. Matrix by Martin Gardner, Chapter 6.]

112. The method of exercise 111 now needs more than 167 million mems and 10 million
multiplications, because 3'® is so much larger than 3%. We can do much better (10.4
million mems, 1100 mults) by first tabulating the possibilities obtainable from the first
k and last k digits, for 1 < k < 9, then considering all blocks of digits that use the 9.
There are 60,318 ways to represent 100, and the first unreachable number is 16,040.
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2-adic numbers, 31.

4-cube, 42, 54.

8-cube, 17, 35.

v(k), see Lee weight, Sideways sum.
m (circle ratio), 43, 60.

p(k), see Ruler function.

Almost-linear recurrence, 23.
Analog-to-digital conversion, 3—4, 15.
Analysis of algorithms, 28, 37, 38.
Anti-Gray code, 35.

Antipodal words, 11.

Arima, Yoriyuki (% J§ §8 (&), 41.
Arndt, Jorg, 45.

Artificial intelligence, 43.

Aubert, Jacques, 54.
Automorphisms, 49.

Balanced Gray code, 14-17, 35, 49.
Bandwidth of n-cube, 35.
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Baudot, Jean Maurice Emile, 4-5.
Beckett, Samuel Barclay, 34-35.
Bennett, William Ralph, 4.
Bernstein, Arthur Jay, 44.
Binary Gray codes, 12-17, 33-35.
Binary number system, 1, 4.
Binary recurrences, 43, 59.
Binary trie, 30.
Bit reversal, 28, 31.
Bitwise operations, 4, 11-12, 32, 45.
Borel, Emile Félix Edouard Justin, 60.
Borrow, 40.
Botermans, Jacobus (= Jack) Petrus
Hermana, 55.

Boustrophedon product, 36, 56.
Bruijn, Nicolaas Govert de, 22.

cycles, 22-27, 36-38, 62.

toruses, 38.
Buchner, Morgan Mallory, Jr., 44.

Calderbank, Arthur Robert, 43.

Canoe puzzle, 55.

Canonical delta sequence, 13, 49.

Cardano, Girolamo (= Hieronymus
Cardanus), 41.

Carry, 2, 62.

Castown, Rudolph W., 11.

Cattell, Kevin Michael, 61.

Cavior, Stephan Robert, 44.

Cayley, Arthur, Hamilton theorem, 45.

Center of gravity, 17.
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Chen, Kuo-Tsai ([§ & 1), 26.
Chinese remainder theorem, 62.
Chinese ring puzzle, 5-6, 28, 41-42.
Cheng, Ching-Shui (& & 7K), 54.
Cock, John Crowle, 62.
Cohn, Martin, 49, 51, 54.
Complementary Gray codes, 13, 16-17,
33, 49.
Compositions, 28-29.
Concatenation, 25, 35, 49.
Concurrent computing, 43.
Connected components, 34.
Cooke, Raymond Mark, 51.
Coordinates, 13.
Coroutines, recursive, 24—25.
Cremer, William Henry, Jr., 55.
Cube, see n-cube.
Cube-connected computers, 43.
Cummings, Larry Jean, 57.
Cycle leaders, 31.
Cyclic shifts, 26.

Dally, William James, 43.
de Bruijn, Nicolaas Govert, 22.
cycles, 22-27, 36-38, 62.
toruses, 38.
Decimal number system, 2, 18-19, 39.
Delta sequence, 13.
Dilation of embedded graph, 35.
Discrete Fourier transform, 9, 27, 47.
Divisors of a number, 35.
Doubly linked list, 21, 56-57.
Douglas, Robert James, 48.
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Dudeney, Henry Ernest, 5, 63.
Duval, Jean Pierre, 61.
Dyckman, Howard Lloyd, 36, 55.

Edge covering, 35.

Ehrlich, Gideon (799 M), 9.
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Error-correcting codes, 30.

Etzion, Tuvi ()»8y 20, born 18710 »210), 25.
Extension, 26.

Factorization of strings, 37.
algorithm for, 61.
Faloutsos, Christos (Patodtoog, Xprotoc), 43.
Fast Fourier transform, 28.
Fast Walsh transform, 32.
Fermat, Pierre de, theorem, 38.
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Flores, Ivan, 54.
Focus pointers, 10-11, 2021, 56-57.
Forest, 20-21.
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transform, discrete, 9, 28, 47.
Fox, Ralph Hartzler, 26.
Fredman, Michael Lawrence, 33, 47.
Fredricksen, Harold Marvin, 26, 27.
Fringe, 21, 56-57.

Gardner, Martin, 55, 63.
Generating functions, 61.
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loopless, 9-12, 20, 28, 29, 36, 42.
Gilbert, Edgar Nelson, 33.
Gilbert, William Schwenck, 1.

Goddyn de la Vega, Luis Armando, 34, 50.

Gomes, Peter John, iii.

Gordian Knot puzzle, 35.

Gray, Elisha, 5.

Gray, Frank, 4.

Gray binary code, 2-12, 16, 28-33, 36.
permutation, 3, 31.

Gray binary trie, 30.

Gray code: A cycle of adjacent objects,

12, 20.

Gray code for n-tuples, 12.
advantages of, 6, 11-12.
binary, see Gray binary code.
limitations of, 40, 63.
nonbinary, 18—-20, 35-36.

Gray fields, 31.
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objects, 15, 20.

Gray stream, 34.

Gray ternary code, 19, 36.

Gros, Luc Agathon Louis, 5.

Gvozdjak, Pavol, 34.

Hadamard, Jacques Salomon, 47.
transform, 9, 32, 46, 47.
Hamilton, William Rowan, see Cayley.
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path, 15.
Hamley, William, and sons, 55.
Hammons, Arthur Roger, Jr., 43.
Harmuth, Henning Friedolf, 7.
Hexadecimal puzzle, 42.
Hopcroft, John Edward, 44.
Hurlbert, Glenn Howland, 60.

in situ permutation, 28, 31.

in situ transformation, 9.
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Interleaving, 37, 50, 62.
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INDEX AND GLOSSARY 65

Inverse function, 4, 31.

Isaak, Garth Timothy, 62.
Isomorphic Gray codes, 33—34.
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Moser, Leo, 48.
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n-distributed sequence, 60.
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PREFACE

| thought it worth a Dayes labour,
to write something on this Art or Science,
that the Rules thereof might not be lost and obscured.

— RICHARD DUCKWORTH, Tintinnalogia (1668)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. Those volumes, alas, were subsequently
found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.2 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase (from which I will be drawing
many examples). Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on
the material that follows it, so that I can get a better feel for how much to
cut.) Section 7.2 is about generating all possibilities, and it begins with Section
7.2.1: Generating Basic Combinatorial Patterns— which, in turn, begins with
Section 7.2.1.1, “Generating all n-tuples.” (Readers of the present booklet
should have already looked at Section 7.2.1.1, a draft of which is available as
Prefascicle 2A.) That sets the stage for the main contents of this booklet, Section
7.2.1.2: “Generating all permutations.” Then will come Section 7.2.1.3 (about
combinations), etc. Section 7.2.2 will deal with backtracking in general. And
so it will go on, if all goes well; an outline of the entire Chapter 7 as currently
envisaged appears on the taocp webpage that is cited on page ii.

iii



iv PREFACE

Even the apparently lowly topic of permutation generation turns out to be
surprisingly rich, with ties to Sections 1.2.9, 1.3.3, 2.2.3, 2.3.4.2, 3.4.2,4.1, 5.1.1,
5.1.2, 5.1.4, 5.2.1, 5.2.2, 5.3.1, and 6.1 of the first three volumes. There also is
material related to the MMIX computer, defined in Section 1.3.1" of Fascicle 1.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 111 exercises, even though — believe
it or not —I had to eliminate quite a bit of the interesting material that appears
in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 108
and 111; I’ve also implicitly posed additional unsolved questions in the answers
to exercises 28, 58, 63, 67, 88, 99, 105, and 111. Are those problems still open?
Please let me know if you know of a solution to any of these intriguing questions.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 6, 7, 20, 25, 41, 55, 60, 65, 66, 67, 69, 70, 75, 88, 98, and/or 103.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Happy reading!

Stanford, California D. E. K.
31 December 2001
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Tin tan din dan bim bam bom bo—
tan tin din dan bam bim bo bom —
tin tan dan din bim bam bom bo—
tan tin dan din bam bim bo bom—
tan dan tin bam din bo bim bom —

Tin tan din dan bim bam bom bo.

— DOROTHY L. SAYERS, The Nine Tailors (1934)

A permutation on the ten decimal digits is simply a 10 digit decimal number
in which all digits are distinct. Hence all we need to do is to produce

all 10 digit numbers and select only those whose digits are distinct.

Isn’'t it wonderful how high speed computing saves us from

the drudgery of thinking! We simply program k +1 — k

and examine the digits of k for undesirable equalities.

This gives us the permutations in dictionary order too!

On second sober thought ... we do need to think of something else.

— D. H. LEHMER (1957)

7.2.1.2. Generating all permutations. After n-tuples, the next most im-
portant item on nearly everybody’s wish list for combinatorial generation is the
task of visiting all permutations of some given set or multiset. Many different
ways have been devised to solve this problem. In fact, almost as many different
algorithms have been published for unsorting as for sorting! We will study the
most important permutation generators in this section, beginning with a classical
method that is both simple and flexible:

Algorithm L (Lexicographic permutation generation). Given a sequence of n
elements ajas . . . a,, initially sorted so that

a1 <az < < ap, (1)

this algorithm generates all permutations of {ai,as,...,a,}, visiting them in
lexicographic order. (For example, the permutations of {1,2,2,3} are

1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221,

ordered lexicographically.) An auxiliary element ag is assumed to be present for
convenience; ap must be strictly less than the largest element a,,.

L1. [Visit.] Visit the permutation ajas ... an,.
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L2. [Find j.] Set j « n — 1. If a; > aj;1, decrease j by 1 repeatedly until
a; < aj+1. Terminate the algorithm if j = 0. (At this point j is the largest
subscript such that we have already visited all permutations beginning with
ap ...aj. Therefore the lexicographically next permutation will increase the
value of a;.)

L3. [Increase a;.] Set I < n. If a; > a;, decrease [ by 1 repeatedly until a; < a;.
Then interchange a; < a;. (Since ajy; > --- > a,, element q; is the
smallest element greater than a; that can legitimately follow a; ...a;_; in a
permutation. Before the interchange we had aj4+1 > -+ > a;—1 > a; > a; >
@j4+1 > -+ > ap; after the interchange, we have aj41 > -+ > a;—1 > a; >
ar > Q41 > - > an.)

L4. [Reverse aj+1...ay.] Set k < j+ 1 and [ < n. Then, if k£ < [, interchange
ap <> ap,set k<« k+ 1,1« 1l —1, and repeat until £ > [. Return to L1. |

This algorithm goes back at least to the 18th century, in C. F. Hindenburg’s
preface to Specimen Analyticum de Lineis Curvis Secundi Ordinis by C. F.
Riidiger (Leipzig: 1784), xlvi—xlvii, and it has been frequently rediscovered ever
since. The parenthetical remarks in steps L2 and L3 explain why it works.

In general, the lexicographic successor of any combinatorial pattern a; .. . a,
is obtainable by a three-step procedure:

1) Find the largest j such that a; can be increased.

2) Increase a; by the smallest feasible amount.

3) Find the lexicographically least way to extend the new a . ..a; to a complete
pattern.

Algorithm L follows this general procedure in the case of permutation generation,
just as Algorithm 7.2.1.1M followed it in the case of n-tuple generation; we will
see numerous further instances later, as we consider other kinds of combinatorial
patterns. Notice that we have a;;1 > -+ > a, at the beginning of step L4.
Therefore the first permutation beginning with the current prefix a;...a; is
ai...ajan...aj41, and step L4 produces it by doing |(n — j)/2] interchanges.

In practice, step L2 finds j = n — 1 half of the time when the elements are
distinct, because exactly n!/2 of the n! permutations have a,_; < a,. Therefore
Algorithm L can be speeded up by recognizing this special case, without making
it significantly more complicated. (See exercise 1.) Similarly, the probability
that j < n —tis only 1/t! when the a’s are distinct; hence the loops in steps L2-
L4 usually go very fast. Exercise 6 analyzes the running time in general, showing
that Algorithm L is reasonably efficient even when equal elements are present,
unless some values appear much more often than others do in the multiset
{a1,a2, e ,an}.

Adjacent interchanges. We saw in Section 7.2.1.1 that Gray codes are ad-
vantageous for generating n-tuples, and similar considerations apply when we
want to generate permutations. The simplest possible change to a permutation
is to interchange adjacent elements, and we know from Chapter 5 that any
permutation can be sorted into order if we make a suitable sequence of such
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interchanges. (For example, Algorithm 5.2.2B works in this way.) Hence we can
go backward and obtain any desired permutation, by starting with all elements
in order and then exchanging appropriate pairs of adjacent elements.

A natural question now arises: Is it possible to run through all permutations
of a given multiset in such a way that only two adjacent elements change places
at every step? If so, the overall program that is examining all permutations will
often be simpler and faster, because it will only need to calculate the effect of
an exchange instead of to reprocess an entirely new array aj ...a, each time.

Alas, when the multiset has repeated elements, we can’t always find such
a Gray-like sequence. For example, the six permutations of {1,1,2,2} are con-
nected to each other in the following way by adjacent interchanges:

2112
1122 — 1212 1901 2121 — 2211; (2)

this graph has no Hamiltonian path.

But most applications deal with permutations of distinct elements, and for
this case there is good news: A simple algorithm makes it possible to generate
all n! permutations by making just n! — 1 adjacent interchanges. Furthermore,
another such interchange returns to the starting point, so we have a Hamiltonian
circuit analogous to Gray binary code.

The idea is to take such a sequence for {1,...,n — 1} and to insert the
number n into each permutation in all ways. For example, if n = 4 the sequence
(123,132,312, 321,231, 213) leads to the columns of the array

1234 1324 3124 3214 2314 2134
1243 1342 3142 3241 2341 2143 (3)
1423 1432 3412 3421 2431 2413 3
4123 4132 4312 4321 4231 4213

when 4 is inserted in all four possible positions. Now we obtain the desired
sequence by reading downwards in the first column, upwards in the second, down-
wards in the third, ..., upwards in the last: (1234,1243,1423,4123,4132,1432,
1342,1324, 3124, 3142, ..., 2143, 2134).

In Section 5.1.1 we studied the inversions of a permutation, namely the pairs
of elements (not necessarily adjacent) that are out of order. Every interchange
of adjacent elements changes the total number of inversions by £1. In fact, when
we consider the so-called inversion table c; ... c, of exercise 5.1.1-7, where c; is
the number of elements lying to the right of j that are less than j, we find that
the permutations in (3) have the following inversion tables:

0000 0010 0020 0120 0110 0100
0001 0011 0021 0121 0111 0101 (4)
0002 0012 0022 0122 0112 0102 4
0003 0013 0023 0123 0113 0103

And if we read these columns alternately down and up as before, we obtain
precisely the reflected Gray code for mixed radices (1,2, 3,4), as in Egs. (46)—(51)
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of Section 7.2.1.1. The same property holds for all n, as noticed by E. W. Dijkstra
[Acta Informatica 6 (1976), 357-359], and it leads us to the following formulation:

Algorithm P (Plain changes). Given a sequence ajas...a, of n distinct
elements, this algorithm generates all of their permutations by repeatedly inter-
changing adjacent pairs. It uses an auxiliary array cjcs ... c,, which represents
inversions as described above, running through all sequences of integers such that

0<¢; <y for 1 <j<n. (5)
Another array dids . .. d, governs the directions by which the entries ¢; change.
P1. [Initialize.] Set ¢; +— 0 and d; < 1 for 1 < j <n.
P2. [Visit.] Visit the permutation aias ... ay,.

P3. [Prepare for change.] Set j - n and s < 0. (The following steps determine
the coordinate j for which ¢; is about to change, preserving (5); variable s
is the number of indices k > j such that ¢, =k — 1.)

P4. [Ready to change?] Set g < ¢; +d;. If ¢ < 0, go to P7; if ¢ = j, go to P6.
P5. [Change.] Interchange aj ;s ¢* a;_q1s. Thenset ¢; < g and return to P2.
P6. [Increase s.] Terminate if j = 1; otherwise set s + s + 1.

P7. [Switch direction.] Set d; < —d;, j - j — 1, and go back to P4. 1

This procedure, which clearly works for all n > 1, originated in 17th-century
England, when bell ringers began the delightful custom of ringing a set of bells
in all possible permutations. They called Algorithm P the method of plain
changes. Figure 18(a) illustrates the “Cambridge Forty-Eight,” an irregular
and ad hoc sequence of 48 permutations on 5 bells that had been used in
the early 1600s, before the plain-change principle revealed how to achieve all
5! = 120 possibilities. The venerable history of Algorithm P has been traced to
a manuscript by Peter Mundy now in the Bodleian Library, written about 1653
and transcribed by Ernest Morris in The History and Art of Change Ringing
(1931), 29-30. Shortly afterwards, a famous book called Tintinnalogia, published
anonymously in 1668 but now known to have been written by Richard Duckworth
and Fabian Stedman, devoted its first 60 pages to a detailed description of plain
changes, working up from n = 3 to the case of arbitrarily large n.

Cambridge Forty-eight, for many years,

was the greatest Peal that was Rang or invented; but now,

neither Forty-eight, nor a Hundred, nor Seven-hundred and twenty,

nor any Number can confine us; for we can Ring Changes, Ad infinitum.
. On four Bells, there are Twenty four several Changes,

in Ringing of which, there is one Bell called the Hunt,

and the other three are Extream Bells;

the Hunt moves, and hunts up and down continually ... ;

two of the Extream Bells makes a Change

every time the Hunt comes before or behind them.

— DUCKWORTH and STEDMAN (1668)
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(a) The Cambridge Forty-Eight.
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(d) Stedman Doubles.

Fig. 18. Four patterns used to ring church-
bells in 17th-century England. Pattern (b)
corresponds to Algorithm P.

British bellringing enthusiasts soon went on to develop more complicated
schemes in which two or more pairs of bells change places simultaneously. For
example, they devised the pattern in Fig. 18(c) known as Grandsire Doubles,
“the best and most ingenious Peal that ever was composed, to be rang on five
bells” [Tintinnalogia, page 95]. Such fancier methods are more interesting than
Algorithm P from a musical or mathematical standpoint, but they are less useful
in computer applications, so we shall not dwell on them here. Interested readers
can learn more by reading W. G. Wilson’s book, Change Ringing (1965); see
also A. T. White, AMM 103 (1996), 771-778.

H. F. Trotter published the first computer implementation of plain changes
in CACM 5 (1962), 434-435. The algorithm is quite efficient, especially when it
is streamlined as in exercise 16, because n — 1 out of every n permutations are
generated without using steps P6 and P7. By contrast, Algorithm L enjoys its
best case only about half of the time.

The fact that Algorithm P does exactly one interchange per visit means that
the permutations it generates are alternately even and odd (see exercise 5.1.1-
13). Therefore we can generate all the even permutations by simply bypassing
the odd ones. In fact, the ¢ and d tables make it easy to keep track of the current
total number of inversions, ¢; + - -+ + ¢p, as we go.

Many programs need to generate the same permutations repeatedly, and in
such cases we needn’t run through the steps of Algorithm P each time. We can
simply prepare a list of suitable transitions, using the following method:

Algorithm T (Plain change transitions). This algorithm computes a table ¢[1],
t[2], ..., t[n! — 1] such that the actions of Algorithm P are equivalent to the
successive interchanges ax) <> ayk)41 for 1 < k <n!. We assume that n > 2.

T1. [Initialize.] Set N < nl, d < N/2, t[d] + 1, and m <+ 2.
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T2. [Loop on m.] Terminate if m = n. Otherwise set m < m + 1, d < d/m,
and k < 0. (We maintain the condition d = n!/m!.)

T3. [Hunt down.] Set k < k+d and j < m — 1. Then while j > 0, set t[k] « j,
j+<j—1,and k < k+d, until j =0.

T4. [Offset.] Set t[k] < t[k]+ 1 and k < k +d.

T5. [Hunt up.] While j < m—1, set j + j+1, t[k] + j, and k + k+d. Return
to T3 if £ < N, otherwise return to T2. |

For example, if n = 4 we get the table (¢[1],¢[2],...,t[23]) = (3,2,1,3,1,2,3,1,

3,2,1,3,1,2,3,1,3,2,1,3,1,2,3).

Alphametics. Now let’s consider a simple kind of puzzle in which permutations
are useful: How can the pattern

SEND
+ MORE (6)
MONEY

represent a correct sum, if every letter stands for a different decimal digit?
[H. E. Dudeney, Strand 68 (1924), 97, 214.] Such puzzles are often called
“alphametics,” a word coined by J. A. H. Hunter [Globe and Mail (Toronto:
27 October 1955), 27]; another term, “cryptarithm,” has also been suggested by
S. Vatriquant [Sphinx 1 (May 1931), 50].

The classic alphametic (6) can easily be solved by hand (see exercise 21). But
let’s suppose we want to deal with a large set of complicated alphametics, some
of which may be unsolvable while others may have dozens of solutions. Then we
can save time by programming a computer to try out all permutations of digits
that match a given pattern, seeing which permutations yield a correct sum.
[A computer program for solving alphametics was published by John Beidler in
Creative Computing 4,6 (November-December 1978), 110-113.]

We might as well raise our sights slightly and consider additive alphametics
in general, dealing not only with simple sums like (6) but also with examples like

VIOLIN + VIOLIN + VIOLA = TRIO + SONATA.
Equivalently, we want to solve puzzles such as
2(VIOLIN) 4 VIOLA — TRIO — SONATA = 0, (7)

where a sum of terms with integer coefficients is given and the goal is to obtain
zero by substituting distinct decimal digits for the different letters. Each letter
in such a problem has a “signature” obtained by substituting 1 for that letter
and 0 for the others; for example, the signature for I in (7) is

2(010010) + 01000 — 0010 — 000000,

namely 21010. If we arbitrarily assign the codes (1,2,...,10) to the letters
(v,1,0,L,N,A,T,R,S,X), the respective signatures corresponding to (7) are
s1 = 210000, so =21010, s3=-—7901, s4 =210, s5= —998, (8)
s = —100, s;=—1010, sg=—100, sg=—100000, s10 = 0.
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The problem then is to find all permutations a; ...aj0 of {0,1,...,9} such that

10
a-s = Zajsj = 0. (9)
j=1

There also is a side condition, because the numbers in alphametics should not
have zero as a leading digit. For example, the sums

7316 9731 6524 2817
+ 0823 and + 0647 and + 0735 and + 0368
08139 06378 07259 03185

and numerous others are not considered to be valid solutions of (6). In general
there is a set F' of first letters such that we must have

a; #0 for all j € F; (10)

the set F' corresponding to (7) and (8) is {1,7,9}.

One way to tackle a family of additive alphametics is to start by using
Algorithm T to prepare a table of 10! — 1 transitions ¢[j]. Then, for each problem
defined by a signature sequence (si,...,s10) and a first-letter set F', we can
exhaustively look for solutions as follows:

A1. [Initialize] Set ajaz...azo < 01...9, v « Y ;2 (j — 1)sj, k < 1, and
5j(—8j+1—5j f0r1§j<10.
A2. [Test.] If v = 0 and if (10) holds, output the solution aj .. .a1q.
A3. [Swap.] Stop if k& = 10!. Otherwise set j < tlk], v < v — (aj4+1 — a;)0;,
aj+1 > aj, k < k+ 1, and return to A2. |
Step A3 is justified by the fact that swapping a; with a;;1 simply decreases a - s
by (aj+1 — a;)(sj+1 — s;). Even though 10! is 3,628,800, a fairly large number,
the operations in step A3 are so simple that the whole job takes only a fraction
of a second on a modern computer.
An alphametic is said to be pure if it has a unique solution. Unfortunately
(7) is not pure; the permutations 1764802539 and 3546281970 both solve (9) and
(10), hence we have both

176478 + 176478 + 17640 2576 + 368020

and
354652 + 354652 + 35468 = 1954 + 742818.

Furthermore sg = sg in (8), so we can obtain two more solutions by interchanging
the digits assigned to A and R.

On the other hand (6) is pure, yet the method we have described will find
two different permutations that solve it. The reason is that (6) involves only
eight distinct letters, hence we will set it up for solution by using two dummy
signatures sg = s;g = 0. In general, an alphametic with m distinct letters will
have 10 — m dummy signatures $,,41 = --- = s19 = 0, and each of its solutions
will be found (10 — m)! times unless we insist that, say, am,4+1 < -+ < a@19-
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A general framework. A great many algorithms have been proposed for
generating permutations of distinct objects, and the best way to understand
them is to apply the multiplicative properties of permutations that we studied
in Section 1.3.3. For this purpose we will change our notation slightly, by using
0-origin indexing and writing aga; ...a,_; for permutations of {0,1,...,n — 1}
instead of writing a;as . . . a,, for permutations of {1,2,...,n}. More importantly,
we will consider schemes for generating permutations in which most of the action
takes place at the left, so that all permutations of {0,1,...,k — 1} will be
generated during the first k! steps, for 1 < k < n. For example, one such
scheme for n =4 is

0123, 1023,0213, 2013, 1203, 2103, 0132, 1082, 0312, 3012, 1302, 3102,
0231, 2031, 0321, 3021, 2301, 3201, 1230, 2130, 1320, 3120, 2310, 3210; ‘"

this is called “reverse colex order,” because if we reflect the strings from right
to left we get 3210, 3201, 3120, ..., 0123, the reverse of lexicographic order.
Another way to think of (11) is to view the entries as (n—ay,) ... (n—az2)(n—ay),
where ajas . . . a, runs lexicographically through the permutations of {1,2,...,n}.

Let’s recall that a permutation like & = 250143 can be written either in the

two-line form
__(012345)
*= (250143

or in the more compact cycle form
a=(02)(153),

with the meaning that o takes 0 — 2, 1 — 5,2 — 0, 3 — 1, 4 — 4, and
5 — 3; a 1-cycle like ‘(4)’ need not be indicated. Since 4 is a fixed point of this
permutation we say that “a fixes 4.” We also write 0 = 2, la = 5, and so on,
saying that ja is “the image of j under «.” Multiplication of permutations, like
« times 8 where 8 = 543210, is readily carried out either in the two-line form

5 (012345)(012345) __<012345>(250143> __(012345)
=\ 250143/ \ 543210/ = \ 250143/ \305412) ~ \ 305412

or in the cycle form
af=(02)(153) - (05)(14)(23) = (0341)(25).

Notice that the image of 1 under af is 1(af8) = (1a)8 = 58 = 0, etc. Warning:
About half of all books that deal with permutations multiply them the other way
(from right to left), imagining that a8 means that 8 should be applied before a.
The reason is that traditional functional notation, in which one writes a(1) = 5,
makes it natural to think that «8(1) should mean a(3(1)) = a(4) = 4. However,
the present book subscribes to the other philosophy, and we shall always multiply
permutations from left to right.

The order of multiplication needs to be understood carefully when permu-
tations are represented by arrays of numbers. For example, if we “apply” the
reflection 8 = 543210 to the permutation o = 250143, the result 341052 is not a3
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but Sa. In general, the operation of replacing a permutation a = agay -..an_1
by some rearrangement apgaig-..aw,—1)p takes k — ars = kBa. Permuting
the positions by B corresponds to premultiplication by [, changing o to Ba;
permuting the values by 3 corresponds to postmultiplication by [, changing «
to af. Thus, for example, a permutation generator that interchanges a; <> a5 is
premultiplying the current permutation by (1 2), postmultiplying it by (a1 a2).

Following a proposal made by Evariste Galois in 1830, a nonempty set G
of permutations is said to form a group if it is closed under multiplication, that
is, if the product af is in G whenever « and S are elements of G [see Ecrits
et Mémoires Mathématiques d’Evariste Galois (Paris: 1962), 47]. Consider, for
example, the 4-cube represented as a 4 x 4 torus

132
4576 (12)
cdfe

a

as in exercise 7.2.1.1-17, and let G be the set of all permutations of the vertices
{0,1,...,f} that preserve adjacency: A permutation « is in G if and only if
u v implies ua — wva in the 4-cube. (Here we are using hexadecimal
digits (0,1,...,f) to stand for the integers (0,1,...,15). The labels in (12)
are chosen so that w — v if and only if u and v differ in only one bit position.)
This set G is obviously a group, and its elements are called the symmetries or
“automorphisms” of the 4-cube.

Groups of permutations G are conveniently represented inside a computer by
means of a Sims table, introduced by Charles C. Sims [Computational Methods
in Abstract Algebra (Oxford: Pergamon, 1970), 169-183], which is a family of
subsets S1, Sa, ... of G having the following property: Sj contains exactly one
permutation oy; that takes k — j and fixes the values of all elements greater
than k&, whenever G contains such a permutation. We let oxr be the identity
permutation, which is always present in G; but when 0 < j < k, any suitable
permutation can be selected to play the role of oj;. The main advantage of a
Sims table is that it provides a convenient representation of the entire group:

Lemma S. Let Sy, S, ..., Sn—1 be a Sims table for a group G of permutations
on {0,1,...,n — 1}. Then every element o of G has a unique representation
Q=0102...0n_1, where g5, € S, for 1 < k < n. (13)

Proof. 1f a has such a representation and if 0,1 is the permutation o(,_1); €
Sn_1, then « takes n — 1 — j, because all elements of S; U---U S, 5 fix the
value of n — 1. Conversely, if o takes n — 1+ j we have a = o/0(,,_1);, where
P
G T Y1)
is a permutation of G that fixes n — 1. The set G’ of all such permutations is a
group, and Sy, ..., S,_2 is a Sims table for G’; therefore the result follows by
induction on n. |
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For example, a bit of calculation shows that one possible Sims table for the
automorphism group of the 4-cube is

Se = {(), (01)(23)(45)(67)(89)(ab)(cd)(ef), ...,
(0f)(1e)(2d)(3c)(4b)(52)(69)(78)};

)
(be), (18)(32)(5¢)(7e)};
)

, (12)(56)(9a)(de), (
c (7d)}; (14)

de), (14)(36)(9¢)
( 4)(35)(ac)(bd), (28)(39)(6¢c)

Sa=Se=--=5={0k

here S¢ contains 16 permutations o¢; for 0 < j < 15, which respectively take
i+ i@ (15— j) for 0 < i < 15. The set S, contains only four permutations,
because an automorphism that fixes £ must take e into a neighbor of f; thus the
image of e must be either e or d or b or 7. The set S, contains only the identity
permutation, because an automorphism that fixes f, e, and d must also fix c.
Most groups have Sy, = {()} for all small values of k, as in this example; hence a
Sims table usually needs to contain only a fairly small number of permutations
although the group itself might be quite large.

The Sims representation (13) makes it easy to test if a given permutation «
lies in G: First we determine 0,1 = 0(,,_1);, where a takes n — 1 — j, and we
let o/ = ao,,_ 1, then we determine oy, o = 0(;,_2);7, where o' takes n — 2 +— j’,
and we let o = a’o,,_,; and so on. If at any stage the required oy; does not
exist in Sy, the original permutation « does not belong to G. In the case of (14),
this process must reduce « to the identity after finding o¢, oe, 04, 0c, and oy.

For example, let a be the permutation (14)(28)(3¢)(69)(7d)(be), which cor-
responds to transposing (12) about its main diagonal {0,5, f,a}. Since « fixes f,
o¢ will be the identity permutation (), and ¢’ = a. Then o, is the member of S,
that takes e — b, namely (14)(36)(9¢)(be), and we find o” = (28)(39)(6¢c)(74d).
This permutation belongs to Sy, so « is indeed an automorphism of the 4-cube.

Conversely, (13) also makes it easy to generate all elements of the corre-
sponding group. We simply run through all permutations of the form

o(l,¢1)0(2,¢2)...0(n—1,¢p-1),

where o(k,ci) is the (¢ + 1)st element of Sy for 0 < ¢, < sx = ||Sk| and
1 < k < n, using any algorithm of Section 7.2.1.1 that runs through all (n — 1)-
tuples (c1,...,cp—1) for the respective radices (si,...,Sp—1)-

Using the general framework. Our chief concern is the group of all permuta-

tions on {0, 1,...,n—1}, and in this case every set Sy of a Sims table will contain
k+1 elements {o(k,0),0(k,1),...,0(k,k)}, where o(k,0) is the identity and the
others take k to the values {0, ..., k—1} in some order (fixing all elements greater

than k). Every such Sims table leads to a permutation generator, according to
the following outline:

10
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Algorithm G (General permutation generator). Given a Sims table (Sy, S,
..ySp—1) where each Sy has k + 1 elements o(k,j) as just described, this
algorithm generates all permutations aga; ...an,—1 of {0,1,...,n — 1}, using
an auxiliary control table ¢, ...coc.
G1. [Initialize.] Set a; - j and ¢;j41 < 0 for 0 < j < n.
G2. [Visit.] (At this point the mixed-radix number [6"7;1’ Y ] is the number
of permutations visited so far.) Visit the permutation agay . ..an—1.

G3.[Add 1 to ¢p...cacr.] Set k + 1. If ¢p = k, set ¢, < 0, k + k+ 1,
and repeat until ¢, < k. Terminate the algorithm if & = n; otherwise set
crp < ¢ + 1.
G4. [Permute.] Apply the permutation 7(k,cx)w(k — 1)~ to agpay...an,—1, as
explained below, and return to G2. |
Applying a permutation 7 to apa;...a,_1 means replacing a; by a;, for
0 < j < n; this corresponds to premultiplication by 7 as explained earlier. Let
us define
T(k,j) = o(k,j)o(k,j —1)"  for 1 <j <k (15)
w(k) =0(1,1)...0(k,k). (16)
Then steps G3 and G4 maintain the property that
apay . ..an—1 is the permutation o(1,¢1)0(2,¢c2)...0(n —1,¢p—1), (17)

and Lemma S proves that every permutation is visited exactly once.

Fig. 19. Algorithm G implicitly traverses this tree when n = 4.

The tree in Fig. 19 illustrates Algorithm G in the case n = 4. According
to (17), every permutation agajasas of {0,1,2,3} corresponds to a three-digit
control string cscacy, with 0 <3 <3,0< ¢ <2, and 0 < ¢; < 1. Some nodes
of the tree are labeled by a single digit c3; these correspond to the permutations
0(3,c3) of the Sims table being used. Other nodes, labeled with two digits c3ca,
correspond to the permutations o(2,¢2)o(3,¢3). A heavy line connects node c3
to node c30 and node czce to node c3c20, because 0(2,0) and o(1,0) are the
identity permutation and these nodes are essentially equivalent. Adding 1 to the
mixed-radix number czcoc; in step G3 corresponds to moving from one node of
Fig. 19 to its successor in preorder, and the transformation in step G4 changes
the permutations accordingly. For example, when cgcac; changes from 121 to
200, step G4 premultiplies the current permutation by

7(3,2)w(2)” =7(3,2)0(2,2) o(1,1);

11



12 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

premultiplying by o(1,1)” takes us from node 121 to node 12, premultiplying
by 0(2,2)” takes us from node 12 to node 1, and premultiplying by 7(3,2) =
0(3,2)0(3,1)" takes us from node 1 to node 2 = 200, which is the preorder suc-
cessor of node 121. Stating this another way, premultiplication by 7(3,2)w(2)~
is exactly what is needed to change o(1,1)0(2,2)0(3,1) to o(1,0)0(2,0)0(3,2),
preserving (17).

Algorithm G defines a huge number of permutation generators (see exer-
cise 37), so it is no wonder that many of its special cases have appeared in the
literature. Of course some of its variants are much more efficient than others,
and we want to find examples where the operations are particularly well suited
to the computer we are using.

We can, for instance, obtain permutation in reverse colex order as a special
case of Algorithm G (see (11)), by letting o(k, j) be the (5 + 1)-cycle

olk,j) = (k—j k—j+1 ... k). (18)

The reason is that o(k, j) should be the permutation that corresponds to ¢y, .. .c;
in reverse colex order when ¢, = j and ¢; = 0 for i # k, and this permutation
apay ...an—1 is 01...(k—75—1)(k—7+1)...(k)(k—j)(k+1)...(n—1). For exam-
ple, when n = 8 and ¢,...c; = 00030000 the corresponding reverse colex
permutation is 01345267, which is (2345) in cycle form. When o(k, j) is given
by (18), Egs. (15) and (16) lead to the formulas

7(k,j) = (k=7 k); (19)
w(k) =(01)(012)...(01 ... k) = (0k)(Lk—1)(2k—2) ... = ¢(k); (20)

here ¢(k) is the “(k+1)-flip” that changes ag ... ay to aj ... ag. In this case w(k)
turns out to be the same as w(k)~, because ¢(k)? = ().

Equations (19) and (20) are implicitly present behind the scenes in Algo-
rithm L and in its reverse colex equivalent (exercise 2), where step L3 essentially
applies a transposition and step L4 does a flip. Step G4 actually does the flip
first; but the identity

(k=i K)ok —1) = ok —1)(i—1k) (21)

shows that a flip followed by a transposition is the same as a (different) trans-
position followed by the flip.
In fact, equation (21) is a special case of the important identity

T (J1g2 oo J)m = (17 Jom ... Gem) (22)

valid for any permutation 7 and any t-cycle (j1 j2 ... jir). On the left of (22)
we have, for example, jim — j; — j2 — jom, in agreement with the cycle on
the right. Therefore if @ and 7 are any permutations whatever, the permutation
m~a (called the conjugate of o by ) has exactly the same cycle structure as «;
we simply replace each element j in each cycle by jm.

Another significant special case of Algorithm G was introduced by R. J.
Ord-Smith [CACM 10 (1967), 452; 12 (1969), 638; see also Comp. J. 14 (1971),

12
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136-139], whose algorithm is obtained by setting

o(k,j)=(k ... 10). (23)
Now it is clear from (15) that
(k) = (k ... 10); (24)

and once again we have

w(k)=(0k)(1Ek-1)(2k=2)... = ¢(k), (25)

because o(k,k) = (0 1 ... k) is the same as before. The nice thing about this
method is that the permutation needed in step G4, namely 7(k,c)w(k — 1),
does not depend on cy:

T(k,j)wk —1)" =(k ... 10)¢(k —1)" = ¢(k). (26)

Thus, Ord-Smith’s algorithm is the special case of Algorithm G in which step G4
simply interchanges ag <> ag, a1 <> ax_1, ...; this operation is usually quick,
because k is small, and it saves some of the work of Algorithm L. (See exer-
cise 38.)

We can do even better by rigging things so that step G4 needs to do only a
single transposition each time, somewhat as in Algorithm P but not necessarily
on adjacent elements. Many such schemes are possible. The best is probably

to let
(k 0), if k is even,

T(k,jw(k—=1)" = 2

(k, g)eo(k = 1) {(kj—l), if & is odd, (=7)
as suggested by B. R. Heap [Comp. J. 6 (1963), 293—294]. Notice that Heap’s
method always transposes ay <> ag except when k = 3, 5, ...; and the value of k,
in 5 of every 6 steps, is either 1 or 2. Exercise 40 proves that Heap’s method
does indeed generate all permutations.

Bypassing unwanted blocks. One noteworthy advantage of Algorithm G is
that it runs through all permutations of ag...ar_1 before touching ay; then it
performs another k! cycles before changing aj again, and so on. Therefore if at
any time we reach a setting of the final elements a . . . a,—1 that is unimportant
to the problem we’re working on, we can skip quickly over all permutations that
end with the undesirable suffix. More precisely, we could replace step G2 by the
following substeps:

G2.0. [Acceptable?] If ag ... a,_1 is not an acceptable suffix, go to G2.1. Oth-
erwise set k < k— 1. Then if £ > 0, repeat this step; if £ = 0, proceed to
step G2.2.

G2.1. [Skip this suffix.] If ¢, = k, apply o(k, k)~ to ag...an_1, set ¢ < O,
k <+ k 4+ 1, and repeat until ¢, < k. Terminate if £ = n; otherwise set
ek + ¢ + 1, apply 7(k,cx) to ag . ..an—1, and return to G2.0.

G2.2. [Visit.] Visit the permutation ag...a, 1. |

Step G1 should also set k < n — 1. Notice that the new steps are careful to

preserve condition (17). The algorithm has become more complicated, because

13



14 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

we need to know the permutations 7(k, j) and o(k, k) in addition to the permu-
tations 7(k, j)w(k — 1)~ that appear in G4. But the additional complications
are often worth the effort, because the resulting program might run significantly
faster.

Fig. 20. Unwanted branches can be pruned from the
tree of Fig. 19, if Algorithm G is suitably extended.

For example, Fig. 20 shows what happens to the tree of Fig. 19 when
the suffixes of agajasas that correspond to nodes 00, 11, 121, and 2 are not
acceptable. (Each suffix ag ...a, 1 of the permutation ag...a, 1 corresponds
to a prefix c,...c, of the control string ¢, ...c;, because the permutations
o(l,¢1)...0(k —1,cp—1) do not affect ag,...an—1.) Step G2.1 premultiplies by
7(k,7) to move from node c¢p—1 ...cpy17 to its right sibling ¢,—1 ... cr41(j+1),
and it premultiplies by o(k,k)” to move up from node ¢,_1...cp41k to its
parent ¢, 1...ckt+1. Thus, to get from the rejected prefix 121 to its preorder
successor, the algorithm premultiplies by o(1,1), 0(2,2)~, and 7(3, 2), thereby
moving from node 121 to 12 to 1 to 2. (This is a somewhat exceptional case,
because a prefix with k = 1 is rejected only if we don’t want to visit the unique
permutation agaj ...a,—1 that has suffix a; ...a,_1.) After node 2 is rejected,
7(3,3) takes us to node 3, etc.

Notice, incidentally, that bypassing a suffix ax...a,_ 1 in this extension
of Algorithm G is essentially the same as bypassing a prefix a;...a; in our
original notation, if we go back to the idea of generating permutations a; ... a,
of {1,...,n} and doing most of the work at the right-hand end. Our original
notation corresponds to choosing a; first, then aq, ..., then a,; the notation
in Algorithm G essentially chooses a,_; first, then a, o, ..., then ag. Algo-
rithm G’s conventions may seem backward, but they make the formulas for Sims
table manipulation a lot simpler. A good programmer soon learns to switch
without difficulty from one viewpoint to another.

We can apply these ideas to alphametics, because it is clear for example that
most choices of the values for the letters D, E, and Y will make it impossible for
SEND plus MORE to equal MONEY: We need to have (D+E — Y) mod 10 = 0 in that
problem. Therefore many permutations can be eliminated from consideration.

In general, if r; is the maximum power of 10 that divides the signature
value s, we can sort the letters and assign codes {0,1,...,9} so that ro >
ry > -+ > rg. For example, to solve the trio sonata problem (7), we could use
(0,1,...,9) respectively for (X,S,V,A,R,I,L,T,0,N), obtaining the signatures

so =0, s; =—100000, sp=210000, s3=—100, s4=—100,
s = 21010, sg =210, s;=—1010, ss=—7901, s9= —998;

14



7.2.1.2 GENERATING ALL PERMUTATIONS 15

hence (rg,...,r9) = (00,5,4,2,2,1,1,1,0,0). Now if we get to step G2.0 for a
value of k with ry_; # r;, we can say that the suffix ag ...ag is unacceptable
unless apsy + -+ + agsg is a multiple of 10™-1. Also, (10) tells us that ay . .. ag
is unacceptable if ar, = 0 and k € F'; the first-letter set F' is now {1,2,7}.

Our previous approach to alphametics with steps A1-A3 above used brute
force to run through 10! possibilities. It operated rather fast under the circum-
stances, since the adjacent-transposition method allowed it to get by with only
6 memory references per permutation; but still, 10! is 3,628,800, so the entire
process cost almost 22 megamems, regardless of the alphametic being solved.
By contrast, the extended Algorithm G with Heap’s method and the cutoffs just
described will find all four solutions to (7) with fewer than 128 kilomems! Thus
the suffix-skipping technique runs more than 170 times faster than the previous
method, which simply blasted away blindly.

Most of the 128 kilomems in the new approach are spent applying 7(k, )
in step G2.1. The other memory references come primarily from applications of
o(k, k)~ in that step, but 7 is needed 7812 times while o~ is needed only 2162
times. The reason is easy to understand from Fig. 20, because the “shortcut
move” 7(k,ck)w(k — 1)~ in step G4 hardly ever applies; in this case it is used
only four times, once for each solution. Thus, preorder traversal of the tree is
accomplished almost entirely by 7 steps that move to the right and o~ steps
that move upward. The 7 steps dominate in a problem like this, where very
few complete permutations are actually visited, because each step o(k, k)™ is
preceded by k steps 7(k, 1), 7(k,2), ..., 7(k, k).

This analysis reveals that Heap’s method — which goes to great lengths to
optimize the permutations 7(k, j)w(k — 1)~ so that each transition in step G4
is a simple transposition —is not especially good for the extended Algorithm G
unless comparatively few suffixes are rejected in step G2.0. The simpler reverse
colex order, for which 7(k, 7) itself is always a simple transposition, is now much
more attractive (see (19)). Indeed, Algorithm G with reverse colex order solves
the alphametic (7) with only 97 kilomems.

Similar results occur with respect to other alphametic problems. For ex-
ample, if we apply the extended Algorithm G to the alphametics in exercise 24,
parts (a) through (h), the computations involve respectively

(551, 110, 14, 8, 350, 84, 153, 1598) kilomems with Heap’s method; (28)
(429, 84,10, 5, 256, 63, 117, 1189) kilomems with reverse colex.

The speedup factor for reverse colex in these examples, compared to brute force
with Algorithm T, ranges from 18 in case (h) to 4200 in case (d), and it is about
80 on the average; Heap’s method gives an average speedup of about 60.

We know from Algorithm L, however, that lexicographic order is easily han-
dled without the complication of the control table ¢, ... c; used by Algorithm G.
And a closer look at Algorithm L shows that we can improve its behavior when
permutations are frequently being skipped, by using a linked list instead of a
sequential array. The improved algorithm is well-suited to a wide variety of
algorithms that wish to generate restricted classes of permutations:

15



16 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Algorithm X (Lexicographic permutations with restricted prefizes). This al-
gorithm generates all permutations ajas ...a, of {1,2,...,n} that pass a given
sequence of tests

ti(ar), to(ar,az), ..., tp(ai,az,...,an),

visiting them in lexicographic order. It uses an auxiliary table of links Iy, [1,
..+, lp to maintain a cyclic list of unused elements, so that if the currently
available elements are

{1,...,n} \ {a1,..-,ar} = {b1,. .., bu_r}, where by < -+ < bp_k, (29)

then we have
l() = bl, lbj = bj+1 for 1 S j <n-— ]C, and lbn—k =0. (30)

It also uses an auxiliary table wj...u, to undo operations that have been
performed on the [ array.
X1. [Initialize.] Set I, < k+ 1 for 0 < k < n, and I, < 0. Then set k < 1.
X2. [Enter level k.] Set p < 0, g < lo.
X3. [Test a; ...ax.] Set ap + q. If ty(ai,...,ar) is false, go to X5. Otherwise,

if kK = n, visit ay ... a, and go to X6.
X4. [Increase k.] Set ug < p, I, < 1y, k < k+ 1, and return to X2.
X5. [Increase ay.] Set p < g, g < l,. If ¢ # 0 return to X3.

X6. [Decrease k.] Set k < k — 1, and terminate if £ = 0. Otherwise set p + ug,
q < ag, lp + g, and go to X5. |

The basic idea of this elegant algorithm is due to M. C. Er [Comp. J. 30 (1987),
282]. We can apply it to alphametics by changing notation slightly, obtaining
permutations ay . .. ag of {0,...,9} and letting ;¢ play the former role of l;. The
resulting algorithm needs only 49 kilomems to solve the trio-sonata problem (7),
and it solves the alphametics of exercise 24(a)—(h) in

(248, 38, 4, 3, 122, 30, 55, 553) kilomems, (31)

respectively. Thus it runs about 165 times faster than the brute-force approach.
Another way to apply Algorithm X to alphametics is often faster yet (see
exercise 49).

Fig. 21. The tree implicitly traversed by Algorithm X when n = 4, if all permu-
tations are visited except those beginning with 132, 14, 2, 314, or 4312.

16
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*Dual methods. If Sy, ..., S,_1 is a Sims table for a permutation group G,
we learned in Lemma S that every element of G can be expressed uniquely as
a product oy ...0,-1, where o3, € Si; see (13). Exercise 50 shows that every
element «a can also be expressed uniquely in the dual form

a=0, 1...09 07, where o, € S, for 1 <k <n, (32)

and this fact leads to another large family of permutation generators. In par-
ticular, when G is the group of all n! permutations, every permutation can be
written

U(n_lacnfl)i "'0(2)02)70(1701)75 (33)
where 0 < ¢ < k for 1 < k < n and the permutations o(k, j) are the same as
in Algorithm G. Now, however, we want to vary c¢,_; most rapidly and c; least
rapidly, so we arrive at an algorithm of a different kind:

Algorithm H (Dual permutation generator). Given a Sims table as in Algo-

rithm G, this algorithm generates all permutations ag ...a, 1 of {0,...,n —1},

using an auxiliary table ¢y ...cp—1-

H1. [Initialize.] Set a; < j and ¢; - 0 for 0 < j < n.

H2. [Visit.] (At this point the mixed-radix number [ %'~ °*~1] is the number
of permutations visited so far.) Visit the permutation aga; ...a,_1.

H3. [Add 1tocpey ...cpo1.] Set k< n—1. If ¢, = k,set ¢, + 0,k < k—1, and
repeat until £k = 0 or ¢, < k. Terminate the algorithm if £ = 0; otherwise
set ¢, < ¢ + 1.

H4. [Permute.] Apply the permutation 7(k,cr)w(k + 1)~ to aga .. .an—1, as
explained below, and return to H2. |

Although this algorithm looks almost identical to Algorithm G, the permutations

7 and w that it needs in step H4 are quite different from those needed in step G4.

The new rules, which replace (15) and (16), are

7(k,j) = o(k,j) o(k,j—1),  for1<j<k, (34)
wk)=cn—-1,n—1)"0cn—2,n—-2)"...0(k, k). (35)

The number of possibilities is just as vast as it was for Algorithm G, so we
will confine our attention to a few cases that have special merit. One natural
case to try is, of course, the Sims table that makes Algorithm G produce reverse
colex order, namely

o(k,j) = (k—j k—j+1 ... k) (36)

as in (18). The resulting permutation generator turns out to be very nearly the
same as the method of plain changes; so we can say that Algorithms L and P
are essentially dual to each other. (See exercise 52.)

Another natural idea is to construct a Sims table for which step H4 always
makes a single transposition of two elements, by analogy with the construction
of (27) that achieves maximum efficiency in step G4. But such a mission now
turns out to be impossible: We cannot achieve it even when n = 4. For if

17
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we start with the identity permutation agajasas = 0123, the transitions that
take us from control table cgcieacs = 0000 to 0001 to 0002 to 0003 must move
the 3; so, if they are transpositions, they must be (3a), (ab), and (bc) for some
permutation abe of {0,1,2}. The permutation corresponding to cgcycacs = 0003
is now 0(3,3)” = (bec)(ab)(3a) = (3abc); and the next permutation, which
corresponds to cocicecg = 0010, will be o(2,1)~, which must fix the element 3.
The only suitable transposition is (3¢), hence 0(2,1)” must be (3¢)(3abc) =
(abc). Similarly we find that ¢(2,2)” must be (acb), and the permutation
corresponding to cpcicacs = 0023 will be (3abc)(acb) = (3¢). Step H4 is now
supposed to convert this to the permutation o(1,1)~, which corresponds to the
control table 0100 that follows 0023. But the only transposition that will convert
(3 ¢) into a permutation that fixes 2 and 3 is (3 ¢); and the resulting permutation
also fixes 1, so it cannot be o(1,1)".

The proof in the preceding paragraph shows that we cannot use Algorithm H
to generate all permutations with the minimum number of transpositions. But it
also suggests a simple generation scheme that comes very close to the minimum,
and the resulting algorithm is quite attractive because it needs to do extra work
only once per n(n — 1) steps. (See exercise 53.)

Finally, let’s consider the dual of Ord-Smith’s method, when

o(k,j)=(k ... 10)’ (37)
as in (23). Once again the value of 7(k, j) is independent of j,
T(k,j)=(01 ... k), (38)

and this fact is particularly advantageous in Algorithm H because it allows us
to dispense with the control table cycy...c,_1. The reason is that ¢, 1 = 0 in
step H3 if and only if a,,—; = n — 1, because of (32); and indeed, when ¢; = 0
for k < j < n in step H3 we have ¢; = 0 if and only if ay, = k. Therefore we can
reformulate this variant of Algorithm H as follows.

Algorithm C (Permutation generation by cyclic shifts). This algorithm visits
all permutations a ... a, of the distinct elements {z1,...,z,}.

C1. [Initialize.] Set a; +— z; for 1 <j <n.

C2. [Visit.] Visit the permutation a; ...a,, and set k < n.

C3. [Shift.] Replace ajas ...ay by the cyclic shift as...araq, and return to C2
if ar 75 T.
C4. [Decrease k.] Set k < k — 1, and go back to C3 if &k > 1. |

For example, the successive permutations of {1, 2, 3,4} generated when n = 4 are

1234, 2341, 3412, 4123, (1234),
2314, 3142, 1423, 4231, (2314),
3124, 1243, 2431, 4312, (3124), (1234),
2134, 1342, 3421, 4213, (2134),
1324, 3241, 2413, 4132, (1324),
3214, 2143, 1432, 4321, (3214), (2134), (1234),

18
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with unvisited intermediate permutations shown in parentheses. This algorithm
may well be the simplest permutation generator of all, in terms of minimum
program length. It is due to G. G. Langdon, Jr. [CACM 10 (1967), 298-299;
11 (1968), 392]; similar methods had been published previously by C. Tompkins
[Proc. Symp. Applied Math. 6 (1956), 202—205] and, more explicitly, by R. Seitz
[Unternehmensforschung 6 (1962), 2-15]. The procedure is particularly well
suited to applications in which cyclic shifting is efficient, for example when suc-
cessive permutations are being kept in a machine register instead of in an array.

The main disadvantage of dual methods is that they usually do not adapt
well to situations where large blocks of permutations need to be skipped, be-
cause the set of all permutations with a given value of the first control entries
cocy ... ck—1 is usually not of importance. The special case (36) is, however,
sometimes an exception, because the n!/k! permutations with coey ...cp—1 =
00...0 in that case are precisely those apa;g -..a,—1 in which 0 precedes 1,
1 precedes 2, ..., and k — 2 precedes k — 1.

*Ehrlich’s swap method. Gideon Ehrlich has discovered a completely different
approach to permutation generation, based on yet another way to use a control
table ¢; ...cp—1. His method obtains each permutation from its predecessor by
interchanging the leftmost element with another:

Algorithm E (Ehrlich swaps). This algorithm generates all permutations of the
distinct elements ag . ..a,_1 by using auxiliary tables by...b,—1 and ¢; ... c,.

E1. [Initialize.] Set b; - j and ¢;q1 < 0 for 0 < j < n.
E2. [Visit.] Visit the permutation ag...an_1.

E3. [Find k.] Set k + 1. Then if ¢, = k, set ¢ + 0, k < k+ 1, and repeat until
¢, < k. Terminate if k¥ = n, otherwise set ¢ < ¢ + 1.

E4. [Swap.] Interchange ag <> ap, .

E5. [Flip.] Set j - 1, k < k — 1. If j < k, interchange b; <> by, set j < j+ 1,
k < k — 1, and repeat until j > k. Return to E2. |

Notice that steps E2 and E3 are identical to steps G2 and G3 of Algorithm G.
The most amazing thing about this algorithm, which Ehrlich communicated to
Martin Gardner in 1987, is that it works; exercise 55 contains a proof. A similar
method, which simplifies the operations of step E5, can be validated in the same
way (see exercise 56). The average number of interchanges performed in step E5
is less than 0.18 (see exercise 57).

As it stands, Algorithm E isn’t faster than other methods we have seen. But
it has the nice property that it changes each permutation in a minimal way, using
only n — 1 different kinds of transpositions. Whereas Algorithm P used adjacent
interchanges, a;—1 < a, Algorithm E uses first-element swaps, ag < a¢, also
called star transpositions, for some well-chosen sequence of indices t[1], ¢[2], ...,
t[n! — 1]. And if we are generating permutations repeatedly for the same fairly
small value of n, we can precompute this sequence, as we did in Algorithm T
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for the index sequence of Algorithm P. Notice that star transpositions have an
advantage over adjacent interchanges, because we always know the value of ag
from the previous swap; we need not read it from memory.

Let E,, be the sequence of n! — 1 indices ¢ such that Algorithm E swaps ag
with a; in step E4. Since F,, ;1 begins with F,, we can regard E,, as the first
n! — 1 elements of an infinite sequence

Eo =121213212123121213212124313132131312.... (39)

For example, if n = 4 and agajazas = 1234, the permutations visited by
Algorithm E are

1234, 2134, 3124, 1324, 2314, 3214,
4213, 1243, 2143, 4123, 1423, 2413,
3412, 4312, 1342, 3142, 4132, 1432,
2431, 3421, 4321, 2341, 3241, 4231.

(40)

*Using fewer generators. After seeing Algorithms P and E, we might naturally
ask whether all permutations can be obtained by using just two basic operations,
instead of n — 1. For example, Nijenhuis and Wilf [Combinatorial Algorithms
(1975), Exercise 6] noticed that all permutations can be generated for n = 4
if we replace ajasas...a, at each step by either asas...ana1 or azaias...ay,,
and they wondered whether such a method exists for all n.

In general, if G is any group of permutations and if ay, ..., oy are ele-
ments of G, the Cayley graph for G with generators (ayq, ..., ax) is the directed
graph whose vertices are the permutations 7© of G and whose arcs go from =
to oy, ..., agm. [Arthur Cayley, American J. Math. 1 (1878), 174-176.] The
question of Nijenhuis and Wilf is equivalent to asking whether the Cayley graph
for all permutations of {1,2,...,n}, with generators o and 7 where o is the cyclic
permutation (12 ... n) and 7 is the transposition (1 2), has a Hamiltonian path.

A basic theorem due to R. A. Rankin [Proc. Cambridge Philos. Soc. 44
(1948), 17-25] allows us to conclude in many cases that Cayley graphs with two
generators do not have a Hamiltonian circuit:

Theorem R.. Let G be a group consisting of g permutations. If the Cayley graph
for G with generators (a, 8) has a Hamiltonian circuit, and if the permutations
(a, B, a37) are respectively of order (a, b, c), then either c is even or g/a and g/b
are odd.

(The order of a permutation « is the least positive integer a such that a“ is the
identity.)

Proof. See exercise 72. |

In particular, when o = o and 8 = 7 as above, we have g = n!, a = n, b = 2, and
c¢=n—1, because 07~ = (2 ... n). Therefore we conclude that no Hamiltonian
circuit is possible when n > 4 is even. However, a Hamiltonian path is easy to
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construct when n = 4, because we can join up the 12-cycles

1234 — 2341 — 3412 — 4312 — 3124 — 1243 — 2431
5 4231 — 2314 — 3142 —s 1423 — 4123 — 1234,

92134 — 1342 — 3421 — 4321 — 3214 — 2143 — 1432 (41)
5 4132 — 1324 — 3241 —s 2413 — 4213 — 2134,

by starting at 2341 and jumping from 1234 to 2134, ending at 4213.

Ruskey, Jiang, and Weston [Discrete Applied Math. 57 (1995), 75-83] un-
dertook an exhaustive search in the o—r graph for n = 5 and discovered that
it has five essentially distinct Hamiltonian circuits, one of which (the “most
beautiful”) is illustrated in Fig. 22(a). They also found a Hamiltonian path for
n = 6; this was a difficult feat, because it is the outcome of a 720-stage binary
decision tree. Unfortunately the solution they discovered has no apparent logical
structure. A somewhat less complex path is described in exercise 70, but even
that path cannot be called simple. Therefore a o—r approach will probably
not be of practical interest for larger values of n unless a new construction
is discovered. R. C. Compton and S. G. Williamson [Linear and Multilinear
Algebra 35 (1993), 237-293] have proved that Hamiltonian circuits exist for
all n if the three generators o, o—, and 7 are allowed instead of just ¢ and T;
their cycles have the interesting property that every nth transformation is 7,
and the intervening n — 1 transformations are either all o or all o~. But their
method is too complicated to explain in a short space.

Exercise 69 describes a general permutation algorithm that is reasonably
simple and needs only three generators, each of order 2. Fig. 22(b) illustrates
the case n = 5 of this method, which was motivated by examples of bell-ringing.

ANV TN AT

(a) Using only transitions (12345) and (12).

N GNGONGTN S G GO TN GGG

(b) Using only transitions (12)(34), (23)(45), and (34).

Fig. 22. Hamiltonian circuits for 5! permutations.

Faster, faster. What is the fastest way to generate permutations? This question
has often been raised in computer publications, because people who examine n!
possibilities want to keep the running time as small as possible. But the answers
have generally been contradictory, because there are many different ways to
formulate the question. Let’s try to understand the related issues by studying
how permutations might be generated most rapidly on the MMIX computer.

Suppose first that our goal is to produce permutations in an array of n
consecutive memory words (octabytes). The fastest way to do this, of all those
we’ve seen in this section, is to streamline Heap’s method (27), as suggested by
R. Sedgewick [Computing Surveys 9 (1977), 157-160].
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The key idea is to optimize the code for the most common cases of steps G2
and G3, namely the cases in which all activity occurs at the beginning of the
array. If registers u, v, and w contain the contents of the first three words, and
if the next six permutations to be generated involve permuting those words in
all six possible ways, we can clearly do the job as follows:

PUSHJ 0,Visit

STO v,A0; STO u,Al; PUSHJ O,Visit

STO w,A0; STO v,A2; PUSHJ 0,Visit

STO u,A0; STO w,Al; PUSHJ 0,Visit (42)

STO v,A0; STO u,A2; PUSHJ 0,Visit

STO w,AO; STO v,Al; PUSHJ 0,Visit
(Here AO is the address of octabyte ag, etc.) A complete permutation program,
which takes care of getting the right things into u, v, and w, appears in exer-
cise 76, but the other instructions are less important because they need to be
performed only % of the time. The total cost per permutation, not counting the
4v needed for PUSHJ and POP on each call to Visit, comes to approximately
2.77Tp + 5.69v with this approach. If we use four registers u, v, w, x, and if
we expand (42) to 24 calls on Visit, the running time per permutation drops
to about 2.19u + 3.07v. And with r registers and r! Visits, exercise 77 shows
that the cost is (2 + O(1/r!))(p + v), which is very nearly the cost of two STO
instructions.

The latter is, of course, the minimum possible time for any method that
generates all permutations in a sequential array. ...Or is it? We have assumed
that the visiting routine wants to see permutations in consecutive locations, but
perhaps that routine is able to read the permutations from different starting
points. Then we can arrange to keep a,_; fixed and to keep two copies of the
other elements in its vicinity:

agQy . ..0p—20p_10Qa7 - . .0p—2. (43)

If we now let agay .. .a, o run through (n — 1)! permutations, always changing
both copies simultaneously by doing two STO commands instead of one, we can
let every call to Visit look at the n permutations

apay ..-QAp—1, ag...ap—10ap, ey Ap—-100 ..-Ap_2, (44)

which all appear consecutively. The cost per permutation is now reduced to the
cost of three simple instructions like ADD, CMP, PBNZ, plus O(1/n). [See Varol
and Rotem, Comp. J. 24 (1981), 173-176.]

Furthermore, we might not want to waste time storing permutations into
memory at all. Suppose, for example, that our goal is to generate all permuta-
tions of {0,1,...,n — 1}. The value of n will probably be at most 16, because
16! = 20,922,789,888,000 and 17! = 355,687,428,096,000. Therefore an entire
permutation will fit in the 16 nybbles of an octabyte, and we can keep it in a
single register. This will be advantageous only if the visiting routine doesn’t
need to unpack the individual nybbles; but let’s suppose that it doesn’t. How
fast can we generate permutations in the nybbles of a 64-bit register?

22
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One idea, suggested by a technique due to A. J. Goldstein [U. S. Patent
3383661 (14 May 1968)], is to precompute the table (¢[1],...,¢[5039]) of plain-
change transitions for seven elements, using Algorithm T. These numbers ¢[k] lie
between 1 and 6, so we can pack 20 of them into a 64-bit word. It is convenient
to put the number iozl 23k=11[207 + k] into word j of an auxiliary table, for
0 < j < 252, with ¢[5040] = 1; for example, the table begins with the codeword

00/001/010011100101110100110/101/100011/010001110001010011/100101/11000.

The following program reads such codes efficiently:

Perm (Set register a to the first permutation )

OH LDA p,T p < address of first codeword.
JUP 3F
1H ( Visit the permutation in register a)

(Swap the nybbles of a that lie t bits from the right )
SRU c¢,c,3 c+c> 3.

2H  AND t,c,#lc t< cA (11100). (45)
PBNZ t,1B Branch if ¢ # 0.
ADD p,p,8

3H LDO c¢,p,0 ¢ < next codeword.
PBNZ c,2B (The final codeword is followed by 0.)

(If not done, advance the leading n — 7 nybbles and return to 0B)

Exercise 78 shows how to ( Swap the nybbles ... ) with seven instructions, using
bit manipulation operations that are found on most computers. Therefore the
cost per permutation is just a bit more than 10v. (The instructions that fetch
new codewords cost only (u + 5v)/20; and the instructions that advance the
leading n— 7 nybbles are even more negligible since their cost is divided by 5040.)
Notice that there is now no need for PUSHJ and POP as there was with (42); we
ignored those instructions before, but they did cost 4v.

We can, however, do even better by adapting Langdon’s cyclic-shift method,
Algorithm C. Suppose we start with the lexicographically largest permutation
and operate as follows:

GREG @
OH OCTA #fedcba9876543210& (1<<(4*N)-1)
Perm LDOU a,OB Set a + *...3210
JMP 2F
1H SRU a,a,4*(16-N) a < |a/16"7"].
OR a,a,t a+ aVt. (46)
2H (Visit the permutation in register a)
SRU t,a,4*(N-1) t+ la/16"71].
SLU a,a,4*(17-N) a + 16" "amod 16'°.
PBNZ t,1B To 1B if t # 0.

( Continue with Langdon’s method )

The running time per permutation is now only 5v + O(1/n), again without the
need for PUSHJ and POP. See exercise 80 for an interesting way to extend (46) to
a complete program, obtaining a remarkably short and fast routine.
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Fast permutation generators are amusing, but in practice we can usually
save more time by streamlining the visiting routine than by speeding up the
generator.

Topological sorting. Instead of working with all n! permutations of {1,...,n},
we often want to look only at permutations that obey certain restrictions. For
example, we might be interested only in permutations for which 1 precedes 3,
2 precedes 3, and 2 precedes 4; there are five such permutations of {1,2, 3,4},
namely

1234, 1243, 2134, 2143, 2413. (47)

The problem of topological sorting, which we studied in Section 2.2.3 as a first
example of nontrivial data structures, is the general problem of finding a permu-
tation that satisfies m such conditions z1 < y1, ..., T < Ym, where z < y means
that x should precede y in the permutation. This problem arises frequently in
practice, so it has several different names; for example, it is often called the linear
embedding problem, because we want to arrange objects in a line while preserving
certain order relationships. It is also the problem of extending a partial ordering
to a total ordering (see exercise 2.2.3-14).

Our goal in Section 2.2.3 was to find a single permutation that satisfied
all the relations. But now we want rather to find all such permutations, all
topological sorts. Indeed, we will assume in the present section that the elements
x and y on which the relations are defined are integers between 1 and n, and
that we have x < y whenever x < y. Consequently the permutation 12...n
will always be topologically correct. (If this simplifying assumption is not met,
we can preprocess the data by using Algorithm 2.2.3T to rename the objects
appropriately.)

Many important classes of permutations are special cases of this topological
ordering problem. For example, the permutations of {1,...,8} such that

1<2, 2<3, 3<4, 6<7, T7<8

are equivalent to permutations of the multiset {1,1,1,1,2,3,3,3}, because we
can map {1,2,3,4} — 1, 5 — 2, and {6,7,8} — 3. We know how to generate
permutations of a multiset using Algorithm L, but now we will learn another way.
Notice that = precedes y in a permutation a; ...a,, if and only if a!, < a; in

the inverse permutation a .. .a!,. Therefore the algorithm we are about to study
will also find all permutations @} ...a;, such that a}; < aj whenever j < k. For
example, we learned in Section 5.1.4 that a Young tableau is an arrangement of
{1,...,n} in rows and columns so that each row is increasing from left to right
and each column is increasing from top to bottom. The problem of generating all
3 x 3 Young tableaux is therefore equivalent to generating all af ... ag such that
ay <ah<ah, ay<al<ag ab<ag<ag,

(48)
ay <ay <ay, ah<al <ag, a<ag<ayg,

and this is a special kind of topological sorting.
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We might also want to find all matchings of 2n elements, namely all ways to
partition {1,...,2n} into n pairs. There are (2n—1)(2n—3)...(1) = (2n)!/(2"n!)
ways to do this, and they correspond to permutations that satisfy

! ! ! ! ! ! ! ! !
ay < ag, a5 < ay, ..., o, 1 < Uy, a; <ag << Ay, _q. (49)

An elegant algorithm for exhaustive topological sorting was discovered by
Y. L. Varol and D. Rotem [Comp. J. 24 (1981), 83-84], who realized that a
method analogous to plain changes (Algorithm P) can be used. Suppose we
have found a way to arrange {1,...,n — 1} topologically, so that aj...a,—1
satisfies all the conditions that do not involve n. Then we can easily write down
all the allowable ways to insert the final element n without changing the relative
order of a; ...a,_1: We simply start with a; ... a,_1n, then shift n left one step
at a time until it cannot move further. Applying this idea recursively yields the
following straightforward procedure.
Algorithm V (All topological sorts). Given a relation < on {1,...,n} with the
property that z < y implies x < y, this algorithm generates all permutations
ay ...a, and their inverses aj ...a; with the property that a’ < aj whenever
j < k. We assume for convenience that ag = 0 and that 0 < k for 1 < k < n.
V1. [Initialize.] Set a; < j and a’; < j for 0 < j < n.
V2. [Visit.] Visit the permutation a, ...a,, and its inverse a} ...al,. Then set
k< n.
V3. [Can k move left?] Set j < aj, and [ <= a;_,. If | <k, go to V5.

V4. [Yes, move it.] Set a;_; <k, a; « 1, aj <~ j — 1, and a) « j. Go to V2.
V5. [No, put k back.] While j <k, set | < a;,y, a; <[, aj + j,and j < j+1.
Then set a;, + a;c < k. Decrease k by 1 and return to V3 if £ > 0. 1
For example, Theorem 5.1.4H tells us that there are exactly 42 Young tableaux
of size 3 x 3. If we apply Algorithm V to the relations (48) and write the inverse

permutation in array form

ajajay
! !
ajayag|, (50)

a7 ag ag

we get the following 42 results:

123[(123](123(|123|(123|(124||124|(124||124||124|[125||125]|125||125
456|(457||458|(467||468(|356|[357||358||367||368||367||368|346||347
789] 16891679 |589] 579|789 689]|679]|589||579|489]|479| 789|689

125|(126||126||127||126||126||127|(134||134||134||134||134||135||135
348|(347]|348((348||357|[358||358||256(|257||258|[267||268||267||268
6791589579 5694891479 [469](789]|689||679]|589]||579] 489|479

145((145]||135(|135||135|(136||136||137||136||136||137||146||146||147
267|1268(]246||247|(248(]|247||248||248(|257||258||258||257||258||258
3891379789 (689]1679]|589| (579569489 (479](469]|389][379][369
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Let t, be the number of topological sorts for which the final n — r elements
are in their initial position a; = j for r < j < n. Equivalently, ¢, is the number
of topological sorts a; . ..a, of {1,...,r}, when we ignore the relations involving
elements greater than r. Then the recursive mechanism underlying Algorithm V
shows that step V2 is performed N times and step V3 is performed M times,
where

M =t,+ -+t and N = t,. (51)

Also, step V4 and the loop operations of V5 are performed N — 1 times; the rest
of step V5 is done M — N + 1 times. Therefore the total running time of the
algorithm is a linear combination of M, N, and n.

If the element labels are chosen poorly, M might be much larger than V.
For example, if the constraints input to Algorithm V are

2<3, 3<4, ..., n—1<n, (52)

then ¢; = j for 1 < j < n and we have M = 3(n®> + n), N = n. But those
constraints are also equivalent to

1<2, 2<3, ..., n—2<n-1, (53)

under renaming of the elements; then M is reduced to 2n —1 = 2N — 1.
Exercise 88 shows that a simple preprocessing step will find element labels

so that a slight modification of Algorithm V is able to generate all topological

sorts in O(N + n) steps. Thus topological sorting can always be done efficiently.

Think twice before you permute. We have seen several attractive algorithms
for permutation generation in this section, but many algorithms are known by
which permutations that are optimum for particular purposes can be found
without running through all possibilities. For example, Theorem 6.1S showed
that we can find the best way to arrange records on a sequential storage simply
by sorting them with respect to a certain cost criterion, and this process takes
only O(nlogn) steps. In Section 7.5.2 we will study the assignment problem,
which asks how to permute the columns of a square matrix so that the sum of
the diagonal elements is maximized. That problem can be solved in at most
O(n?) operations, so it would be foolish to use a method of order n! unless n
is extremely small. Even in cases like the traveling salesrep problem, when no
efficient algorithm is known, we can usually find a much better approach than
to examine every possible solution. Permutation generation is best used when
there is good reason to look at each permutation individually.

EXERCISES

1. [20] Explain how to make Algorithm L run faster, by streamlining its operations
when the value of j is near n.

2. [20] Rewrite Algorithm L so that it produces all permutations of aj...a, in
reverse colex order. (In other words, the values of the reflections a, ...a1 should be
lexicographically decreasing, as in (11). This form of the algorithm is often simpler
and faster than the original, because fewer calculations depend on the value of n.)
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» 3. [M21] The rank of a combinatorial arrangement X with respect to a generation
algorithm is the number of other arrangements that the algorithm visits prior to X.
Explain how to compute the rank of a given permutation a;...a, with respect to
Algorithm L, if {a1,...,an} = {1,...,n}. What is the rank of 3145926877

4. [M23] Generalizing exercise 3, explain how to compute the rank of a; ...a, with
respect to Algorithm L when {a1,...,an} is the multiset {ni - z1,...,n¢ - 2+}; here
ni+---+n;=nand z1 <--- < x¢. (The total number of permutations is, of course,
the multinomial coefficient

n _ n! )
(nl,...,nt> T nalong!

see Eq. 5.1.2—(3).) What is the rank of 3141592657

5. [HM25] Compute the mean and variance of the number of comparisons made by
Algorithm L in (a) step L2, (b) step L3, when the elements {ai,...,a,} are distinct.

6. [HM34] Derive generating functions for the mean number of comparisons made
by Algorithm L in (a) step L2, (b) step L3, when {ai,...,a,} is a general multiset
as in exercise 4. Also give the results in closed form when {a1,...,a,} is the binary
multiset {m -0, (n —m) - 1}.

7. [HM35] What is the limit as ¢ — oo of the average number of comparisons
made per permutation in step L2 when Algorithm L is being applied to the multiset
(a) {2-1,2-2,...,24}? (b) {1-1,2-2,...,t-t}? (c) {2-1,4-2,...,2" - £}?

» 8. [21] The variations of a multiset are the permutations of all its submultisets. For
example, the variations of {1,2,2,3} are

e, 1,12, 122, 1223, 123, 1232, 13, 132, 1322
2, 21, 212, 2123, 213, 2132, 22, 221, 2213, 223, 2231, 23, 231, 2312, 232, 2321,
3,31, 312, 3122, 32, 321, 3212, 322, 3221.

Show that simple changes to Algorithm L will generate all variations of a given multiset
{a1,az2,...,an}.

9. [22] Continuing the previous exercise, design an algorithm to generate all 7-
variations of a given multiset {a1, az,...,a,}, namely all permutations of its r-element
submultisets. (For example, the solution to an alphametic with r distinct letters is an
r-variation of {0,1,...,9}.)

10. [20] What are the values of a1a2...an, ciC2...Cn, and didz...d, at the end of
Algorithm P, if a1az ...a, =12...7n at the beginning?
11. [M22] How many times is each step of Algorithm P performed? (Assume that
n>2.)

» 12. [M28] What is the 1000000th permutation visited by (a) Algorithm L, (b) Algo-
rithm P, (c) Algorithm C, if {a1,...,a,} ={0,...,9}? Hint: In mixed-radix notation

_ 2 6,62 5,1,2,20,0]_[0,0,1,2, 30,2, 7,1, 0
we have 1000000—[10, 9,8, 7, 6,5, 4, 3, 2,1]_[1, 2,3,4,5,6,7, 8,09, 10]-

13. [M21] (Martin Gardner, 1974.) True or false: If aias...a, is initially 12...n,
Algorithm P begins by visiting all n!/2 permutations in which 1 precedes 2; then the
next permutation is n...21.

14. [M22] Trueor false: If a1as .. .ay is initially 2122 . . . 2, in Algorithm P, we always
have Qj—c;+s = Tj at the beginning of step P5.
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15. [M23] (Selmer Johnson, 1963.) Show that the offset variable s never exceeds 2 in
Algorithm P.

16. [21] Explain how to make Algorithm P run faster, by streamlining its operations
when the value of j is near n. (This problem is analogous to exercise 1.)

17. [20] Extend Algorithm P so that the inverse permutation a ...a,, is available for
processing when aj . .. a,, is visited in step P2. (The inverse satisfies aj, = j if and only
if a; = k)

18. [21] (Rosary permutations.) Devise an efficient way to generate (n —1)!/2 permu-
tations that represent all possible undirected cycles on the vertices {1,...,n}; that is,
no cyclic shift of aj ...an or a, ...a1 will be generated if a; ...a, is generated. The
permutations (1234, 1324, 3124) could, for example, be used when n = 4.

19. [25] Construct an algorithm that generates all permutations of n distinct elements
looplessly in the spirit of Algorithm 7.2.1.1L.

20. [20] The n-cube has 2"n! symmetries, one for each way to permute and/or com-
plement the coordinates. Such a symmetry is conveniently represented as a signed
permutation, namely a permutation with optional signs attached to the elements. For
example, 231 is a signed permutation that transforms the vertices of the 3-cube by
changing x1x2x3 to z223%1, so that 000 — 001, 001 — 011, ..., 111 + 110. Design
a simple algorithm that generates all signed permutations of {1,2,...,n}, where each
step either interchanges two adjacent elements or negates the first element.

21. [M21] (E.P. McCravy, 1971.) How many solutions does the alphametic (6) have
in radix b?

22. [M15] True or false: If an alphametic has a solution in radix b, it has a solution
in radix b+ 1.

23. [M20] True or false: A pure alphametic cannot have two identical signatures
sj = sk # 0 when j # k.

24. [25] Solve the following alphametics by hand or by computer:

a) SEND + A + TAD + MORE = MONEY.

b) ZEROES + ONES = BINARY. (Peter Macdonald, 1977)

c) DCLIX + DLXVI = MCCXXV. (Willy Enggren, 1972)

d) COUPLE + COUPLE = QUARTET. (Michael R. W. Buckley, 1977)

e) FISH+ N+ CHIPS = SUPPER. (Bob Vinnicombe, 1978)

f) SATURN + URANUS + NEPTUNE + PLUTO = PLANETS. (Willy Enggren, 1968)
EARTH + AIR + FIRE + WATER = NATURE. (Herman Nijon, 1977)

g)
h) AN 4 ACCELERATING + INFERENTIAL + ENGINEERING 4 TALE 4 ELITE 4 GRANT 4 FEE +
ET 4 CETERA = ARTIFICIAL 4 INTELLIGENCE.

i) HARDY + NESTS = NASTY + HERDS.
25. [M21] Devise a fast way to compute min(a - s) and max(a - s) over all valid
permutations as ...a1o of {0,...,9}, given the signature vector s = (s1,...,s10) and
the first-letter set F' of an alphametic problem. (Such a procedure makes it possible
to rule out many cases quickly when a large family of alphametics is being considered,
as in several of the exercises that follow, because a solution can exist only when
min(a - s) <0 < max(a - s).)
26. [25] What is the unique alphametic solution to

NITHAU + KAUAT + OAHU == MOLOKAT + LANAT =4 MAUT £ HAWAII = 07

27. [30] Construct pure additive alphametics in which all words have five letters.
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28. [M25] A partition of the integer n is an expression of the form n = ni+- - -4+n; with
ny > -+ >ng > 0. Such a partition is called doubly true if a(n) = a(n1)+---+a(n) is
also a pure alphametic, where a(n) is the “name” of n in some language. Doubly true
partitions were introduced by Alan Wayne in AMM 54 (1947), 38, 412-414, where he
suggested solving TWENTY = SEVEN + SEVEN + SIX and a few others.
a) Find all partitions that are doubly true in English when 1 < n < 20.
b) Wayne also gave the example EIGHTY = FIFTY + TWENTY + NINE + ONE. Find all
doubly true partitions for 1 < n < 100 in which the parts are distinct, using the
names ONE, TWO, ..., NINETYNINE, ONEHUNDRED.

29. [M25] Continuing the previous exercise, find all equations of the form ny +--- +
ny = ni + -+ -+ n}, that are both mathematically and alphametically true in English,
when {ny,...,n,,ni,...,ny } are distinct positive integers less than 20. For example,

TWELVE + NINE 4 TWO = ELEVEN + SEVEN + FIVE;

the alphametics should all be pure.
30. [25] Solve these multiplicative alphametics by hand or by computer:

a) TWO X TWO = SQUARE. (H. E. Dudeney, 1929)
b) HIP x HIP = HURRAY. (Willy Enggren, 1970)
c) PI X R X R = AREA. (Brian Barwell, 1981)
d) NORTH/SOUTH = EAST/WEST. (Nob Yoshigahara, 1995)

31. [M22] (Nob Yoshigahara.) What is the unique solution to A/BC+D/EF+G/HI = 1,
when {A,..., I} ={1,...,9}7

32. [M25] (H. E. Dudeney, 1901.) Find all ways to represent 100 by inserting a
plus sign and a slash into a permutation of the digits {1,...,9}. For example, 100 =
91 + 5742/638. The plus sign should precede the slash.

33. [25] Continuing the previous exercise, find all positive integers less than 150 that
(a) cannot be represented in such a fashion; (b) have a unique representation.

34. [M26] Make the equation EVEN + 0DD + PRIME = z doubly true when (a) z is a
perfect 5th power; (b) z is a perfect 7th power.

35. [M20] The automorphisms of a 4-cube have many different Sims tables, only one
of which is shown in (14). How many different Sims tables are possible for that group,
when the vertices are numbered as in (12)?

36. [M23] Find a Sims table for the group of all automorphisms of the 4 x 4 tic-tac-toe
board

O 00 b O
Q © U1 =
o M O N
H o N W

namely the permutations that take lines into lines, where a “line” is a set of four
elements that belong to a row, column, or diagonal.

37. [HM22] How many Sims tables can be used with Algorithms G or H? Estimate
the logarithm of this number as n — oo.

38. [HM21] Prove that the average number of transpositions per permutation when
using Ord-Smith’s algorithm (26) is approximately sinh1 & 1.175.

39. [16] Write down the 24 permutations generated for n = 4 by (a) Ord-Smith’s
method (26); (b) Heap’s method (27).
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40. [M23] Show that Heap’s method (27) corresponds to a valid Sims table.

41. [M31] Design an algorithm that generates all r-variations of {0,1,...,n — 1} by
interchanging just two elements when going from one variation to the next. (See
exercise 9.) Hint: Generalize Heap’s method (27), obtaining the results in positions
Qn—r...an_1 Of an array ag...a,—1. For example, one solution when n =5 and r = 2
uses the final two elements of the respective permutations 01234, 31204, 30214, 30124,
40123, 20143, 24103, 24013, 34012, 14032, 13042, 13402, 23401, 03421, 02431, 02341,
12340, 42310, 41320, 41230.

42. [M20] Construct a Sims table for all permutations in which every o(k,j) and
every 7(k,j) for 1 < j < k is a cycle of length < 3.

43. [M24] Construct a Sims table for all permutations in which every o(k, k), w(k),
and 7(k,j)w(k — 1)~ for 1 < j < k is a cycle of length < 3.

44. [20] When blocks of unwanted permutations are being skipped by the extended
Algorithm G, is the Sims table of Ord-Smith’s method (23) superior to the Sims table
of the reverse colex method (18)?

45. [20] (a) What are the indices u; ...u9 when Algorithm X visits the permutation
3145926877 (b) What permutation is visited when uy ...ug = 3141577007

46. [20] True or false: When Algorithm X visits a1 ...an, we have ur > ugy1 if and
only if ar > agy1, for 1 < k < n.

47. [M21] Express the number of times that each step of Algorithm X is performed
in terms of the numbers Ny, N1, ..., N, where N is the number of prefixes a1 ...ax
that satisfy t;(a1,...,a;) for 1 < j <k.

48. [M25] Compare the running times of Algorithm X and Algorithm L, in the case
when the tests t1(a1), t2(a1,a2), ..., ta(a1,a2,...,a,) always are true.

49. [28] The text’s suggested method for solving additive alphametics with Algo-
rithm X essentially chooses digits from right to left; in other words, it assigns tentative
values to the least significant digits before considering digits that correspond to higher
powers of 10.

Explore an alternative approach that chooses digits from left to right. For example,
such a method will deduce immediately that M = 1 when SEND + MORE = MONEY. Hint:
See exercise 25.

50. [M15] Explain why the dual formula (32) follows from (13).

51. [M16] True or false: If the sets Sx = {o(k,0),...,0(k,k)} form a Sims table for
the group of all permutations, so also do the sets S, = {o(k,0)™,...,0(k, k)" }.

52. [M22] What permutations 7(k,j) and w(k) arise when Algorithm H is used with
the Sims table (36)? Compare the resulting generator with Algorithm P.

53. [M26] (F. M. Ives.) Construct a Sims table for which Algorithm H will generate
all permutations by making only n! + O((n — 2)!) transpositions.

54. [20] Would Algorithm C work properly if step C3 did a right-cyclic shift, setting
ai...ag—1ar < arai ...ag—1, instead of a left-cyclic shift?

55. [M27] Consider the factorial ruler function

pr(m) = max{k | m mod k! = 0}.

Let o and 7, be permutations of the nonnegative integers such that o7, = 70;
whenever j < k. Let ao and Bo be the identity permutation, and for m > 0 define

Ay = ﬂ;zflpr(m)ﬂm—lam—la Bm = Up!(m)ﬁm—l-
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For example, if oy, is the flip operation (1 k—1)(2 k—2)... = (0 k) (k) and if 7, = (0 k),
and if Algorithm E is started with a; = j for 0 < j < n, then a,, and B, are the
contents of ag ...an—1 and by ...bn,—_1 after step E5 has been performed m times.

a) Prove that Bint1)! ¥n+1)t = Tni1 O Tot1Tn (Buray)"

b) Use the result of (a) to establish the validity of Algorithm E.
56. [M22] Prove that Algorithm E remains valid if step E5 is replaced by

E5’. [Transpose pairs.] If k > 2, interchange bj11 <> b; for j =k —2, k—4, ...,
(2 or 1). Return to E2. |

57. [HM22] What is the average number of interchanges made in step E57

58. [M21] True or false: If Algorithm E begins with ao...an—1 = #1...z, then the
final permutation visited begins with ap = xp.

59. [M20] Some authors define the arcs of a Cayley graph as running from 7 to ma;
instead of from 7 to ajm. Are the two definitions essentially different?

60. [21] A Gray code for permutations is a cycle (mo, 71, . . ., Tn1—1) that includes every
permutation of {1,2,...,n} and has the property that m differs from 7(j1) mod n! by an
adjacent transposition. It can also be described as a Hamiltonian circuit on the Cayley
graph for the group of all permutations on {1,2,...,n}, with the n — 1 generators
((12),(23),...,(n—1n)). The delta sequence of such a Gray code is the sequence of
integers 0001 . ..dn1—1 such that

(k1) modn! = (O Or+1) .

(See 7.2.1.1-(24), which describes the analogous situation for binary n-tuples.) For
example, Fig. 23 illustrates the Gray code defined by plain changes when n = 4; its
delta sequence is (32131231)3.

a) Find all Gray codes for permutations of {1,2,3,4}.

b) Two Gray codes are considered to be equivalent if their delta sequences can be
obtained from each other by cyclic shifting (k. ..dn1—100 ...0x—1) and/or reversal
(0n1—1...6180) and/or complementation ((n—do)(n—a1)...(n—d0n—1)). Which of
the Gray codes in (a) are equivalent?

32416

Fig. 23. Algorithm P traces out
this Hamiltonian circuit on the
truncated octahedron of Fig. 5-1.
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61. [21] Continuing the previous exercise, a Gray path for permutations is like a Gray
code except that the final permutation 7,1_1 is not required to be adjacent to the initial
permutation m. Study the set of all Gray paths for n = 4 that start with 1234.

62. [M23] What permutations can be reached as the final element of a Gray path
that starts at 12...n?

63. [M25] Estimate the total number of Gray codes for permutations of {1,2,3,4,5}.

64. [23] A “doubly Gray” code for permutations is a Gray code with the additional
property that dx4+1 = dx £ 1 for all k. Compton and Williamson have proved that such
codes exist for all » > 3. How many doubly Gray codes exist for n = 57

65. [M25] For which integers N is there a Gray path through the N lexicographically
smallest permutations of {1,...,n}? (Exercise 7.2.1.1-26 solves the analogous problem
for binary n-tuples.)

66. [22] Ehrlich’s swap method suggests another type of Gray code for permutations,
in which the n — 1 generators are the star transpositions (1 2), (1 3), ..., (1 n). For
example, Fig. 24 shows the relevant graph when n = 4. Analyze the Hamiltonian
circuits of this graph.

Fig. 24. The Cayley graph for permutations of {1,2,3,4}, generated by the
star transpositions (12), (13), and (14), drawn as a twisted torus.

67. [26] Continuing the previous exercise, find a first-element-swap Gray code for
n =5 in which each star transposition (1 j) occurs 30 times, for 2 < j < 5.

68. [M30] (Kompel’'makher and Liskovets, 1975.) Let G be the Cayley graph for all
permutations of {1,...,n}, with generators (a1, ..., ax) where each «; is a transposi-
tion (u; v;); also let A be the graph with vertices {1,...,n} and edges u; — v; for
1 < j < k. Prove that G has a Hamiltonian circuit if and only if A is connected. (Fig. 23
is the special case when A is a path; Fig. 24 is the special case when A is a “star.”)

69. [28] If n > 4, the following algorithm generates all permutations A; AsA3z... A,
of {1,2,3,...,n} using only three transformations,

p=(12)(34)(56)..., o=(23)(45)(67)..., T=(34)(56)(78)...,

never applying p and 7 next to each other. Explain why it works.

Z1. [Initialize.] Set A; + j for 1 < j < n. Also set a; < 2j for j < n/2 and
an—j + 2j + 1 for j < n/2. Then invoke Algorithm P, but with parameter
n — 1 instead of n. We will treat that algorithm as a coroutine, which should
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return control to us whenever it “visits” aj ...an—1 in step P2. We will also
share its variables (except n).

Z2. [Set z and y.] Invoke Algorithm P again, obtaining a new permutation
ai...an—1 and a new value of j. If j = 2, interchange ai14s <> as+s (thereby
undoing the effect of step P5) and repeat this step; in such a case we are at the
halfway point of Algorithm P. If j =1 (so that Algorithm P has terminated),
set < y < 0 and go to Z3. Otherwise set

T 4= Qj—citstldj=—1] Y = Qj—cjts—[dj=+1];
these are the two elements most recently interchanged in step P5.

Z3. [Visit.] Visit the permutation A; ... A,. Then go to Z5if Ay = z and Az = y.

Z4. [Apply p, then o.] Interchange A: +» Az, As <> As, As & Ag, .... Visit
Aq...A,. Then interchange Ay <> A3z, Ay & As, Ag <> Az, .... Terminate
if Ay... A, =1...n, otherwise return to Z3.

Z5. [Apply 7, then o.] Interchange Az > A4, As < Ag, A7 <> As, .... Visit
Aj...A,. Then interchange Ay <> A3, Ay <> As, Ag <> A7, ..., and return
to Z2. 1

Hint: Show first that the algorithm works if modified so that A; < n+ 1 — j and
aj < j in step Z1, and if the “flip” permutations

P=010n)2n-1)..., o =2nBn-1)..., 717 =(2n-1)3n-2)...

are used instead of p, o, 7 in steps Z4 and Z5. In this modification, step Z3 should go
to Z5if Ay =z and A, = y.

70. [M38] The two 12-cycles (41) can be regarded as o—7 cycles for the twelve per-
mutations of {1,1,3,4}:

1134 — 1341 — 3411 — 4311 — 3114 — 1143 — 1431
— 4131 — 1314 — 3141 — 1413 — 4113 — 1134.

Replacing {1, 1} by {1, 2} yields disjoint cycles, and we obtained a Hamiltonian path by
jumping from one to the other. Can a o—r path for all permutations of 6 elements be
formed in a similar way, based on a 360-cycle for the permutations of {1,1,3,4,5,6}7

71. [M21] Given a Cayley graph with generators (au,..., ), assume that each o
takes z — y. (For example, both o and 7 take 1 — 2 when ¢ = (12...n) and
7 = (12).) Prove that any Hamiltonian path starting at 12...n in G must end at a
permutation that takes y — x.

72. [M30] Let o, B, and o be permutations of a set X, where X = AU B. Assume
that zo = xa when x € A and zo = 8 when = € B, and that the order of a5~ is odd.
a) Prove that all three permutations «, 3, o have the same sign; that is, they are all
even or all odd. Hint: A permutation has odd order if and only if its cycles all
have odd length.
b) Derive Theorem R from part (a).

73. [M30] (R. A. Rankin.) Assuming that a8 = Ba in Theorem R, prove that a
Hamiltonian circuit exists if and only if there is a number k such that 0 < k < g/c and
t+k L c, where 89/¢ = 4, v = a8~. Hint: Represent elements of the group in the
form B7~*.
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74. [M25] The directed torus C,, x Cy, has mn vertices (z,y) for 0 <z <m,0<y <

n, and arcs (z,y) — (z,y)a = ((z+1) mod m,y), (z,y) — (z,y)8 = (z, (y+1) mod n).

Prove that, if m > 1 and n > 1, the number of Hamiltonian circuits of this digraph is
d—1

Z(Z) [ecd((d — k)ym,kn) =d],  d = ged(m,n).

k=1

75. [M81] The cells numbered 0, 1, ..., 63 9912411911449 44 13934
in Fig. 25 illustrate a northeasterly knight’s
tour on an 8 X 8 torus: If k appears in cell 5815348143138 9 | 4 |63
(zk, k), then (Tr41,Ye+1) = (Tr +2, Yk + 1) 23|18 (13| 8 | 3 [62]33]|28

or (zx+1,yx+2), modulo 8, and (ze4,y61) = 5914742 37 32 | 27| 22| 57
(z0,y0). How many such tours are possible
on an m X n torus, when m,n > 37 17112 7 | 2 | 6156|5146

6 41(36(31|26|21|16|11
35(30| 1 |60|55]|50|45 |40
Fig. 25. A northeasterly knight’s tour. 0(59|54(|25(20(15|10| 5

76. [22] Complete the MMIX program whose inner loop appears in (42), using Heap’s
method (27).

77. [M23] Analyze the running time of the program in exercise 76, generalizing it so
that the inner loop does r! visits (with ag...ar—1 in global registers).

78. [20] What seven MMIX instructions will { Swap the nybbles ... ) as (45) requires?
For example, if register t contains the value 4 and register a contains the nybbles
#12345678, register a should change to #12345687.

79. [21] Solve the previous exercise with only five MMIX instructions. Hint: Use MXOR.

80. [22] Complete the MMIX program (46) by specifying how to { Continue with Lang-
don’s method ).

81. [M21] Analyze the running time of the program in exercise 80.

82. [22] Use the o—7 path of exercise 70 to design an MMIX routine analogous to (42)
that generates all permutations of # 123456 in register a.

83. [20] Suggest a good way to generate all n! permutations of {1,...,n} on p pro-
cessors that are running in parallel.

84. [25] Assume that n is small enough that n! fits in a computer word. What’s a
good way to convert a given permutation & = a1 ...a, of {1,...,n} into an integer
k = r(a) in the range 0 < k < n!? Both functions k = r(a) and o = 77Y(k) should
be computable in only O(n) steps.

85. [20] A partial order relation is supposed to be transitive; that is, z < y and y < z
should imply x < z. But Algorithm V does not require its input relation to satisfy this
condition.

Show that if z < y and y < z, Algorithm V will produce identical results whether
or not r < z.

86. [20] (F. Ruskey.) Consider the inversion tables cj...c, of the permutations
visited by Algorithm V. What noteworthy property do they have? (Compare with
the inversion tables (4) in Algorithm P.)
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87. [21] Show that Algorithm V can be used to generate all ways to partition the
digits {0,1,...,9} into two 3-element sets and two 2-element sets.

» 88. [M30] Consider the numbers to, t1, ..., t, in (51). Clearly to =t = 1.
a) Say that index j is “trivial” if t; = t;_1. For example, 9 is trivial with respect to
the Young tableau relations (48). Explain how to modify Algorithm V so that the
variable k£ takes on only nontrivial values.

) Analyze the running time of the modified algorithm. What formulas replace (51)?
¢) Say that the interval [j..k] is not a chain if we do not have I < I+ 1 for j <[ < k.
Prove that in such a case tx > 2t;_1.

d) Every inverse topological sort aj...a; defines a labeling that corresponds to
relations a}, < ag,, ..., aj, < a,_, which are equivalent to the original relations
Jj1 < k1, ..., jm < km. Explain how to find a labeling such that [j..k] is not a
chain when j and k are consecutive nontrivial indices.

e) Prove that with such a labeling, M < 4N in the formulas of part (b).

89. [M21] Algorithm V can be used to produce all permutations that are h-ordered
for all h in a given set, namely all a} ...a,, such that a;- < a;+h for1<j<n-—h
(see Section 5.2.1). Analyze the running time of Algorithm V when it generates all
permutations that are both 2-ordered and 3-ordered.

90. [HM21] Analyze the running time of Algorithm V when it is used with the
relations (49) to find matchings.

91. [M18] How many permutations is Algorithm V likely to visit, in a “random”
case? Let P, be the number of partial orderings on {1,...,n}, namely the number
of relations that are reflexive, antisymmetric, and transitive. Let @, be the number
of such relations with the additional property that j < k whenever j < k. Express
the expected number of ways to sort n elements topologically, averaged over all partial
orderings, in terms of P, and Q.

92. [85] Prove that all topological sorts can be generated in such a way that only
one or two adjacent transpositions are made at each step. (The example 1 < 2, 3 < 4
shows that a single transposition per step cannot always be achieved, even if we allow
nonadjacent swaps, because only two of the six relevant permutations are odd.)

» 93. [25] Show that in the case of matchings, using the relations in (49), all topological
sorts can be generated with just one transposition per step.
94. [21] Discuss how to generate all up-down permutations of {1,...,n}, namely those
ai...an such that a1 < az > a3z <aqg > ---.
95. [21] Discuss how to generate all cyclic permutations of {1,...,n}, namely those
ai ...a, whose cycle representation consists of a single n-cycle.
96. [21] Discuss how to generate all derangements of {1, ...,n}, namely thosea; ...an
such that a1 #1, a2 # 2, a3 #3, ....
97. [HM23] Analyze the asymptotic running time of the method in the previous
exercise.
98. [M30] Given n > 3, show that all derangements of {1,...,n} can be generated
by making at most two transpositions between visits.

99. [21] Discuss how to generate all indecomposable permutations of {1,...,n}, namely
those ai ...an such that {a1,...,a;} #{1,...,5} for 1 <j <n.

100. [21] Discuss how to generate all involutions of {1,...,n}, namely those permu-
tations a1 ...an with as; ...a4, =1...n.
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101. [M30] Show that all involutions of {1,...,n} can be generated by making at
most two transpositions between visits.

102. [M32] Show that all even permutations of {1,...,n} can be generated by suc-
cessive rotations of three consecutive elements.

» 103. [M22] A permutation ai...a, of {1,...,n} is well-balanced if

n

Zkak = Z(n +1-—k)ak.
k=1

k=1
For example, 3142 is well-balanced when n = 4.
a) Prove that no permutation is well-balanced when n mod 4 = 2.
b) Prove that if a; ... a, is well-balanced, so are its reversal a,, . . . a1, its complement
(n+1—a1)...(n+1-a,), and its inverse a ... ar,.
c) Determine the number of well-balanced permutations for small values of n.
> 104. [26] A weak order is a relation =< that is transitive (z < y and y < z implies
z <X z) and complete (z < y or y <X x always holds). We can write z =y if z < y and
y=<z;z<yifx <yand y A z. There are thirteen weak orders on three elements
{1,2,3}, namely

1=2=3, 1=2<3, 1<2=3, 1<2<3, 1=3<2, 1<3<2
2<1=3, 2<1<3, 2=3<1, 2<3<1, 3<1=2, 3<1<2, 3<2<1.
a) Explain how to generate all weak orders of {1,...,n} systematically, as sequences
of digits separated by the symbols = or <.
b) A weak order can also be represented as a sequence a; ...an where a; = k if j
is preceded by k < signs. For example, the thirteen weak orders on {1, 2,3} are

respectively 000, 001, 011, 012, 010, 021, 101, 102, 100, 201, 110, 120, 210 in this
form. Find a simple way to generate all such sequences of length n.

105. [M40] Can exercise 104(b) be solved with a Gray-like path?

> 106. [30] (John H. Conway, 1973.) To play the solitaire game of “topswops,” start
by shuffling a pack of n cards labeled {1,...,n} and place them face up in a pile. Then
if the top card is k > 1, deal out the top k cards and put them back on top of the pile,
thereby changing the permutation from a;j ...an to ak ...a1ak+1 - . . arn. Continue until
the top card is 1. For example, the 7-step sequence

31452 — 41352 — 53142 — 24135 — 42135 — 31245 — 21345 — 12345

might occur when n = 5. What is the longest sequence possible when n = 137

107. [M27] If the longest n-card game of topswops has length f(n), prove that f(n) <
Fn+1 — 1.

108. [M47] Find good upper and lower bounds on the topswops function f(n).
» 109. [25] Find all permutations ag . ..ag of {0,...,9} such that
{ao,a2,as,a7} = {2,5,7,8},
{a1,a4,a5} = {0,3,6},
{a1,as,a7,a8} = {3,4,5,7},
{ao,a3,a4} = {0,7,8}.

Also suggest an algorithm for solving large problems of this type.
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> 110. [M25] Several permutation-oriented analogs of de Bruijn cycles have been pro-
posed. The simplest and nicest of these is the notion of a universal cycle of permu-
tations, introduced by B. W. Jackson in Discrete Math. 117 (1993), 141-150, namely
a cycle of n! digits such that each permutation of {1,...,n} occurs exactly once as a
block of n — 1 consecutive digits (with its redundant final element suppressed). For
example, (121323) is a universal cycle of permutations for n = 3, and it is essentially
the only such cycle.
Find a universal cycle of permutations for n = 4, and prove that such cycles exist
for all n > 2.

111. [M46] Exactly how many universal cycles exist, for permutations of order n?
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SECTION 7.2.1.2
1. [J. P. N. Phillips, Comp. J. 10 (1967), 311.] Assuming that n > 3, we can replace
steps L2-L4 by:
L2'. [Easiest case?] Set y < an—1 and 2 < an. If y < 2, set an_1 + 2, an < Y,
and return to L1.
L2.1'. [Next easiest case?] Set < an—_2. If £ > y, go on to step L2.2". Otherwise
set (an—2,an-1,an) < (z,2,y) if z < z, (y, z,z) if z > 2. Return to L1.
L2.2'. [Find j.] Set j+ n—3andy<a;. fy>z,set j < j— 1,z + y, y + aj,
and repeat until y < z. Terminate if 7 = 0.
L3'. [Easy increase?] If y < z, set a; < z, aj+1 < Y, an < x, and go to L4.1".
L3.1'. [Increase a;.] Set | < n—1;if y > a;, repeatedly decrease [ by 1 until y < a;.
Then set a; + a; and a; + y.
L4'. [Begin to reverse.] Set a, < aj+1 and aj+1 + 2.

L4.1'. [Reverse ajt1...an—1.] Set k< j+2,1 <+ n—1. Then, if k <[, interchange
ar <> aj, set k< k+ 1,1+ [ —1, and repeat until £ > [. Return to L1. |
The program might run still faster if a; is stored in memory location A[n — t] for
0 <t <, or if reverse colex order is used as in the following exercise.
2. Again we assume that a1 < a2 < --- < a,, initially; the permutations generated

from {1,2,2,3} will, however, be 1223, 2123, 2213, ..., 2321, 3221. Let an4+1 be an
auxiliary element, larger than a,.

L1. [Visit.] Visit the permutation aiaz...an.

L2. [Find j.] Set j < 2. If aj_1 > aj, increase j by 1 until aj_; < a;. Terminate
if j > n.

L3. [Decrease a;.] Set ! < 1. If a; > aj, increase ! until a; < aj. Then swap
a < aj.

L4. [Reverse a1 ...aj_1.] Set k+ 1 and | + j — 1. Then, if k < I, swap ax + ai,
set k< k+ 1,1+ 1 —1, and repeat until £ > [. Return to L1. |

3. Let Ci1...C, = cay ...Ca, be the inversion table, as in exercise 5.1.1-7. Then
rank(as . ..a,) is the mixed-radix number [(’;L"’ o 62'2’ Cll] [See H. A. Rothe, Samm-
lung combinatorisch-analytischer Abhandlunéen 2 ,(1800), 263-264.] For example,
314592687 has rank [ o 2> ¢ 309 5 5 1] =281+ 6!+ 5! + 441+ 1! = 81577; this is
the factorial number system featured in Eq. 4.1-(10).

4. Use the recurrence rank(a; . ..a,) = 1 Z;zl n;lz; <ai] (n1 " nt)—l—rank(ag ceaQn).

For example, rank(314159265) is .
%(2,1,1,?,2,1,1) +0+ %(1,1,1?2,1,1) +0+ %(1,2?1,1) + %(1,14,11,1) +0+ %(121) = 30991.

5. (a) Step L2 is performed n! times. The probability that exactly k comparisons are
made is gx — k41, where g¢ is the probability that an—¢+1 > - - - > an, namely [t <n]/t!.
Therefore the mean is Y k(g —qr+1) =q1 + -+ ¢n = [nle|/nl —1xe— 1~ 1.718,
and the variance is

2:/’<:2(qk—qzc+1)—mean2 =qi+3g2+ -+ (2n—1)gn—(q1+ - +¢n)* ~ e(3—e) ~ 0.766.

[For higher moments, see R. Kemp, Acta Informatica 35 (1998), 17-89, Theorem 4.]
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Incidentally, the average number of interchange operations in step L4 is therefore
SO1E/2)(qk — qh+1) = g2+ qa+---~coshl —1 = (e+e " —2)/2 ~ 0.543, a result due
to R. J. Ord-Smith [Comp. J. 13 (1970), 152-155].

(b) Step L3 is performed only n! — 1 times, but we will assume for convenience
that it occurs once more (with 0 comparisons). Then the probability that exactly k
comparisons are made is >37 , ., 1/j! for 1 < k < n and 1/n! for k = 0. Hence the
mean is 3 Z;:Oz 1/5! ~ e/2 ~ 1.359; exercise 1 reduces this number by 2. The variance
is $ 3005 1/ 4 5 20750 1/4! — mean® & e — fe ~ 0.418.

6. (a) Let en(2) = Y5, 2"/k!; then the number of different prefixes ai...a; is
§l27) eny (2) .. .en,(2). Thisis N = (m’_’f_’nt) times the probability ¢,—; that at least

n—j comparisons are made in step L2. Therefore the mean is ~w(en, (2)...en,(2))—1,

where w(}_ 2x2"/k!) = S z). In the binary case the mean is M/(") — 1, where
m n—m+l (k m n—m-+l4+1 n+2 n m n—m

M= Zl:o k=1 (l) = Zl:() ( l—:i * ) = (mil) -1= (m)(2+ n—m-1 + m-+1 ) —-L

(b) If {a1,-..,a;} = {n} -x1,...,ni -2}, the prefix a . .. a; contributes altogether

Y1 <neci<s(r —ng)[n; <nj to the total number of comparisons made in step L3. Thus

the mean is & Di<k<i<t w(fri(2)), where

sz<z>=< I1 enm<z>> (Zw—r)fj)eml(z)

1<m<t r=0
m#k, m#l
=nk( 11 enm(z>> em-1(2) —z( 11 enm<z)> em1(2)em1(2).
1<m<t 1<m<t
m#l m#£k, m#l

In the two-valued case this formula reduces to %w((mem(z) fzem_l(z))en_m_l(z)) =
R D = x () (m = 255) +1) =  (=m — 1+ (")) = 28y — =

7. In the notation of the previous answer, the quantity ~w(en,(2)...en,(2)) —1is

nit---+m _i_(mnz+n1na-I—----l-ntqnt)+m(n1—1)-l—~~-—|—nt(m—1)+

n n(n —1) -l

One can show using Eq. 1.2.9-(38) that the limit is —1 +exp >_, -, 7% /k, where rx =
lim; oo (n¥ + -+ +nF)/(n1 + -+ + n¢)*. In cases (a) and (b) we have 7, = [k=1],
so the limit is e — 1 ~ 1.71828. In case (c) we have r, = 1/(2" — 1), so the limit is
—1+expd s, 1/(k(2° — 1)) ~ 2.46275.
8. Assume that j is initially zero, and change step L1 to
L1'. [Visit.] Visit the variation a1 ...a;. If j < n, set j < j + 1 and repeat this
step. 1

This algorithm is due to L. J. Fischer and K. C. Krause, Lehrbuch der Combinations-
lehre und der Arithmetik (Dresden: 1812), 55-57.

Incidentally, the total number of variations is w(en, (2) .. -exn,(z)) in the notation
of answer 6. This counting problem was first treated by Jakob Bernoulli in Ars
Conjectandi (1713), Part 2, Chapter 9.

9. V1. [Visit.] Visit the variation aq ...a,. (At this point ar11 < --- < an.)

V2. [Easy case?] If a, < an, interchange a, <> a; where j is the smallest subscript
such that j > r and a; > a,, and return to V1.
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V3. [Reverse.] Set (ary1,--.,an) < (an,-..,ar41) as in step L4.
V4. [Find j.] Set j « r —1. If a; > ajy1, decrease j by 1 repeatedly until
aj < aj41. Terminate if j = 0.
V5. [Increase a;.] Set | < n. If a; > ai, decrease [ by 1 repeatedly until a; < a;.
Then interchange a; < a;.
V6. [Reverse again.] Set (aj11,...,an) < (@n,...,a;4+1) as in step L4, and return
to V1. 1|
The number of outputs is 7! [2"] en, (2) . . . €x, (2); this is, of course, n when the elements
are distinct.
10. aiaz...an =213...n,c1c2...¢, =010...0, d1dz ... d, = 1(—1)1...1,if n > 2.
11. Step (P1, ..., P7) is performed (1,n!,nl,n! + z,, nl, (z, + 3)/2, z,) times, where
Tp = Z;ll k!, because P7 is performed (j — 1)! times when 2 < j < n.
12. We want the permutation of rank 999999. The answers are (a) 2783915460, by
exercise 3; (b) 8750426319, because the reflected mixed-radix number corresponding
to [V el sy % 7 e % Y] by T:2.1.1(50); (c) the
product (01 ... 9) (0 1...8)° (0 1...77°01 ... 6)2...(0 12)!, namely 9703156248.
13. The first statement is true for all n > 2. But when 2 crosses 1, namely when
¢2 changes from 0 to 1, we have ¢3 = 2, ¢4 = 3, ¢c5 = -+ = ¢, = 0, and the next
permutation when n > 5 is 432156...n. [See Time Travel (1988), page 74.]
14. True at the beginning of steps P4, P5, and P6, because exactly j—1—c;+s elements
lie to the left of z;, namely j — 1 — ¢; from {z1,...,2;_1} and s from {zj41,...,2n}.
(In a sense, this formula is the main point of Algorithm P.)
15. If [°n-1 - 0] corresponds to the reflected Gray code [ 7], we get to step P6
if and only if’ bk =k—1for j < k <nand B,_ji1 is even, by 7.2.1.1-(50). But
bn—r = k—1for j < k < n implies that B,,_, is odd for j < k < m. Therefore
s = [C]‘+1 2]] + [Cj+2 =5+ 1] = [dj+1 < 0] + [d]‘+2 < 0] in step P5. [See Math. Comp.
7 (1963), 282-285.]
16. P1'. [Initialize.] Set ¢; + j and d; < —1 for 1 < j < n; also set z + an.
P2'. [Visit.] Visit a1 ...a,. Then go to P3.5" if a1 = 2.
P3’. [Hunt down.] For j < n—1,n—2, ..., 1 (in this order), set a;4+1 + aj,
aj < z, and visit a1 ...an. Then set j +~ n—1, s + 1, and go to P4'.
P3.5'. [Hunt up.] For j < 1,2, ..., n — 1 (in this order), set a; + ajt1, aj+1 < 2,
and visit a1 ...a,. Then set j <~ n—1, s < 0.
P4'. [Ready to change?]| Set q < c; +d;. If ¢ = 0, go to P6'; if ¢ > j, go to P7’.
P5’. [Change.] Interchange Ac;+s <> gt+s- Then set ¢; < g and return to P2’
P6'. [Increase s.| Terminate if j = 1; otherwise set s < s + 1.
PT7'. [Switch direction.] Set d; < —d;, j + j — 1, and go back to P4’. |
17. Initially a; < aj < j for 1 < j < n. Step P5 should now set t < j —¢; + s,
U — g+ 8, U4 ay, @ < U, ay < T, a, < J, a; < u, ¢; < g. (See exercise 14.)
But with the inverse required and available we can actually simplify the algorithm
significantly, avoiding the offset variable s and letting the control table ¢; . ..c, count
only downwards, as noted by G. Ehrlich [JACM 20 (1973), 505-506]:
Q1. [Initialize.] Set a; < a} < j, ¢; « j—1, and d; + —1 for 1 < j < n. Also
set cg = —1.
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Q2. [Visit.] Visit the permutation a; ...a, and its inverse aj . ..aJ,.

Q3. [Find k.] Set k < n. Then if ¢, =0, set cx + k—1, dx  —di, kb« k—1,
and repeat until ¢x # 0. Terminate if k = 0.

Q4. [Change.] Set cx < cx — 1, j < ay, and i = j + di. Then set t <+ a;, a; < k,
a; < t, a; < j, aj, < i, and return to Q2. 1
18. Set an « n, and use (n — 1)!/2 iterations of Algorithm P to generate all permuta-
tions of {1,...,n — 1} such that 1 precedes 2. [M. K. Roy, CACM 16 (1973), 312-313;
see also exercise 13.]

19. For example, we can use the idea of Algorithm P, with the n-tuples ¢;...c,
changing as in Algorithm 7.2.1.1H with respect to the radices (1,2,...,n). That
algorithm maintains the directions correctly, although it numbers subscripts differently.
The offset s needed by Algorithm P can be computed as in the answer to exercise 15, or
the inverse permutation can be maintained as in exercise 17. [See G. Ehrlich, CACM
16 (1973), 690-691.] Other algorithms, like that of Heap, can also be implemented
looplessly.

(Note: In most applications of permutation generation we are interested in mini-
mizing the total running time, not the maximum time between successive visits; from
this standpoint looplessness is usually undesirable, except on a parallel computer. Yet
there’s something intellectually satisfying about the fact that a loopless algorithm
exists, whether practical or not.)

20. For example, when n = 3 we can begin 123, 132, 312, 312, 132, 123, 213, ...,

213,213, .... If the delta sequence for n is (6102 . .. dann1 ), the corresponding sequence
for n + 11is (And61ARd2...Apdany), where A, is the sequence of 2n — 1 operations
nn—1 ... 1—1 ... n—1n; here 6 = j means a; <> a;j+1 and I = — means
a; < —ai.

(Signed permutations appear in another guise in exercises 5.1.4-43 and 44. The
set of all signed permutations is called the octahedral group.)

21. Clearly M = 1, hence 0 must be 0 and S must be b—1. Then N=E+1,R=0b— 2,
and D+ E = b+ Y. This leaves exactly max(0,b— 7 — k) choices for E when Y =k > 2,
hence a total of >0 7 (b—7—k) = (*3?) solutions when b > 8. [Math. Mag. 45 (1972),
4849

22. (XY)p + (XX)» = (XYX)s is solvable only when b = 2.

23. Almost true, because the number of solutions will be even, unless [j € F] # [k € F].
(Consider the ternary alphametic X + (XX)s + (YY)s + (XZ)s = (XYX)s.)

24. (a) 9283 + 7 + 473 + 1062 = 10825. (b) 698392 + 3192 = 701584. (c) 63952 +
69275 = 133227. (d) 653924 + 653924 = 1307848. (e) 5718 + 3 + 98741 = 104462. (f)
127503+4502351+3947539+ 46578 = 4623971. (g) 67432+704+8046+97364 = 173546.
(h) 59 4 577404251698 + 69342491650 + 49869442698 + 1504 + 40614 + 82591 + 344 +
41 + 741425 = 5216367650 + 691400684974. [All solutions are unique. References for
(b)—(g): J. Recreational Math. 10 (1977), 155; 5 (1972), 296; 10 (1977), 41; 10 (1978),
274; 12 (1979), 133-134; 9 (1977), 207.]

(i) In this case there are 1%10! = 2903040 solutions, because every permutation of
{0,1,...,9} works except those that assign Hor N to 0. (A well-written general additive
alphametic solver will be careful to reduce the amount of output in such cases.)

25. We may assume that s; < -+ < s19. Let ¢ be the least index ¢ F, and set
a; < 0; then set the remaining elements a; in order of increasing j. A proof like that
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of Theorem 6.1S shows that this procedure maximizes a - s. A similar procedure yields
the minimum, because min(a - s) = —max(a - (—s)).

26. 400739 + 63930 — 2379 — 1252630 + 53430 — 1390 4 738300.

27. Readers can probably improve upon the following examples: BLOOD + SWEAT +
TEARS = LATER; EARTH + WATER + WRATH = HELLO + WORLD; AWAIT + ROBOT + ERROR =
SOBER 4 WORDS; CHILD 4 THEME 4 PEACE 4 ETHIC = IDEAL 4 ALPHA 4 METIC. (This exercise
was inspired by WHERE + SEDGE + GRASS + GROWS = MARSH [A. W. Johnson, Jr., J. Recr.
Math. 15 (1982), 51], which would be marvelously pure except that D and 0 have the
same signature.)

28. (a) 11 =34+3+2+2+1,20=11+3+3+4+3,20 =11+3+3+2+1,
20=114+34+3+14+1+1,20=84+8+24+1+1,20=74+74+6,20=7T4+7+24+2+2,
20=74+74+2+1+1+1+1,20=74+54+54+24+1,20=7+5+2+2+2+1+1, 20 =
T+5+24+2+1+1+1+1, 20 = 7T4+34+34+24+2414141, 20 = 7T4+3434+14+14+14+1414141,
20 = 5+3+3+3+3+3. [These fourteen solutions were first computed by Roy Childs
in 1999. The next doubly partitionable values of n are 30 (in 20 ways), then 40 (in 94
ways), 41 (in 67), 42 (in 57), 50 (in 190 ways, including 50 = 2+ 2 + -- - + 2), etc.]

(b) 51 =20+15+14+2,51=15+14+10+9+3,61 =19+ 16+ 11+ 9 + 6,
65=17+164+154+9+7+1,66 =20+19+16+6+5,69 =18+ 17+ 16+ 10+ 8,
70=30+20+10+7+3,70=20+164+124+9+7+6,70 =20+ 15+ 12+ 114+ 7+5,
80 =504+20+9+1,90 =504+12+114+9+5+2+1, 91 =45+19+11+10+5+1. [The
two 51s are due to Steven Kahan; see his book Have Some Sums To Solve (Farmingdale,
New York: Baywood, 1978), 36-37, 84, 112. Amazing examples with seventeen distinct
terms in Italian and fifty-eight distinct terms in Roman numerals have been found by
Giulio Cesare, J. Recr. Math. 30 (1999), 63.]

Notes: The beautiful example THREE = TWO + ONE + ZERQ [Richard L. Breisch,
Recreational Math. Magazine 12 (December 1962), 24] is unfortunately ruled out by our
conventions. The total number of doubly true partitions into distinct parts is probably
finite, in English, although nomenclature for arbitrary large integers is not standard. Is
there an example that exceeds NINETYNINENONILLIONNINETYNINETRILLIONNINETYONE =
NINETYNINENONILLIONNINETYNINETRILLIONFORTYFIVE + NINETEEN + ELEVEN 4 TEN 4
FIVE + ONE?

20. 104+7+1=9+6+3,114+10=8+7+6,124+7+6+5=11+10+9, ...,
19+10+3 =14+ 13+ 4+ 1 (31 examples in all).

30. (a) 5677 = 321489, 8072 = 651249, or 854> = 729316. (b) 958% = 917764. (c) 96 x
7% = 4704. (d) 51304/61904 = 7260/8760. [Strand 78 (1929), 91, 208; J. Recr. Math
3 (1970), 43; 13 (1981), 212; 27 (1995), 137. The solutions to (b), (c), and (d) are
unique. With a right-to-left approach based on Algorithm X, the answers are found in
(14, 13, 11, 3423) kilomems, respectively.]

31. 5/34+7/6849/12(!). One can verify uniqueness with Algorithm X using the side
condition A < D < G, in about 265 K.

32. There are eleven ways, of which the most surprising is 3 4+ 69258/714. [See The
Weekly Dispatch (9 and 23 June 1901); Amusements in Mathematics (1917), 158-159.]

33. (a) 1, 2, 3, 4, 15, 18, 118, 146. (b) 6, 9, 16, 20, 27, 126, 127, 129, 136, 145. [The
Weekly Dispatch (11 and 30 November, 1902); Amusements in Math. (1917), 159.]

In this case one suitable strategy is to find all variations where ay ...a;—1/a; ... a9
is an integer, then to record solutions for all permutations of a; ...ar—1. There are

42



7.2.1.2 ANSWERS TO EXERCISES 43

exactly 164959 integers with a unique solution, the largest being 9876533. There are
solutions for all years in the 21st century except 2091. The most solutions (125) occur
when n = 6443; the longest stretch of representable n’s is 5109 < n < 7060. Dudeney
was able to get the correct answers by hand for small n by “casting out nines.”

34. (a) z = 10°, 7378+155+92467 = 7178+355+92467 = 1016-+733+98251 = 100000.
(b) « = 47, 3036 + 455 + 12893 = 16384 is unique. The fastest way to resolve this
problem is probably to start with a list of the 2529 primes that consist of five distinct
digits (namely 10243, 10247, ..., 98731) and to permute the five remaining digits.

Incidentally, the unrestricted alphametic EVEN + 0DD = PRIME has ten solutions;
both 0DD and PRIME are prime in just one of them. [See M. Arisawa, J. Recr. Math. 8
(1975), 153.]

35. In general, if s, = ||Sk|| for 1 < k < n, there are s1 ... sx_1 ways to choose each of
the nonidentity elements of Sy. Hence the answer is [[}_; (Hf;ll sj’“fl), which in this
case is 2% - 6% - 24" = 436196692474023836123136.

(But if the vertices are renumbered, the s, values may change. For example,
if vertices (0,3,5) of (12) are interchanged with (e,d,c), we have s14 = 1, s13 = 6,
s12 =4, s11 =1, and 4° - 2415 Sims tables.)
36. Since each of {0,3,5,6,9,a,c,f} lies on three lines, but every other element lies
on only two, it is clear that we may let Sz = {(),0,0%,0%, a, ao, ac?,ac®}, where ¢ =
(03fc)(17e4)(2bd4)(56a9) is a 90° rotation and a = (05)(14)(27)(36)(8d)(9c)(af)(be)
is an inside-out twist. Also Se = {(),5,7, 87}, where 8 = (14)(28)(3c)(69)(be) is a
transposition and v = (12)(48)(5a)(69)(7b)(de) is another twist; Sq = --- = S1 = {()}.
(There are 47 — 1 alternative answers.)

37. The set S, can be chosen in k!*~' ways (see exercise 35), and its nonidentity
elements can be assigned to o(k,1), ..., o(k,k) in k! further ways. So the answer is

An =TIt k% = G/ TT7_, k(). For example, Ao ~ 6.256 x 105, We have

n—1

Z(g) Ink = %/ z(z —1)Inzdz + O(n’logn) = énglnn—i—O(nS)
1

k=1

by Euler’s summation formula; thus In A, = $n° Inn + O(n®).

38. The probability that ¢(k) is needed in step G4 is 1/k! — 1/(k + 1)!, for 1 <
k < n; the probability is 1/n! that we don’t get to step G4 at all. Since ¢(k) does
[k/2] transpositions, the average is Y. p—; (1/k! — 1/(k + 1)!)[k/2] = Snzi ([k/2] —
[(k = 1)/21)/k! = [(n = 1)/2]/nl = 35 gaa 1/k! + O(1/(n — 1)}).

39. (a) 0123, 1023, 2013, 0213, 1203, 2103, 3012, 0312, 1302, 3102, 0132, 1032, 2301,
3201, 0231, 2031, 3021, 0321, 1230, 2130, 3120, 1320, 2310, 3210; (b) 0123, 1023, 2013,
0213, 1203, 2103, 3102, 1302, 0312, 3012, 1032, 0132, 0231, 2031, 3021, 0321, 2301,
3201, 3210, 2310, 1320, 3120, 2130, 1230.

40. By induction we find o(1,1) = (0 1), 0(2,2) = (0 1 2),

() = 0 k) (k-1 k-2 ... 1), if k>3 is odd,
T = V0 -1k-21 ... k-3K), ifk>4iseven;
also w(k) = (0 k) when k is even, w(k) = (0 k—2 ... 1 k—1 k) when k > 3 is odd.
Thus when k > 3 is odd, o(k,1) = (k k—10) and o(k, j) takes k> j—1for 1 < j <k;
when k >4 is even, o(k,j) = (0 k k=3 ... 1 k=2 k—1)7 for 1 < j < k.
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Notes: The first scheme that causes Algorithm G to generate all permutations by
single transpositions was devised by Mark Wells [Math. Comp. 15 (1961), 192-195],
but it was considerably more complicated. W. Lipski, Jr., studied such schemes in
general and found a variety of additional methods [Computing 23 (1979), 357-365].

41. We may assume that r < n. Algorithm G will generate r-variations for any Sims
table if we simply change ‘k <— 1’ to ‘k <— n — r’ in step G3, provided that we redefine
w(k) tobe o(n —r,n—r)...0(k, k) instead of using (16).

If n —r is odd, the method of (27) is still valid, although the formulas in answer 40
need to be revised when k < n —r + 2. The new formulas are o(k, j) = (k j—1 ... 10)
and w(k)=(k ... 10) whenk=n—r; o(k,j) = (k ... 10) when k=n —r + 1.

If n — r is even, we can use (27) with even and odd reversed, if r < 3. But when
r > 4 a more complex scheme is needed, because a fixed transposition like (k 0) can
be used for odd k only if w(k — 1) is a k-cycle, which means that w(k — 1) must be an
even permutation; but w(k) is odd for k > n —r + 2.

The following scheme works when n — r is even: Let 7(k,j) = (k k—j) for 1 <
j <k =n-—r,and use (27) when & > n —r. Then, when & = n — r + 1, we have
w(k—1)=(01 ... k—1), hence o(k,j) takes k — (25 — 1) mod k for 1 < j < k, and
olk,k)=(kk—1k-3 ...0k=2 ... 1),wk)=(k ... 10), o(k+1,5) = (k+1 ... 0)%.

42. If o(k,j) = (k j—1) we have 7(k,1) = (k 0) and 7(k,j) = (k j—1)(k j—2) =
(k j—1 j—2) for 2< j < k.

43. Of course w(l) = o(1,1) = 7(1,1) = (0 1). The following construction makes
w(k) = (k—2 k—1k) for all k > 2: Let a(k,j) = 7(k, j)w(k—1)", where «(2,1) = (2 0),
a(2,2) =(201), a(3,1) = a(3,3) = (3 1), a(3,2) = (3 1 0); this makes 0(2,2) = (0 2),
0(3,3) = (0 3 1). Then for k > 4, let

kmod3 =0 kmod3 =1 kmod 3 =2
a(k,k—2) = (kk-20) or (kk=30) or (kk-10),
alk,k-1) = (k k-2 k-3) or (k k-3) or (kk—1k-3),
a(k,k) = (kk-2) or (kk—3k—2) or (k k—2);

this makes o(k, k) = (k—3 k k—2) as required.
44. No, because 7(k,j) is a (k + 1)-cycle, not a transposition. (See (19) and (24).)

45. (a) 202280070, since uj, = max ({0,1,...,ax—1}\{a1,...,ax—1}). (Actually u, is
never set by the algorithm, but we can assume that it is zero.) (b) 425368917.

46. True (assuming that u, = 0). If either ux > upy1 or ar > ar+1 we must have
ax > Uk > Gg+1 > Uk+1.

47. Steps (X1,X2,...,X6) are performed respectively (1, A, B, A—1, B— N,, A) times,
where A=No+:--+ Np—1 and B=nNo+ (n—1)N1 +---+ 1N, _1.

48. Steps (X2, X3 X4,X5,X6) are performed respectively A, + (1,n!,0,0,1) times,
where A, = Y71 nk = n! 3?71 1/k! & nl(e — 1). Assuming that they cost respec-
tively (1,1,3,1,3) mems, for operations involving a;, [;, or u;, the total cost is about
9e — 8 &~ 16.46 mems per permutation.

Algorithm L uses approximately (e, 2+ ¢/2, 2e +2e~! — 4) mems per permutation
in steps (L2,13,14), for a total of 3.5¢ 4+ 2e™" — 2 &~ 8.25 (see exercise 5).

Algorithm X could be tuned up for this case by streamlining the code when k is
near n. But so can Algorithm L, as shown in exercise 1.
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49. Order the signatures so that |so| > -+ > |so|; also prepare tables wy ...ws,
Zo...ZT9, Yo.--Yo, s0 that the signatures {si,...,s9} are wy, < --- < wy,. For
example, when SEND + MORE = MONEY we have (so,...,89) = (—9000,1000,—900, 91,
—90, 10,1, —1,0, 0) for the respective letters (M, S,0,E,N,R,D, Y, A, B); also (wo, - .., wq) =
(—9000, —900, —90, —1,0,0,1,10,91,1000) and zo...zs = 01122333344, yo...ys =
9988776554. Yet another table fo...fg has f; = 1 if the digit corresponding to wj
cannot be zero; in this case fo...fo = 1000000001. These tables make it easy to
compute the largest and smallest values of

Skar + -+ + Soag

over all choices ay, ... ay of the remaining digits, using the method of exercise 25, since
the links [; tell us those digits in increasing order.

This method requires a rather expensive computation at each node of the search
tree, but it often succeeds in keeping that tree small. For example, it solves the first
eight alphametics of exercise 24 with costs of only 7, 13, 7, 9, 5, 343, 44, and 89
kilomems; this is a substantial improvement in cases (a), (b), (e), and (h), although
case (f) comes out significantly worse. Another bad case is the ‘CHILD’ example of
answer 27, where left-to-right needs 2947 kilomems compared to 588 for the right-to-
left approach. Left-to-right does, however, fare better on BLOOD + SWEAT + TEARS (73
versus 360) and HELLO + WORLD (340 versus 410).

3 1

50. If o is in a permutation group, so are all its powers o, ®, ..., including ™! =
a~, where m is the order of « (the least common multiple of its cycle lengths). And
(32) is equivalent to @~ = 0102...0n_1.

51. False. For example, o(k,7)” and o(k, )~ might both take k — 0.
52. 7(k,j) = (k—j k—j+1) is an adjacent interchange, and

w(k) = (n=1 ... 0)(n=2 ... 0)...(k ... 0) = ¢(n—1)p(k — 1)

is a k-flip followed by an n-flip. The permutation corresponding to control table
€o...Cn—1 in Algorithm H has c¢; elements to the right of j that are less than j,
for 0 < j < n; so it is the same as the permutation corresponding to cj...c, in
Algorithm P, except that subscripts are shifted by 1.

The only essential difference between Algorithm P and this version of Algorithm H
is that Algorithm P uses a reflected Gray code to run through all possibilities of its
control table, while Algorithm H runs through those mixed-radix numbers in ascending
(lexicographic) order.

Indeed, Gray code can be used with any Sims table, by modifying either Algo-
rithm G or Algorithm H. Then all transitions are by 7(k,j) or by 7(k,j)”, and the
permutations w(k) are irrelevant.

53. The text’s proof that n! — 1 transpositions cannot be achieved for n = 4 also shows
that we can reduce the problem from n to n — 2 at the cost of a single transposition
(n—1 n—2), which was called ‘(3¢)’ in the notation of that proof.

Thus we can generate all permutations by making the following transformation
in step H&: If k = n —1or k = n — 2, transpose a;j modn * Q(j—1) mod n, Where
j=cn_1—1. If k =n—3 or k = n—4, transpose a,_1 <> an—2 and also G mod (n—2) <
@(j—1) mod (n—2), Where j = c,—3—1. And in general if k =n—2t—1ork=n—2t—2,
transpose an—2i+1 <> an—2; for 1 < ¢ < ¢ and also a; mod (n—2t) > A(j—1) mod (n—2t)»
where j = cn—2t—1 — 1. [See CACM 19 (1976), 68-72.]
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The corresponding Sims table permutations can be written down as follows, al-
though they don’t appear explicitly in the algorithm itself:
{(0 1...j-1k), ifn—kisodd;
(01 ... k), if n — k is even.

The value of a; med (n—2¢) Will be n — 2t — 1 after the interchange. For efficiency we
can also use the fact that k& usually equals n — 1. The total number of transpositions

is 2 (n — 26)! — [n/2] — 1.
54. Yes; the transformation can be any k-cycle on positions {1,...,k}.

U(kvj)_ =

55. (a) Since pi(m) = p(mmodn!) when n > pi(m), we have pi(n! + m) = pi(m)
for 0 <m < n.n! = (n+ 1)! —nl. Therefore Bniym = T4 (n14m) -+ Tp(n14+1)Pnt =
Opi(m) +++ Tpy(1) Bnt = BmPnr for 0 < m < n-n!, and we have in particular

— +1
/3(n+1)! = Un+16(n+1)!—1 = Un+15n!71/8:f! = O0n410n ,3::!

Similarly a4, = B, @mBriay for 0 <m < n-nl.
Since B commutes with 7, and 7,41 we find a, = Than—1, and

A(n41)! = Tn1Q¥(nt1)l—1 = Tn+1f6;!a(n+1)!—1—nﬂn!an!

= Tp+1 /B‘rj!nan!fl (/Bn!an!)n

= B;!n_lTn#»lTn_ (/Bn!an!)n+1
= Bn41)10n+100 Tat1Tp (CHT-) e

(b) In this case 0,110, = (nn—1 ... 1) and 7,17, = (n+1 n 0), and we have
Bin+1)1®nt1) = (n+1n ... 0) by induction. Therefore ajpiym, = 8o’ am(n ... 0)7
for 0 < j <mand 0 <m < nl. All permutations of {0,...,n} are achieved because
B a, fixesn and (n ... 0)7 takes n —n — j.

56. If we set o) = (k—1 k—2)(k—3 k—4) ... in the previous exercise, we find by induc-
tion that Bnian is the (n+1)-cycle Onn—-1n—3 ... (2orl)(lor2) ... n—4 n—2).
57. Arguing as in answer 5, we obtain 3 p_,[kodd]/k! — (|n/2] —1)/n! =sinh1—1—
O(1/(n—1)h.

58. True. By the formulas of exercise 55 we have a,,,_; = (0 n)3,,(n ... 0), and
this takes 0 — n — 1 because By fixes n. (Consequently Algorithm E will define a
Hamiltonian circuit on the graph of exercise 66 if and only if 8,1 = (n—1 ... 2 1), and
this holds if and only if the length of every cycle of B(,_1): is a divisor of n. The latter
is true for n = 2, 3, 4, 6, 12, 20, and 40, but for no other n < 250,000.)

59. The Cayley graph with generators (a1, ..., ax) in the text’s definition is isomorphic
to the Cayley graph with generators (ai,...,a; ) in the alternative definition, since
m — a;m in the former if and only if 77 — 77 a; in the latter.

60. There are 88 delta sequences, which reduce to four classes: P = (32131231)% (plain
changes, represented by 8 different delta sequences); @ = (32121232)* (a doubly Gray
variant of plain changes, with 8 representatives); R = (121232321232) (a doubly Gray
code with 24 representatives); S = 2a3a’™, a = 12321312121 (48 representatives).
Classes P and @Q are cyclic shifts of their complements; classes P, @, and S are shifts
of their reversals; class R is a shifted reversal of its complement. [See A. L. Leigh Silver,
Math. Gazette 48 (1964), 1-16.]
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61. There are respectively (26, 36, 20, 26, 28, 40, 40, 20, 26, 28, 28, 26) such paths ending
at (1243, 1324, 1432, 2134, 2341, 2413, 3142, 3214, 3421, 4123, 4231, 4312).

62. There are only two paths when n = 3, ending respectively at 132 and 213.
But when n > 4 there are Gray paths leading from 12...n to any odd permuta-
tion aiaz...an. Exercise 61 establishes this when n = 4, and we can prove it by
induction for n > 4 as follows.

Let A(j) be the set of all permutations that begin with j, and let A(j, k) be
those that begin with jk. If (ao,1,...,an) are any odd permutations such that
aj € A(zj,xj4+1), then (12)q; is an even permutation in A(zj41,x;). Consequently, if

Z1ZT2 ... Tn is a permutation of {1,2,...,n}, there is at least one Hamiltonian path of
the form
12— -—ar1—(12)ag—---—ar— - — (12)an_1— - —an;

the subpath from (12)a;_1 to «; includes all elements of A(z;).

This construction solves the problem in at least (n — 2)!™ /2"~ ! distinct ways when
a1 # 1, because we can take ag =21...n and o, = ai1az ... ay; there are (n —2)! ways
to choose z2...xn—1, and (n — 2)!/2 ways to choose each of a1, ..., an_1.

Finally, if a1 = 1, take any path 12...n— ---—aja2...a, that runs through
all of A(1), and choose any step a — o' with a € A(1,j) and o’ € A(1,j') for some
j # j'. Replace that step by

a—(12a;—-—az——(12)ap1— - —ap—0a’,

using a construction like the Hamiltonian path above but now with a1 = a, an =
(12)a, z1 = 1, 22 = j, z, = j', and 41 = 1. (In this case the permutations a1,
.., ap might all be even.)

63. Monte Carlo estimates using the techniques of Section 7.2.3 suggest that the total
number of equivalence classes will be roughly 1.2 x 102'; most of those classes will
contain 480 Gray codes.

64. Exactly 2,005,200 delta sequences have the doubly Gray property; they belong to
4206 equivalence classes under cyclic shift, reversal, and/or complementation. Nine
classes, such as the code 2a2af where

a = 12343234321232121232321232121234343212123432123432121232321,

are shifts of their reversal; 48 classes are composed of repeated 60-cycles. One of the
most interesting of the latter type is aa where

o = B2B4BAB4R4, B = 32121232123.

65. Such a path exists for any given N < n!: Let the Nth permutation be a« = a; ... an,
and let j = a1. Also let I be the set of all permutations 8 = b; ...b,, for which by =k
and B < «. By induction on N there is a Gray path P for IT;. We can then construct
Gray paths Py for IT; UII; U--- UTIlx—q for 2 < k < j, successively combining Pr_1
with a Gray code for II_;. (See the “absorption” construction of answer 62. In fact,
P; will be a Gray code when N is a multiple of 6.)

66. Defining the delta sequence by the rule (x11) mod nt = (1 0k) 7k, we find exactly 36
such sequences, all of which are cyclic shifts of a pattern like (zyzyzyzzyzyz)®. (The
next case, n = 5, probably has about 10'® solutions that are inequivalent with respect
to cyclic shifting, reversal, and permutation of coordinates, thus about 6 x 10" different
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delta sequences.) Incidentally, Igor Pak has shown that the Cayley graph generated by
star transpositions is an (n — 2)-dimensional torus in general.

67. If we let m be equivalent to m(12345), we get a reduced graph on 24 vertices that
has 40768 Hamiltonian circuits, 240 of which lead to delta sequences of the form o’ in
which « uses each transposition 6 times (for example, o = 354232534234532454352452).
The total number of solutions to this problem is probably about 10*¢.

68. If Aisn’t connected, neither is G. If A is connected, we can assume that it is a free
tree. Moreover, in this case we can prove a generalization of the result in exercise 62:
For n > 4 there is a Hamiltonian path in G from the identity permutation to any odd
permutation. For we can assume without loss of generality that A contains the edge
1— 2 where 1 is a leaf of the tree, and a proof like that of exercise 62 applies.

[This elegant construction is due to M. Tchuente, Ars Combinatoria 14 (1982),
115-122. Extensive generalizations have been discussed by Ruskey and Savage in STAM
J. Discrete Math. 6 (1993), 152-166. See also the original Russian publication in
Kibernetika 11,3 (1975), 17-25; English translation, Cybernetics 11 (1975), 362—-366.]

69. Following the hint, the modified algorithm behaves like this when n = 5:

1234 1243
4 T

1423 4123
l 1

132

~

1

1432 1342
T 1

1324
4

3124 3142
1 T

éél? 4312
' 1

54321
12345
15342
23451

24351
15342
12435
53421

24153
35142
32415
51423

54123 14523
32145 32541
35412431452
21453—25413

14325
52341
51432
23415

24315
51342
52431
13425

24513 54213
31542 31245
32451435421
1542312453

14253
35241
31425
52413

14352
25341
21435
53412

54312
21345
25431
13452

21543 51243
34512 34215
32154—35124
45123442153

53241 23541
14235 14532
15324—12354
42351445321

43215 43512<-41532 41235
51234 21534—23514 53214

23145
54132
52314
41325

45231—43251

25143 15243
34152 34251
32514+-31524
41523—42513

13245
54231
51324
42315

43152—45132

13254415234 2513423154

13542 53142
24531 24135
21354—25314
45312441352

52143 12543
34125 34521
35214— 31254
41253445213

42135 42531443521 43125
53124 13524—12534 52134

1 T { T { T { t { T 1 l

Here the columns represent sets of permutations that are cyclically rotated and/or
reflected in all 2n ways; therefore each column contains exactly one “rosary permuta-
tion” (exercise 18). We can use Algorithm P to run through the rosary permutations
systematically, knowing that the pair zy will occur before yx in its column, at which
time 7’ instead of p’ will move us to the right or to the left. Step Z2 omits the
interchange a1 <+ a2, thereby causing the permutations a; . .. a,_1 to repeat themselves
going backwards. (We implicitly use the fact that t[k] = ¢[n! — k] in the output of
Algorithm T.)

Now if we replace 1...n by 24...31 and change A;... A, to A1A,A2A,_1...,
we get the unmodified algorithm whose results are shown in Fig. 22(b).

This method was inspired by a (nonconstructive) theorem of E. S. Rapoport,
Scripta Math. 24 (1959), 51-58. It illustrates a more general fact observed by Carla
Savage in 1989, namely that the Cayley graph for any group generated by three
involutions p, o, 7 has a Hamiltonian circuit when p7 = 7p [see . Pak and R. Radoi¢i¢,
“Hamiltonian expanders,” to appear.|

70. No; the longest cycle in that digraph has length 358. But there do exist pairs of
disjoint 180-cycles from which a Hamiltonian path of length 720 can be derived. For
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example, consider the cycles aofSo and yoo where

5.5 3 2 5 3 2 5 5 2 3 1 5 5 5 3 1 _1_ 3 2 1__1
Q =T0 TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO ;|

3.5 2 2 5 2 3 1 1 5 1 3 5 5 3 2 1 2 3 1_ 1 3 2 4
ﬁ:UTO'TO'TCTTO'TO'TG'TO'TCTTO'TO'TCTTO'TO'TU'TO'TO'TO'TO'TO'TO’TO’TO'TO’;
565 3 1 1_3 2 5 2 3 5 1 5 3 2 1_ 2 3 1 1 __3 2
Y =O0TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO
5_&5 65 3 5 2 5 2 3 1 1 5 1 3 3 5 5 1 5 2 3 1 2
TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO .

If we start with 134526 and follow ao 37 we reach 163452; then follow yor and reach
126345; then follow oy7 and reach 152634; then follow Soa, ending at 415263.

71. Any Hamiltonian path includes (n — 1)! vertices that take y — z, each of which (if
not the last) is followed by a vertex that takes z — z. So one must be last; otherwise
(n — 1)!' 4+ 1 vertices would take z — .

72. (a) Assume first that g is the identity permutation (). Then every cycle of a that
contains an element of A lies entirely within A. Hence the cycles of o are obtained by
omitting all cycles of a that contain no element of A. All remaining cycles have odd
length, so o is an even permutation.

If B is not the identity, we apply this argument toa’ = a8, 8 = (), and o’ = 37,
concluding that ¢’ is an even permutation; thus o and 3 have the same sign.

Similarly, o and « have the same sign, because Sa~ = (a8~ )~ has the same order
as af”.

(b) Let X be the vertices of the Cayley graph in Theorem R, and let a be the
permutation of X that takes a vertex m into am; this permutation has g/a cycles of
length a. Define the permutation 3 similarly. Then 8~ has g/c cycles of length c. If
c is odd, any Hamiltonian circuit in the graph defines a cycle o that contains all the
vertices and satisfies the hypotheses of (a). Therefore a and 3 have an odd number of
cycles, because the sign of a permutation on n elements with 7 cycles is (=1)""" (see
exercise 5.2.2-2).

[This proof, which shows that X cannot be the union of any odd number of cycles,
was presented by Rankin in Proc. Cambridge Phil. Soc. 62 (1966), 15-16.]

73. The representation 874" is unique if we require 0 < j < g/c and 0 < k < ¢. For
if we had 37 = ~* for some j with 0 < j < g/c, the group would have at most jc
elements. It follows that 39/¢ = 4* for some t.

Let o be a Hamiltonian circuit, as in the previous answer. If xo = za then zvyo
must be zya, because zy8 = a. And if xzoc = zf then xyo cannot be xya, because
that would imply z7y°c = zv°a. Thus the elements zv"* all have equivalent behavior
with respect to their successors in o.

Notice that if j > 0 there is a k < j such that zo? = za*B87~% = 2874*. Therefore
zo9/¢ = zy'T* is equivalent to z, and the same behavior will repeat. We return to
for the first time in g steps if and only if ¢ + k is relatively prime to c.

74. Apply the previous exercise with ¢ = mn, a = m, b = n, ¢ = mn/d. The number ¢
satisfies t = 0 (modulo m), t + d = 0 (modulo n); and it follows that k + ¢ L ¢ if and
only if (d — k)m/d L kn/d.

Notes: The modular Gray path of exercise 7.2.1.1-78 is a Hamiltonian path from
(0,0) to (m—1, (—m) mod n), so it is a Hamiltonian circuit if and only if m is a multiple
of n. It is natural to conjecture (falsely) that at least one Hamiltonian circuit exists
whenever d > 1. But P. Erdds and W. T. Trotter have observed [J. Graph Theory 2
(1978), 137-142] that if p and 2p+ 1 are odd prime numbers, no suitable k exists when

m = p(2p + ]_) (3p + ]_) and n = (3p + ]_) Hsil q[q is prime] [Q?EP][(J#?P'FH_
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See J. A. Gallian, Mathematical Intelligencer 13,3 (Summer 1991), 40-43, for
interesting facts about other kinds of cycles in Cy, x C,.

75. We may assume that the tour begins in the lower left corner. There are no solutions
when m and n are both divisible by 3, because 2/3 of the cells are unreachable in that
case. Otherwise, letting d = ged(m,n) and arguing as in the previous exercise but with
(z,y)a = ((z +2) mod m, (y+ 1) mod n) and (z,y)B8 = ((z + 1) mod m, (y + 2) mod n),
we find the answer

d—1

Z(i) [gcd((2d—k)m, (k+d)n) = d or (mn L 3 and ged((2d—k)m, (k-+d)n) = 3d)].

k=1

76. 01
02
03
04
05
06
07

08
09
10
11
12
13
14

15
16
17
18
19

20
21

22
23
24

25
26
27
28
29
30
31
32
33
34
85
36
37
38
39

* Permutation generator \‘a la Heap

N
t
J
k
ak

aj

AO
Al
A2

< e

1H

OH

IS
IS
IS
IS
IS
IS

LOC
GREG
IS
IS
IS
LOC
GREG
LOC
0CTA
GREG
GREG
GREG

LoC
STCO
INCL
LDO
CMP
BZ
BN
LDO
ADD
STO
AND
CSz
LDO
STO
CSz
SUB
CSz
SUB
CSz
STO

10

$255

$0

$1

$2

$3
Data_Segment
¢

@

e+8

0+16
Q+8*N
0-8%3
Q@-8x3+8*N
-1

0

0

0

#100
0,c,k
k,8
j,c,k
t,j,k
t,1B
j,Done
ak,a,k
t,3,8
t,c,k
t,k,#8
j»t,0
aj,a,j
ak,a,j
u,j,ak
j»3,8
v,j,ak
j»3,8
w,j,ak
aj,a,k

The value of n (3 or more, not large)

8j
8k

Base address for ag...a,_1

Space for ag ...an—1

Location of 8¢

8c3 ...8¢cn—1, initially zero

8c, = —1, a convenient sentinel
Contents of ao, except in inner loop
Contents of a1, except in inner loop
Contents of a2, except in inner loop

B—A Ck(—O.
B—-—A k+k+1.
B j(—Ck.
B
B Loop if ¢, = k.
A Terminate if ¢ < 0 (k = n).
A —1 PFetch ay.
A-1
A1 cpej+1.
A-1

A—1 Setj+« 0ifkis even.
A—1 Fetch aj.

A —1 Replace it by ag.

A—1 Setu<+arifj=0.

A—1 j«j—1.

A—-1 Setv<arifj=0.

A-1 j+j-1

A—1 Setw<+arif j=0.

A—1 Replace ar by what was a;.
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40 Inne

55
56
57
58
59
60
61 Main
62
63

64

r PUSHJ
PUSHJ
SET
SET
SET
SET
JMP
LDO
LDO
LDO
JMP

ANSWERS TO EXERCISES 51

0,Visit A

(See (42))
0,Visit A
t,u A Swap u < w.
u,w A
w,t A
k,8%3 A k « 3.
0B A
u,A0 1
v,Al 1
w,A2 1
Inner 1 1

77. Lines 31-38 become 2r — 1 instructions, lines 61-63 become r, and lines 56—58
become 3 + (r — 2)[r even] instructions (see w(r — 1) in answer 40). The total running
time is therefore ((2r!+2)A+2B+r—5)u+((2r!4+2r+7+(r—2)[r even]) A+7B—r—4)v,
where A =n!/rl and B =n!(1/r! 4+ ---+ 1/n!).

78. SLU u, [#f],t;

SLU t,a,4; XOR t,t,a; AND t,t,u; SRU u,t,4; OR t,t,u;

XOR a,a,t; here, as in the answer to exercise 1.3.1’-34, the notation ‘[#f]’ denotes a
register that contains the constant value *f.

79. SLUu,a,t; MXORu, [#8844221188442211] ,u; AND u,u, [#f£f000000]; SRUu,u,t;
XOR a,a,u. This cheats, since it transforms #12345678 to 13245678 when t = 4, but

(45) still work:

S.

Even faster and trickier would be a routine analogous to (42): Consider

PUSHJ 0,Visit;

MXOR a,a,cl; PUSHJ O,Visit; ... MXOR a,a,c5; PUSHJ 0,Visit

where c1, ..., c5 are constants that would cause 12345678 to become successively
#12783456, #12567834, #12563478, #12785634, #12347856. Other instructions, exe-
cuted only 1/6 or 1/24 as often, can take care of shuffling nybbles within and between
bytes. Very clever, but it doesn’t beat (46) in view of the PUSHJ/POP overhead.

80. t IS
SET

3H SRU
SLU
CMP
SLU
SLU

OR
PBNZ
INCL
PBNZ

$255 ;k
k,1
d,a,60
a,a,4
c,d,k
kk,k,2
d,d,kk
t,t,d
c,1B
k,1
a,3B

IS $0 ;kk IS $1 ;c IS $2 ;d IS $3
k+ 1

d < leftmost nybble.

a + 16a mod 161,

t+ t+16%d.

Return to main loop if d # k.
kE+—k+1.

Return to second loop if £k < n. |

81. p+(5n!+11A—(n—1)!+6)v = ((5+10/n)v+O(n~?))n!, plus the visiting time,
where A = E;;ll k! is the number of times the loop at 3H is used.

82. With suitable initialization and a 13-octabyte table, only about a dozen MMIX
instructions are needed:
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magic GREG #8844221188442211
OH (Visit register a)
PBN c,Sigma
Tau MXOR t,magic,a; ANDNL t,#ffff; JMP 1F
Sigma SRU t,a,20; SLU a,a,4; ANDNML a,#f00

1H XOR a,a,t; SLU c,c,1
2H PBNZ c,0B; INCL p,8
3H LDOU c,p,0; PBNZ c,0B 1

83. Assuming that the processors all have essentially the same speed, we can let the
kth processor generate all permutations of rank r for (k — 1)n!/p < r < kn!/p, using
any method based on control tables c;...c,. The starting and ending control tables
are easily computed by converting their ranks to mixed-radix notation.

84. We can use a technique like that of Algorithm 3.4.2P: To compute k = r(«), first
set, aﬁlj < j for 1 < j < n (the inverse permutation). Then set k < 0, and for j = n,
n—1, ..., 2 (in this order) set t < aj, k < kj +t —1, a; + a;, a; « t. To
compute 7= (k), start with a; < 1. Then for j =2, ..., n — 1, n (in this order) set
t < (kmod j)+1, aj < as, ar < j, k < |k/j]|. [See S. Pleszczynski, Inf. Proc. Letters
3 (1975), 180-183; W. Myrvold and F. Ruskey, Inf. Proc. Letters 79 (2001), 281-284.]

85. If x < y and y < z, the algorithm will never move y to the left of z, nor z to the
left of y, so it will never test x versus z.

86. They appear in lexicographic order; Algorithm P used a reflected Gray order.

87. Generate inverse permutations with aj < a} < a5, a5 < ay < a5, ag < a%, ag < ay,
ap < ak, ag < ag.

88. (a) Let d,, = max{j | 0 < j < k and j is nontrivial}, where 0 is considered
nontrivial. This table is easily precomputed, because j is trivial if and only if it must
follow {1,...,5 — 1}. Set k < d,, in step V2 and k + dr_1 in step V5.

(b) Now M = 77, t;[j is nontriviall.

(c) There are at least two topological sorts a; .. .ayx of the set {j, ..., k}, and either
of them can be placed after any topological sort a; ...a;—1 of {1,...,5 —1}.

(d) Algorithm 2.2.3T repeatedly outputs minimal elements (elements with no
predecessors), removing them from the relation graph. We use it in reverse, repeatedly
removing and giving the highest labels to mazimal elements (elements with no succes-
sors). If only one maximal element exists, it is trivial. If j and k are both maximal, they
both are output before any element = with x < j or < k, because steps T5 and T7
keep maximal elements in a queue (not a stack). Thus if & is nontrivial and output
first, the next nontrivial element will not be output before j; and k is unrelated to j.

(e) Let the nontrivial ¢’s be s1 < s2 < --- < 8, = N. Then we have s; > 2s;_2,
by (c). Consequently M = s1+--+s, < s (1+3+3+)+s, 1 (1+2+14.0) < 4s,.
(A sharper estimate is probably possible, but exercise 89 shows that M can be larger
than 2.6N.)

89. The number N of such permutations is F,11 by exercise 5.2.1-25. Therefore
M=Fp1++F =F3—1x~ ¢2N. Notice incidentally that all such permutations
satisfy a; ...a, = a} ...a},. They can be arranged in a Gray path (exercise 7.2.1.1-89).
90. Since t; = (j —1)(j —3)...(2 or 1), we find M = (1 +2/v/7n + O(1/n))N.

Note: The inversion tables c; . .. ¢, for permutations satisfying (49) are character-
ized by the conditions ¢1 =0, 0 < cor < cak—1, 0 < cop4+1 < cok—1 + 1.
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91. The total number of pairs (R,.S), where R is a partial ordering and S is a linear
ordering that includes R, is equal to P, times the expected number of topological sorts;
it is also @, times n!. So the answer is n! Qn/Phy.

We will discuss the computation of P, and @, in Section 7.2.3. For 1 < n < 12
the expectation turns out to be approximately

(1, 1.33, 2.21, 4.38, 10.1, 26.7, 79.3, 262, 950, 3760, 16200, 74800).

Asymptotic values as n — oo have been deduced by Brightwell, Promel, and Steger
[J. Combinatorial Theory A'T3 (1996), 193-206], but the limiting behavior is quite
different from what happens when n is in a practical range. The values of @, were first
determined for n < 5 by S. P. Avann [Aequationes Math. 8 (1972), 95-102].

92, The basic idea is to introduce dummy elements n + 1 and n + 2 with j < n+1
and j < n+2for 1 < j < n, and to find all topological sorts of such an extended
relation via adjacent interchanges; then take every second permutation, suppressing
the dummy elements. An algorithm similar to Algorithm V can be used, but with a
recursion that reduces n to n — 2 by inserting n — 1 and n among ai ...a,—2 in all
possible ways, assuming that n — 1 £ n, occasionally swapping n + 1 with n + 2. [See
G. Pruesse and F. Ruskey, SICOMP 23 (1994), 373—-386. A loopless implementation
has been described by Canfield and Williamson, Order 12 (1995), 57-75.]

93. The case n = 3 illustrates the general idea of a pattern that begins with 1...(2n)
and ends with 1(2n)2(2n—1)...n(n+1): 123456, 123546, 123645, 132645, 132546,
132456, 142356, 142536, 142635, 152634, 152436, 152346, 162345, 162435, 162534.
Matchings can also be regarded as involutions of {1,...,2n} that have n cycles.
With that representation this pattern involves two transpositions per step.
Notice that the C inversion tables of the permutations just listed are respectively
000000, 000100, 000200, 010200, 010100, 010000, 020000, 020100, 020200, 030200,

030100, 030000, 040000, 040100, 040200. In general, C; = C3 = -+ = Capp_1 = 0
and the n-tuples (C2,Cl4,...,C2,) run through a reflected Gray code on the radices
(2n — 1,2n — 3,...,1). Thus the generation process can easily be made loopless if

desired. [See Timothy Walsh, J. Combinatorial Math. and Combinatorial Computing
36 (2001), 95-118, Section 1.]

94. Generate inverse permutations with aj < a,, > a5 < aj,_, > ---, using Algo-
rithm V. (See exercise 5.1.4-23 for the number of solutions.)

95. For example, we can start with a1...an—10, = 2...n1 and bib2...bpbnt1 =
12...n1, and use Algorithm P to generate the (n — 1)! permutations bz ...b, of
{2,...,n}. Just after that algorithm swaps b; <> b1, we set ap, , < bi, ap, < bit1,

ap; bit2, and visit aj ... an.
96. Use Algorithm X, with tx(a1,...,ar) = ‘ar Z k.

97. Using the notation of exercise 47, we have N = ) (I;) (=1)(n — j) = by the
method of inclusion and exclusion (exercise 1.3.3-26). If k = O(logn) then N,_, =
(nle™Y/k)) (1 + O(logn)?/n); hence A/n! ~ (e — 1)/e and B/n! ~ 1. The number of
memory references, under the assumptions of answer 48, is therefore ~ A + B + 3A +
B— N, +3A=n!(9-— %) & 6.06n!, about 16.5 per derangement. [See S. G. Akl, BIT
20 (1980), 2-7, for a similar method.]

98. Suppose L, generates D, UD,,_1, beginning with (12 ... n), then (21 ... n), and
ending with (1 ... n—1); for example, L3 = (12 3), (21 3), (1 2). Then we can generate
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Dyt1 as Knn, .., Kna, Kp1, where Ky, = (12 ... n)fk(n n+1)L,(12 ... n)k; for
example, Dy is

(1234), (2134), (12)(34), (3124), (1324), (31)(24), (2314), (3214), (23)(14).

Notice that K,r begins with the cycle (k41 ... n 1 ... k n+1) and ends with
(k+1 ... n1 ... k—1)(k n+1); so premultiplication by (k—1 k) takes us from K,
to K, (x—1). Also, premultiplication by (1 n) will return from the last element of D1
to the first. Premultiplication by (1 2 n+1) takes us from the last element of Dy41 to
(213 ... n), from which we can return to (1 2 ... n) by following the cycle for D,
backwards, thereby completing the list L, 11 as desired.
99. Use Algorithm X, with tg(a1,...,ax) =‘p>0orllg] #k+ 1.

Notes: The number of indecomposable permutations is [z"] (1—1/ s, k!2"); see
L. Comtet, Comptes Rendus Acad. Sci. Paris A275 (1972), 569-572. It appears likely
that the indecomposable permutations can be generated by adjacent transpositions; for
example, when n = 4 they are 3142, 3412, 3421, 3241, 2341, 2431, 4231, 4321, 4312,
4132, 4123, 4213, 2413.

100. Here is a lexicographic involution generator analogous to Algorithm X.
Y1. [Initialize.] Set ar + k and lx_1 < k for 1 < k < n. Then set I, + 0, k + 1.

Y2. [Enter level k.] If k > n, visit a1 ...an and go to Y3. Otherwise set p + lo,
ug < p, lo < lp, k < k + 1, and repeat this step. (We have decided to let
ap = p.)

Y3. [Decrease k.] Set k < k — 1, and terminate if k = 0. Otherwise set ¢ < ux and
paq Ifp=gq,setlog<+ q,q+ 0,7« l,, and k + k+ 1 (preparing to make
ap > p). Otherwise set Iy, , < ¢, r < lq (preparing to make a, > q).

Y4. [Increase ap.] If r = 0 go to Y5. Otherwise set Iy < lr, up_1 « ¢, up < 1,
Qp T, 0q < @, ar < p, k< k41, and go to Y2.

Y5. [Restore ap.] Set lg < p, ap < p, aqg < q, k < k — 1, and return to Y3. |

Let tht1 = tp + Ntn—1, Gnt1 = 1+ an +nan—1,to =t1 =1, a0 =0, a1 = 1. (See
Eq. 5.1.4—(40).) Step Y2 is performed ¢, times with k¥ > n and a, times with £ < n.
Step Y3 is performed a, times with p = ¢ and a, + t, times altogether. Step Y4 is
performed t, —1 times; step Y5, a, times. The total number of mems for all ¢,, outputs
is therefore approximately 1la, + 12t,, where a, < 1.25331414¢,,. (Optimizations are
clearly possible if speed is essential.)

101. We construct a list L, that begins with () and ends with (n—1 n), starting with
Ly = (), (12), (13), (23). If nis odd, Lpy1 is Ly, K5, Kna,y -.., KE,, where
Knk=(k ... n)"Lp_1(k ...n)(k n+1). For example,

Ly = (), (12),(13),(23),(23)(14),(14),(24), (13)(24), (12)(34), (34).

If n is even, Lny1 i Ln, K, (n_1ys Kp(n_ays -+ Kn1, (1 n=2) L1 (1 n—=2)(n n+1).
For further developments, see the article by Walsh cited in answer 93.

102. The following elegant solution by Carla Savage needs only n — 2 different op-
erations p;, for 1 < j < n, where p; replaces aj_1aja;+1 by aj+1a;—1a; when j is
even, a;ja;j+1aj—1 when j is odd. We may assume that n > 4; let Ay = (p3p2p2p3)3.
In general A, will begin and end with p,_1, and it will contain 2n — 2 occurrences
of p,_1 altogether. To get A, 1, replace the kth p, 1 of A, by p, Al p,, where
k=1,24,...,2n—2if niseven and k = 1, 3, ..., 2n — 3, 2n — 2 if n is
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odd, and where A}, is A, with its first or last element deleted. Then, if we begin
with a1...a, = 1...n, the operations p,_1 of A, will cause position a, to run
through the successive values n — p1 - n — p2 — -+ — p,_1 — n, where
Pi...pn—1 = (n—1 — [neven])...4213...(n—1 — [nodd]); the final permutation will
again be 1...n.

103. (a) A well-balanced permutation has > ;_, kar = n(n + 1)*/4, an integer.

(b) Replace k by ar when summing over k.

(c) A fairly fast way to count, when n is not too large, can be based on the
streamlined plain-change algorithm of exercise 16, because the quantity > kax changes
in a simple way with each adjacent interchange, and because n — 1 of every n steps
are “hunts” that can be done rapidly. We can save half the work by considering only
permutations in which 1 precedes 2. The values for 1 <n < 15 are 0, 0, 0, 2, 6, 0, 184,
936, 6688, 0, 420480, 4298664, 44405142, 0, 6732621476.

104. (a) For each permutation ai ...an,, insert < between a; and ajy1 if a; > ajy1;
insert either = or < between them if a; < ajy1. (A permutation with k “ascents”
therefore yields 2¢ weak orders. Weak orders are sometimes called “preferential ar-
rangements; exercise 5.3.1-4 shows that there are approximately n!/(2(In2)"*') of
them.)

(b) Start with agai ...anan+1 = 01...11. Perform Algorithm L until it stops
with j = 0. Find k such that a; > -+ > ar = ar+1, and terminate if kK = n. Otherwise
set a; < axy1 + 1 for 1 <1 < k and go to step L4. [See M. Mor and A. S. Fraenkel,
Discrete Math. 48 (1984), 101-112.]

105. All weak ordering sequences can be obtained by a sequence of elementary oper-
ations a; <> a;j or a; < a;. (Perhaps one could actually restrict the transformations
further, allowing only a; <> aj4+1 or a; < aj41 for 1 < j <n.)

106. Every step increases the quantity > r_, 2"[ax =k], as noted by H. S. Wilf, so
the game must terminate. At least three approaches to the solution are plausible: one
bad, one good, and one better.

The bad one is to play the game on all 13! shuffles and to record the longest.
This method does produce the correct answer; but 13! is 6,227,020,800, and the average
game lasts =~ 8.728 steps.

The good one [A. Pepperdine, Math. Gazette 73 (1989), 131-133] is to play
backwards, starting with the final position 1x...x* where * denotes a card that is face
down; we will turn a card up only when its value becomes relevant. To move backward
from a given position a; ... an, consider all £ > 1 such that either ar = k or ar = * and
k has not yet turned up. Thus the next-to-last positions are 21s...%, 3xlk...%, ...,
n*...x1. Some positions (like 6xx213 for n = 6) have no predecessors, even though we
haven’t turned all the cards up. It is easy to explore the tree of potential backwards
games systematically, and one can in fact show that the number of nodes with ¢ *’s is
exactly (n — 1)!/t!. Hence the total number of nodes considered is exactly [(n —1)!e].
When n = 13 this is 1,302,061,345.

The better one is to play forwards, starting with initial position *. . .* and turning
over the top card when it is face down, running through all (n — 1)! permutations of
{2,...,n} as cards are turned. If the bottom n — m cards are known to be equal
to (m+1)(m+2)...n, in that order, at most f(m) further moves are possible; thus we
need not pursue a line of play any further if it cannot last long enough to be interesting.
A permutation generator like Algorithm X allows us to share the computation for all
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permutations with the same prefix and to reject unimportant prefixes. The card in posi-
tion j need not take the value j when it is turned. When n = 13 this method needs to
consider only respectively (1,11,940, 6960, 44745, 245083,1118216,4112676, 11798207,
26541611, 44380227, 37417359) branches at levels (1,2,...,12) and to make a total of
only 482,663,902 forward moves. Although it repeats some lines of play, the early cutoffs
of unprofitable branches make it run more than 11 times faster than the backward
method when n = 13.

The unique way to attain length 80 is to start with 294511121018 1336 7.

107. This result holds for any game in which
a1 ...0n —> QkQp(k,2) - - - Op(k,k—1)A10k+1 - - - An

when a1 = k, where p(k,2)...p(k,k — 1) is an arbitrary permutation of {2,...,k — 1}.
Suppose a; takes on exactly m distinct values d(1) < --- < d(m) during a play of
the game; we will prove that at most F),4+1 permutations occur, including the initial
shuffle. This assertion is obvious when m = 1.

Let d(j) be the initial value of aq(,.), where j < m, and suppose aq(,,) changes on
step r. If d(j) = 1, the number of permutations is r + 1 < F,, + 1 < F,41. Otherwise
r < Fm_1, and at most F,, further permutations follow step r. [SIAM Review 19
(1977), 239-241.]

The values of f(n) for 1 <n <16 are (0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80,
101, 113, 139), and they are attainable in respectively (1, 1, 2,2, 1, 5,2, 1,1, 1,1, 1,
1, 4, 6, 1) ways. The unique longest-winded permutation for n = 16 is

9126721481111354 1516 10 3.

108. The forward method of answer 106 suggests that f(n) probably grows at least
as fast as nlogn (by comparison with coupon collecting).

109. For 0 < j < 9 construct the bit vectors A; = [a; € S1]...[a; € Sm] and B; =
[€51]...[j €Sm]. Then the number of j such that A; = v must equal the number
of k such that By = v, for all bit vectors v. And if so, the values {a; | A; = v} should
be assigned to permutations of {k | By = v} in all possible ways.

For example, the bit vectors in the given problem are

(A07 s aA9) = (9,6,8,b,5,4,0,a,2,0), (B0,~ . '739) = (570’8767273-: 47b79’0)7

in hexadecimal notation; hence ao ...ag9 = 8327061549 or 8327069541.

In a larger problem we would keep the bit vectors in a hash table. It would be
better to give the answer in terms of equivalence classes, not permutations; indeed, this
problem has comparatively little to do with permutations.

110. In the directed graph with n!/2 vertices a1 ...a,—2 and n! arcs a1...an—2 —
a2 ...an—1 (one for each permutation ai ...an), each vertex has in-degree 2 and out-
degree 2. Furthermore, from paths like a;...an—2 — az2...an—1 — as...an —
Ag...0Qp0Q2 — A5 ...0p0201 — -+ — Q20103 ...0n—2, WE can see that any vertex is
reachable from any other. Therefore an Eulerian circuit exists by Theorem 2.3.4.2D,
and such a circuit clearly is equivalent to a universal cycle of permutations. The
lexicographically smallest example when n = 4 is (123124132134214324314234).

Mark Cooke has pointed out that a universal cycle of permutations is also
equivalent to a Hamiltonian circuit on the Cayley graph with generatorsoc = (12 ... n)
and p = (1 2 ... n—1). For example, the cycle just given for n = 4 corresponds to

*p2opapiaipapiopa’p.
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111. By exercise 2.3.4.2-22 it suffices to count the oriented trees rooted at 12... (n—2),
in the digraph of the preceding answer. For n = 2, 3, 4, 5, 6, the numbers can be
calculated by exercise 2.3.4.2-19, and they turn out to be tantalizingly simple: 1, 3,
27.3,2% .3%.5% 2190.3%9 . 533 (Here we consider (121323) to be the same cycle as
(213231), but different from (131232).) The graph has symmetries related to Young
tableaux in beautiful ways, so the answer to this problem should be quite instructive.

At least one of these cycles must almost surely be easy to describe and to
compute, as we did for de Bruijn cycles in Section 7.2.1.1. But no simple construction
has yet been found.
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PREFACE

[The Art of Combinations] has a relation
to almost every species of useful knowledge
that the mind of man can be employed upon.

— JACQUES BERNOULLI, Ars Conjectandi (1713)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. Those volumes, alas, were subsequently
found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.3 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase, from which I will be drawing
many examples. Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on
the material that follows it, so that I can get a better feel for how much to
cut.) Section 7.2 is about generating all possibilities, and it begins with Section
7.2.1: Generating Basic Combinatorial Patterns— which, in turn, begins with
Section 7.2.1.1, “Generating all n-tuples,” and Section 7.2.1.2, “Generating all
permutations.” (Readers of the present booklet should have already looked at
those sections, drafts of which are available as Prefascicles 2A and 2B.) The
stage is now set for the main contents of this booklet, Section 7.2.1.3: “Gener-
ating all combinations.” Then will come Section 7.2.1.4 (about partitions), etc.
Section 7.2.2 will deal with backtracking in general. And so it will go on, if all
goes well; an outline of the entire Chapter 7 as currently envisaged appears on
the taocp webpage that is cited on page ii.

iii



iv PREFACE

Even the apparently lowly topic of combination generation turns out to be
surprisingly rich, with ties to Sections 1.2.1, 1.2.4, 1.2.6, 2.3.2, 2.3.4.2, 4.3.2,
4.6.1,4.6.2,5.1.2,5.4.1, 5.4.2, 6.1, and 6.3 of the first three volumes. I strongly
believe in building up a firm foundation, so I have discussed this topic much
more thoroughly than I will be able to do with material that is newer or less
basic. To my surprise, I came up with 109 exercises, even though — believe it or
not —1I had to eliminate quite a bit of the interesting material that appears in
my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 53,
55, 66, and 82; I've also implicitly posed additional unsolved questions in the
answers to exercises 62, 100, 104, and 108. Are those problems still open? Please
let me know if you know of a solution to any of these intriguing questions. And
of course if no solution is known today but you do make progress on any of them
in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 9, 18, 19, 20, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44,
45, 48, 49, 51, 58, 61, 62, 63, 64, 65, 68, 78, 81(b—f), 84, 85, 86, 92, and/or 109.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Happy reading!

Stanford, California D. E. K.
13 June 2002
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7.2.1.3. Generating all combinations. Combinatorial mathematics is often
described as “the study of permutations, combinations, etc.,” so we turn our
attention now to combinations. A combination of n things, taken t at a time,
often called simply a t-combination of n things, is a way to select a subset of size t
from a given set of size n. We know from Eq. 1.2.6—(2) that there are exactly (7)
ways to do this; and we learned in Section 3.4.2 how to choose ¢-combinations
at random.

Selecting ¢ of n objects is equivalent to choosing the n — ¢t elements not
selected. We will emphasize this symmetry by letting

n=s+t (1)

throughout our discussion, and we will often refer to a t-combination of n things
as an “(s,t)-combination.” Thus, an (s,t¢)-combination is a way to subdivide
s + t objects into two collections of sizes s and t.

If | ask how many combinations of 21 can be taken out of 25,
| do in effect ask how many combinations of 4 may be taken.
For there are just as many ways of taking 21 as there are of leaving 4.

— AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)

There are two main ways to represent (s,t)-combinations: We can list the
elements c¢; ...cyc; that have been selected, or we can work with binary strings
Ap—1 - --ai1ag for which

an_1+---+ai+ag = t. (2)

The latter representation has s Os and ¢ 1s, corresponding to elements that are
unselected or selected. The list representation c; ... cyc; tends to work out best
if we represent the objects as subsets of the set {0,1,...,n — 1} and if we list
them in decreasing order:

n>c >--->c >cp > 0. (3)
Binary notation connects these two representations nicely, because the item list
Ct - ..cocy corresponds to the sum

n—1

2¢ + 4 2¢2 + 291 = Zaka = (an_l .. .alao)g. (4)
k=0
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Of course we could also list the positions by ...bgb; of the Os in a,_1 -..ajag,
where
n>bg>-->by>b >0. (5)
Combinations are important not only because subsets are omnipresent in
mathematics but also because they are equivalent to many other configurations.
For example, every (s,t)-combination corresponds to a combination of s + 1
things taken ¢ at a time with repetitions permitted, also called a multicombination,
namely a sequence of integers d; . ..dsd; with

§>dy >+ 2>dy >d >0. (6)
One reason is that d; ... dad; solves (6) if and only if ¢; ... cacy solves (3), where
c=di+t—1, ..., co=ds+1, c1=d; (7)

(see exercise 1.2.6-60). And there is another useful way to relate combinations
with repetition to ordinary combinations, suggested by Solomon Golomb [AMM
75 (1968), 530-531], namely to define

C; if ¢; <s;
e VA, ®)
€cj—s; if ¢; > s.

In this form the numbers e;...e; don’t necessarily appear in descending or-
der, but the multiset {e;,es,...,e;} is equal to {e1,ca,...,¢} if and only if
{e1,€2,...,e} is a set. (See Table 1 and exercise 1.)

An (s,t)-combination is also equivalent to a composition of n + 1 into t + 1
parts, namely an ordered sum

n+1l = pi+--+p1+po, where pt,...,p1,po > 1. (9)
The connection with (3) is now
pt=n—0C, Pt1=C6—C-1, ..., PL=Cx—cC, po=c1+1. (10)
Equivalently, if ¢; = p; — 1, we have
s =q+ - +q+q,  wheregq,...,q,q >0, (11)
a composition of s into t + 1 nonnegative parts, related to (6) by setting
G =5—d, q1=di—di—1, ..., q=dy—di, qo=d. (12)

Furthermore it is easy to see that an (s,t)-combination is equivalent to a
path of length s + ¢ from corner to corner of an s x ¢ grid, because such a
path contains s vertical steps and ¢ horizontal steps. Thus, combinations can
be studied in at least eight different guises. Table 1 illustrates all (g) = 20
possibilities in the case s =t = 3.

These cousins of combinations might seem rather bewildering at first glance,
but most of them can be understood directly from the binary representation
Gp—1 -..06109. Consider, for example, the “random” bit string

azs...aiap = 011001001000011111101101, (13)
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Table 1
THE (3,3)-COMBINATIONS AND THEIR EQUIVALENTS

504043020100 b3b2b1 C3C2C1 dszdady €3€2€] DP3P2pP1Po 434924190 path

000111 543 210 000 210 4111 3000 i55]
001011 542 310 100 310 3211 2100 28]
001101 541 320 110 320 3121 2010 £
001110 540 321 111 321 3112 2001 =
010011 532 410 200 010 2311 1200 H
010101 531 420 210 020 2221 1110 H
010110 530 421 211 121 2212 1101 =
011001 521 430 220 030 2131 1020 Jic]
011010 520 431 221 131 2122 1011 =
011100 510 432 222 232 2113 1002 =
100011 432 510 300 110 1411 0300 H
100101 431 520 310 220 1321 0210 5
100110 430 521 311 221 1312 0201 H
101001 421 530 320 330 1231 0120 J5s3]
101010 420 531 321 331 1222 0111 =
101100 410 532 322 332 1213 0102 H
110001 321 540 330 000 1141 0030 55
110010 320 541 331 111 1132 0021 5
110100 310 542 332 222 1123 0012 £
111000 210 543 333 333 1114 0003 H

which has s = 11 zeros and ¢t = 13 ones, hence n = 24. The dual combination
bs ...by lists the positions of the zeros, namely

232019171614 13121141,

because the leftmost position is n — 1 and the rightmost is 0. The primal
combination ¢; ...c; lists the positions of the ones, namely

222118151098765320.

The corresponding multicombination dy . . . dy lists the number of Os to the right
of each 1:
101086222222110.

The composition p; . .. pg lists the distances between consecutive 1s, if we imagine
additional 1s at the left and the right:

21335111112121.

And the nonnegative composition g . ..qgg counts how many Os appear between
“fenceposts” represented by 1s:

1022400000101 0;

thus we have
Ap—1.-.a1ag = 0910%-11...109°10%. (14)

The paths in Table 1 also have a simple interpretation (see exercise 2).
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Lexicographic generation. Table 1 shows combinations a,_1...aja9 and
¢t - - - ¢ in lexicographic order, which is also the lexicographic order of d; ...d;.
Notice that the dual combinations by ...b; and the corresponding compositions
Pt---Po, qt - - - go then appear in reverse lexicographic order.

Lexicographic order usually suggests the most convenient way to generate
combinatorial configurations. Indeed, Algorithm 7.2.1.2L already solves the
problem for combinations in the form a,_i...a1a9, since (s,t)-combinations
in bitstring form are the same as permutations of the multiset {s-0,¢-1}. That
general-purpose algorithm can be streamlined in obvious ways when it is applied
to this special case. (See also exercise 7.1-00, which presents a remarkable
sequence of seven bitwise operations that will convert any given binary number
(an—1...a1a0)2 to the lexicographically next t-combination, assuming that n
does not exceed the computer’s word length.)

Let’s focus, however, on generating combinations in the other principal form
Ct - . . cac1, which is more directly relevant to the ways in which combinations are
often needed, and which is more compact than the bit strings when ¢ is small
compared to n. In the first place we should keep in mind that a simple sequence
of nested loops will do the job nicely when ¢ is very small. For example, when
t = 3 the following instructions suffice:

For c3 =2, 3, ..., n—1 (in this order) do the following:
For co =1,2,..., c3—1 (in this order) do the following: (15)
Fore; =0, 1, ..., co2 — 1 (in this order) do the following: 5

Visit the combination c3cycy.
(See the analogous situation in 7.2.1.1-(3).)

On the other hand when ¢ is variable or not so small, we can generate
combinations lexicographically by following the general recipe discussed after
Algorithm 7.2.1.2L, namely to find the rightmost element c; that can be increased
and then to set the subsequent elements c;_;...c; to their smallest possible
values:

Algorithm L (Lexicographic combinations). This algorithm generates all ¢-
combinations ¢; ...coc; of the n numbers {0,1,...,n — 1}, given n > ¢t > 0.
Additional variables ¢;11 and ¢;49 are used as sentinels.

L1. [Initialize.] Set ¢; - j — 1 for 1 < j < t; also set ¢;41 < n and ¢i49 < 0.

L2. [Visit.] Visit the combination ¢; . ..cacy.

L3. [Find j.] Set j < 1. Then, while ¢;+1 = ¢j11, set ¢; - j—1 and j < j+1;
repeat until ¢; +1 # cj41.

L4. [Done?] Terminate the algorithm if j > ¢.

L5. [Increase c;.] Set ¢; < ¢; + 1 and return to L2. |

The running time of this algorithm is not difficult to analyze. Step L3 sets

cj < j — 1 just after visiting a combination for which c¢;11 = ¢; + j, and the
number of such combinations is the number of solutions to the inequalities

n>c > > Cig1 2 s (16)
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but this formula is equivalent to a (¢ — j)-combination of the n — j objects
{n—1,...,7}, so the assignment ¢; < j—1 occurs exactly (?:JJ) times. Summing
for 1 < j <t tells us that the loop in step L3 is performed

(o) () () = () (") (D) = () oo

times altogether, or an average of

(/) = o=/ =7 09

times per visit. This ratio is less than 1 when ¢ < s, so Algorithm L is quite
efficient in such cases.

But the quantity ¢/(s + 1) can be embarrassingly large when ¢ is near n
and s is small. Indeed, Algorithm L occasionally sets c¢; < j — 1 needlessly, at
times when c; already equals j — 1. Further scrutiny reveals that we need not
always search for the index j that is needed in steps L4 and L5, since the correct
value of j can often be predicted from the actions just taken. For example,
after we have increased c4 and reset c3cocy to their starting values 210, the next
combination will inevitably increase cs. These observations lead to a tuned-up
version of the algorithm:

Algorithm T (Lezicographic combinations). This algorithm is like Algorithm L,
but faster. It also assumes, for convenience, that ¢t < n.

T1. [Initialize.] Set ¢; + j — 1 for 1 < j < ¢; then set ¢;41 < n, ci42 < 0, and
Jj <t

T2. [Visit.] (At this point j is the smallest index such that ¢;1 > j.) Visit the
combination ¢; . ..czcr. Then, if j > 0, set z < j and go to step T6.

T3. [Easy case?] If ¢; +1 < cg, set ¢; ¢ + 1 and return to T2. Otherwise set
j 2.

T4. [Find j.] Set ¢j1 < j—land v < ¢;+ 1. f oz =c¢jq1,set j < j+ 1 and
repeat this step until z < ¢;41.

T5. [Done?] Terminate the algorithm if j > ¢.

T6. [Increase c;.| Set ¢; <, j < j — 1, and return to T2. |

Now j = 0 in step T2 if and only if ¢; > 0, so the assignments in step T4 are
never redundant. Exercise 6 carries out a complete analysis of Algorithm T.

Notice that the parameter n appears only in the initialization steps L1
and T1, not in the principal parts of Algorithms L and T. Thus we can think
of the process as generating the first (?) combinations of an infinite list, which
depends only on ¢. This simplification arises because the list of ¢-combinations
for n+1 things begins with the list for n things, under our conventions; we have
been using lexicographic order on the decreasing sequences c; . ..c; for this very
reason, instead of working with the increasing sequences c; ... c;.

Derrick Lehmer noticed another pleasant property of Algorithms L and T
[Applied Combinatorial Mathematics, edited by E. F. Beckenbach (1964), 27-30]:
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Theorem L. The combination ¢ . ..cacy is visited after exactly

Ct Co (&1
(t>+"'+(2>+<1) (19)
other combinations have been visited.

Proof. There are () combinations ¢} ...ch¢; with ¢ = ¢; for t > j > k and
¢, < ¢, namely ¢; ... cg41 followed by the k-combinations of {0,...,¢cx —1}. 1

When ¢ = 3, for example, the numbers

6)+G)+Q): O+E)+Q): O+E+0), - (+E+6)

that correspond to the combinations czcecy in Table 1 simply run through the
sequence 0, 1, 2, ..., 19. Theorem L gives us a nice way to understand the
combinatorial number system of degree t, which represents every nonnegative
integer N uniquely in the form

N:<2t>+---+(n22>+<n11), ng > >n9 >n; > 0. (20)

Binomial trees. The family of trees T;, defined by

TO =o, Tn = /Nl for n > 0’ (21)

To T o Th1

arises in several important contexts and sheds further light on combination
generation. For example, T} is

and T, rendered more artistically, appears as the frontispiece to Volume 1 of
this series of books.

Notice that T, is like T;,_1, except for an additional copy of T}, _1; therefore
T, has 2™ nodes altogether. Furthermore, the number of nodes on level ¢ is the
binomial coefficient (Ttl), this fact accounts for the name “binomial tree.” Indeed,
the sequence of labels encountered on the path from the root to each node on
level t defines a combination ¢; ... c;, and all combinations occur in lexicographic
order from left to right. Thus, Algorithms L and T can be regarded as procedures
to traverse the nodes on level ¢ of the binomial tree T,.

The infinite binomial tree T4, is obtained by letting n — oo in (21). The
root of this tree has infinitely many branches, but every other node is the root
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of a finite binomial subtree. All possible ¢-combinations appear in lexicographic
order on level t of T,.

Let’s get more familiar with binomial trees by considering all possible ways
to pack a rucksack. More precisely, suppose we have n items that take up
respectively w,_1, ..., w1, wo units of capacity, where

Wp_1 2 "+ 2 W1 > Wo; (23)
we want to generate all binary vectors a,_1...ajag such that
a W=y 1Wp_1+ -+ aywy + aowo < N, (24)

where N is the total capacity of a rucksack. Equivalently, we want to find all
subsets C' of {0,1,...,n —1} such that w(C) = > .- w. < N; such subsets will
be called feasible. We will write a feasible subset as ¢y ...c;, where ¢; > -+ >
¢; > 0, numbering the subscripts differently from the convention of (3) above
because t is variable in this problem.

Every feasible subset corresponds to a node of T}, and our goal is to visit
each feasible node. Clearly the parent of every feasible node is feasible, and so is
the left sibling, if any; therefore a simple tree exploration procedure solves the
problem.

Algorithm F (Filling a rucksack). This algorithm generates all feasible ways
c1...c tofill a rucksack, given wy,_1, ..., wi, wo, and N. We let §; = w; —w;_1
for1<j<n.

F1. [Initialize.] Set t < 0, ¢p < n, and r < N.
F2. [Visit.] Visit the combination ¢; ...¢;, which uses N — r units of capacity.

F3. [Try to add wp.] Iff ¢; > 0 and r > wo, set t < t + 1, ¢; + 0, 7 + r — wy,
and return to F2.

F4. [Try to increase ¢;.] Terminate if ¢ = 0. Otherwise, if ¢;—1 > ¢; + 1 and
7 > 0cy+1, S€t ¢t < ¢ + 1, r < r — d,, and return to F2.

F5. [Remove ¢;.] Set r + r 4+ w,,, t < t — 1, and return to F4. |

Notice that the algorithm implicitly visits nodes of T}, in preorder, skipping over
unfeasible subtrees. An element ¢ > 0 is never placed in the rucksack until after
the procedure has explored all possibilities using element c—1. The running time
is proportional to the number of feasible combinations visited (see exercise 20).

Incidentally, the classical “knapsack problem” of operations research is dif-
ferent: It asks for a feasible subset C' such that v(C) =} - v(c) is maximum,
where each item ¢ has been assigned a value v(c). Algorithm F is not a particu-
larly good way to solve that problem, because it often considers cases that could
be ruled out. For example, if C' and C” are subsets of {1,...,n—1} with w(C) <
w(C") < N —wpy and v(C) > v(C"), Algorithm F will examine both C'U {0} and
C'U{0}, but the latter subset will never improve the maximum. We will consider
methods for the classical knapsack problem later; Algorithm F is intended only
for situations when all of the feasible possibilities are potentially relevant.
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Gray codes for combinations. Instead of merely generating all combinations,
we often prefer to visit them in such a way that each one is obtained by making
only a small change to its predecessor.

For example, we can ask for what Nijenhuis and
Wilf have called a “revolving door algorithm”: Imagine : _
two rooms that contain respectively s and ¢ people, with |
a revolving door between them. Whenever a person
goes into the opposite room, somebody else comes out. Can we devise a sequence
of moves so that each (s,t)-combination occurs exactly once?

The answer is yes, and in fact a huge number of such patterns exist. For
example, it turns out that if we examine all n-bit strings a,,_1...a1a¢ in the
well-known order of Gray binary code (Section 7.2.1.1), but select only those
that have exactly s Os and ¢ 1s, the resulting strings form a revolving door code.

Here’s the proof: Gray binary code is defined by the recurrence I';, = 0T, _1,
ITE | of 7.2.1.1-(5), so its (s,t) subset satisfies the recurrence

To = 01y, 105, 4 (25)

when st > 0. We also have I';g = 0° and I'g; = 1¢. Therefore it is clear by
induction that I'y; begins with 0°1* and ends with 10°1*~! when st > 0. The
transition at the comma in (25) is from the last element of 0I';_1); to the
last element of 1T',(;_1), namely from 0105 '1*~! = 0105 *11*"2 to 110°1* 2 =
110°~'01'=2 when ¢ > 2, and this satisfies the revolving-door constraint. The
case t = 1 also checks out. For example, I's3 is given by the columns of

000111 011010 110001 101010
001101 011100 110010 101100
001110 010101 110100 100101 (26)
001011 010110 111000 100110
011001 010011 101001 100011

and I'ag can be found in the first two columns of this array. One more turn
of the door takes the last element into the first. [These properties of I'y; were
discovered by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176-180;
a loopless implementation was presented by J. R. Bitner, G. Ehrlich, and E. M.
Reingold, CACM 19 (1976), 517-521.]

When we convert the bitstrings asaqaszazaiap in (26) to the corresponding
index-list forms c3cacy, a striking pattern becomes evident:

210 431 540 531
320 432 541 532
321 420 542 520 (27)
310 421 543 521
430 410 530 510

The first components c3 occur in increasing order; but for each fixed value of cs,
the values of ¢; occur in decreasing order. And for fixed c3co, the values of ¢;
are again increasing. The same is true in general: All combinations c¢;...cacq
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appear in lexicographic order of

(Ct, —Ct—1, Ct—2, -.-, (—1)tcl) (28)

in the revolving-door Gray code I's;. This property follows by induction, because
(25) becomes
Fst = F(S*l)t? (8+t_1)FSR}t71) (29)

for st > 0 when we use index-list notation instead of bitstring notation. Conse-
quently the sequence can be generated efficiently by the following algorithm due
to W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163-172]:

Algorithm R (Revolving-door combinations). This algorithm generates all ¢-
combinations ¢; ...cgey of {0,1,...,n — 1} in lexicographic order of the alter-
nating sequence (28), assuming that n > ¢ > 1. Step R3 has two variants,
depending on whether ¢ is even or odd.

R1. [Initialize.]| Set ¢j <— j —1fort > j > 1, and ciq1  n.
R2. [Visit.] Visit the combination ¢; ... cac;.

R3. [Easy case?] If ¢ is odd: If ¢; + 1 < co, increase ¢; by 1 and return to R2,
otherwise set j < 2 and go to R4. If ¢ is even: If ¢; > 0, decrease c¢; by 1
and return to R2, otherwise set j <— 2 and go to R5.

RA. [Try to decrease c¢;.] (At this point ¢; = ¢;_1 +1.) If ¢; > j, set ¢j - ¢j_1,
¢j—1 + j — 2, and return to R2. Otherwise increase j by 1.

R5. [Try to increase ¢;.] (At this point ¢j_1 = j —2.) If ¢; +1 < ¢j41, set
cj—1 < ¢j, ¢j < ¢; + 1, and return to R2. Otherwise increase j by 1, and
gotoR4if 7 <t. 1

Exercises 21-25 explore further properties of this interesting sequence. One of
them is a nice companion to Theorem L: The combination c;c; 1 ... cacy is visited
by Algorithm R after exactly

N <Ct+1> 3 (Ct—l“l‘l) 4+ .+(—1)t<62;—1> _ (_1)t<01;_1> —[t odd] (30)

t t—1
other combinations have been visited. We may call this the representation of N
in the “alternating combinatorial number system” of degree t; one consequence,
for example, is that every positive integer has a unique representation of the
form N = (%) — (3) + ({) with a > b > ¢ > 0. Algorithm R tells us how to add 1
to N in this system.

Although the strings of (26) and (27) are not in lexicographic order, they
are examples of a more general concept called genlex order, a name coined by
Timothy Walsh. A sequence of strings aq, ..., ay is said to be in genlex order
when all strings with a common prefix occur consecutively. For example, all
3-combinations that begin with 53 appear together in (27).

Genlex order means that the strings can be arranged in a trie structure, as
in Fig. 31 of Section 6.3, but with the children of each node ordered arbitrarily.
When a trie is traversed in any order such that each node is visited just before or
just after its descendants, all nodes with a common prefix —that is, all nodes of
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a subtrie— appear consecutively. This principle makes genlex order convenient,
because it corresponds to recursive generation schemes. Many of the algorithms
we have seen for generating n-tuples have therefore produced their results in some
version of genlex order; similarly, the method of “plain changes” (Algorithm
7.2.1.2P) visits permutations in a genlex order of the corresponding inversion
tables.

The revolving-door method of Algorithm R is a genlex routine that changes
only one element of the combination at each step. But it isn’t totally satisfactory,
because it frequently must change two of the indices c¢; simultaneously, in order
to preserve the condition ¢; > --- > ¢g > ¢;. For example, Algorithm R changes
210 into 320, and (27) includes nine such “crossing” moves.

The source of this defect can be traced to our proof that (25) satisfies the
revolving-door property: We observed that the string 010°~'11*=2 is followed
by 110°7'01*~2 when ¢t > 2. Hence the recursive construction I'y; involves
transitions of the form 110%0 <+ 010%1, when a substring like 11000 is changed
to 01001 or vice versa; the two 1s cross each other.

A Gray path for combinations is said to be homogeneous if it changes only
one of the indices c; at each step. A homogeneous scheme is characterized
in bitstring form by having only transitions of the forms 10* < 0%1 within

strings, for ¢ > 1, when we pass from one string
to the next. With a homogeneous scheme we can, ‘ ‘
for example, play all t-note chords on an n-note
keyboard by moving only one finger at a time.

A slight modification of (25) yields a genlex
scheme for (s,t)-combinations that is pleasantly

homogeneous. The basic idea is to construct a
sequence that begins with 0°1¢ and ends with 1¢0°, and the following recursion
suggests itself almost immediately: Let K o = 0%, Koy = 1Y, K, = (¢, and

Ko = 0K(s_1), 10K 4y, 1), 11K,y for st >0. (31)

At the commas of this sequence we have 01¢0°~! followed by 101¢~10°~', and
10°1*~! followed by 110°1*~2; both of these transitions are homogeneous, al-
though the second one requires the 1 to jump across s 0s. The combinations K33
for s =t =3 are

000111 010101 101100 100011

001011 010011 101001 110001

001101 011001 101010 110010 (32)

001110 011010 100110 110100

010110 011100 100101 111000

in bitstring form, and the corresponding “finger patterns” are

210 420 532 510
310 410 530 540
320 430 531 541 (33)
321 431 521 542
421 432 520 543

10
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When a homogeneous scheme for ordinary combinations ¢; . . . ¢; is converted
to the corresponding scheme (6) for combinations with repetitions dy...dy, it
retains the property that only one of the indices d; changes at each step. And
when it is converted to the corresponding schemes (9) or (11) for compositions
Pt...Do OF Gt ...Qo, only two (adjacent) parts change when c; changes.

Near-perfect schemes. But we can do even better! All (s,¢)-combinations
can be generated by a sequence of strongly homogeneous transitions that are
either 01 <+ 10 or 001 <> 100. In other words, we can insist that each step causes
a single index c; to change by at most 2. Let’s call such generation schemes
near-perfect.

Imposing such strong conditions actually makes it easier to discover near-
perfect schemes, because comparatively few choices are available. Indeed, if
we restrict ourselves to genlex methods that are near-perfect on m-bit strings,
T. A. Jenkyns and D. McCarthy observed that all such methods can be easily
characterized [Ars Combinatoria 40 (1995), 153-159]:

Theorem N. If st > 0, there are exactly 2s near-perfect ways to list all (s,t)-
combinations in a genlex order. In fact, when 1 < a < s, there is exactly one
such listing, Ny, that begins with 1:0° and ends with 091'0°~¢; the other s
possibilities are the reverse lists, N% .

Proof. The result certainly holds when s = ¢ = 1; otherwise we use induction
on s +t. The listing Ny, if it exists, must have the form 1X,;_1), 0Y(s_1)
for some near-perfect genlex listings X ;1) and Y(,_1). If t = 1, X4y is
the single string 0%; hence Y(,_1); must be N;_1)1a—1) if @ > 1, Ng_q)1y if
a = 1. On the other hand if ¢ > 1, the near-perfect condition implies that the
last string of X, ;1) cannot begin with 1; hence X ;_1) = Ny4—1), for some b.
If a >1, Y(,_1) must be Ns_1)s(a—1), hence b must be 1; similarly, b must be 1
if s = 1. Otherwise we have a = 1 < s, and this forces Y(,_1); = N(I;l)tc for
some c. The transition from 10°1¢=10°~% to 0¢11t0°~'~¢ is near-perfect only if
c=land b=2. |

The proof of Theorem N yields the following recursive formulas when st > 0:
INst—1)1, ON(s—1)t(a—1), 1 <a <s;
Nsta = 1Ns(t71)27 ON(I.Efl)tl’ lf l=a < 83 (34)
1N1(t—1)17 Olt, ifl=a=s.
Also, of course, Ngo, = 0°.
Let usset Ay = N1 and Bg; = Ngio. These near-perfect listings, discovered
by Phillip J. Chase in 1976, have the net effect of shifting a leftmost block of 1s

to the right by one or two positions, respectively, and they satisfy the following
mutual recursions:

Ast = lBs(t—l)a OA{.ifl)t; By = 1As(t—1)7 OA(S—I)t' (35)

“To take one step forward, take two steps forward, then one step backward; to
take two steps forward, take one step forward, then another.” These equations

11
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Table 2
CHASE’S SEQUENCES FOR (3,3)-COMBINATIONS
Ay = CE B3z = C33
543 531 321 420 543 520 432 410
541 530 320 421 542 510 430 210
540 510 310 431 540 530 431 310
542 520 210 430 541 531 421 320
532 521 410 432 521 532 420 321

hold for all integer values of s and ¢, if we define Ay and Bj; to be () when s or
t is negative, except that Agg = Bgo = € (the empty string). Thus A, actually
takes min(s, 1) forward steps, and B actually takes min(s,2). For example,
Table 2 shows the relevant listings for s = t = 3, using an equivalent index-list
form czcacy instead of the bit strings asasaszasayag.

Chase noticed that a computer implementation of these sequences becomes
simpler if we define

C., = {Ast, %f s+t ?s odd; & — {Aﬁ, %f s+t %s even; (36)
B,,, if s+t iseven; BE if s+t is odd.
[See Congressus Numerantium 69 (1989), 215-242.] Then we have
1Cy 1), 0C(s 1y, if s+t is odd;
Bt (37
1C—1), 0C(5_1), if s+11is even;
~ 0C(s_1)¢, 155 _1), if s+t is even;
., = 1 0Ce-ve 1Ca- ‘ ! (38)
0C(s—1)t, 1Cs—1), if s+1is odd.

When bit a; is ready to change, we can tell where we are in the recursion by
testing whether j is even or odd.

Indeed, the sequence Cy; can be generated by a surprisingly simple algo-
rithm, based on general ideas that apply to any genlex scheme. Let us say that
bit a; is active in a genlex algorithm if it is supposed to change before anything to
its left is altered. (The node for an active bit in the corresponding trie is not the
rightmost child of its parent.) Suppose we have an auxiliary table wy, ... wjwy,
where w; = 1 if and only if either a; is active or j < r, where 7 is the least
subscript such that a, # ag; we also let w,, = 1. Then the following method will
find the successor of a,,_1 ...ajao:

Set j « r. If w; =0, set w; < 1, j < j+ 1, and repeat until
w; = 1. Terminate if j = n; otherwise set w; < 0. Change a;
to 1 — a;, and make any other changes to a;j_;...ap and r that
apply to the particular genlex scheme being used.

(39)

The beauty of this approach comes from the fact that the loop is guaranteed to
be efficient: We can prove that the operation j <— j + 1 will be performed less
than once per generation step, on the average (see exercise 36).

12
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By analyzing the transitions that occur when bits change in (37) and (38),
we can readily flesh out the remaining details:

Algorithm C (Chase’s sequence). This algorithm visits all (s, t)-combinations
Qn_1.-.0100, Where n = s+t, in the near-perfect order of Chase’s sequence Cl;.

C1. [Initialize.] Set aj <~ 0 for 0 < j <s, a; < 1for s <j < n,and w; < 1
for 0 <j <n.If s >0, set r < s; otherwise set r + t.

C2. [Visit.] Visit the combination a, 1 ...ajao.

C3. [Find j and branch.] Set j - r. If w; =0, set w; < 1, j < j+ 1, and
repeat until w; = 1. Terminate if j = n; otherwise set w; +— 0 and make a

four-way branch: Go to C4 if j is odd and a; # 0, to C5 if j is even and
aj # 0, to C6 if j is even and a; =0, to C7 if j is odd and a; = 0.

C4. [Move right one.] Set aj_1 < 1, a; < 0. If r = j > 1, set r < j — 1;
otherwise if r = j — 1 set r < j. Return to C2.

C5. [Move right two.] If a;j_o # 0, go to C4. Otherwise set a;_2 < 1, a;j < 0.
If r = j, set r + max(j —2,1); otherwise if r = j — 2, set r + 7 — 1. Return
to C2.

C6. [Move left one.] Set a; < 1, aj_1 < 0. If r = j > 1, set r < j—1; otherwise
if r=75—2set r < j— 1. Return to C2.

C7. [Move left two.] If a;_1 # 0, go to C6. Otherwise set a; < 1, a;_o < 0. If
r=j—2,set r < j; otherwise if r = j — 1, set » < j — 2. Return to C2. |

* Analysis of Chase’s sequence. The magical properties of Algorithm C cry
out for further exploration, and a closer look turns out to be quite instructive.
Given a bit string a,—1 - ..a1ag, let us define a,, = 1, u,, = n mod 2, and

uj =aj41(1 —ujq1), vj=(u;+j)mod2, w;=(vj+a;)mod2, (40)
for n > j > 0. For example, we might have n = 26 and

ass . ..a1ap = 11001001000011111101101010,
Uugs ... uup = 10100100100001010100100101,
Vg5 ... V109 = 00001110001011111110001111,
was . .. wywo = 11000111001000000011100101.

(41)

With these definitions we can prove by induction that v; = 0 if and only if bit
a; is being “controlled” by C rather than by C in the recursions (37)—(38) that
generate a,_1 ...a1ag, except when a; is part of the final run of Os or 1s at the
right end. Therefore w; agrees with the value computed by Algorithm C at the
moment when a,,_1 ...ajap is visited, for r < j < n. These formulas can be used
to determine exactly where a given combination appears in Chase’s sequence (see
exercise 39).

If we want to work with the index-list form c¢;...cyc; instead of the bit
strings ap—1...a1ag, it is convenient to change the notation slightly, writing

13
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Ci(n) for Cy and Cy(n) for Cy when s+t = n. Then Co(n) = Co(n) = ¢, and
the recursions for ¢ > 0 take the form

nCy(n), Cyy1(n), if nis even;

o (42)
nCy(n), Ciy1(n), if nis odd;

Crpr(n+1) = {

at+1(n +1) = { €t+1(n)’ n@/:t(n), ?f " ?S odd: (43)
Ci+1(n), nCi(n), if n is even.
These new equations can be expanded to tell us, for example, that
Ci11(9) = 8CL(8), 6C4(6), 4Cy(4), ..., 3Cu(3), 5C.(5), TC(7);
€H4@):704n,604®,404®,.”,3§4$,5:4a; A )
Ci+1(9) = 6C(6), 4C¢(4), ..., 3Cy(3), 5C:(5), TCH(T7), 8C(8);
Cri1(8) = 6C4(6), 4C4(4), ..., 3C:(3), 5Cy(5), TC(7);

notice that the same pattern predominates in all four sequences. The meaning of
“...” in the middle depends on the value of ¢: We simply omit all terms nCy(n)
and n@t(n) where n < t.

Except for edge effects at the very beginning or end, all of the expansions
in (44) are based on the infinite progression

..., 10,8,6,4,2,0,1,3,5 7,9 ..., (45)

which is a natural way to arrange the nonnegative integers into a doubly infinite
sequence. If we omit all terms of (45) that are < ¢, given any integer ¢ > 0,
the remaining terms retain the property that adjacent elements differ by either
1 or 2. Richard Stanley has suggested the name endo-order for this sequence,
because we can remember it by thinking “even numbers decreasing, odd ...”.
(Notice that if we retain only the terms less than N and complement with respect
to N, endo-order becomes organ-pipe order; see exercise 6.1-18.)

We could program the recursions of (42) and (43) directly, but it is interest-
ing to unwind them using (44), thus obtaining an iterative algorithm analogous
to Algorithm C. The result needs only O(t) memory locations, and it is especially
efficient when ¢ is relatively small compared to n. Exercise 45 contains the details.

*Near-perfect multiset permutations. Chase’s sequences lead in a natural
way to an algorithm that will generate permutations of any multiset {sg-0,s1 -1,
...,84 - d} in a near-perfect manner, meaning that

i) every transition is either a;i1a; <> @;a;11 Or Gj12aj41Q; <> GjQj11Qj42;

ii) transitions of the second kind have aj+1 = min(a;, a;j+2).
Algorithm C tells us how to do this when d = 1, and we can extend it to larger
values of d by the following recursive construction [CACM 13 (1970), 368-369,
376]: Suppose

Qo, 1, --., AN-1

14
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is any near-perfect listing of the permutations of {s; - 1,...,s4-d}. Then Algo-
rithm C, with s = sg and t = s1 + - - - + 84, tells us how to generate a listing

Aj = oszS, ey 0“0@'0870’ (46)

in which all transitions are Oz <> 0 or 00z <+ z00; the final entry has a = 1 or 2
leading zeros, depending on s and ¢. Therefore all transitions of the sequence

Ay, A{z’ Ay, .., (Ay_q o1 A§—1) (47)

are near-perfect; and this list clearly contains all the permutations.
For example, the permutations of {0,0,0,1,1,2} generated in this way are

211000, 210100, 210001, 210010, 200110, 200101, 200011, 201001, 201010, 201100,
021100, 021001, 021010, 020110, 020101, 020011, 000211, 002011, 002101, 002110,
001210, 001201, 001021, 000121, 010021, 010201, 010210, 012010, 012001, 012100,
102100, 102010, 102001, 100021, 100201, 100210, 120010, 120001, 120100, 121000,
112000, 110200, 110002, 110020, 100120, 100102, 100012, 101002, 101020, 101200,
011200, 011002, 011020, 010120, 010102, 010012, 000112, 001012, 001102, 001120.

*Perfect schemes. Why should we settle for a near-perfect generator like Cy;,
instead of insisting that all transitions have the simplest possible form 01 < 10?7
One reason is that perfect schemes don’t always exist. For example, we
observed in 7.2.1.2—(2) that there is no way to generate all six permutations of
{1,1,2,2} with adjacent interchanges; thus there is no perfect scheme for (2,2)-
combinations. In fact, our chances of achieving perfection are only about 1 in 4:

Theorem P. The generation of all (s,t)-combinations asy¢—1 ...a1a9 by adja-
cent interchanges 01 <+ 10 is possible if and only if s <1 ort <1 or st is odd.

Proof. Consider all permutations of the multiset {s - 0,7 - 1}. We learned in
exercise 5.1.2-16 that the number my of such permutations having k inversions
is the coefficient of z* in the z-nomial coefficient

s+t t
s+t . k—1 k—1
( . )Z_kH1(1+z+---+z )/kl:[l(l+z+---+z ). (48)

Every adjacent interchange changes the number of inversions by £1, so a perfect
generation scheme is possible only if approximately half of all the permutations

have an odd number of inversions. More precisely, the value of (S':t)_l =

mg —my + mg — --- must be 0 or 1. But exercise 49 shows that
t t)/2
(s—; )71 = (L(SL—;/;J/ J)[st is even], (49)

and this quantity exceeds 1 unless s <1 or ¢t <1 or st is odd.

Conversely, perfect schemes are easy with s < 1 or ¢ < 1, and they turn
out to be possible also whenever st is odd. The first nontrivial case occurs
for s = t = 3, when there are four essentially different solutions; the most
symmetrical of these is

210 —310 —410—510 — 520 — 521 — 531 — 532 — 432 — 431 —
421 —321 —320 — 420 — 430 — 530 — 540 — 541 — 542 —543 (50)

15
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(see exercise 51). Several authors have constructed Hamiltonian paths in the
relevant graph for arbitrary odd numbers s and ¢, most notably Eades, Hickey,
and Read [JACM 31 (1984), 19-29], whose method makes an interesting exercise
in programming with recursive coroutines. Unfortunately, however, none of
the known constructions are sufficiently simple to describe in a short space,
or to implement with reasonable efficiency. Perfect combination generators have
therefore not yet proved to be of practical importance. |

In summary, then, we have seen that the study of (s,t)-combinations leads
to many fascinating patterns, some of which are of great practical importance
and some of which are merely elegant and/or beautiful. Fig. 26 illustrates the
principal options that are available in the case s = t = 5, when (150) = 252
combinations arise. Lexicographic order (Algorithm L), the revolving-door Gray
code (Algorithm R), the homogeneous scheme K5 of (31), and Chase’s near-
perfect scheme (Algorithm C) are shown in parts (a), (b), (c), and (d) of the
illustration. Part (e) shows the near-perfect scheme that is as close to perfection
as possible while still being in genlex order (see exercise 34), while part (f) is the
perfect scheme of Eades, Hickey, and Read. Finally, Fig. 26(g) is a listing that
proceeds by swapping a; <> ao, akin to Algorithm 7.2.1.2E (see exercise 55).

*Combinations of a multiset. If multisets can have permutations, they can
have combinations too. For example, consider the multiset {b,b,b,b,g9,9,g,7,7,1,
w,w}, representing a sack that contains four blue balls and three that are green,
three red, two white. There are 37 ways to choose five balls from this sack; in
lexicographic order (but descending in each combination) they are

gbbbb, ggbbb, gggbb, rbbbb, rgbbb, rggbb, rgggb, rrbbb, rrgbb, rrggb,

rrggg, rrrbb, rrrgb, rrrgg, wbbbb, wgbbb, wggbb, wgggb, wrbbb, wrgbb,

wrggb, wrggg, wrrbb, wrrgb, wrrgg, wrrrb, wrrrg, wwbbb, wwgbb, wwggb,
wwggg, wwrbb, wwrgb, wwrgg, wwrrb, wwrrg, WwWrrr. (51)

This fact might seem frivolous and/or esoteric, yet we will see in Theorem W
below that the lexicographic generation of multiset combinations yields optimal
solutions to significant combinatorial problems.

James Bernoulli observed in his Ars Conjectandi (1713), 119-123, that we
can count the number of such combinations by looking at the coefficient of z°
in (14+2+22)(1+ 2422+ 2321 + 2+ 22 + 22 + 2*). Indeed, his observation
is easy to understand, because we get all possible selections from the sack if we
multiply out the polynomials

(1+w+ww)(1+7r+rr+7rr)(1+ g+ gg + ggg)(1 + b+ bb + bbb + bbbb).

Multiset combinations are also equivalent to bounded compositions, namely
to compositions in which the individual parts are bounded. For example, the 37
multicombinations listed in (51) correspond to 37 solutions of

S=r3+ra+ri+rg, 0<r3 <2, 0<re,r <3, 0<7r9 <4,

namely 5 = 0+0+1+4 = 0404243 = 0+0+3+2 = 0+14+0+4 = - - - = 24+340+40.

16
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Fig. 26. Examples
of (5, 5)-combinations:

a) lexicographic;

homogeneous;
near-perfect;
nearer-perfect;
perfect;

GENERATING ALL COMBINATIONS 17
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18 COMBINATORIAL ALGORITHMS (F2C) 7.2.1.3

Bounded compositions, in turn, are special cases of contingency tables, which
are of great importance in statistics. And all of these combinatorial configura-
tions can be generated with Graylike codes as well as in lexicographic order.
Exercises 59-62 explore some of the basic ideas involved.

*Shadows. Sets of combinations appear frequently in mathematics. For example,
a set of 2-combinations (namely a set of pairs) is essentially a graph, and a set of
t-combinations for general ¢ is called a uniform hypergraph. If the vertices of a
convex polyhedron are perturbed slightly, so that no three are collinear, no four
lie in a plane, and in general no ¢ + 1 lie in a (¢ — 1)-dimensional hyperplane,
the resulting (¢ — 1)-dimensional faces are “simplexes” whose vertices have great
significance in computer applications. Researchers have learned that such sets
of combinations have important properties related to lexicographic generation.

If o is any t-combination c¢;...cacy, its shadow Oa is the set of all its
(t — 1)-element subsets ¢;—1...c2¢1, ..., Ct...C3C1, Ct...c3¢c2. For example,
05310 = {310,510,530,531}. We can also represent a t-combination as a bit
string a,—1 .. .a1ap, in which case da is the set of all strings obtained by chang-
ing a 1 to a 0: 9101011 = {001011,100011,101001,101010}. If A is any set of
t-combinations, we define its shadow

0A = {Oda|ae A} (52)

to be the set of all (¢ — 1)-combinations in the shadows of its members. For
example, 095310 = {10, 30, 31,50, 51, 53}.

These definitions apply also to combinations with repetitions, namely to
multicombinations: 95330 = {330, 530,533} and 995330 = {30, 33,50,53}. In
general, when A is a set of t-element multisets, OA is a set of (¢ — 1)-element
multisets. Notice, however, that A never has repeated elements itself.

The upper shadow Ca with respect to a universe U is defined similarly, but
it goes from t-combinations to (¢ + 1)-combinations:

Qo = {BecU|acdpf}, foracU; (53)
CA = {Ca|ac A}, for ACU. (54)

If, for example, U = {0,1,2,3,4,5,6}, we have 25310 = {53210, 54310,65310};
on the other hand, if U = {00-0,00-1,...,00-6}, we have 5310 = {53100, 53110,
53210, 53310, 54310, 55310, 65310}

The following fundamental theorems, which have many applications in var-
ious branches of mathematics and computer science, tell us how small a set’s
shadows can be:

Theorem K. If A is a set of N t-combinations contained inU = {0, 1,...,n—1},
then
10A] > |0PNe|l  and  ||€A]| = [[€Qnne], (55)

where Py denotes the first N combinations generated by Algorithm L, namely
the N lexicographically smallest combinations c;...cqoc; that satisfy (3), and
QnNnt denotes the N lexicographically largest. |

18



7.2.1.3 GENERATING ALL COMBINATIONS 19

Theorem M. If A is a set of N t-multicombinations contained in the multiset
U={c0-0,00-1,...,00"- s}, then

10A]l > [|0Px:||  and  [|@A| > [|@Qnall, (56)

where ISNt denotes thg\ N lexicographically smallest multicombinations dy . . . dady
that satisfy (6), and Qns: denotes the N lexicographically largest. |

Both of these theorems are consequences of a stronger result that we shall
prove later. Theorem K is generally called the Kruskal-Katona theorem, because
it was discovered by J. B. Kruskal [Math. Optimization Techniques, edited by
R. Bellman (1963), 251-278] and rediscovered by G. Katona [Theory of Graphs,
Tihany 1966, edited by Erdds and Katona, (Academic Press, 1968), 187-207];
M. P. Schiitzenberger had previously stated it in a less-well-known publication,
with incomplete proof [RLE Quarterly Progress Report 55 (1959), 117-118].
Theorem M goes back to F. S. Macaulay, many years earlier [Proc. London
Math. Soc. (2) 26 (1927), 531-555].

Before proving (55) and (56), let’s take a closer look at what those formulas
mean. We know from Theorem L that the first N combinations visited by
Algorithm L are those that precede ny ...ngong, where

Y= () e (1) () oo

is the degree-t combinatorial representation of N. Sometimes this representation
has fewer than ¢ nonzero terms, because n; can be equal to j — 1; let’s suppress
the zeros, and write

V() ()t (M), mma e sest

t t—1
Now the first ("tt) combinations ¢ ...c; are the t-combinations of {0, ...,n;—1};
the next (?:11) are those in which ¢; = n; and ¢;_1 ... ¢; is a (¢t — 1)-combination

of {0,...,n;1—1}; and so on. For example, ift =5 and N = (g) + (D + (é), the
first N combinations are

Pys = {43210, ...,87654} U {93210, ...,96543} U {97210, ...,97321}.  (58)
The shadow of this set Py is, fortunately, easy to understand: It is

dPys = {3210,...,8765} U {9210,...,9654} U {9710, ...,9732}, (59)

namely the first (Z) + (g) + (;1) combinations in lexicographic order when ¢ = 4.

In other words, if we define Kruskal’s function x; by the formula

= (7)) e () (©

when N has the unique representation (57), we have

0PNt = Pue,nNye-1)- (61)

19



20 COMBINATORIAL ALGORITHMS (F2C) 7.2.1.3

Theorem K tells us, for example, that a graph with a million edges can

contain at most 1414 1009
( X >+< ) ) — 470,700,300

triangles, that is, at most 470,700,300 sets of vertices {u,v,w} with u — v —
w —u. The reason is that 1000000 = (14214) + (10109) by exercise 17, and the edges
P(1000000)2 do support (14314) + (10209) triangles; but if there were more, the graph
would necessarily have at least k3470700301 = (14214) + (10109) + ((1]) = 1000001
edges in their shadow.

Kruskal defined the companion function

Ath(tfl>+(nt;1)+---+<vri’l> (62)

to deal with questions such as this. The x and A functions are related by an
interesting law proved in exercise 71:

t t
M+N:<8+ ) implies HSM+)\tN=<S+ ) if st >0.  (63)
t t+1
Turning to Theorem M, the sizes of 8]31\” and Q@Nst turn out to be
10Pxn¢|| = N and  [|@Qns| = N+ kN (64)

(see exercise 80), where the function . satisfies

ng—1 ng_q1 —1 Ny — 1
’”N_<t—1)+< t—2 >+"'+<v—1) (65)
when N has the combinatorial representation (57).

Table 3 shows how these functions x; N, AN, and p; N behave for small
values of ¢t and N. When ¢t and N are large, they can be well approximated
in terms of a remarkable function 7(z) introduced by Teiji Takagi in 1903; see
Fig. 27 and exercises 81-84.

Theorems K and M are corollaries of a much more general theorem of discrete
geometry, discovered by Da-Lun Wang and Ping Wang [SIAM J. Applied Math.
33 (1977), 55-59], which we shall now proceed to investigate. Consider the
discrete n-dimensional torus T(mq,...,my,) whose elements are integer vectors
z = (z1,...,2,) with 0 < z1 < mq, ..., 0 <z, < my,. We define the sum and
difference of two such vectors z and y as in Egs. 4.3.2—(2) and 4.3.2—(3):

Ty = ((a:l+y1)modm1,...,(mn+yn) modmn), (66)
r—y = ((xl _yl)mOdmlw--a(xn _yn) mOdmn) (67)

We also define the so-called cross order on such vectors by saying that z < y if
and only if

vr <vy or (vr=wvyandzx >y lexicographically); (68)

here, as usual, v(z1,...,z,) = 21 + -+ - + x,,. For example, when m; = mg = 2
and mg = 3, the 12 vectors xyzsx3 in cross order are

000, 100, 010, 001, 110, 101, 011, 002, 111, 102, 012, 112,  (6g)

20
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Table 3
EXAMPLES OF THE KRUSKAL-MACAULAY FUNCTIONS &, )\, AND L

N=0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
kN=0 11111111111 11 1 1 11 111
kekN=0 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7
ksN=0 3 5 6 6 8 9 9 10 10 10 12 13 13 14 14 14 15 15 15 15
keN =0 4 7 9 10 10 13 15 16 16 18 19 19 20 20 20 23 25 26 26 28
ksN=0 5 9 12 14 15 15 19 22 24 25 25 28 30 31 31 33 34 34 35 35
MN=0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105120136153171190
MN=0 0 0 1 1 2 4 4 5 7 10 10 11 13 16 20 20 21 23 26 30
MN=0 0 0 0 1 1 1 2 2 3 5 5 5 6 6 7 9 9 10 12 15
MN=0 0 0 0 011 1 1 2 2 2 3 3 4 6 6 6 6 7 7
MN=0 0 0 0 0 01 1 1 1 1 2 2 2 2 3 3 3 4 4 5
yiN=0 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111 11
pN=0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6
usN=0 1 2 3 3 4 5 5 6 6 6 7 8 8 9 9 9 10 10 10 10
wuN=0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 10 11 12 13 13 14
usN=0 1 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 14 15 15
ks N—N 7(z)
22 2/3
- 1/2
) /// ;\\\\\ / \
7/} \’\ 1/4
0 T 8 8 T 9 0
0 G G G+ 6 0 1/4 1/2 3/4 1

Fig. 27. Approximating a Kruskal function with the Takagi function. (The
smooth curve in the left-hand graph is the lower bound £z N — N of exercise 79.)

omitting parentheses and commas for convenience. The complement of a vector
in T(my,...,my,) is
T=(m—-1—xz1,....,my,—1—2a,). (70)
Notice that < y holds if and only if T > . Therefore we have
rank(z) + rank(z) = T —1, where T' = my ... My, (71)

if rank(x) denotes the number of vectors that precede x in cross order.

We will find it convenient to call the vectors “points” and to name the points
€0, €1, ..., er_1 in increasing cross order. Thus we have e; = 002 in (6g), and
e, = ep_1_, in general. Notice that

e1 =100...00, ey =010...00, ..., e, =000...01; (72)

21



22 COMBINATORIAL ALGORITHMS (F2C) 7.2.1.3

these are the so-called unit vectors. The set

Sy = {eg,e1,...,en—1} (73)

consisting of the smallest N points is called a standard set, and in the special
case N =n+ 1 we write

E ={eo,e1,...,en} ={000...00,100...00,010...00,...,000...01}. (74)

Any set of points X has a spread X, a core X°, and a dual X~, defined
by the rules

Xt ={zeSr|zeXorx—e;€Xor---orxz—e, €X}; (75)
X ={zeSr|reXandzr+e; € X and---andz+e, € X}; (76)
XY ={zeSr|z¢ X} (77)
We can also define the spread of X algebraically, writing
Xt = X+ E, (78)

where X +Y denotes {z +y |z € X and y € Y }. Clearly
Xtcy if and only if X CY°. (79)

These notions can be illustrated in the two-dimensional case m; = 4, ms = 6,
by the more-or-less random toroidal arrangements

o0 o o+ LK) ole|e|+

° ® |+ ° [N} e +|(0|@®

° ® |+ ° ° °+ o

oo ole|+ oo ° ole|+|o] (80)
° + ®|+ LK) ° ole|+|0

° o+ |+ ° ° ® +|+|0

X X°and Xt X~ X~° and X~t

here X consists of points marked e or o, X° comprises just the os, and X+
consists of +s plus es plus os. Notice that if we rotate the diagram for X~°
and X~ by 180°, we obtain the diagram for X° and X, but with (e,0,+, )
respectively changed to (+, ,,0); and in fact the identities

X° = X~ Xt = X~ (81)

hold in general (see exercise 85).
Now we are ready to state the theorem of Wang and Wang;:

Theorem W. Let X be any set of N points in the discrete torus T'(my, ..., my,),
where m; < --+ < my. Then || XT| > ||Sj(,|| and || X°]| < ||S¥II-

In other words, the standard sets Sy have the smallest spread and largest core,
among all V-point sets. We will prove this result by following a general approach
first used by F. W. J. Whipple to prove Theorem M [Proc. London Math. Soc.
(2) 28 (1928), 431-437]. The first step is to prove that the spread and the core
of standard sets are standard:

22
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Lemma S. There are functions a and f3 such that S, = S,n and S% = Ssn-

Proof. We may assume that N > 0. Let 7 be maximum with e, € S;, and let
alN = r 4+ 1; we must prove that e, € Sj\', for 0 < g < r. Suppose e¢; = = =
(z1,...,2n) and e, =y = (y1,...,Yn), and let k be the largest subscript with
zy > 0. Since y € Sy, there is a subscript j such that y —e; € Sy. It suffices to
prove that x — e < y — ¢;, and exercise 87 does this.

The second part follows from (81), with SN = T — (T — N), because
Sy=8r_n- 1

Theorem W is obviously true when n = 1, so we assume by induction that
it has been proved in n — 1 dimensions. The next step is to compress the given
set X in the kth coordinate position, by partitioning it into disjoint sets

Xp(a) = {zeX|ap=0a} (82)
for 0 < a < my, and replacing each Xy (a) by

X,'C(a) = {(31,...,sk_l,a,sk,...,sn_l) | (81,...,Sn_1) S S”Xk(a)H }, (83)

a set with the same number of elements. The sets S used in (83) are standard in
the (n — 1)-dimensional torus T'(my,...,Mk_1,Mkt1,...,M,). Notice that we
have (z1,...,Zk-1,8,Tkt1,---,Tn) = (Y1,--sYk—1, C Yk+t1,---,Yn) if and only
if (x1,..., k=1, Tht1,- - Tn) =X (Y1s- -3 Yke1,Yk+1, - - -, Yn); therefore Xj (a) =
X,.(a) if and only if the (n — 1)-dimensional points (z1,...,Tk—1, Tht1,---,Tn)
with (21,...,Zk—1,0,Tk41,...,2Zn) € X are as small as possible when projected
onto the (n — 1)-dimensional torus. We let

CLX = X}(0)UXL(1)U--- U X{(my — 1) (84)

be the compression of X in position k. Exercise 89 proves the basic fact that
compression does not increase the size of the spread:

X > I(Cx X)), for1<k<n. (85)

Furthermore, if compression changes X, it replaces some of the elements by other
elements of lower rank. Therefore we need only prove Theorem W for sets X
that are totally compressed, having X = C; X for all k.

Consider, for example, the case n = 2. A totally compressed set in two
dimensions has all points moved to the left of their rows and the bottom of their
columns, as in

o+ +
o+ o+ + |+ + +
o+ o+ o 0| + o+ |+ o+

or or or or H
o+ |+ e 0 + o e+ o o 0+ e e+ |+
o 0o 0 + o 0o o + o o 0 + o o 0 + o o 0|0
o o 0|0 o o 0|0 e o 0|0 e o 0|0 o o 0|0

the rightmost of these is standard, and has the smallest spread. Exercise 90
completes the proof of Theorem W in two dimensions.
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When n > 2, suppose z = (21,...,2,) € X and z; > 0. The condition
CrX = X implies that, if 0 <7 < jand ¢ # k # j, we have z +¢;, —e; € X.
Applying this fact for three values of k tells us that © + e; — e; € X whenever
0 <i < j. Consequently

Xn(a)+ E,(0) C Xy(a—1)4e, for0<a<m, (86)

where m = m,, and E,(0) is a clever abbreviation for the set {eg,...,€e, 1}
Let X, (a) have N, elements, so that N = || X|| = No+ Ny + -+ + Ny, 1,
and let Y = XT. Then

Yo(a) = (Xu((a—1)modm) +e,) U (X, (a) + En(0))
is standard in n — 1 dimensions, and (86) tells us that
N1 SBNp—2 < Npp2 <+ <Ny < BNy < No < alVp,
where o and 3 refer to coordinates 1 through n — 1. Therefore

1Y = 1Y) + [IYa (DIl + Y (2] + - - - + [[Yn(m = 1|
:OKNO+N0+N1+"'+Nm,2 :OéNo-I-N*Nm,l.

The proof of Theorem W now has a beautiful conclusion. Let Z = Sy, and
suppose ||Z,(a)| = M,. We want to prove that |Y|| > ||Z||, namely that

aNo+N —Np_1 > aMy+ N — Mp,_1, (87)

because the arguments of the previous paragraph apply to Z as well as to X.
We will prove (87) by showing that N,,,—1 < M,,—1 and Ng > Mj.
Using the (n — 1)-dimensional o and § functions, let us define

S 1=N, 1, N y=aN} i, ..., N=aNj, Ny =aN}; (88)
Ny =Ny, Ny = BNy, Ny =BN{, ..., Ny, 1= BNy, ». (89)

Then we have N} < N, < N/ for 0 < a < m, and it follows that
N = Nyt Nl 4t Ny € N € N'= NJ+ NI+ + Ni_y. (89)

Exercise 91 proves that the standard set Z"” = Sy~ has exactly N/ elements with
nth coordinate equal to a, for each a; and by the duality between a and 3, the
standard set Z' = Sy likewise has exactly N elements with nth coordinate a.
Finally, therefore,

My =1Z,(m =D 2 [ Z,(m = )] = N,,,_,
Mo = |2, (0)]| < [1Z7,(0)]| = N,
because Z' C Z C Z" by (89). 1

Now we are ready to prove the claimed results about shadows, which are
in fact special cases of a more general theorem of Clements and Lindstrém that
applies to arbitrary multisets [J. Combinatorial Theory 7 (1969), 230-238]:
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Corollary C. If A is a set of N t-multicombinations contained in the multiset
U={s0-0,81-1,...,8q4-d}, where sg > s; > --- > sq, then

10A] 2 |0Pn:||  and  [[CA] = [|€Q N, (90)

where Py denotes the N lexicographically smallest multicombinations c; . .. cacy
of U, and @ ; denotes the N lexicographically largest.

Proof. Multicombinations of U can be represented as points zj . .. x, of the torus
T(m4,...,my,), where n = d+ 1 and m; = s,_; + 1; we let z; be the number
of occurrences of n — j. This correspondence preserves lexicographic order. For
example, if U = {0,0,0,1,1,2, 3}, its 3-multicombinations are

000, 100, 110, 200, 210, 211, 300, 310, 311, 321, (91)
in lexicographic order, and the corresponding points xizsx324 are
0003, 0012,0021,0102,0111,0120,1002,1011, 1020, 1110. (92)

Let Ty, be the points of the torus that have weight z; +---+ z,, = w. Then
every allowable set A of t-multicombinations is a subset of T;. Furthermore—
and this is the main point—the spread of To UT; U ---UT; 1 U A is

+ + + + +
t— _
(TobUTyU---UT, yUA)T = T,;huTfu---uT,m,uA
= ToUTy U---UT, UCA. (93)

Thus the upper shadow @A is simply (To UTy U---UT;—1 U A)T N Ty4q, and
Theorem W tells us that |A|| = N implies ||CA|| > ||@(Sym+n N T)||, where
M = ||[ToU---UT; 1||. Hence, by the definition of cross order, Syrin U T}
consists of the lexicographically largest N ¢t-multicombinations, namely @ n¢.-

The proof that ||0A] > ||OPn¢|| follows by complementation (see exer-
cise 93). 1

EXERCISES
1. [M23] Explain why Golomb’s rule (8) makes all sets {c1,...,¢:} C{0,...,n—1}
correspond uniquely to multisets {e1,...,e:} C {c0:0,...,00 -n —t}.

2. [16] What path in an 11 X 13 grid corresponds to the bit string (13)?

3. [21] (R.R. Fenichel, 1968.) Show that the compositions g; +- -+ ¢1 + go of s into
t + 1 nonnegative parts can be generated in lexicographic order by a simple loopless
algorithm.

v

4. [16] Show that every composition g; . ..qo of s into ¢t + 1 nonnegative parts corre-
sponds to a composition 7 ...7¢ of t into s + 1 nonnegative parts. What composition
corresponds to 10224000001010 under this correspondence?

» 5. [20] What is a good way to generate all of the integer solutions to the following
systems of inequalities?
a) n> Ty > Tyo1 > Ty > Ty—3 > -+ > x1 > 0, when ¢ is odd.
b) n>> x> x> > x> w1 > 0, where a > b means a > b+ 2.
6. [M22] How often is each step of Algorithm T performed?
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7. [22] Design an algorithm that runs through the “dual” combinations bs . ..b2b1 in
decreasing lexicographic order (see (5) and Table 1). Like Algorithm T, your algorithm
should avoid redundant assignments and unnecessary searching.

8. [M23] Design an algorithm that generates all (s,t)-combinations an—1...a1a0
lexicographically in bitstring form. The total running time should be O( (?)), assuming
that st > 0.

9. [M26] When all (s,t)-combinations a,—_1 ...a1ap are listed in lexicographic order,
let 2A4: be the total number of bit changes between adjacent strings. For example,
Ass = 25 because there are respectively

2424+24+4+24+24+44+24+24+64+24+24+4+2+2+44+24+24+2=50

bit changes between the 20 strings in Table 1.
a) Show that As; = min(s,t) + As—1): + Ase—1) when st > 0; Ay = 0 when st = 0.
b) Prove that Ag < Z(Sjt).

10. [21] The “World Series” of baseball is traditionally a competition in which the
American League champion (A) plays the National League champion (N) until one of
them has beaten the other four times. What is a good way to list all possible scenarios
AAAA, AAANA, AAANNA, ..., NNNN? What is a simple way to assign consecutive
integers to those scenarios?

11. [19] Which of the scenarios in exercise 10 occurred most often during the 1900s?
Which of them never occurred? [Hint: World Series scores are easily found on the
Internet.]

12. [HM32] A set V of n-bit vectors that is closed under addition modulo 2 is called

a binary vector space.
a) Prove that every such V' contains 2¢ elements, for some integer ¢, and can be

represented as the set {z101 ® - - D xrar | 0 < z1,..., 2 < 1} where the vectors
ai, ..., ap form a “canonical basis” with the following property: There is a t¢-
combination ¢ ...cac1 of {0,1,...,n — 1} such that, if a; is the binary vector

Ak(n—1) - - - Ak1AkO, we have
ake; = [j=k] for 1 <4,k <t arr =0 for0<I<ecy, 1 <k<t.

For example, the canonical bases with n =9, t = 4, and csc3caci = 7641 have the

general form
ar = x00x0x*xx10,

o) *00%x10000,
as = x01000000,
*1000000O0;

Q4

there are 2° ways to replace the eight asterisks by Os and/or 1s, and each of these
defines a canonical basis. We call ¢ the dimension of V.

b) How many ¢-dimensional spaces are possible with n-bit vectors?

c) Design an algorithm to generate all canonical bases (a1, ...,a:) of dimension ¢.
Hint: Let the associated combinations ¢;...c1 increase lexicographically as in
Algorithm L.

d) What is the 1000000th basis visited by your algorithm when n =9 and ¢ = 47

13. [25] A one-dimensional Ising configuration of length n, weight ¢, and energy r,

is a binary string a,—_1...ao such that Z;:Ol aj =t and Z?z_ll b; = r, where b; =

26
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aj @ aj_1. For example, ai2...a0 = 1100100100011 has weight 6 and energy 6, since
bi2...b1 =010110110010.

Design an algorithm to generate all such configurations, given n, t, and r.

14. [26] When the binary strings an—i1...a1ao of (s,t)-combinations are generated
in lexicographic order, we sometimes need to change 2min(s,t) bits to get from one
combination to the next. For example, 011100 is followed by 100011 in Table 1.
Therefore we apparently cannot hope to generate all combinations with a loopless
algorithm unless we visit them in some other order.

Show, however, that there actually is a way to compute the lexicographic successor
of a given combination in O(1) steps, if each combination is represented indirectly in a
doubly linked list as follows: There are arrays [[0], ..., [[n] and 7[0], ..., r[n] such that
[rlj]] =7 for 0 < j <n. If o =1[0] and z; = l[z;_1] for 0 < j < n, then a; = [z, > 5]
for 0 <j<n.
15. [M22] Use the fact that dual combinations bs...b2b1 occur in reverse lexico-
graphic order to prove that the sum (b;) + -+ (b;) + (bll) has a simple relation
to the sum (%) +---+ (%) + (3).
16. [M21] What is the millionth combination generated by Algorithm L when ¢ is
(a) 27 (b) 37 (c) 47 (d) 57 (e) 10000007
17. [HM25] Given N and ¢, what is a good way to compute the combinatorial repre-

sentation (20)?

18. [20] What binary tree do we get when the binomial tree T, is represented by
“right child” and “left sibling” pointers as in exercise 2.3.2-57

19. [21] Instead of labeling the branches of the binomial tree Ty as shown in (22), we
could label each node with the bit string of its corresponding combination:

0000
0001 \B;jE::::::8155\5\\‘\‘\‘“““‘-1000
0011 0101 0110 1001 1010 1100
0111 1011 1101 1110
1111

If T has been labeled in this way, suppressing leading zeros, preorder is the same as
the ordinary increasing order of binary notation; so the millionth node turns out to be
11110100001000111111. But what is the millionth node of To, in postorder?

20. [M20] Find generating functions g and h such that Algorithm F finds exactly
[2N] g(2) feasible combinations and sets t < t + 1 exactly [2™] h(z) times.

21. [M22] Prove the alternating combination law (30).
22. [M23] What is the millionth revolving-door combination visited by Algorithm R
when ¢ is (a) 27 (b) 37 (c) 4?7 (d) 57 (e) 10000007

23. [M23] Suppose we augment Algorithm R by setting j < ¢+ 1 in step R1, and
j < 1if R3 goes directly to R2. Find the probability distribution of j, and its average
value. What does this imply about the running time of the algorithm?

27



28 COMBINATORIAL ALGORITHMS (F2C) 7.2.1.3

» 24. [M25] (W. H. Payne, 1974.) Continuing the previous exercise, let j, be the value
of j on the kth visit by Algorithm R. Show that |jk+1 — jk| < 2, and explain how to
make the algorithm loopless by exploiting this property.

25. [M35] Let c;...cocy and ¢} ... chcy be the Nth and N'th combinations generated
by the revolving-door method, Algorithm R. If the set C = {¢;,...,ca,c1} has m
elements not in C’ = {c},...,ch,c}}, prove that [N — N'| > 71 (2%).

26. [26] Do elements of the ternary reflected Gray path have properties similar to the
revolving-door Gray code T'y;, if we extract only the n-tuples an—_1 ...a1a¢ such that
(a) an—1+ - +a1+ao=1t? (b) {an-1,--.,01,a0} ={r-0,s-1,t-2}?

» 27. [25] Show that there is a simple way to generate all combinations of at most ¢
elements of {0,1,...,n — 1}, using only Gray-code-like transitions 0 <+ 1 and 01 <> 10.
(In other words, each step should either insert a new element, delete an element, or
shift an element by +1.) For example,

0000, 0001, 0011, 0010, 0110, 0101, 0100, 1100, 1010, 1001, 1000

is one such sequence when n =4 and ¢ = 2. Hint: Think of Chinese rings.

28. [M21] True or false: A listing of (s,t)-combinations a,—1...a1a¢ in bitstring
form is in genlex order if and only if the corresponding index-form listings bs . .. b2b1
(for the 0s) and ¢ ...cz2c1 (for the 1s) are both in genlex order.

29. [M28] (P. J. Chase.) Given a string on the symbols +, -, and 0, say that an
R-block is a substring of the form -F*" that is preceded by 0 and not followed by -; an
L-block is a substring of the form +-* that is followed by 0; in both cases k > 0. For
example, the string {00++-+++J000H has two L-blocks and one R-block, shown in gray.
Notice that blocks cannot overlap.

We form the successor of such a string as follows, whenever at least one block is
present: Replace the rightmost 0-**1 by -+*0, if the rightmost block is an R-block;
otherwise replace the rightmost +-*0 by 0+**1. Also negate the first sign, if any, that
appears to the right of the block that has been changed. For example,

-H00++- — —0HO-H#- — -0#—=0-——| = -0+--}0 — -OF——0+ — —00+++-,

where the notation o — 8 means that 3 is the successor of .

a) What strings have no blocks (and therefore no successor)?

b) Can there be a cycle of strings with ag = a1 — -+ = ar—1 = ao?

c) Prove that if « — (8 then —3 — —a, where “—” means “negate all the signs.”
(Therefore every string has at most one predecessor.)

d) Show that if ag — a1 — -+ — ax and k > 0, the strings ao and «y do not have
all their Os in the same positions. (Therefore, if ap has s signs and t zeros, k must
be less than (°*17).)

e) Prove that every string o with s signs and t zeros belongs to exactly one chain
Qg —> Qp —> > a(s-i.t)_

v

.
30. [M32] The previous exercise defines 2° ways to generate all combinations of s 0s
and t 1s, via the mapping + — 0, - — 0, and 0 — 1. Show that each of these ways

is a homogeneous genlex sequence, definable by an appropriate recurrence. Is Chase’s
sequence (37) a special case of this general construction?

31. [M23] How many genlex listings of (s, t)-combinations are possible in (a) bitstring
form an—1...a1a0? (b) index-list form ¢; ...c2c17
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> 32. [M30] How many of the genlex listings of (s, t)-combination strings a,_1 ...a1ao
(a) have the revolving-door property? (b) are homogeneous?

33. [HM31] How many of the genlex listings in exercise 31(b) are near-perfect?

34. [M30] Continuing exercise 33, explain how to find such schemes that are as near
as possible to perfection, in the sense that the number of “imperfect” transitions c;
¢; £ 2 is minimized, when s and ¢ are not too large.

35. [M26] How many steps of Chase’s sequence Cs; use an imperfect transition?

v

36. [M21] Prove that method (39) performs the operation j < j+1 a total of exactly

(s't"t) — 1 times as it generates all (s,t)-combinations an—1 ...a1a9, given any genlex
scheme for combinations in bitstring form.

> 37. [27] What algorithm results when the general genlex method (39) is used to

produce (s,t)-combinations a,—1 ...a1a¢ in (a) lexicographic order? (b) the revolving-

door order of Algorithm R? (¢) the homogeneous order of (31)?

38. [26] Design a genlex algorithm like Algorithm C for the reverse sequence C'%.

39. [M21] When s = 12 and ¢t = 14, how many combinations precede the bit string
11001001000011111101101010 in Chase’s sequence Cs:? (See (41).)

40. [MQQ] What is the millionth combination in Chase’s sequence Cs:, when s = 12
and t = 147

41. [M27] Show that there is a permutation ¢(0), ¢(1), ¢(2), ... of the nonnegative
integers such that the elements of Chase’s sequence Cs; are obtained by complementing
the least significant s + ¢ bits of the elements c(k) for 0 < k < 2°** that have weight
v(c(k)) = s. (Thus the sequence ¢(0), ..., 2™ — 1) contains, as subsequences, all of
the Cs; for which s + ¢t = n, just as Gray binary code g(0), ..., g(2" — 1) contains all
the revolving-door sequences I's;.) Explain how to compute the binary representation
c(k) = (...az2a1a0)2 from the binary representation k = (...bab1bo)2.

42. [HM34] Use generating functions of the form 3__, gs;w®z* to analyze each step of
Algorithm C.

43. [20] Prove or disprove: If s(z) and p(z) denote respectively the successor and
predecessor of  in endo-order, then s(z + 1) = p(z) + 1.

44. [M21] Let Ci(n) — 1 denote the sequence obtained from Cy(n) by striking out
all combinations with ¢; = 0, then replacing ¢;...c1 by (¢t — 1)...(c1 — 1) in the
combinations that remain. Show that Ci(n) — 1 is near-perfect.

v

45. [32] Exploit endo-order and the expansions sketched in (44) to generate the
combinations ¢ ...czc1 of Chase’s sequence Cy(n) with a nonrecursive procedure.

v

46. [33] Construct a nonrecursive algorithm for the dual combinations b ... b2b1 of
Chase’s sequence Cy;, namely the positions of the zeros in a,—1 ...a1a0.

47. [26] Implement the near-perfect multiset permutation method of (46) and (47).

48. [M21] Suppose ag, a1, ..., an—1 is any listing of the permutations of the multiset
{s1-1,...,8q4-d}, where oy, differs from ax41 by the interchange of two elements. Let
Bo, .., Bm—1 be any revolving-door listing for (s, t)-combinations, where s = so, t =

$14-+++8q4,and M = (S'l't). Then let A; be the list of M elements obtained by starting
with a; 1 Bo and applying the revolving-door exchanges; here a 1 8 denotes the string
obtained by substituting the elements of a for the 1s in 3, preserving left-right order.

For example, if Bo, ..., Bam—1 is 0110, 0101, 1100, 1001, 0011, 1010, and if o = 12,
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then A; is 0120, 0102, 1200, 1002, 0012, 1020. (The revolving-door listing need not be
homogeneous.)

Prove that the list (47) contains all permutations of {so - 0,81 -1,...,8q4 - d}, and
that adjacent permutations differ from each other by the interchange of two elements.

49. [HM23] If q is a primitive mth root of unity, such as e2™/™ show that
(n) _ ( [n/m| ) (n modm)
k), — \|k/m]/ \kmodm/,
50. [HM25] Extend the formula of the previous exercise to g-multinomial coefficients
(nl Fo g )
MN1y...,N¢ q.
51. [25] Find all Hamiltonian paths in the graph whose vertices are permutations of

{0,0,0,1,1,1} related by adjacent transposition. Which of those paths are equivalent
under the operations of interchanging Os with 1s and/or left-right reflection?

52. [M37] Generalizing Theorem P, find a necessary and sufficient condition that all
permutations of the multiset {so - 0,..., sq - d} can be generated by adjacent transpo-
sitions aja;_1 <> aj_1a;.

53. [M46] (D. H. Lehmer, 1965.) Suppose the N permutations of {so -0,...,sq - d}
cannot be generated by a perfect scheme, because (N + z)/2 of them have an even
number of inversions, where x > 2. Is it possible to generate them all with a sequence
of N + x — 2 adjacent interchanges as, <> as,—1 for 1 < k < N 4+ = — 1, where
x — 1 cases are “spurs” with 6, = Jr_1 that take us back to the permutation we’ve
just seen? For example, a suitable sequence §i...J94 for the 90 permutations of
{0,0,1,1,2,2}, where z = (2;;;2)_1 = 6, is 234535432523451a42aR51a42aR5104,
where o = 45352542345355, if we start with asasasazaiao = 221100.

54. [M40] For what values of s and ¢ can all (s,t)-combinations be generated if we
allow end-around swaps a,—1 <+ ao in addition to adjacent interchanges a; <+ a; 17

55. [M49] (Buck and Wiedemann, 1984.) Can all (¢,t)-combinations az:—1 ...a1ao
be generated by repeatedly swapping ao with some other element?

56. [22] (Frank Ruskey.) Can a piano player run through all possible 4-note chords
that span at most one octave, changing only one finger at a time? This is the problem of
generating all combinations ¢;...c; such that n >¢; >+ >c1 >0and ¢t —c1 < m,
where ¢ = 4 and (a) m = 8, n = 52 if we consider only the white notes of a piano
keyboard; (b) m = 13, n = 88 if we consider also the black notes.

57. [20] Consider the piano player’s problem of exercise 56 with the additional con-
dition that the chords don’t involve adjacent notes. (In other words, ¢j+1 > ¢; + 1 for
t>j>1)

58. [M25] Is there a perfect solution to the piano player’s problem, in which each step
moves a finger to an adjacent key?

59. [23] Design an algorithm to generate all bounded compositions
t=rs+---+r1+r0, where 0 < r; < mj for s > j > 0.

60. [32] Show that all bounded compositions can be generated by changing only two
of the parts at each step.
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> 61. [M27] A contingency table is an m x n matrix of nonnegative integers (a;;) having
given row sums 7; = Z;;l ai; and column sums ¢; = ", ai;, where 71 + - -+ rp =
c1+ - -+cn.
a) Show that 2 x n contingency tables are equivalent to bounded compositions.
b) What is the lexicographically largest contingency table for (r1,...,7m;c1,...,¢Cn),
when matrix entries are read row-wise from left to right and top to bottom, namely

in the order (ai1,@12,-..,01n,a21, -, @mn)?

¢) What is the lexicographically largest contingency table for (r1,...,7m;c1,...,cn),
when matrix entries are read column-wise from top to bottom and left to right,
namely in the order (a11,a21,...,am1,a12,.-«,Amn)?

d) What is the lexicographically smallest contingency table for (r1,...,7m;c1,...,¢n),
in the row-wise and column-wise senses?

e) Explain how to generate all contingency tables for (r1,...,rm;c1,...,cn) in lex-

icographic order.
62. [M41] Show that all contingency tables for (r1,...,"m;c1,...,¢n) can be gener-
ated by changing exactly four entries of the matrix at each step.

63. [M30] Construct a genlex Gray code for all of the 2°(**) subcubes that have
s digits and t asterisks, using only the transformations %0 <> 0%, *1 <> 1%, 0 < 1.
For example, one such cycle when s =t =2 is

v

(00, 01, 0x1x, Oxx1, 0xx0, 0x0x, x00x, x01x, x0x1, x0x0, xx00, xx01,
wk 11, #+10, %10, *1#1, %11%, *10%, 1%0%, L0, 11, 11, 115k, 10%).

64. [M40] Enumerate the total number of genlex Gray paths on subcubes that use
only the transformations allowed in exercise 63. How many of those paths are cycles?
> 65. [22] Given n >t > 0, show that there is a Gray path through all of the canonical

bases (a1, ...,a:) of exercise 12, changing just one bit at each step. For example, one
such path whenn =3 and t =2 is

001 101 101 001 001 011 010

010’ 010’ 110’ 110> 100’ 100’ 100°
66. [46] Consider the Ising configurations of exercise 13 for which ap = 0. Given n,
t, and r, is there a Gray code for these configurations in which all transitions have the
forms 0%1 +» 10" or 01% « 1%0? For example, in the case n =9, t = 5, r = 6, there is
a unique cycle

(010101110, 010110110, 011010110, 011011010, 011101010, 010111010).

67. [M01] If « is a t-combination, what is (a) 8'a? (b) 0'™'a?

» 68. [M22] How large is the smallest set A of t-combinations for which ||0A| < ||A|?
69. [M25] What is the maximum value of K N — N, for N > 0?7
70. [M20] How many t-cliques can a million-edge graph have?

» 71. [M22] Show that if N has the degree-t combinatorial representation (57), there

is an easy way to find the degree-s combinatorial representation of the complementary

number M = (°1*) — N, whenever N < (°1*). Derive (63) as a consequence.

72. [M23] (A.J. W. Hilton, 1976.) Let A be a set of s-combinations and B a set of
t-combinations, both contained in U = {0,...,n — 1} where n > s+ ¢. Show that if A
and B are cross-intersecting, in the sense that a N B # () for all « € A and 3 € B, then
so are the sets Qarns and Qnnt defined in Theorem K, where M = ||A|| and N = ||B]|.
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73. [M21] What are ||@Pp¢|| and ||@Qnn¢|| in Theorem K?

74. [M20] The right-hand side of (60) is not always the degree-(t — 1) combinatorial
representation of k; N, because v — 1 might be zero. Show, however, that a positive
integer N has at most two representations if we allow v = 0 in (57), and both of them
yield the same value k; N according to (60). Therefore

Nt Nni—1 Ny
o ke N = for 1 < k < t.
FlRktL - it <k71)+(k72)+ +<k71+v7t> orl<k<t

75. [M20] Find a simple formula for (N + 1) — x: N.

76. [M26] Prove the following properties of the s functions by manipulating binomial
coefficients, without assuming Theorem K:

a) ke(M 4+ N) < keM + k¢ N.

b) k(M + N) < max(kiM,N) + ki—1 N.
Hint: (") + -+ (") 4+ (%) + -+ (%) is equal to (")) + -+ (M) +
(mt;\"t) + -t (mlf’“), where V and A denote max and min.
77. [M22] Show that Theorem K follows easily from inequality (b) in the previous
exercise. Conversely, both inequalities are simple consequences of Theorem K. Hint:
Any set A of t-combinations can be written A = A;+ A0, where A1 = {a € A |0 ¢ a}.
78. [M23] Prove that if t > 2, we have M > p; N if and only if M +X\;—1 M > N.

79. [HM26] (L. Lovész, 1979.) The function (%) increases monotonically from 0 to co

as x increases from t — 1 to oo; hence we can define
&N:( v ), ifN:<x>andath—1.
t—1 t
Prove that k: N > k, N for all integers ¢ > 1 and N > 0. Hint: Equality holds when x
is an integer.
80. [M27] Show that the minimum shadow sizes in Theorem M are given by (64).
81. [HM31] The Takagi function of Fig. 27 is defined for 0 < z < 1 by the formula

(o) = i /0 C () dt,

where 7 (t) = (—I)LQM is the Rademacher function of Eq. 7.2.1.1—(16).
a) Prove that 7(x) is continuous in the interval [0..1], but its derivative does not
exist at any point.
b) Show that 7(z) is the only continuous function that satisfies

(3z) = 7(1—32) = o+ i7(x) for0<z <1

¢) What is the asymptotic value of 7(€) when € is small?
d)
e)
f) Find all roots of the equation 7(z) = maxo<z<1 7(x).
82. [HM46] Determine the set R of all rational numbers r such that the equation

7(z) = r has uncountably many solutions. If 7(z) is rational and z is irrational, is it
true that 7(z) € R?

Prove that 7(z) is rational when z is rational.
Find all roots of the equation 7(z) = 1/2.
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83. [HM27] If T = (2t71), prove the asymptotic formula

t
3
e N—N = Z(T(ﬁ> +O(M)) for 0 < N <T.
t T t
84. [HM21] Relate the functions A\; N and pu: N to the Takagi function 7(z).
85. [M20] Prove the law of spread/core duality, X~+ = X°~.
86. [M21] True or false: (a) X C Y° if and only if Y~ C X~°; (b) X°*° = X°;
(¢) aM < N if and only if M < BN.

87. [M20] Explain why cross order is useful, by completing the proof of Lemma S.

88. [16] Compute the « and g functions for the 2 x 2 x 3 torus (69).

89. [M22] Prove the basic compression lemma, (85).

90. [M24] Prove Theorem W for two-dimensional toruses T'(I,m), I < m.

91. [M28] Let x = z1...zn—1 be the Nth element of the torus T'(m1,...,mn_1), and

let S be the set of all elements of T'(m1,...,m,_1,m) that are < z1...2,_1(m—1)
in cross order. If N, elements of S have final component a, for 0 < a < m, prove
that Np,—1 = N and N,—1 = aN, for 1 < a < m, where « is the spread function for
standard sets in T'(m1,...,mnp_1).

92. [M25] (a) Find an N for which the conclusion of Theorem W is false when the
parameters ms, ma, ..., my have not been sorted into nondecreasing order. (b) Where
does the proof of that theorem use the hypothesis that m; < ma < --- <m,?

93. [M20] Show that the O half of Corollary C follows from the @ half. Hint: The
complements of the multicombinations (91) with respect to U are 3211, 3210, 3200,
3110, 3100, 3000, 2110, 3100, 2000, 1000.

94. [15] Explain why Theorems K and M follow from Corollary C.

95. [M22] If S is an infinite sequence (So, $1, S2, - .. ) of positive integers, let
n—1
(Sggn)) = [2"] j];[o(l 24+ 2%);

thus (S(k")) is the ordinary binomial coefficient (:) ifsg=81=83=---=1.
Generalizing the combinatorial number system, show that every nonnegative inte-
ger N has a unique representation

S(nt)) (S(m_l)> (S(n1)>
N = .

( t + t—1 + + 1

where ny > ng_1 > --->nq >0 and {ns,n¢e—1,...,m1} C{s0-0,s1-1,82-2,...}. Use
this representation to give a simple formula for the numbers || Pn¢|| in Corollary C.

96. [M26] The text remarked that the vertices of a convex polyhedron can be per-
turbed slightly so that all of its faces are simplexes. In general, any set of combinations
that contains the shadows of all its elements is called a simplicial complex; thus C is a
simplicial complex if and only if « C 8 and B € C implies that a € C, if and only if
C is an order ideal with respect to set inclusion.
The size vector of a simplicial complex C on n vertices is (No, Ni,..., N,) when
C contains exactly N; combinations of size t.
a) What are the size vectors of the five regular solids (the tetrahedron, cube, octa-
hedron, dodecahedron, and icosahedron), when their vertices are slightly tweaked?
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b) Construct a simplicial complex with size vector (1,4, 5,2,0).

c¢) Find a necessary and sufficient condition that a given size vector (No, N1, ..., Ny)
is feasible.

d) Prove that (No,...,N,) is feasible if and only its “dual” vector (No,...,N,) is
feasible, where we define N; = (?) — Np_y.

e) List all feasible size vectors (No, N1, Na, N3, N,) and their duals. Which of them
are self-dual?

97. [30] Continuing exercise 96, find an efficient way to count the number of feasible
size vectors (No, N1,...,N,) when n < 100.

98. [M25] A clutter is a set C of combinations that are incomparable, in the sense
that o C B and «a, 8 € C implies a = B. The size vector of a clutter is defined as in
exercise 96.
a) Find a necessary and sufficient condition that (Mo, Ma, ..., M,) is the size vector
of a clutter.
b) List all such size vectors in the case n = 4.

» 99. [M30] (Clements and Lindstrém.) Let A be a “simplicial multicomplex,” a set of
submultisets of the multiset U in Corollary C with the property that 0A C A. How
large can the total weight vA =Y {||la|| | @« € A} be when ||A]| = N?

100. [M25] If f(x1,...,2n) is a Boolean formula, let F'(p) be the probability that
f(z1,...,2,) =1 when each variable z; independently is 1 with probability p.
a) Calculate G(p) and H (p) for the Boolean formulas g(w, z, y, z) = wzzVwyzVeyz,
h(w,z,y, z) = wyz V zyz.
b) Show that there is a monotone Boolean function f(w,z,y,2) such that F(p) =
G(p), but there is no such function with F'(p) = H(p). Explain how to test this
condition in general.

101. [HMS35] (F.S. Macaulay, 1927.) A polynomial ideal I in the variables {z1 ..., .}
is a set of polynomials closed under the operations of addition, multiplication by a
constant, and multiplication by any of the variables. It is called homogeneous if it
consists of all linear combinations of a set of homogeneous polynomials, namely of
polynomials like zy+ 22 whose terms all have the same degree. Let N; be the maximum
number of linearly independent elements of degree ¢ in I. For example, if s = 2,
the set of all a(zo,z1,x2)(xox} — 22123) + B(xo, 1, 2)xox1235, Where o and § run
through all possible polynomials in {z¢, 1,22}, is a homogeneous polynomial ideal
WithN0:N1:N2:O,N3:1,N4:4,N5:9, N6:15,
a) Prove that for any such ideal I there is another ideal I’ in which all homogeneous
polynomials of degree t are linear combinations of N; independent monomials.
(A monomial is a product of variables, like 23z,x8.)
b) Use Theorem M and (64) to prove that Nyy1 > N; 4+ ko IV; for all ¢ > 0.
¢) Show that Nyy1 > Ny 4+ ksN; occurs for only finitely many ¢. (This statement
is equivalent to “Hilbert’s basis theorem,” proved by David Hilbert in Géttinger
Nachrichten (1888), 450-457; Math. Annalen 36 (1890), 473-534.)

> 102. [M38] The shadow of a subcube a1 ...a,, where each a; is either 0 or 1 or , is
obtained by replacing some * by 0 or 1. For example,

00x11x0 = {0011x0, 011x0, 0x1100, 0x1110}.

Find a set Pns: such that, if A is any set of N subcubes a1 ...ay, having s digits and
t asterisks, |[0A] > || Pnst]|-
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103. [M41] The shadow of a binary string a; ...a, is obtained by deleting one of its
bits. For example,

0110010010 = {10010010, 11010010, 11000010, 11001000, 11001001}.

Find a set Py, such that, if A is any set of N binary strings a ... an, ||0A| > ||Pynl-

104. [M20] A wuniversal cycle of t-combinations for {0,1,...,n — 1} is a cycle of
(’:) numbers whose blocks of ¢ consecutive elements run through every ¢-combination
{c1,...,c:}. For example,

(02145061320516243152630425364103546)

is a universal cycle when t =3 and n = 7.
Prove that no such cycle is possible unless (?

105. [M21] (L. Poinsot, 1809.) Find a “nice” universal cycle of 2-combinations for
{0,1,...,2m}. Hint: Consider the differences of consecutive elements, mod (2m + 1).

106. [22] (O. Terquem, 1849.) Poinsot’s theorem implies that all 28 dominoes of a
traditional “double-six” set can be arranged in a cycle so that the spots of adjacent
dominoes match each other:

How many such cycles are possible?

) is a multiple of n.

107. [M31] Find universal cycles of 3-combinations for the sets {0,...,n — 1} when
n mod 3 # 0.

108. [M31] Find universal cycles of 3-multicombinations for {0,1,...,n — 1} when
nmod 3 # 0 (namely for combinations didads with repetitions permitted).

> 109. [26] Cribbage is a game played with 52 cards, where each card has a suit (&, <,
Q, or &) and a face value (A, 2, 3, 4, 5,6, 7, 8,9, 10, J, Q, or K). One feature of the
game is to compute the score of a 5-card combination C' = {¢1, ¢z, ¢3, ca, ¢5 }, where one
card cg is called the starter. The score is the sum of points computed as follows, for
each subset S of C' and each choice of k: Let ||S|| = s.
i) Fifteens: If > {v(c) | ¢ € S} = 15, where (v(4),v(2),v(3),...,v(9),v(10),v(J),
v(Q),v(X)) = (1,2,3,...,9,10,10, 10, 10), score two points.
ii) Pairs: If s = 2 and both cards have the same face value, score two points.
iii) Runs: If s > 3 and the face values are consecutive, and if C does not contain a
run of length s + 1, score s points.
iv) Flushes: If s = 4 and all cards of S have the same suit, and if ¢, ¢ S, score
4 + [cx has the same suit as the others].
v) Nobs: If s =1 and ci ¢ S, score 1 if the card is J of the same suit as cy.
For example, if you hold {Jé&, 5&,5<¢,6Q} and if 4 is the starter, you score 4 x 2 for
fifteens, 2 for a pair, 2 x 3 for runs, plus 1 for nobs, totalling 17.
Exactly how many combinations and starter choices lead to a score of x points,
forx=0,1,2,...7

35



36 ANSWERS TO EXERCISES 7.2.1.3

SECTION 7.2.1.3

1. Given a multiset, form the sequence e;...eze; from right to left by listing the
distinct elements first, then those that appear twice, then those that appear thrice,
etc. Let us set e_; < s —j for 0 < j < s, so that every element e; for 1 < j < tis
equal to some element to its right in the sequence e;...e1ep...e_s. If the first such
element is e.; s, we obtain a solution to (3). Conversely, every solution to (3) yields a
unique multiset {ei1,...,e:}, because ¢;j < s+ jfor 1 < j <t.

2. Start at the bottom left corner; then go up for each 0, go right for each 1. The

result is

3. In this algorithm, variable r is the least positive index such that g, > 0.
F1. [Initialize.] Set ¢; + 0 for 1 < j <t¢, and go + s. (We assume that st > 0.)
F2. [Visit.] Visit the composition g¢...go. Go to F4 if go = 0.
F3. [Easy case.] Set go < qo — 1, r + 1, and go to F5.
F4. [Tricky case.] Terminate if r = t. Otherwise set go < ¢»—1, ¢» < 0,7 < r+1.
F5. [Increase ¢r.] Set ¢» < ¢» + 1 and return to F2. |

[See CACM 11 (1968), 430; 12 (1969), 187. The task of generating such compositions
in decreasing lexicographic order is more difficult.]

4. We can reverse the roles of 0 and 1 in (14), so that 0910%-11...109110%
17s01"=-10...01"01". This gives 0'10°10%10%*10*10°10°10°10°10°10*10°10'10° =
1°01201°01'01°01'01°01°01°01%01%011. Lexicographic order of an_1...a1ap corre-
sponds to lexicographic order of rs...7r170.

Incidentally, there’s also a multiset connection: {d;,...,d1} = {rs-s,...,70-0}.
For example, {10,10,8,6,2,2,2,2,2,2,1,1,0} = {0-11,2-10,0-9,1-8,0-7,1-6,0-5,
0-4,0-3,6-2,2-1,1-0}.

5. (a)Set z; = ¢;—|(j—1)/2] in each t-combination of n+[t/2]. (b) Set z; = ¢;+j+1
in each t-combination of n — ¢ — 2.

(A similar approach finds all solutions (z, ..., z1) to the inequalities z;11 > z;+4;
for 0 < j <'t, given the values of z¢41, (J¢,...,01), and zo.)

6. Assume that ¢t > 0. We get to T3 when ¢1 > 0; to T5 when ¢z =c¢1 +1 > 1; to T4
for2<j<t+1whenc; =ci1+j—1>j. So the counts are: T1, 1; T2, (;’)7 T3, ("t_l);
n—2 n—2 n—t—1 n—1 n—2 n—1 n—2
T4, (7)) + () ++ (M) = (50 15, (35 16, () + (5 - L
7. A procedure slightly simpler than Algorithm T suffices: Assume that s < n.
S1. [Initialize.] Set b; «— j+n —s—1for 1 < j < s; then set j « 1.
S2. [Visit.] Visit the combination bs...b2b1. Terminate if j > s.
S3. [Decrease bj;.] Set b; «— b; — 1. If b; < j, set j < j + 1 and return to S2.

S4. [Reset bj_1...b;.] While j > 1, set bj_1 < b; — 1, j < j — 1, and repeat until
j=1 GotoS2. |
(See S. Dvordk, Comp. J. 33 (1990), 188. Notice that if zx = n — by for 1 < k < s,
this algorithm runs through all combinations x5 ...z221 of {1,2,...,n} with 1 <z, <
-+ < x2 < z1 < m, in increasing lexicographic order.)
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8. A1. [Initialize.] Set a,, ...ao < 0°T1% g + ¢, 7 + 0. (We assume that 0 < t < n.)
A2. [Visit.] Visit the combination an—1...a1a0. Go to Adif g =0.
A3. [Replace ...017 by ...10197"] Set ag < 1, ag_1 + 0, ¢ < g — 1; then if
q =0, set r + 1. Return to A2.

A4. [Shift block of 1s.] Set ar < 0 and r <— r + 1. Then if a, = 1, set aq + 1,
q <+ q + 1, and repeat step A4.

A5. [Carry to left.] Terminate if 7 = n; otherwise set a, « 1.
A6.[0dd?] If ¢ > 0, set r < 0. Return to A2. 1

In step A2, ¢ and r point respectively to the rightmost 0 and 1 in a,—1...ap. Steps
Al, ..., A6 are executed with frequency 1, (?), (7::11)’ (Ttb) —1, (";1), (":1) — 1.
9. (a) The first (") strings begin with 0 and have 2A4(,_1y; bit changes; the other
(7)) begin with 1 and have 2A,(;_1). And »(01°0° ' & 10°1* ') = 2min(s, t).
(b) Solution 1 (direct): Let Bst = Ast + min(s,t) + 1. Then

Bat = B(s_1)t + Byt—1) + [s=t] when st > 0; Bst =1 when st =0.
Consequently By = Zi%(s’t) (). I s < tthisis < 3op_, (*T0F) = () =
()2 <207,

Solution 2 (indirect): The algorithm in answer 8 makes 2(z + y) bit changes when
steps (A3, A4) are executed (z,y) times. Thus Ay < (7—}) + (7) — 1< 2(%).
[The comment in answer 7.2.1.1-3 therefore applies to combinations as well.]

10. Each scenario corresponds to a (4,4)-combination bsbsbabi or csczczci in which
A wins games {8 —b4,8—b3,8—b2,8—b1} and N wins games {8 —c4,8—c3,8—¢c2,8—c1},
because we can assume that the losing team wins the remaining games in a series of 8.
(Equivalently, we can generate all permutations of {A, A, A A/ N,N,N,N} and omit
the trailing run of As or Ns.) The American League wins if and only if b; # 0, if and
only if ¢; = 0. The formula (%) + (%) + (?) + (%) assigns a unique integer between
0 and 69 to each scenario.

For example, ANANAA < a7...a1a0 = 01010011 <= byb3bob; = 7532 <—
caczcocr = 6410, and this is the scenario of rank (Z) + (g) + (;) + ((1)) = 19 in
lexicographic order. (Notice that the term (CJJ) will be zero if and only if it corresponds
to a trailing N.)

11. AAAA (9 times), NNNN (8), and ANAAA (7) were most common. Exactly 27
of the 70 failed to occur, including all four beginning with NNNA. (We disregard the
games that were tied because of darkness, in 1907, 1912, and 1922. The case ANNAAA
should perhaps be excluded too, because it occurred only in 1920 as part of ANNAAAA
in a best-of-nine series. The scenario NNAAANN occurred for the first time in 2001.)

12. (a) Let V; be the subspace {an—1...a0 € V | ar = 0 for 0 < k < j}, so that
{0...0} =V, C Vot C--- C Vo =V. Then {c1,...,c:} ={c| Ve # Vey1}, and oy is
the unique element a,1...a0 of V with a.; = [[=k]for1<j<t.

Incidentally, the ¢t X n matrix corresponding to a canonical basis is said to be in
reduced row-echelon form. It can be found by a standard “triangulation” algorithm
(see exercise 4.6.1-19 and Algorithm 4.6.2N).

(b) The 2-nomial coefficient (;’)2 =2 (”71)2 + ("71)2 of exercise 1.2.6-58 has the

t t—1

right properties, because 2° (";1)2 binary vector spaces have ¢; < n—1 and (7;:11

ce=n—1. [In general the number of canonical bases with r asterisks is the number of

)2 have
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partitions of r into at most ¢ parts, with no part exceeding n — ¢, and this is [27] (?)
by Eq. 7.2.1.4-(00). See D. E. Knuth, J. Combinatorial Theory 10 (1971), 178-180.]
(c) The following algorithm assumes that n > t > 0 and that a;41); = 0 for
t<j<n.
V1. [Initialize.] Set ax; «— [j=k —1]for1 <k <tand 0 < j < n. Also set g + t,
r < 0.

z

V2. [Visit.] (At this point we have aj—1) = 1 for 1 < k < g, a(g4+1)q = 0, and
air = 1.) Visit the canonical basis (a1(n—1) ... 011010, ., G¢(n-1) - - - Gt1G10)-
Go to V4 if ¢ > 0.

V3. [Find block of 1s.] Set ¢ < 1, 2, ..., until a(g41)(g+r) = 0. Terminate if
qg+r=n.

V4. [Add 1 to column g+7.] Set k < 1. If ag(g4r) = 1, set ap(gir) < 0, k < E+1,
and repeat until agg4ry = 0. Then if k < g, set ag(q4r) < 1; otherwise set
q(g+r) = 1, Qg(gtr-1) ¢ 0, ¢ g — 1.

V5. [Shift block right.] If ¢ = 0, set 7 < 7+1. Otherwise, if r > 0, set ar(r—1) + 1
and ag(ryr—1) < 0 for 1 <k < g, then set 7 <~ 0. Go to V2. |

Step V2 finds ¢ > 0 with probability 1 — (2" * —1)/(2" — 1) ~ 1 — 27 ¢, so we could
save time by treating this case separately.

(d) Since 999999 = 4 (), +16(£), +5(3), +5(3),+8(5), 70(3), +4 (), +1(1), +
2 ((1))2, the millionth output has binary columns 4, 16/2, 5, 5, 8/2, 0, 4/2, 1, 2/2, namely

01 =001100011,
@z = 000000100,
@3 = 101110000,
s = 01000000 0.

[Reference: E. Calabi and H. S. Wilf, J. Combinatorial Theory A22 (1977), 107-109.]

13. Let n = s +t. There are (((Ti_l)l/ﬂ)(ur:;/ﬂ

and (L(ri_l)l/ﬂ) (((Ti_l;/ﬂ) beginning with 1, because an Ising configuration that begins
with 0 corresponds to a composition of s Os into [(r+1)/2] parts and a composition of
t 1s into |(r 4+ 1)/2] parts. We can generate all such pairs of compositions and weave
them into configurations. [See E. Ising, Zeitschrift fiir Physik 31 (1925), 253-258;

J. M. S. Simées Pereira, CACM 12 (1969), 562.]

14. Start with I[j] + 7 — 1 and r[j — 1] + j for 1 < j < n; l[0] < n, r[n] + 0. To get
the next combination, assuming that ¢t > 0, set p < s if [[0] > s, otherwise p < r[n]—1.
Terminate if p < 0; otherwise set g < 7[p], l[¢g] < ![p], and 7[l[p]] + ¢. Then if r[g] > s
and p < s, set r[p] < r[n], l[r[n]] < p, r[s] < r[q], l[r[q]] < s, r[n] < 0, I[0] « n;
otherwise set r[p] < r[q], l[r[g]] < p. Finally set r[q] < p and [[p] + q.

[See Korsh and Lipschutz, J. Algorithms 25 (1997), 321-335, where the idea is
extended to a loopless algorithm for multiset permutations. Caution: This exercise,
like exercise 7.2.1.1-16, is more academic than practical, because the routine that visits
the linked list might need a loop that nullifies any advantage of loopless generation.]

) configurations beginning with 0

15. (The stated fact is true because lexicographic order of ¢;...c1 corresponds to
lexicographic order of an—_1 ...ag, which is reverse lexicographic order of the comple-
mentary sequence 1...1® an_1. ..ag.) By Theorem L, the combination c¢;...c1 is

38



7.2.1.3 ANSWERS TO EXERCISES 39

visited before exactly ( ) 4+ ( ) + (bll) others have been visited, and we must have

bs b1 Ct) <01> (s+t>
= —1.
(5)+ +(1)+(t e (§) = (7
This general identity can be written

— n—1 .
_ j n
+ 4<_ _) - < )71
Z (wo-l— +CCj) j;xj e e ] To+ -+ T

when each x; is 0 or 1, and Z; = 1 — z;; it follows also from the equation

Tn +Zn | _ _ = - .
To+ -+ Tn ZTo+ -+ Tn To+ -+ Tn To+ -+ Tn-1

16. Since 999999 = (%) + (*7") = (') + () + (L) = (D) + D)+ () + (V) =
() +C+ )+ () + (%), the answers are (a) 1414 1008; (b) 182 153 111; (c) 71
56 36 14; (d) 43 32 21 15 6; (e) 1000000 999999 ... 2 0.
17. By Theorem L, n; is the largest integer such that N > (T;t); the remaining terms
are the degree-(t — 1) representation of N — ("}

A simple sequential method for ¢ > 1 starts with z = 1, ¢ = ¢, and sets ¢ < ¢+ 1,
z < zc/(c — t) zero or more times until z > N; then we complete the first phase by
setting = < z(c —t)/c, ¢ - ¢ — 1, at which point we have z = ({) < N < (°1'). Set
ng < ¢, N + N —z; terminate with n1 + N if t = 2; otherwise set z < zt/c, t < t—1,
¢« c¢—1; while x > N set ¢ + z(c —t)/c, ¢ + ¢ — 1; repeat. This method requires
O(n) arithmetic operations if N < (Ttl), so it is suitable unless ¢ is small and N is large.

When t = 2, exercise 1.2.4-41 tells us that no = |[V2N +2 + %J In general,
nt is |z] where xz is the largest root of ! = ¢! N; this root can be approximated
by reverting the series y = (zf)"/* =2 — L(t —1) + H(t* — 1)z ' + -+ to get = =
y+ 1t —1)+ 4 —1)/y+0(y~*). Setting y = (t! N)*/* in this formula gives a good
approximation, after which we can check that (LfJ) < N KL (th) or make a final
adjustment. [See A. S. Fraenkel and M. Mor, Comp. J. 26 (1983), 336-343.]

18. A complete binary tree of 2™ — 1 nodes is obtained, with an extra node at the
top, like the “tree of losers” in replacement selection sorting (Fig. 63 in Section 5.4.1).
Therefore explicit links aren’t necessary; the right child of node k is node 2k 4 1, and
the left sibling is node 2k, for 1 < k < 2"~ ™.

This representation of a binomial tree has the curious property that node k =
(0°1a)s corresponds to the combination whose binary string is 0%1a®.
19. It is post(1000000), where post(n) = 2* + post(n — 2% 4 1) if 2 < n < 28!, and
post(0) = 0. So it is 11110100001001000100.
20. f(z) = (1 +2""1). . (142")/(1 = 2), g(2) = (1+2%)f(2), h(2) = 2*°f(2).

21. Therankofc:...cacy 1S (c‘j'l)—l minus the rank of ¢;—1 ... cz2c1. [See H. Lineburg,
Abh. Math. Sem. Hamburg 52 (1982), 208-227.]

22. Since 999999 = (',°) — (1) = (3°) - (D) + ) = (D) - )+ (5) - (V) =
(=) + ) = () + (%), the answers are (a) 1414 405; (b) 182 97 21; (c) 71 56
31 26; (d) 43 39 32 12 3; (e) 1000000 999999 999998 999996 . .. 0.

23. There are (?::) combinations with j > r, forr =1, 2, ..., ¢t. (If r =1 we have

coc=c1+1;ifr=2wehaveci =0,co =1;ifr=3wehavec:1 =0,ca =1, ca =c3+1;
ete) Thus the mean i ((7) + (71 -+ ('3)/ (1) = (*F)/(3) = (n 1)/ (410,
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The average running time per step is approximately proportional to this quantity; thus
the algorithm is quite fast when ¢ is small, but slow if ¢ is near n.
24. In fact jr — 2 < jr+1 < jr + 1 when ji =t (modulo 2) and ji — 1 < jr+1 < jx +2
when ji # t, because R5 is performed only when ¢; =i —1 for 1 <i < j.

Thus we could say, “If j > 4, set j + j—1—[j odd] and go to R5” at the end of R2,
iftisodd; “If j > 3, set j < j—1—[7 even] and go to R5” if ¢ is even. The algorithm
will then be loopless, since R4 and R5 will be performed at most twice per visit.

25, Assume that N > N’ and N — N’ is minimum; furthermore let ¢, be minimum,
subject to those assumptions. Then ¢; > c;.

If there is an element z ¢ C U C’ with 0 < x < ¢;, map each t-combination of
CUC' by changing j — j — 1 for j > x; or, if there is an element z € CNC’, map each
t-combination that contains z into a (¢t — 1)-combination by omitting = and changing
j =z —jfor j < z. In either case the mapping preserves alternating lexicographic
order; hence N — N’ must exceed the number of combinations between the images
of C and C’'. But ¢; is minimum, so no such z can exist. Consequently ¢ = m and
Ct = 2m — 1.

Now if ¢, < ¢, — 1, we could decrease N — N’ by increasing c},,. Therefore c,,, =
2m—2, and the problem has been reduced to finding the mazimum of rank(c,, 1 ...c1)—
rank(c;,_1 - ..ch), where rank refers to Gray binary code.

Let f(s,t) = max(rank(bS ...b1) —rank(c ... cl)) over all {bs,...,b1,¢ct...,c1} =
{0,...,s+t—1}. Then f(s,t) satisfies the curious recurrence

f(s,O)Zf(O,t)ZO; f(lat):t;
f(s,t) = (T + max(f(t — 1,5 — 1), f(s — 2,t)) if st > 0.

When s 4+t = 2u + 2 the solution turns out to be

u—r

r—1
C(2u+1 2u+1—2j 2j +1 o
f(s,t)f(t_l)—ka:;( , )—l—jz:(:)( j ), r =min(s — 2,¢t — 1),

with the maximum occurring at f(t—1,s—1) when s < ¢t and at f(s—2,t) when s > t+42.
Therefore the minimum N — N’ occurs for

C={2m—-1}u{2m—2—z|1<z<2m—2, rmod4 <1},
C'=02m—-2}u{2m—2—2z |1 <2z <2m—2, zmod4 >2};
and it equals (>™ ') — 77 (PR = 14+ 205 (2F). [A. J. van Zanten, IEEE

m—1 k k—1

Trans. IT-37 (1991), 1229-1233]
26. (a) Yes: The first is 0"~ [*/211#med291t/2] and the last is 21*/2/1fmed 2gn=Tt/21,
transitions are substrings of the forms 02?1 « 1270, 02?2 + 12°1, 101 « 2070,
1092 <» 20°1.

(b) No: If s = 0 there is a big jump from 02°0"~"! to 2072,
27. The following procedure extracts all combinations ¢; ...cg of I',, that have weight
< t: Begin with k£ <~ 0 and ¢p < n. Visit ¢1...cx. If k is even and ¢ = 0, set
k+ k—1;if kiseven and cx > 0, set cx « cx — 1 if kK = t, otherwise k «+— k + 1
and c¢x < 0. On the other hand if k is odd and ¢y + 1 = ¢x—1, set k + k — 1 and
¢k < ck+1 (but terminate if k = 0); if k is odd and cx + 1 < cx—1, set cx < cp + 1 if
k =t, otherwise k < k + 1, ¢ < ck—1, ck—1 + cr + 1. Repeat.

(This loopless algorithm reduces to that of exercise 7.2.1.1-12(b) when ¢ = n, with
slight changes of notation.)
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28. True. Bit strings a,_1...a9 = af and a,,_; ...ay = a3’ correspond to index lists
(bs...by=0x,¢cs...cy =) and (b ...by = 0X', ¢ ...cy = ¢p1') such that everything
between o and a8’ begins with « if and only if everything between 0x and 6y’ begins
with 6 and everything between ¢ and ¢’ begins with ¢. For example, if n = 10, the
prefix a = 01101 corresponds to prefixes § = 96 and ¢ = 875.

(But just having ¢; . ..c; in genlex order is a much weaker condition. For example,
every such sequence is genlex when t = 1.)

29. (a) -*0'! or -Folt142™ or £F for k,1,m > 0.

(b) No; the successor is always smaller in balanced ternary notation.

(c) For all a and all k,I,m > 0 we have a0-*T10'++™ — q-+F0'*1-2™ and
a+=-Fo 4™ _y q0+F+10!-£™; also a0-FF10! — a-+0!t! and a+-F0't! — a0+Ft1ol.

(d) Let the jth sign of a; be (—1)%, and let it be in position b;;. Then we have
(=1)* i1 = (=1)*G+DiTPEDG-1 for 0 < i < k and 1 < j < t, if we let by = 0.

(e) By parts (a), (b), and (c), @ belongs to some chain ag — - -+ — ag, where ay,
is final (has no successor) and «p is initial (has no predecessor). By part (d), every
such chain has at most (Stt) elements. But there are 2° final strings, by (a), and there
are 2° (S't"t) strings with s signs and t zeros; so k must be (S'l't) —1.

Reference: SICOMP 2 (1973), 128-133.

30. Assume that ¢ > 0. Initial strings are the negatives of final strings. Let o; be
the initial string 0‘~7; for 0 < j < 2°7!, where the kth character of 7; for 1 < k < s
is (—1)** when j is the binary number (as_1...a1)s2; thus oo = O0'—++...+, 01 =
Of——+...+, ..., 0ge—1_; = 0'———...-. Let p; be the final string obtained by inserting
-0" after the first run of minus signs in 7;; thus pg = -0'++...+, p1 = --0"+. ..+, ...,
Pos—1_1 = ——...-0". We also let 04s—1 = 0y and pys—1 = py. Then we can prove by
induction that the chain beginning with ¢; ends with p; when ¢ is even, with p;_;
when ¢ is odd, for 1 < j < 2°7!. Therefore the chain beginning with —p; ends with
—0; O —0j41.

Let A;(s,t) be the sequence of (s,t)-combinations derived by mapping the chain
that starts with o, and let B;(s,t) be the analogous sequence derived from —p;. Then,
for 1 < j < 2°7!, the reverse sequence A;(s,t)E is B;(s,t) when t is even, B;j_1(s,t)
when ¢ is odd. The corresponding recurrences when st > 0 are

1A;(s,t = 1), 0A|a-1_1_j)/2/(5 = 1,t)%, if t is even;
1A;(s,t —1), 0Aj/2)(s — 1,t), if t is even;

Aj(st) = {
and when st > 0 all 2°7! of these sequences are distinct.
Chase’s sequence Cs; is A|2s/3/(8,t), and Cs; is A|9:-1,3(s,t). Incidentally, the
homogeneous sequence K of (31) is Ays—1_[; even] (5, 1)

31. (a) 2("1) =1 solves the recurrence f(s,t) = 2f(s—1,t) f(s,t — 1) when f(s,0) =
f(0,t) =1. (b) Now f(s,t) = (s+ 1)! f(s,t —1)... f(0,t — 1) has the solution
(s+ 1)1 (s — () 2 = T+ ip(Tima rr=el,
r=1
32. (a) No simple formula seems to exist, but the listings can be counted for small s

and t by systematically computing the number of genlex paths that run through all
weight-¢ strings from a given starting point to a given ending point via revolving-door
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moves. The totals for s +¢ < 6 are

1
1 1
1 2 1
1 4 4 4
1 8 20 8 1

1 16 160 160 16 1
1 32 2264 17152 2264 32 1

and f(4,4) = 95,304,112,865,280; f(5,5) ~ 5.92646 x 10*®. [This class of combination
generators was first studied by G. Ehrlich, JACM 20 (1973), 500-513, but he did not
attempt to enumerate them.]

(b) By extending the proof of Theorem N, one can show that all such listings or
their reversals must run from 1*0° to 0°1°0°~“ for some a, 1 < a < s. Moreover, the
number ng:, of possibilities, given s, ¢, and a, satisfies

{ns(t—l)ln(s—l)t(a—l)y ifa>1,
Nsta = .
Ts(t-1)2M(s—1)e1 T+ s(4—1)s (s -1)t(s-1);  fa=1<s,

itha)
’

when st > 0. This recurrence has the remarkable solution ngia = gm(s where

(s+i—3) + (stj) 4t (5;1), if ¢ is even;
(s-‘r‘i—S) + (s-ﬁgf’) 4ot (;) +s—a—Ja<s], iftisodd.

33. Consider first the case t = 1: The number of near-perfect paths from i to j > ¢ is
f(G—i—[i>0]—[j<n—1]), where >°. f()2? =1/(1 — z— 2*). (By coincidence, the
same sequence f(j) arises in Caron’s polyphase merge on 6 tapes, Table 5.4.2-2.) The
sum over 0 < i < j <nis3f(n)+ f(n—1)+ f(n—2) + 2 — n; and we must double this,
to cover cases with j > 1.

When ¢t > 1 we can construct (?) X (Ttb) matrices that tell how many genlex listings
begin and end with particular combinations. The entries of these matrices are sums of
products of matrices for the case ¢t — 1, summed over all paths of the type considered
for t = 1. The totals for s + ¢t < 6 turn out to be

m(s,t,a) = {

1 1
1 1 11
1 2 1 121
1 6 2 1 1201
1 12 10 2 1 12201
1 20 44 10 2 1 120001

1 34 238 68 10 2 1 1260001

where the right-hand triangle shows the number of cycles, g(s,t). Further values include
£(4,4) = 17736; £(5,5) = 9,900,888,879,984; g(4,4) = 96; g(5,5) = 30,961,456,320.
There are exactly 10 such schemes when s = 2 and n > 4. For example, when
n = 7 they run from 43210 to 65431 or 65432, or from 54321 to 65420 or 65430 or
65432, or the reverse.
34. The minimum can be computed as in the previous answer, but using min-plus
matrix multiplication ¢;; = ming(a;x + bx;) instead of ordinary matrix multiplication
cij = 4 Gikbrj. (When s =t = 5, the genlex path in Fig. 26(e) with only 49 imperfect
transitions is essentially unique. There is a genlex cycle for s = ¢t = 5 that has only 55
imperfections.)
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35. From the recurrences (35) we have ast = byr—1) + [s > 1][t > 0] + a(s_1)t, bat =
Gs(t—1) + Q(s—1); consequently ast = bst + [s > 1][todd] and ast = asi—1) + a(s—1)¢ +
[s>1][todd]. The solution is

t/2

ast = Z<S+t72i2k> — [s>1][teven];

s—2
k=0

this sum is approximately s/(s + 2t) times (°7%).

36. Consider the binary tree with root node (s,t) and with recursively defined subtrees
rooted at (s—1,t) and (s,t—1) whenever st > 0; the node (s, t) is a leaf if st = 0. Then
the subtree rooted at (s,t) has (*T") leaves, corresponding to all (s,t)-combinations
Qn—1...a1a0. Nodes on level | correspond to prefixes an_1...an—i, and leaves on
level [ are combinations with r =mn —[.

Any genlex algorithm for combinations an—1 ...a1ap corresponds to preorder tra-
versal of such a tree, after the children of the (Sjt) — 1 branch nodes have been
ordered in any desired way; that, in fact, is why there are 2(*T) =1 such genlex schemes
(exercise 31(a)). And the operation j < j + 1 is performed exactly once per branch
node, namely after both children have been processed.

Incidentally, exercise 7.2.1.2-6(a) implies that the average value of r is s/(t+ 1) +
t/(s+1), which can be Q(n); thus the extra time needed to keep track of r is worthwhile.

37. (a) In the lexicographic case we needn’t maintain the w; table, since a; is active
for j > r if and only if a; = 0. After setting a; <— 1 and a;_1 < 0 there are two cases
to consider if j > 1: If » = j, set 7 + j — 1; otherwise set aj_z...ap < 0"197'~" and
r+j—1—r(orr+ jifr wasj—1).

(b) Now the transitions to be handled when j > 1 are to change a; . . . ao as follows:
01" — 1101772, 010" — 10"*1, 010%1" — 110°T117~ 1, 10" — 01071, 110" — 010" 11,
10%1" — 0%1"T!; these six cases are easily distinguished. The value of r should change
appropriately.

(c) Again the case j = 1 is trivial. Otherwise 010" — 101*710"; 0*1" — 10*1"*;
101%0" — 01%710"; 101" — 0°1"*!; and there is also an ambiguous case, which can
occur only if an_1...aj41 contains at least one 0: Let £ > j be minimal with a = 0.
Then 10" — 010"~* if k is odd, 10" — 071 if k is even.

38. The same algorithm works, except that (i) step C1 sets a,_1...ao + 01°0°~" if
nisodd or s =1, @n_1...ap < 001°0°"2 if n is even and s > 1, with an appropriate
value of r; (ii) step C3 interchanges the roles of even and odd; (iii) step C5 goes to C4
also if j = 1.

39. In general, start with r < 0, j + s+t — 1, and repeat the following steps until
st =0:

s+t—aj
S —ay

r<—r+[wj=0]( ), s+s—[a;=0], t+t—[a;=1], j+j—1
Then r is the rank of a,_1...a1ap. So the rank of 11001001000011111101101010 is
25 24 20 19 18 15 7 6 5 2

(1) + () + Go) + () + (7) + (§) + () + ) + () + () = 2390131

40. We start with N < 999999, v < 0, and repeat the following steps until st = 0: If
v=0,sett« t—1and as4+ < 1if N < (S+271), otherwise set N <+ N — (S+§71),
v (s+t)mod2, s+ s—1,as4: < 0. fv=1,set v+ (s+t)mod2, s + s—1,

and as4t < 0if N < (S+:_1), otherwise set N < N — (S"':_l), t«—t—1, asys < 1.
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Finally if s = 0, set a;_1...a0 < 1% if t = 0, set as_1...a0 < 0°. The answer is
azs...ao = 11101001111110101001000001.
41. Let C(O), . C(Qn — 1) = C,, where Cs, = OCanl, 102n71; Czn+1 = OCQTL,
16277,; Con = 1C2p—1, 062n—1; 62n+1 = 16277,, 06277,; Co = Co = €. Then a; ®b; =
bj+1A(bj+2V(bj+3A(bj4aV---))) if jis even, bj11V(bj+2A(bj+3V (bjraA---)))if 7 is odd.
Curiously we also have the inverse relation ¢(( . ..a5a4@3a281a0)2) = (.. .bsbab3b2b1bo).
42. Equation (40) shows that the left context a,_1 ...ai+1 does not affect the behavior
of the algorithm on a;_1...a9 if ag = 0 and [ > r. Therefore we can analyze
Algorithm C by counting combinations that end with certain bit patterns, and it
follows that the number of times each operation is performed can be represented as
[w*2"] p(w, 2)/(1 — w?)?(1 — 2%)*(1 — w — 2) for an appropriate polynomial p(w, z).

For example, the algorithm goes from C5 to C4 once for each combination that ends
with 012¢%1012%* or has the form 197101%*+1, for integers a,b > 0; the corresponding
generating functions are w?z?%/(1 — 2%)%(1 — w — 2) and w(2* + 23)/(1 — 2%)2.

Here are the polynomials p(w, z) for key operations. Let W =1 — w?, Z =1-2%

C3 — C4: wzW(1+wz)(1—w—22): C5(r+1):  w?2W?Z(1—wz—2°):
C3 — C5: wzW(w+z)(1—wz—2%): C5(r + j—1): w?22W?(1—wz—22):
C3 — C6: w22 W (w+2): C6(j =1): w2 W?Z:

C3 - Cr: w2 W (1+wz): C6(r « j—1): w?2’W?>:

C4(j5=1): wzW?Z(1—w—2%): C6(r +j): w*22WZ:

CA(r + j—1): w?2WZ(1—w—2%): C7 — Cé6: w2 W2:

Ca(r + j):  wW?(A+z—2wz—2>—2%): C7(r < j): w*2Wz:

C5 — C4: w2 W3 (1—wz—2%): C7(r «+ j—2): w*2°W?>

C5(r + j—2): w*2WZ(1—wz—2%):

The asymptotic value is (°7%)(p(1 — z,2)/(2z — 2°)*(1 — 2°)® + O(n™")), for fixed
0<z<l,ift=2n+0(1) as n = co. Thus we find, for example, that the four-way
branching in step C3 takes place with relative frequencies x4+ 2% —2% : 1: 2z : 14z — 22

Incidentally, the number of cases with j odd exceeds the number of cases with

j even by

S (B i)
k,1>1

in any genlex scheme that uses (39). This quantity has the interesting generating
function wz/(1 4+ w)(1+ 2)(1 —w — 2).
43. The identity is true for all nonnegative integers x, except when z = 1.
44. In fact, Cy(n) — 1 = Ci(n — )%, and Cy(n) — 1 = Cy(n — 1)®. (Hence Cy(n) —2 =
Ci(n —2), etc.)
45. In the following algorithm, r is the least subscript with ¢, > r.
CC1. [Initialize.] Set ¢;j «~ n—t—1+jand z; < 0for 1 < j <t+4 1. Also set
r < 1. (We assume that 0 < t < n.)
CC2. [Visit.] Visit the combination ¢ ...czc1. Then set j < 7.
CC3. [Branch.] Go to CC5 if z; # 0.
CCA4. [Try to decrease c¢j.| Set < ¢j + (¢;jmod2) — 2. If z > j, set ¢; « x,
r < 1; otherwise if ¢; = 7, set ¢j « j — 1, 2j + ¢j+1 — ((¢j+1 + 1) mod 2),
T < j; otherwise if ¢; < 7, set ¢; + j, z; + cj4+1 — ((cj+1 + 1) mod 2),
r < max(1l,j — 1); otherwise set ¢; « z, < j. Return to CC2.
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CC5. [Try to increase c¢;.] Set z < ¢; + 2. If z < zj, set ¢; + z; otherwise
if £ = z; and z; # 0, set ¢; « = — (¢j4+1 mod 2); otherwise set z; + 0,
j < j+1, and go to CC3 (but terminate if j > t). If ¢1 > 0, set r + 1;
otherwise set r <+ j — 1. Return to CC2. |
46. Eq. (40) implies that ur = (bj + k + 1) mod 2 when j is minimal with b; > k.
Then (37) and (38) yield the following algorithm, where we assume for convenience
that 3 < s < n.
CB1. [Initialize.] Set b; < j—1for 1 < j < s; also set z < s+ 1, b, < 1. (When
subsequent steps examine the value of z, it is the smallest index such that
b. #z—1.)
CB2. [Visit.] Visit the dual combination b, . .. bab;.

CBS3. [Branch.] If bs is odd: Go to CB4 if by # b1 + 1, otherwise to CB5 if b; > 0,
otherwise to CB6 if b, is odd. Go to CB9 if bz is even and b1 > 0. Otherwise
go to CB8 if b,41 = b, + 1, otherwise to CB7.

CBA4. [Increase bi.] Set by < b1 + 1 and return to CB2.

CBS5. [Slide b1 and bs.] If b3 is odd, set by < b1 + 1 and by < bz + 1; otherwise
set by < b1 — 1, by < b2 — 1, z + 3. Go to CB2.

CBS6. [Slide left.] If z is odd, set z < z — 2, b,41 < 2+ 1, b, + z; otherwise set
z+2z—1,b, + z. Go to CB2.

CBY7. [Slide b,.] If b.41 is odd, set b, < b, + 1 and terminate if b, > n; otherwise
set b, < b, — 1, then if b, < z set z + z + 1. To CB2.

CBS8. [Slide b, and b,y1.] If b.yo is odd, set b, < b.+1, boy1 < b, + 1, and
terminate if b,41 > n. Otherwise set b,41 < b,, by < b, — 1, then if b, < z
set z <+ z + 2. To CB2.

CBS. [Decrease by.] Set by < b1 — 1, z + 2, and return to CB2. ||

Notice that this algorithm is loopless. Chase gave a similar procedure for the sequence
CE in Cong. Num. 69 (1989), 233-237. It is truly amazing that this algorithm defines
precisely the complements of the indices c¢...c1 produced by the algorithm in the
previous exercise.

47. We can, for example, use Algorithm C and its reverse (exercise 38), with w;
replaced by a d-bit number whose bits represent activity at different levels of the
recursion. Separate pointers ro, 71, ..., ra—1 are needed to keep track of the r-values
on each level. (Many other solutions are possible.)

48. There are permutations 71, ..., mar such that the kth element of A; is mro;16k—1.
And 7o  runs through all permutations of {s1-1,...,sq4-d} as j varies from 0 to N —1.

Historical note: The first publication of a homogeneous revolving-door scheme
for (s,t)-combinations was by Eva Térok, Matematikai Lapok 19 (1968), 143-146,
who was motivated by the generation of multiset permutations. Many authors have
subsequently relied on the homogeneity condition for similar constructions, but this
exercise shows that homogeneity is not necessary.

49. We have lim, ,4(z"™*" — 1)/(z'™*" — 1) = 1 when 0 < 7 < m, and the limit
is lim,_q(kmz"™"1)/(Imz'™~') = k/I when r = 0. So we can pair up factors of the
numerator [] (2* — 1) with factors of the denominator H0<b<k(zb — 1) when

n—k<a<n
a = b (modulo m).
Notes: In the special case m = 2, ¢ = —1, the second factor vanishes only when n
is even and k is odd. The formula (Z)q = (nﬁk)q holds for all n > 0, but (H;;ZJ) is not
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always equal to (L(if%’"fmj). We do, however, have |k/m| + |(n — k)/m] = |[n/m] in
the case when n mod m > k mod m; otherwise the second factor is zero.
50. The stated coefficient is zero when n1 mod m + - - - + ny mod m > m. Otherwise it
equals
<L(n1+...+nt)/mJ> ( (n1+ -+ +n¢) modm )
[n1/m],...,|n¢/m]/ \ny modm,...,ny modm/,

by Eq. 1.2.6—(43); here each upper index is the sum of the lower indices.

51. All paths clearly run between 000111 and 111000, since those vertices have de-
gree 1. Fourteen total paths reduce to four under the stated equivalences. The path
in (50), which is equivalent to itself under reflection-and-reversal, can be described
by the delta sequence A = 3452132523414354123; the other three classes are B =
3452541453414512543, C' = 3452541453252154123, D = 3452134145341432543. D. H.
Lehmer found path C [AMM 72 (1965), part II, 36-46]; D is essentially the path
constructed by Eades, Hickey, and Read.

(Incidentally, perfect schemes aren’t really rare, although they seem to be difficult
to construct systematically. The case s = 3, t = 5 has 4,050,046 of them.)

52. We may assume that each s; is nonzero and that d > 1. Then the difference
between permutations with an even and odd number of inversions is (tﬁg‘};}*’ﬁiﬁﬂ) >
2, by exercise 50, unless at least two of the multiplicities s; are odd.

Conversely, if at least two multiplicities are odd, a general construction by G. Sta-
chowiak [SIAM J. Discrete Math. 5 (1992), 199-206] shows that a perfect scheme
exists. Indeed, his construction applies to a variety of topological sorting problems; in
the special case of multisets it gives a Hamiltonian circuit in all cases with d > 1 and
sps1 odd, except when d = 2, sg = s1 = 1, and sz is even.

53. See AMM 72 (1965), Part II, 36-46.

54. Assuming that st # 0, a Hamiltonian path exists if and only if s and ¢ are not
both even; a Hamiltonian circuit exists if and only if, in addition, (s # 2 and ¢ # 2) or
n = 5. [T. C. Enns, Discrete Math. 122 (1993), 153-165.]

55. [Discrete Math. 48 (1984), 163-171.] This problem is equivalent to the “middle
levels conjecture,” which states that there is a Gray path through all binary strings
of length 2t — 1 and weights {¢t — 1,¢}. In fact, such strings can almost certainly be
generated by a delta sequence of the special form aga; ... az:—2 where the elements of
ay, are those of ag shifted by k, modulo 2¢ — 1. For example, when t = 3 we can start
with asasasazaiap = 000111 and repeatedly swap ao <+ as, where § runs through the
cycle (4134 5245 1351 2412 3523). The middle levels conjecture is known to be true for
t <15 [see I. Shields and C. D. Savage, Cong. Num. 140 (1999), 161-178].

56. Yes; there is a near-perfect genlex solution for all m, n, and ¢ when n > m > t.
One such scheme, in bitstring notation, is 1A(m,_s)—1)0""", 01A(m_t)(t_1)0"_m_1,
oy 0" LA (m—t) (6—1) 0"7m+11A(m,1,t)(t,1), ey OnftlAg(t,l), using the sequences
Ast of (35)-

57. Solve the previous problem with m and n reduced by ¢t — 1, then add j — 1 to
each c;. (Case (a), which is particularly simple, was probably known to Czerny.)

58. The generating function Gmni(q) = ngmqu for the number gmn:r of chords
reachable in & steps from 0™ *1¢ satisfies Ginmi(q) = (T)q and G (nt1)t(q) = Gmnt(q)+
gtn—(t=tm (T:ll)q, because the latter term accounts for cases with ¢; = n and ¢; >
n—m. A perfect scheme is possible only if |Gmni(—1)| < 1. Butif n > m >t > 2, this
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condition holds only when m =t 4+ 1 or (n — t)t is odd, by exercise 49. So there is no
perfect solution when ¢t = 4 and m > 5. (Many chords have only two neighbors when
n =t + 2, so one can easily rule out that case. All cases withn >m > 5 and t =3
apparently do have perfect paths when n is even.)

59. The following solution uses lexicographic order, taking care to ensure that the aver-
age amount of computation per step is bounded. We may assume that stms...mo # 0
and t < mg +---+mq + mo.

Q1. [Initialize.] Set ¢; <~ 0for 1 <j <s, and z =t.

Q2. [Distribute.] Set j < 0. Then while z > mj, set ¢; < mj, z + = — m;,
Jj + 7+ 1, and repeat until z < m;. Finally set ¢; + «.

Q3. [Visit.] Visit the bounded composition ¢s . .. g1qo-

Q4. [Pick up the rightmost units.] If j = 0, set < go — 1, j < 1. Otherwise if
go =0,set <+ q; — 1, ¢g; < 0, and j < j + 1. Otherwise go to Q7.

Q5. [Full?] Terminate if j > s. Otherwise if g; = m;, set © + x +mj, ¢; + 0,
j < j+1, and repeat this step.

Q6. [Increase ¢;.] Set g; < ¢; + 1. Then if z = 0, set go + 0 and return to Q3.
Otherwise go to Q2.

Q7. [Increase and decrease.] While g; = m;, set j < j+1 and repeat until ¢; < m;
(but terminate if j > s). Thenset ¢; < ¢;+1,j« j—1,¢q; + ¢ —1. If
qo = 1, set j < 1. Return to Q3. |

For example, if ms = --- = mo = 9, the successors of the composition 3+9+9+4+7+040
are4+0+0+64+9+9,44+0+0+74+8+9,44+0+0+74+9+8,44+0+0+84+7+9, ....

60. Let Fi(t) =0 if t <0 or t > ms+ -+ mo; otherwise let Fy(t) = t, and
Fyo(t) = 04F, 1(t), 1+Fs 1(t— 1%, 24F, 1(t—=2), ..., metFa 1(t —ms)® "

when s > 0. This sequence can be shown to have the required properties; it is, in
fact, equivalent to the compositions defined by the homogeneous sequence K of (31)
under the correspondence of exercise 4, when restricted to the subsequence defined by
the bounds ms, ..., mgo. [See T. Walsh, J. Combinatorial Math. and Combinatorial
Computing 33 (2000), 323-345, who has implemented it looplessly.]

61. (a) A 2 X n contingency table with row sums r and ¢1 + -+ - + ¢, — 7 is equivalent
tosolvingr =a1+---4+a, with0< a1 <c1,...,0<a, < cp.

(b) We can compute it sequentially by setting ai; +— min(r; — aa — - — a;(j—1),
cj—ai;— - —ag_yy;) for j=1,...,n,fori=1,..., m. Alternatively, if r, < ¢1, set
ai1 ¢ T1, @12 < - - < aip < 0, and do the remaining rows with ¢; decreased by ry; if
r1 > c1, Set a1 ¢ c1, a21 < -+  am1 < 0, and do the remaining columns with r;
decreased by c1. The second approach shows that at most m +n — 1 of the entries are
nonzero. We can also write down the explicit formula

a;; = max(0, min(ri, ¢j, 71 4+ -+ 1 — €1 — - —Cj1,C1 F e —TL— o —Til1)).

(c) The same matrix is obtained as in (b).
(d) Reverse left and right in (b) and (c), obtaining

a;; = max(0, min(r;, ¢j, Tig1 + -+ Tm —C1l — = Cj_1,C1 F -t Cj—Ti— = Tm))

in both cases.
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(e) Here we choose, say, row-wise order: Generate the first row just as for bounded
compositions of r1, with bounds (ci,...,¢n); and for each row (aii,...,a1n), gen-
erate the remaining rows recursively in the same way, but with the column sums
(01 — Q11,..+,Cn — aln). Most of the action takes place on the bottom two rows,
but when a change is made to an earlier row the later rows must be re-initialized.

62. If a;; and ax; are positive, we obtain another contingency table by setting a;; <
aij—1, a5 < ag+1, axj < arj +1, ar < arr — 1. We want to show that the graph G
whose vertices are the contingency tables for (r1,...,7m;c1,...,¢n), adjacent if they
can be obtained from each other by such a transformation, has a Hamiltonian path.
When m = n = 2, G is a simple path. When m = 2 and n = 3, G has a two-
dimensional structure from which we can see that every vertex is the starting point of at
least two Hamiltonian paths, having distinct endpoints. When m = 2 and n > 4 we can
show, inductively, that G actually has Hamiltonian paths from any vertex to any other.
When m > 3 and n > 3, we can reduce the problem from m to m — 1 as in answer
61(e), if we are careful not to “paint ourselves into a corner.” Namely, we must avoid
reaching a state where the nonzero entries of the bottom two rows have the form (! ¢ ?)

0bc
for some a, b, ¢ > 0 and a change to row m — 2 forces this to become (g v i) The
previous round of changes to rows m —1 and m can avoid such a trap unless ¢ = 1 and
it begins with (J§777) or ( ‘;__{i o). But that situation can be avoided too.

(A genlex method based on exercise 60 would be considerably simpler, and it
almost always would make only four changes per step. But it would occasionally need

to update 2min(m,n) entries at a time.)

63. When z; ...z is a binary string and A is a list of subcubes, let A ® x1...xzs
denote replacing the digits (a1, ...,as) in each subcube of A by (a1 ® z1,...,as D zs),
from left to right. For example, 0%1%%10 @ 1010 = 1%1%%00. Then the following mutual
recursions define a Gray code, because Ay gives a Gray path from 0°s% to 10°!%? and
B,: gives a Gray path from 0%+ to *013_1*t_1, when st > 0:

Ast = 0B(s_1y1, *Asi-1) 690018_2, 1B(}§_1)t§
Bat = 0A(s 1ys, 1B 1) ®010°2, 14, 1) @ 1°.
The strings 001°~2 and 010° 2 are simply 0° when s < 2; Ao is Gray binary code;
AOt = B()t = *t.
Incidentally, the somewhat simpler construction
Gst = *Gyi—1), atGaonyt, atflcﬁ—l)u at =t mod 2,
defines a pleasant Gray path from %'0° to a;_1%0°~".

64. If a path P is considered equivalent to PlandtoP®x;.. . xs, the total number
can be computed systematically as in exercise 33, with the following results for s+t < 6:

paths cycles
1 1
1 1 11
1 2 1 1 11
1 3 3 1 1 111
1 5 10 4 1 12 111
1 6 3 3 5 1 12 3111

1 9 3104630218 6 1 13464111
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In general there are ¢t 4+ 1 paths when s =1 and ([5/22H2) — (smod 2) when ¢ = 1. The
cycles for s < 2 are unique. When s = t = 5 there are approximately 6.869 x 10'7°
paths and 2.495 x 107" cycles.

65. Let G(n,0) = ¢; G(n,t) =0 when n < t; and for 1 <t < n, let G(n,t) be
9(0)G(n —1,1), gGn—1,1)", ..., 92" = 1)G(n - 1,H)", §2' = 1)G(n —1,t - 1),

where §(k) is a ¢-bit column containing the Gray binary number g(k) with its least
significant bit at the top. In this general formula we implicitly add a row of zeros
below the bases of G(n — 1,t — 1).

This remarkable rule gives ordinary Gray binary code when ¢ = 1, omitting 0 . .. 00.
A cyclic Gray code is impossible because (?)2 is odd.

66. A Gray path for compositions corresponding to Algorithm C implies that there is
a path in which all transitions are 0¥1! +» 1'0* with min(k,[) < 2. Perhaps there is, in
fact, a cycle with min(k,l) = 1 in each transition.

67. (a) {0}; (b) 0.

68. The least N with k; N < N is (2t;1) + (2::13) +-+ (1) +1= %((2:) + (2::12) +
St (g) +1), because (,",) < (7) if and only if n > 2t — 1.

69. From the identity

re(( %) +N) = (3 2)+N) = me((*, ) +N)=((*, ) +N) = () Z+rea N =N

when N’ < (**;%), we conclude that the maximum is (*; %)+ (3 )2+ +(3)1,

t t t—1
and it occurs at 287! values of N when ¢ > 1.

70. Let C; be the t-cliques. The first (14:4) + (1(1019 ) t-combinations visited by Al-
gorithm L define a graph on 1415 vertices with 1000000 edges. If ||Cy|| were larger,
|6°72C,|| would exceed 1000000. Thus the single graph defined by P(1000000)2 has the

maximum number of t-cliques for all ¢ > 2.
71. M = (";S) + o+ (";“) for mg > -+ > my > u > 1, where {ms,...,my} =
{s+t—1,...,n.}\{n¢, ..., nus1}. (Compare with exercise 15, which gives (*7*)—1-N.)
If @ =an—_1...ao is the bit string corresponding to the combination n; ...ni, then
v is 1 plus the number of trailing 1s in «, and w is the length of the rightmost run
of 0s. For example, when o = 1010001111 we have s = 4,t =6, M = (Z) + (g), u =3,
N=()+ () v=5
72. A and B are cross-intersecting <= o ¢ U\ B for all @ € A and 8 € B <
ANO"*"t*B~ = (), where B~ = {U\ 3| B € B} is a set of (n —t)-combinations. Since
Qnne = Pn(n—t), we have |0""*7"'B7|| > ||0" """ Pn(n—yll, and 0" """ Pr(n—y) =
Py, where N’ = ksi1...6,_+N. Thus if A and B are cross-intersecting we have
M+ N <||A[| +[|[0"*7*B7|| < (), and Quns N Pyrs = 0.
Conversely, if Quns N Pyrs # 0 we have (7) < M + N' < ||A|| + [|0"*"*'B7||, so
A and B cannot be cross-intersecting.

73. ||@Qnnt|| = kn—t N (see exercise 93). Also, arguing as in (58) and (59), we find
@Pns = (n—1)Pns U --- U 10Pns U {543210,...,987654} in that particular case; and

|@Pnt|| = (n+1—ny) N+ (Zfll) in general.

74. The identity (":1) = (Z) + (Z:i) + -+ (”Ek), Eq. 1.2.6-(10), gives another
representation if n, > v. But (60) is unaffected, since we have ("H) =)+ ("71) +

. k—1 k—1 k—2
ot (717()+ )
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75. Represent N + 1 by adding (Zj) to (57); then use the previous exercise to deduce
that ke(N + 1) — ke N = (”71) =v—1.

v—2
76. |[D. E. Daykin, Nanta Math. 8,2 (1975), 78-83.] We work with extended repre-
sentations M = (") +---+ (") and N = (%) +--- + (") as in exercise 74, calling
them improper if the final index u or v is zero. Call N flexible if it has both proper
and improper representations, that is, if n, > v > 0.

(a) Given an integer S, find M + N such that M + N = S and k¢M + k¢ N is
minimum, with M as large as possible. If N = 0, we’re done. Otherwise the max-min
operation preserves both M + N and k: M + kN, so we can assume that v > u > 1 in
the proper representations of M and N. If N is inflexible, k¢(M + 1) + k¢(N — 1) =
(ke M +u—1)+ (ke N —v) < ke M + k¢ N, by exercise 75; therefore N must be flexible.
But then we can apply the max-min operation to M and the improper representation
of N, increasing M: Contradiction.

This proof shows that equality holds if and only if M N = 0, a fact that was noted
in 1927 by F. S. Macaulay.

(b) Now we try to minimize max(k¢ M, N)+ k¢—1 N when M + N = S, this time
representing N as (71*:11) + o4 (7;”) The max-min operation can still be used if
nit—1 < my; leaving m; unchanged, it preserves M + N and k: M + k:—1 N as well as the
relation k¢ M > N. We arrive at a contradiction as in (a) if N # 0, so we can assume
that ny—1 > ms.

If ng—1 > m: we have N > kM and also As N > M; hence M + N < A:N + N =
(M) 4+ (™), and we have k(M + N) < k(M N + N) = N + 5,1 N.

Finally if ns—1 = m; = a,let M = (:) +M'"and N = (tfl) +N'. Then k;(M+N) =

() + ket (M + N'), &M = (,%)) + ki1 M, and k1N = (,%,) + ki—2N'; the
result follows by induction on t.
77. [A. J. W. Hilton, Periodica Math. Hung. 10 (1979), 25-30.] Let M = ||A;|| and
N = ||Ao||; we can assume that t > 0 and N > 0. Then ||0A| = ||0A1UAo||+]||0Ao| >
max([| 941, || Ao) + [1940]l > max(keM, N) + k1N > k(M + N) = [Ppapll, by
induction on m +n 4+ t.

Conversely, let A1 = Puy¢ + 1 and A9 = Py(z—1) + 1; this notation means, for
example, that {210,320} + 1 = {321,431}. Then x:(M + N) < ||0A]| = ||0A1 U Ao|| +
[[(0A0)0|| = max(k: M, N) + ki1 N, because A1 = P, nryt—1) + 1. [Schiitzenberger
observed in 1959 that k(M + N) < kM + r¢—1 N if and only if kKM > N ]

For the first inequality, let A and B be disjoint sets of t-combinations with || A|| =
M, ||0A|| = weM, ||B|| = N, ||0B|] = k+N. Then k(M + N) = ki|[AU B| <
[|0(AU B)|| = ||0AUIB|| = ||0A|l + ||0B|| = ke M + k¢ N.

78. In fact, e (M + X\ec1 M) = M, and pueN 4+ A1t N = N + (n2 — n1)[v = 1] when
N is given by (57).

79. If N >0 and ¢ > 1, represent N as in (57) and let N = No + N1, where

_(ng—1 Ny — 1 _(ng—1 Ny — 1
NO_( t >+ +< v )’ Nl_(t71>+ +<v71)'

Let No = (¥) and Ny = (,7,). Then, by induction on ¢ and |z|, we have (%) =

t—1 t
No+meNo > () + (%) = (1) Moo= ()= (1) > (1) = (")) = (52)); and
ReN = Nut mea N> (2)) + (25) = (51) > (2))-
Lovész actually proved a stronger result [Combinatorial Problems and Exercises,
(Akadémiai Kiadé, 1979), problem 13.31(a)], which was strengthened further by R. M.
Redheffer [AMM 103 (1996), 62-64]: Suppose (%) = (V) + (,*,) where u > ¢ — 1,

t
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v>t—1,and w >t — 2. Then for 1 < k < t we have (:) < (Z) + (kfl) if and only if

v > w; for t < k < min(v + 1,w + 2) we have (Z) < (Z) + (kfl) if and only if v < w.
80. For example, if the largest element of Pys is 66433, we have
Pys = {00000, . .., 55555 }U{60000, . . . , 65555 }U{66000, . . ., 66333}U{66400, ..., 66433}
so N = (150) + (Z) + (g) + (g) Its lower shadow is

dPns = {0000, ...,5555} U {6000, ...,6555} U {6600, ...,6633} U {6640,...,6643},

of size (3) + (3) + (3) + (2)-
If the smallest element of Qngs5 is 66433, we have

Qnos = {99999, ..., 70000} U {66666, .. ., 66500} U {66444, ..., 66440} U {66433}
so N = ((3)+(¥)+(7)) + ((6)+() + () + (5)- Tts upper shadow is

@Qnos = {999999, . .., 700000} U {666666, . . .,665000}
U {664444, . .., 664400} U {664333, . .., 664330},

of size ((3)+(s)+(7)) + (()+(G) + () + (5) = N + roN. The size, ¢, of each
combination is essentially irrelevant, as long as N < (S'H) for example, the smallest
element of Q Nog 1s 99966433 in the case we have considered.

81. (a) The derivative would have to be >, 7x(z), but that series diverges.

[Informally, the graph of 7(z) shows “pits” of relative magnitude 27% at all odd
multiples of 2—*. Takagi’s original publication, in Proc. Physico-Math. Soc. Japan (2)
1 (1903), 176-177, has been translated into English in his Collected Papers (Iwanami
Shoten, 1973).]

(b) Since r(1— t) (1 )[2 ¢! when k > 0, we have fo &(t) dt = fl rp(l—u)du =
— [ ri(w) du = [ r1(u) du. The second equation follows from the fact that ry(3t) =
rr—1(t). Part (d) shows that these two equations suffice to define 7(z) when z is
rational.

(c) Since 7(27%) = a27 %z + 27 % (z) for 0 < z < 1, we have 7(e) = ae + O(e)
when 27%7! <€ < 27%. Therefore 7(e) = elg 2 + O(e) for 0 < e < 1.

(d) Suppose 0 < p/q < 1. 1If p/q < 1/2 we have 7(p/q) = p/q + 7(2p/q)/2;
otherwise 7(p/q) = (¢ — p)/q + 7(2(¢ — p)/q)/2. Therefore we can assume that q is
odd. When ¢ is odd, let p’ = p/2 when p is even, p' = (¢ — p)/2 when p is odd. Then
7(p/q) = 27(p'/q) — 2p’/q for 0 < p < g; this system of ¢ — 1 equations has a unique
solution. For example, the values for ¢ = 3, 4, 5, 6, 7 are 2/3, 2/3; 1/2,1/2,1/2; 8/15,
2/3,2/3, 8/15; 1/2,2/3, 1/2, 2/3,1/2 22/49, 30/49, 32/49, 32/49, 30/49, 22/49.

1 1 1
(e )Thesolutlans < jarex =7, ZIE, Zfﬁflﬁm Z*ﬁf@f 256, R
(f) The value 3 is achleved forz =141 5t 335 T 135 T -+, an uncountable set.

82. Consider paths starting from 0 in the digraph
01+ 2+ 3 4+5<+ - -

Tt 1t

1—+2—>3—>4—-5—>6— -

Compute an associated value v, starting with v <— —p; horizontal moves change v < 2v,
vertical moves from node a change v + 2(ga — v). The path stops if we reach a node
twice with the same value v. Transitions are not allowed to upper nodes with —v < —q
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or v > qa; they are not allowed to lower nodes with v < 0 or v > g(a + 1). These
restrictions force most steps of the path. (Node a in the upper row means, “Solve
7(z) = az —v/q”; in the lower row it means, “Solve 7(z) = v/q —az.”) Empirical tests
suggest that, for all integers ¢ > p > 0, at least one such path exists, and that all such
paths are finite. The equation 7(z) = p/q then has solutions z = zo defined by the
sequence g, T1i, T2, ... where Tr4+1 = %mk on a horizontal step and zg41 = 1 — %xk
on a vertical step; these are all the solutions to 7(z) = p/q when z < %, when ¢ is not
a power of 2.

For example, this procedure establishes that 7(z) = % only when x or 1 — z is
3459/87040; there are, similarly, just two solutions to 7(z) = 3/5, having denominator
246(2%6 —1)/3.

Moreover, it appears that all cycles in the digraph that pass through node 0 define
values of p and ¢ such that 7(z) = p/q has uncountably many solutions. Such values
are, for example, 2/3, 8/15, 8/21, corresponding to the cycles (01), (0121), (012321).
The value 32/63 corresponds to (012121) and also to (0121012345454321), as well as
to two other paths that do not return to O.

83. [Frankl, Matsumoto, Ruzsa, and Tokushige, J. Combinatorial Theory A69 (1995),
125-148.] If a < b we have

(% :a )/T ¢t —1)2=2/(2t — 1) = 27°(1 + f(a,b)t ' + O(bY/t?)),
where f(a,b) = a(1l+b) — a® — b(1+b)/4 = f(a+ 1,b) — b+ 2a. Therefore if N has

the combinatorial representation (57), and if we set n; = 2t — 1 — b;, we have

t bt bt—l —2 bt_z —4 O(logt)3

the terms being negligible when b; exceeds 21gt¢. And one can show that

l l
T<Z2_e7> Z ej —25)2
=0 =0
84. N—X;_1N has the same asymptotic form as K N—N, by (63), since 7(z) = 7(1—z).
So does 2p: N — N, up to O(T(logt)*/t?), because (*,'°) = 2(*, ") (1+ O(logt)/t)
when b < 21gt.
85. 1 e X" <= ¢ X <—=T¢XorZ¢ X+eior---or2¢ X+e, <= zecX"”
orx e X~ —ejor--rorz € X~ —e, <<= ze X T,
86. All three are true, using the fact that X C Y° ifand only if X*T CY: (a) X CY°
S XUV OV =Yt =YY C X (b) XT C Xt = X C XT° hence
X° C X°F°. Also X° C X° = X°F C X; hence X°*° C X°. (c) aM < N —
S, C Sy < Sy C Sy < M < N.
87. If vz < vy then v(z —ex) < v(y —e;), so we can assume that v = vy and z < y.
We must have y; > 0; otherwise v(y — e;) would exceed v(z — ex). If z; = y; for
1<i<j,clearly k> j and z — e < y — ej. Otherwise z; > y; for some i < j; again
we have x —ep <y —ej, unless z — e, =y —€;.
88. From the table
j =0 1 2 3 4 5 6 7 8 9 10 11

ejt+er = e ep es es e €3 es €9 €6 €r €11 €10
e;t+ex = e2 €4 €0 €6 €1 €8 €3 €0 €5 €11 €7 €9
e;t+e3 = e3 es €6 €7 €s €9 €10 € €11 €1 €2 €4
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we find (a0,al,...,al2) = (0,4,6,7,8,9,10,11,11,12,12,12,12); (80, A1,...,312) =
(0,0,0,0,1,1,2,3,4,5,6,8,12).
89. Let Y = X and Z = O X, and let N, = || X(a)]|| for 0 < a < my. Then

mp—1 mp—1

IYl= > IYe@l = > [I(Xe(a—1)+ex) U(Xe(a) + Ee(0)]

mp—1

> Z max(N,—1,aN,),

a=0

where a — 1 stands for (a — 1) mod my and the « function comes from the (n — 1)-
dimensional torus, because || X«(a) + Ex(0)|| > aN, by induction. Also

mp—1 mp—1

1251 = > 12 @l = D (Zkla—1) + ex) U (Zi(a) + Ex(0))]]

my—1

= Z max(Nq—1,aN,),

a=0
because both Z;(a — 1) + e and Zi(a) + Ex(0) are standard in n — 1 dimensions.

90. Let there be N, points in row a of a totally compressed array, where row 0 is
at the bottom; thus | = N_y > No > --- > N,,_1 > N,, = 0. We show first
that there is an optimum X for which the “bad” condition N, = N,41 never occurs
except when N, = 0 or N, = [. For if a is the smallest bad subscript, suppose
Ng—1> Ny = Ngy1 =--- = Natk > Natrt1. Then we can always decrease N,4r by 1
and add 1 to some N, for b < a without increasing || X ||, except in cases where k = 1
and Ngy2 = Ngy1—1and Ny = No+a—b for 0 < b < a. Exploring such cases further,
we can find a subscript d such that N. = Ngy1 +a+1—c¢c > 0 for a < ¢ < d, and
either Ny =0 or Ny < Ng4+1 — 1. Then it is OK to decrease N. by 1 for a < ¢ < d and
increase Ny by 1 for 0 < b < d—a—1. (It is important to note that if N; = 0 we have
No > d — 1; hence d = m implies [ = m.)

Repeating such transformations until No > Ng41 whenever N, # [ and Ngy1 # 0,
we reach situation (86), and the proof can be completed as in the text.

91. Let z + k denote the lexicographically smallest element of T'(ma,...,m,_1) that
exceeds x and has weight vz +k, if any such element exists. For example, if m1 = mo =
m3 =4 and ¢ = 211, we have x+1 = 212, z+2 = 213, £ +3 = 223, x+4 = 233, z+5 =
333, and z + 6 does not exist; in general, x + k + 1 is obtained from z + k by increasing
the rightmost component that can be increased. If z +k = (m1—1,...,m,_1 — 1), let
us set  + k+ 1 =z + k. Then if S(k) is the set of all elements of T'(m1,...,mn_1)
that are < = + k, we have S(k+ 1) = S(k)*. Furthermore, the elements of .S that end
in a are those whose first n — 1 components are in S(m — 1 — a).

The result of this exercise can be stated more intuitively: As we generate n-
dimensional standard sets S1, Sa, ..., the (n — 1)-dimensional standard sets on each
layer become spreads of each other just after each point is added to layer m — 1.
Similarly, they become cores of each other just before each point is added to layer 0.

92. (a) Suppose the parameters are 2 < m} < mj < --- < m), when sorted properly,
and let k be minimal with m,, # m}. Then take N = 1+rank(0,...,0,mj;—1,0,...,0).
(We must assume that min(ma, ..., my) > 2, since parameters equal to 1 can be placed
anywhere.)
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(b) Only in the proof for n = 2, buried inside the answer to exercise 90. That
proof is incorporated by induction when n is larger.

93. Complementation reverses lexicographic order and changes € to 0.

94. For Theorem K, let d =n — 1 and sp = --- = sq4 = 1. For Theorem M, let d = s
and so =---=s4=t+1.

95. In such a representation, N is the number of ¢t-multicombinations of {sg - 0,1 -1,
$2 - 2,...} that precede nyn¢_1...n; in lexicographic order, because the generalized
coefficient (S(t")) counts the multicombinations whose leftmost component is < n.

If we truncate the representation by stopping at the rightmost nonzero term
(S(Z“)), we obtain a nice generalization of (60):

(
_ (S(n) S(ns-1) S(n)
10Pl| = (t71)+< t—2 )+"'+ (1)71)'

[See G. F. Clements, J. Combinatorial Theory A37 (1984), 91-97. The inequalities
So > s1 > - -+ > sq are needed for the validity of Corollary C, but not for the calculation
of |0Pn¢||. Some terms (S(Z’“)) for t > k > v may be zero. For example, when N =1,
t =4, so =3, and s1 = 2, we have N = (5511)) + (Sél)) =0+1]

96. (a) The tetrahedron has four vertices, six edges, four faces: (No,...,Ns) =
(1,4,6,4,1). The octahedron, similarly, has (No,...,Ns) = (1,6,8,8,0,0,0), and
the icosahedron has (No,...,Ni2) = (1,12,30,20,0,...,0). The hexahedron, aka the
3-cube, has eight vertices, 12 edges, and six square faces; perturbation breaks each
square face into two triangles and introduces new edges, so we have (Np,...,Ng) =
(1,8,18,12,0,...,0). Finally, the perturbed pentagonal faces of the dodecahedron lead
to (No, . .., Nao) = (1,20,54,36,0,...,0).

(b) {210,310} U {10, 20,21, 30,31} U {0,1,2,3} U {e}.

()0 < Ny < (?) for 0 <t <mand N; 1 > k:N; for 1 < ¢t < n. The second
condition is equivalent to A\;—1N¢—1 > N; for 1 < t < n, if we define A\g1 = co. These
conditions are necessary for Theorem K, and sufficient if A = | Pn,:.

(d) The complements of the elements not in a simplicial complex, namely the sets
{{0,...,n—=1}\a | a ¢ C}, form a simplicial complex. (We can also verify that
the necessary and sufficient condition holds: N;—1 > k: Ny <= Ai—1Ni—1 > Ny <
Kn—t+1Nn_t41 < Np_y, because kn_tNp_ 141 = (;L) — A¢—1N;_1 by exercise 93.)

(e) 00000 «+ 14641; 10000 <> 14640; 11000 <« 14630; 12000 + 14620; 13000 <>
14610; 14000 < 14600; 12100 <> 14520; 13100 <> 14510; 14100 <> 14500; 13200 <>
14410; 14200 < 14400; 13300 <+ 14400; and the self-dual cases 14300, 13310.

97. The following procedure by S. Linusson [Combinatorica 19 (1999), 255-266], who
considered also the more general problem for multisets, is considerably faster than a
more obvious approach. Let L(n, h,1) count feasible vectors with Ny = (%) for 0 < ¢ <1,
Nip1 < (tfl), and Ny = 0 for t > h. Then L(n,h,l) = 0 unless —1 <[ < h < n;
also L(n,h,h) = L(n,h,—1) = 1, and L(n,n,l) = L(n,n — 1,1) for | < n. When
n > h >12> 0 we can compute L(n, h,l) = Z;ZZL(n —1,hj)Ln—-1,7—-1,1-1),a
recurrence that follows from Theorem K. (Each size vector corresponds to the complex
U Pn,¢, with L(n—1, h, j) representing combinations that do not contain the maximum
element n — 1 and L(n — 1,5 — 1,1 — 1) representing those that do.) Finally the grand
total is L(n) = >, L(n,n,I).

We have L(0), L(1), L(2), ... = 2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354,
289725509, . ..; L(100) ~ 3.2299 x 10842,
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98. The maximal elements of a simplicial complex form a clutter; conversely, the
combinations contained in elements of a clutter form a simplicial complex. Thus the
two concepts are essentially equivalent.

(a) If (Mo, M;,...,M,) is the size vector of a clutter, then (Np, N1,...,N,) is
the size vector of a simplicial complex if N, = M, and Ny = M; + Kt+1N¢y1 for
0 <t < n. Conversely, every such (No,...,N,) yields an (Mo,...,M,) if we use
the lexicographically first N; t-combinations. [G. F. Clements extended this result to
general multisets in Discrete Math. 4 (1973), 123-128.]

(b) In the order of answer 96(e) they are 00000, 00001, 10000, 00040, 01000, 00030,
02000, 00120, 03000, 00310, 04000, 00600, 00100, 00020, 01100, 00210, 02100, 00500,
00200, 00110, 01200, 00400, 00300, 01010, 01300, 00010. Notice that (Mo, ..., M,) is
feasible if and only if (M,,..., Mo) is feasible, so we have a different sort of duality in
this interpretation.

99. Represent A as a subset of T'(my1, ..., m,) as in the proof of Corollary C. Then the
maximum value of A is obtained when A consists of the N lexicographically smallest
points 1 ...Zn,.

The proof starts by reducing to the case that A is compressed, in the sense that
its t-multicombinations are Pjanr,|: for each t. Then if y is the largest element € A
and if = is the smallest element ¢ A, we prove that ¢ < y implies vz > vy, hence
v(A\ {y} U {z}) > vA. For if vz = vy — k we could find an element of §*y that is
greater than z, contradicting the assumption that A is compressed.

100. In general, F(p) = Nop™ + Nip" (1 —p) +---4+ N,(1 —p)™ when f(z1,...,2n,)
is satisfied by exactly N; binary strings zi ...z, of weight ¢. Thus we find G(p) =
p'+3p°(1—p) +p*(1 — )% H(p) = p* +p*(1 —p) +p*(1 — p)*.

(b) A monotone formula f is equivalent to a simplicial complex C' under the cor-
respondence f(z1,...,2n) =1 <= {j — 1| z; =0} € C. Therefore the functions f(p)
of monotone Boolean functions are those that satisfy the condition of exercise 96(c), and
we obtain a suitable function by choosing the lexicographically last N,_; t-combinations
(which are complements of the first Ns s-combinations): {3210}, {321, 320, 310}, {32}
gives f(w7 z,Y, z) =wzyz Vzxyz Vwyz VwrzVyz = wrzV yz.

M. P. Schiitzenberger observed that we can find the parameters N; values easily
from f(p) by noting that f(1/(1+u)) = (No + N1u+ -+ + Npu™)/(1 + u)"™. One can
show that H(p) is not equivalent to a monotone formula in any number of variables,
because (1+u-+u?)/(1+u)* = (No+Niu+---+Npu™)/(14u)"™ implies that Ny = n—3,
No=("7°) +1, and kaNa =n — 2.

But the task of deciding this question is not so simple in general. For example,
the function (1 + 5u + 5u® 4+ 5u%)/(1 + u)® does not match any monotone formula in
five variables, because k35 = 7; but it equals (1 + 6u + 10u® + 10u® 4 5u*)/(1 + )5,
which works fine with six.

101. (a) Choose Ny linearly independent polynomials of degree ¢ in I; order their terms
lexicographically, and take linear combinations so that the lexicographically smallest
terms are distinct monomials. Let I’ consist of all multiples of those monomials.

(b) Each monomial of degree t in I’ is essentially a t-multicombination; for
example, w3z,x5 corresponds to 55552111. If M, is the set of independent monomials
for degree t, the ideal property is equivalent to saying that M;;11 O @M;.

In the given example, Ms = {zox?}; My = Mz U{xoz 23 }; Ms = @My U{z 25},
since z3(zoxi — 22123) — z1(zox123) = —2z,23; and Miy1 = @M, thereafter.
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(¢) By Theorem M we can assume that M; = @Mst. Let Ny = (”;S) 4+ -+
(";2) 4+ "{1), where s +t > ngs > -+ > ng2 > ng > 0; then nys = s+t if and only if
Nys—1) = 8 — 2, ..., N1 = 0. Furthermore we have

ot [nea > > >
Nit1 > Ni+ 6N, = ("t HZ* *S])+---+("”+[;*2*2]) + (n“ﬂy“*l]).

Therefore the sequence (nys —t—00[nes < 8], ..., Nz —t—00[ N2 < 2], N1 —t—00[ns < 1))
is lexicographically nondecreasing as t increases, where we insert ‘—o0o0’ in components
that have n;; = j — 1. Such a sequence cannot increase infinitely many times without
exceeding the maximum value (s, —oo, ..., —00), by exercise 1.2.1-15(d).

102. Let Pns: be the first N elements of a sequence determined as follows: For each
binary string = Zs4¢—1...%0, in lexicographic order, write down ("t’”) subcubes by
changing t of the 1s to s in all possible ways, in lexicographic order (considering 1 < *).
For example, if x = 0101101 and ¢t = 2, we generate the subcubes 0101x0%, 010x10x,
01001, 0%x0110%, 0x01%01, 0x0x101.

[See B. Lindstrém, Arkiv for Mat. 8 (1971), 245-257; a generalization analogous
to Corollary C appears in K. Engel, Sperner Theory (Cambridge Univ. Press, 1997),

Theorem 8.1.1.]

103. The first N strings in cross order have the desired property. [T. N. Danh and
D. E. Daykin, J. London Math. Soc. (2) 55 (1997), 417-426.]

Notes: Beginning with the observation that the “l-shadow” of the N lexico-
graphically first strings of weight ¢ (namely the strings obtained by deleting 1 bits
only) consists of the first u; N strings of weight ¢, R. Ahlswede and N. Cai extended
the Danh-Daykin theorem to allow insertion, deletion, and/or transposition of bits
[Combinatorica 17 (1997), 11-29; Applied Math. Letters 11,5 (1998), 121-126]. Uwe
Leck has proved that no total ordering of ternary strings has the analogous minimum-
shadow property [Preprint 98/6 (Univ. Rostock, 1998), 6 pages].

104. Every number must occur the same number of times in the cycle. Equivalently,
(?:11) must be a multiple of ¢t. This necessary condition appears to be sufficient as
well, provided that n is not too small with respect to ¢; but such a result may well be
true yet impossible to prove. [See Chung, Graham, and Diaconis, Discrete Math. 110
(1992), 55-57.]

The next few exercises consider the cases t = 2 and ¢ = 3, when elegant results
are known. Similar but more complicated results have been derived for t = 4 and ¢t = 5,
and the case t = 6 has been partially resolved. The case (n,t) = (12,6) is currently
the smallest for which the existence of a universal cycle is unknown.

105. Let the differences mod (2m+1) be1,2,...,m,1,2,..., m, ..., repeated 2m+1
times; for example, the cycle for m = 3 is (013602561450346235124). This works
because 1+ ---+m = (mgl) is relatively prime to 2m + 1. [J. Ecole Polytechnique 4,
Cahier 10 (1810), 16-48.]

106. The seven doubles |lll, BN, ..., B8 can be inserted in 37 ways into any
universal cycle of 3-combinations for {0,1,2,3,4,5,6}. The number of such universal
cycles is the number of Eulerian circuits of the complete graph K7, which can be shown
to be 129,976,320 if we regard (apai ...a20) as equivalent to (a1 ...aza0) but not to
the reverse-order cycle (azo...a1a0). So the answer is 284,258,211,840.

[This problem was first solved in 1859 by M. Reiss, whose method was so com-
plicated that people doubted the result; see Nouvelles Annales de Mathématiques 8
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(1849), 74; 11 (1852), 115; Annali di Matematica Pura ed Applicata (2) 5 (1871-
1873), 63-120. A considerably simpler solution, confirming Reiss’s claim, was found by
P. Jolivald and G. Tarry, who also enumerated the Eulerian circuits of Ky; see Comptes
Rendus Association Frangaise pour I’Avancement des Sciences 15, part 2 (1886), 49—
53; B. Lucas, Récréations Mathématiques 4 (1894), 123-151. Brendan D. McKay and
Robert W. Robinson found an approach that is better still, enabling them to continue
the enumeration through Ks; by using the fact that the number of circuits is

(m— P [T 2 det(ag) [ (2 + D),
1<j<k<2m

where ajr = —1/(27 + z;) when j # k; aj; = —1/(227) + Y gcrcam 1/ (2 + 22); see
Combinatorics, Probability, and Computing 7 (1998), 437-449.]

C. Flye Sainte-Marie, in L’Intermédiaire des Mathématiciens 1 (1894), 164-165,
noted that the Eulerian circuits of K7 include 2 x 720 that have 7-fold symmetry under
permutation of {0,1,...,6} (namely Poinsot’s cycle and its reverse), plus 32 x 1680
with 3-fold symmetry, plus 25778 x 5040 cycles that are asymmetric.

107. No solution is possible for n < 7, except in the trivial case n = 4. When
n = 7 there are 12,255,208 x 7! universal cycles, not considering (aoa1 ...ass) to be the
same as (ai ...assao), including cases with 5-fold symmetry like the example cycle in
exercise 104.

When n > 8 we can proceed systematically as suggested by B. Jackson in Discrete
Math. 117 (1993), 141-150; see also G. Hurlbert, SIAM J. Disc. Math. 7 (1994),
598-604: Put each 3-combination into the “standard cyclic order” cicacs where co =
(c1 +8) modn, cs = (c2 +6')mod n, 0 < §,8' < n/2, and either § = §' or max(d,d’) <
n—30—-8#m-1)/20r (1 <d<n/dand§ = (n—1)/2) or (§ = (n—1)/2 and
1 < § < n/4). For example, when n = 8 the allowable values of (§,d’) are (1,1),
(1,2), (1,3), (2,1), (2,2), (3,1), (3,3); when n = 11 they are (1,1), (1,2), (1,3),
(1,4), (2,1), (2,2), (2,3), (2,5), (3,1), (3,2), (3,3), (4,1), (4,4), (5,2), (5,5). Then
construct the digraph with vertices (¢, d) for 0 < ¢ < n and 1 < § < n/2, and with arcs
(c1,8) — (ca2,d") for every combination cicacs in standard cyclic order. This digraph
is connected and balanced, so it has an Eulerian circuit by Theorem 2.3.4.2D. (The
peculiar rules about (n—1)/2 make the digraph connected when n is odd. The Eulerian
circuit can be chosen to have n-fold symmetry when n = 8, but not when n = 12.)

108. When n = 1 the cycle (000) is trivial; when n = 2 there is no cycle; and
there are essentially only two when n = 4, namely (00011122233302021313) and
(00011120203332221313). When n > 5, let the multicombination didads be in
standard cyclic order if d» = (d1 +J — 1) mod n, d3 = (d2 + 6’ — 1) mod n, and (6, ")
is allowable for n + 3 in the previous answer. Construct the digraph with vertices
(d,6) for 0 <d<nand1l<é<(n+3)/2, and with arcs (d1,d) — (d2,d") for every
multicombination d;dads in standard cyclic order; then find an Eulerian circuit.

Perhaps a universal cycle of t-multicombinations exists for {0,1,...,n—1} if and
only if a universal cycle of t-combinations exists for {0,1,...,n 4+t — 1}.

109. A nice way to check for runs is to compute the numbers b(S) = S3{2P(¢) | ¢ € S}
where (p(A),...,p(K)) = (1,...,13); then set | < b(S)A—b(S) and check that b(S)+I =
| < s, and also that ((I < s)V (I > 1)) Aa = 0, where a = 2P(°1) v ... v 2P(5) The
values of b(S) and } {v(c) | ¢ € S} are easily maintained as S runs through all 31
nonempty subsets in Gray-code order. The answers are (1009008, 99792, 2813796,
505008, 2855676, 697508, 1800268, 751324, 1137236, 361224, 388740, 51680, 317340,
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19656, 90100, 9168, 58248, 11196, 2708, 0, 8068, 2496, 444, 356, 3680, 0, 0, 0, 76, 4)
for z = (0,...,29); thus the mean score is ~ 4.769 and the variance is &~ 9.768.

Note: A four-card flush is not allowed in the “crib.” Then the distribution is a bit
easier to compute, and it turns out to be (1022208, 99792, 2839800, 508908, 2868960,
703496, 1787176, 755320, 1118336, 358368, 378240, 43880, 310956, 16548, 88132, 9072,
57288, 11196, 2264, 0, 7828, 2472, 444, 356, 3680, 0, 0, 0, 76, 4); the mean and variance
decrease to approximately 4.735 and 9.667.
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2-nomial coefficients, 37.

k¢ (Kruskal function), 19-21, 31-33.
A¢ (Kruskal function), 20-21, 32-33.
pt (Macaulay function), 2021, 32—33.
v (sideways sum), 20.

m (circle ratio), 2, 13, 27, 28, 35.

7 (Takagi function), 20-21, 32-33.

9 (shadow), 18.

@ (upper shadow), 18.

Active bits, 12.

Adjacent transpositions, 15-17, 30.

Ahlswede, Rudolph, 56.

Alternating combinatorial number
system, 9, 27.

Analysis of algorithms, 4-5, 25, 27, 29.

Balanced ternary notation, 41.
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Basis of vector space, 26, 31.
Basis theorem, 34.
Beckenbach, Edwin Ford, 5.
Bellman, Richard Ernest, 19.
Bernoulli, Jacques (= Jakob = James),
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Binary tree representation of tree, 27.
Binary vector spaces, 26, 31.
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Binomial number system, see Combinatorial
number system.
Binomial trees, 67, 27.
Bitner, James Richard, 8.
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Boolean formulas, 34.
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Buck, Marshall Wilbert, 30.
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Calabi, Eugenio, 38.
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Chung Graham, Fan Rong King
(B 4 35 %), 56.

Clements, George Francis, 24-25, 34, 54, 55.

Cliques, 31.

Colex order, 5.
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Combination generation, 1-18, 25-31, 35.
Gray codes for, 8-18.
homogeneous, 10-11, 16-17, 28-29,

41, 45, 47.
near-perfect, 11-17, 29.
perfect, 15-17, 30.

Combinations, 1-36.
of a multiset, 25.
with repetitions, 2-3, 11.

Combinatorial number system, 6, 27,

31-32, 37.
alternating, 9, 27.
generalized, 33.

Complement in a torus, 21.

Complete binary tree, 39.

Complete graph, 56.

Compositions, 2-3, 11, 25, 38.
bounded, 16, 30.

Compression of a set, 23, 33, 55.

Contingency tables, 18, 31.

Core set in a torus, 2223, 33.

Cribbage, 35.

Cross-intersecting sets, 32.

Cross order, 2025, 33, 56.

Cycle, universal, of combinations, 35.

Czerny, Carl, 46.

Danh, Tran-Ngoc, 56.

Daykin, David Edward, 50, 56.
De Morgan, Augustus, 1.

Delta sequence, 46.

Derivative, 32.

Diaconis, Persi Warren, 56.
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Dominoes, 35.
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Dual set in a torus, 22-23.

Dual size vector, 34.

Duality, 33, 55.
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Eades, Peter Dennis, 16, 46.

Ehrlich, Gideon (72 W), 8, 42.

End-around swaps, 30.

Endo-order, 14, 29.

Engel, Konrad Wolfgang, 56.

Enns, Theodore Christian, 46.
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Fenichel, Robert Ross, 25.
First-element swaps, 16-17, 30.

Flye Sainte-Marie, Camille, 57.
Fraenkel, Aviezri S (5219 »ny*ax), 39.
Frankl, Péter, 52.

Generating functions, 29, 46.

Genlex order, 9-13, 16-17, 28-29, 44.
Gray paths, 31.

Golomb, Solomon Wolf, 2, 25.

Graham, Ronald Lewis (3 37.18), 56.

Gray, Frank, binary code, 8, 40, 49, 57.
codes for combinations, 8-18.
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Hamilton, William Rowan, circuits, 8, 46.
paths, 30, 48.

Hickey, Thomas Butler, 16, 46.

Hilbert, David, basis theorem, 34.

Hilton, Anthony John William, 31, 50.

Homogeneous generation, 10-11, 28-29, 45.

scheme K, 10, 16-17, 29, 41, 47.
Homogeneous polynomials, 34.
Hurlbert, Glenn Howland, 57.
Hypergraphs, 18.

Ising, Ernst, configurations, 26, 31, 38.
Iteration versus recursion, 12-14, 29.

Jackson, Bradley Warren, 57.
Jenkyns, Thomas Arnold, 11.
Jolivald, Philippe (= Paul de Hijo), 57.

Katona, Gyula (Optimdlis Halmaz), 19.
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Knuth, Donald Ervin (& #&4Y), i, iv, 38.
Korsh, James F., 38.
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function k¢ 19-21, 31-33.
function A\; 20-21, 32-33.
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Payne, William Harris, 9, 28.
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of subcubes, 34.
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Size vectors, 33, 34.
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