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PREFACE

fas·ci·cle /fas˙

e

k

e

l /n . . . 1: a small bundle . . . an inflorescence consisting of

a compacted cyme less capitate than a glomerule

. . . 2: one of the divisions of a book published in parts

— P. B. GOVE, Webster’s Third New International Dictionary (1961)

This is the first of a series of updates that I plan to make available at
regular intervals as I continue working toward the ultimate editions of The Art
of Computer Programming.

I was inspired to prepare fascicles like this by the example of Charles Dickens,
who issued his novels in serial form; he published a dozen installments of Oliver
Twist before having any idea what would become of Bill Sikes! I was thinking
also of James Murray, who began to publish 350-page portions of the Oxford
English Dictionary in 1884, finishing the letter B in 1888 and the letter C in
1895. (Murray died in 1915 while working on the letter T; my task is, fortunately,
much simpler than his.)

Unlike Dickens and Murray, I have computers to help me edit the material,
so that I can easily make changes before putting everything together in its final
form. Although I’m trying my best to write comprehensive accounts that need
no further revision, I know that every page brings me hundreds of opportunities
to make mistakes and to miss important ideas. My files are bursting with notes
about beautiful algorithms that have been discovered, but computer science has
grown to the point where I cannot hope to be an authority on all the material
I wish to cover. Therefore I need extensive feedback from readers before I can
finalize the official volumes.

In other words, I think these fascicles will contain a lot of Good Stuff, and I’m
excited about the opportunity to present everything I write to whoever wants
to read it, but I also expect that beta-testers like you can help me make it
Way Better. As usual, I will gratefully pay a reward of $2.56 to the first
person who reports anything that is technically, historically, typographically,
or politically incorrect.

Charles Dickens usually published his work once a month, sometimes once
a week; James Murray tended to finish a 350-page installment about once every
18 months. My goal, God willing, is to produce two 128-page fascicles per year.
Most of the fascicles will represent new material destined for Volumes 4 and
higher; but sometimes I will be presenting amendments to one or more of the
earlier volumes. For example, Volume 4 will need to refer to topics that belong
in Volume 3, but weren’t invented when Volume 3 first came out. With luck,
the entire work will make sense eventually.

iii
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iv PREFACE

Fascicle Number One is about MMIX, the long-promised replacement for MIX.
Thirty years have passed since the MIX computer was designed, and computer
architecture has been converging during those years towards a rather different
style of machine. Therefore I decided in 1990 to replace MIX with a new computer
that would contain even less saturated fat than its predecessor.

Exercise 1.3.1–25 in the first three editions of Volume 1 spoke of an ex-
tended MIX called MixMaster, which was upward compatible with the old version.
But MixMaster itself has long been hopelessly obsolete. It allowed for several
gigabytes of memory, but one couldn’t even use it with ASCII code to print
lowercase letters. And ouch, its standard subroutine calling convention was
irrevocably based on self-modifying instructions! Decimal arithmetic and self-
modifying code were popular in 1962, but they sure have disappeared quickly
as machines have gotten bigger and faster. Fortunately the new RISC machines
have a very appealing structure, so I’ve had a chance to design a new computer
that is not only up to date but also fun.

Many readers are no doubt thinking, “Why does Knuth replace MIX by
another machine instead of just sticking to a high-level programming language?
Hardly anybody uses assemblers these days.” Such people are entitled to their
opinions, and they need not bother reading the machine-language parts of my
books. But the reasons for machine language that I gave in the preface to
Volume 1, written in the early 1960s, remain valid today:

• One of the principal goals of my books is to show how high-level construc-
tions are actually implemented in machines, not simply to show how they
are applied. I explain coroutine linkage, tree structures, random number
generation, high-precision arithmetic, radix conversion, packing of data,
combinatorial searching, recursion, etc., from the ground up.

• The programs needed in my books are generally so short that their main
points can be grasped easily.

• People who are more than casually interested in computers should have at
least some idea of what the underlying hardware is like. Otherwise the
programs they write will be pretty weird.

• Machine language is necessary in any case, as output of some of the software
that I describe.

• Expressing basic methods like algorithms for sorting and searching in ma-
chine language makes it possible to carry out meaningful studies of the effects
of cache and RAM size and other hardware characteristics (memory speed,
pipelining, multiple issue, lookaside buffers, the size of cache blocks, etc.)
when comparing different schemes.

Moreover, if I did use a high-level language, what language should it be? In
the 1960s I would probably have chosen Algol W; in the 1970s, I would then
have had to rewrite my books using Pascal; in the 1980s, I would surely have
changed everything to C; in the 1990s, I would have had to switch to C++ and
then probably to Java. In the 2000s, yet another language will no doubt be de
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PREFACE v

rigueur. I cannot afford the time to rewrite my books as languages go in and
out of fashion; languages aren’t the point of my books, the point is rather what
you can do in your favorite language. My books focus on timeless truths.

Therefore I will continue to use English as the high-level language in The Art
of Computer Programming, and I will continue to use a low-level language
to indicate how machines actually compute. Readers who only want to see
algorithms that are already packaged in a plug-in way, using a trendy language,
should buy other people’s books.

The good news is that programming for MMIX is pleasant and simple. This
fascicle presents

1) a programmer’s introduction to the machine (replacing Section 1.3.1 of
Volume 1);

2) the MMIX assembly language (replacing Section 1.3.2);
3) new material on subroutines, coroutines, and interpretive routines (replacing

Sections 1.4.1, 1.4.2, and 1.4.3).

Of course, MIX appears in many places throughout Volumes 1–3, and dozens of
programs need to be rewritten for MMIX. Readers who would like to help with
this conversion process are encouraged to join the MMIXmasters, a happy group
of volunteers based at mmixmasters.sourceforge.net.

I am extremely grateful to all the people who helped me with the design
of MMIX. In particular, John Hennessy and Richard L. Sites deserve special
thanks for their active participation and substantial contributions. Thanks also
to Vladimir Ivanović for volunteering to be the MMIX grandmaster/webmaster.

Stanford, California D. E. K.
May 1999

You can, if you want, rewrite forever.

— NEIL SIMON, Rewrites: A Memoir (1996)
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2 BASIC CONCEPTS 1.3́

1.3́ . MMIX

In many places throughout this book we will have occasion to refer to a com-
puter’s internal machine language. The machine we use is a mythical computer
called “MMIX.” MMIX—pronounced EM-micks—is very much like nearly every
general-purpose computer designed since 1985, except that it is, perhaps, nicer.
The language of MMIX is powerful enough to allow brief programs to be written
for most algorithms, yet simple enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MMIX language
appears in so many parts of this book. There should be no hesitation about
learning a machine language; indeed, the author once found it not uncommon to
be writing programs in a half dozen different machine languages during the same
week! Everyone with more than a casual interest in computers will probably get
to know at least one machine language sooner or later. Machine language helps
programmers understand what really goes on inside their computers. And once
one machine language has been learned, the characteristics of another are easy
to assimilate. Computer science is largely concerned with an understanding of
how low-level details make it possible to achieve high-level goals.

Software for running MMIX programs on almost any real computer can be
downloaded from the website for this book (see page ii). The complete source
code for the author’s MMIX routines appears in the book MMIXware [Lecture Notes
in Computer Science 1750 (1999)]; that book will be called “the MMIXware
document” in the following pages.

1.3.1́ . Description of MMIX

MMIX is a polyunsaturated, 100% natural computer. Like most machines, it has
an identifying number—the 2009. This number was found by taking 14 actual
computers very similar to MMIX and on which MMIX could easily be simulated,
then averaging their numbers with equal weight:
(

Cray I + IBM801 + RISCII + ClipperC300 + AMD29K + Motorola 88K

+ IBM601 + Intel i960 + Alpha21164 + POWER 2 + MIPSR4000

+ Hitachi SuperH4 + StrongARM110 + Sparc 64
)

/14

= 28126/14 = 2009. ()

The same number may also be obtained in a simpler way by taking Roman
numerals.

Bits and bytes. MMIX works with patterns of 0s and 1s, commonly called
binary digits or bits, and it usually deals with 64 bits at a time. For example,
the 64-bit quantity

1001111000110111011110011011100101111111010010100111110000010110 ()

is a typical pattern that the machine might encounter. Long patterns like this
can be expressed more conveniently if we group the bits four at a time and use

2



1.3.1́ DESCRIPTION OF MMIX 3

hexadecimal digits to represent each group. The sixteen hexadecimal digits are

0 = 0000,
1 = 0001,
2 = 0010,
3 = 0011,

4 = 0100,
5 = 0101,
6 = 0110,
7 = 0111,

8 = 1000,
9 = 1001,
a = 1010,
b = 1011,

c = 1100,
d = 1101,
e = 1110,
f = 1111.

()

We shall always use a distinctive typeface for hexadecimal digits, as shown here,
so that they won’t be confused with the decimal digits 0–9; and we will usually
also put the symbol # just before a hexadecimal number, to make the distinction
even clearer. For example, () becomes

#9e3779b97f4a7c16 ()

in hexadecimalese. Uppercase digits ABCDEF are often used instead of abcdef,
because #9E3779B97F4A7C16 looks better than #9e3779b97f4a7c16 in some
contexts; there is no difference in meaning.

A sequence of eight bits, or two hexadecimal digits, is commonly called
a byte. Most computers now consider bytes to be their basic, individually
addressable units of information; we will see that an MMIX program can refer
to as many as 264 bytes, each with its own address from #0000000000000000 to
#ffffffffffffffff. Letters, digits, and punctuation marks of languages like
English are often represented with one byte per character, using the American
Standard Code for Information Interchange (ASCII). For example, the ASCII
equivalent of MMIX is #4d4d4958. ASCII is actually a 7-bit code with control
characters #00–#1f, printing characters #20–#7e, and a “delete” character #7f

[see CACM 8 (1965), 207–214; 11 (1968), 849–852; 12 (1969), 166–178]. It
was extended during the 1980s to an international standard 8-bit code known as
Latin-1 or ISO8859-1, thereby encoding accented letters: pâté is #70e274e9.

“Of the 256th squadron?”

“Of the fighting 256th Squadron,” Yossarian replied.

. . . “That’s two to the fighting eighth power.”

— JOSEPH HELLER, Catch-22 (1961)

A 16-bit code that supports nearly every modern language became an inter-
national standard during the 1990s. This code, known as Unicode or ISO/IEC
10646 UCS-2, includes not only Greek letters like S and s (#03a3 and #03c3),
Cyrillic letters like W and w (#0429 and #0449), Armenian letters like and

(#0547 and #0577), Hebrew letters like Y (#05e9), Arabic letters like �
(#0634), and Indian letters like f (#0936) or x (#09b6) or S (#0b36) or �
(#0bb7), etc., but also tens of thousands of East Asian ideographs such as the
Chinese character for mathematics and computing, (#7b97). It even has
special codes for Roman numerals: MMIX = #216f216f21602169. Ordinary
ASCII or Latin-1 characters are represented by simply giving them a leading
byte of zero: pâté is #007000e2007400e9, à l’Unicode.
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4 BASIC CONCEPTS 1.3.1́

We will use the convenient term wyde to describe a 16-bit quantity like the
wide characters of Unicode, because two-byte quantities are quite important in
practice. We also need convenient names for four-byte and eight-byte quantities,
which we shall call tetrabytes (or “tetras”) and octabytes (or “octas”). Thus

2 bytes = 1 wyde;
2 wydes = 1 tetra;
2 tetras = 1 octa.

One octabyte equals four wydes equals eight bytes equals sixty-four bits.
Bytes and multibyte quantities can, of course, represent numbers as well as

alphabetic characters. Using the binary number system,

an unsigned byte can express the numbers 0 . . 255;
an unsigned wyde can express the numbers 0 . . 65,535;
an unsigned tetra can express the numbers 0 . . 4,294,967,295;
an unsigned octa can express the numbers 0 . . 18,446,744,073,709,551,615.

Integers are also commonly represented by using two’s complement notation, in
which the leftmost bit indicates the sign: If the leading bit is 1, we subtract 2n to
get the integer corresponding to an n-bit number in this notation. For example,
−1 is the signed byte #ff; it is also the signed wyde #ffff, the signed tetrabyte
#ffffffff, and the signed octabyte #ffffffffffffffff. In this way

a signed byte can express the numbers −128 . . 127;
a signed wyde can express the numbers −32,768 . . 32,767;
a signed tetra can express the numbers −2,147,483,648 . . 2,147,483,647;
a signed octa can express the numbers −9,223,372,036,854,775,808 . .

9,223,372,036,854,775,807.

Memory and registers. From a programmer’s standpoint, an MMIX computer
has 264 cells of memory and 28 general-purpose registers, together with 25

special registers (see Fig. 13). Data is transferred from the memory to the
registers, transformed in the registers, and transferred from the registers to the
memory. The cells of memory are called M[0], M[1], . . . , M[264 − 1]; thus if x is
any octabyte, M[x] is a byte of memory. The general-purpose registers are called
$0, $1, . . . , $255; thus if x is any byte, $x is an octabyte.

The 264 bytes of memory are grouped into 263 wydes, M2[0] = M2[1] =
M[0]M[1], M2[2] = M2[3] = M[2]M[3], . . . ; each wyde consists of two consecutive
bytes M[2k]M[2k+1] = M[2k]× 28+M[2k+1], and is denoted either by M2[2k]
or by M2[2k + 1]. Similarly there are 262 tetrabytes

M4[4k] = M4[4k + 1] = · · · = M4[4k + 3] = M[4k]M[4k + 1] . . .M[4k + 3],

and 261 octabytes

M8[8k] = M8[8k + 1] = · · · = M8[8k + 7] = M[8k]M[8k + 1] . . .M[8k + 7].

In general if x is any octabyte, the notations M2[x], M4[x], and M8[x] denote
the wyde, the tetra, and the octa that contain byte M[x]; we ignore the least
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1.3.1́ DESCRIPTION OF MMIX 5

$0:

$1:

$2: ... ... ... ... ... ... ... ...
$254:

$255:

rA:

rB: ... ... ... ... ... ... ... ...
rZZ:

M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7] M[8]

M[264−1]M[264−2]M[264−3]M[264−4]M[264−5]M[264−6]M[264−7]M[264−8]M[264−9]

Fig. 13. The MMIX computer, as seen by a programmer, has 256 general-purpose
registers and 32 special-purpose registers, together with 264 bytes of virtual memory.
Each register holds 64 bits of data.

significant lg t bits of x when referring to Mt[x]. For completeness, we also write
M1[x] = M[x], and we define M[x] = M[xmod 264] when x < 0 or x ≥ 264.

The 32 special registers of MMIX are called rA, rB, . . . , rZ, rBB, rTT,
rWW, rXX, rYY, and rZZ. Like their general-purpose cousins, they each hold
an octabyte. Their uses will be explained later; for example, we will see that
rA controls arithmetic interrupts while rR holds the remainder after division.

Instructions. MMIX’s memory contains instructions as well as data. An in-

struction or “command” is a tetrabyte whose four bytes are conventionally called
OP, X, Y, and Z. OP is the operation code (or “opcode,” for short); X, Y, and Z
specify the operands. For example, #20010203 is an instruction with OP = #20,
X = #01, Y = #02, and Z = #03, and it means “Set $1 to the sum of $2 and
$3.” The operand bytes are always regarded as unsigned integers.

Each of the 256 possible opcodes has a symbolic form that is easy to re-
member. For example, opcode #20 is ADD. We will deal almost exclusively with
symbolic opcodes; the numeric equivalents can be found, if needed, in Table 1
below, and also in the endpapers of this book.

The X, Y, and Z bytes also have symbolic representations, consistent with
the assembly language that we will discuss in Section 1.3.2́ . For example,
the instruction #20010203 is conventionally written ‘ADD $1,$2,$3’, and the
addition instruction in general is written ‘ADD $X,$Y,$Z’. Most instructions have
three operands, but some of them have only two, and a few have only one. When
there are two operands, the first is X and the second is the two-byte quantity YZ;
the symbolic notation then has only one comma. For example, the instruction
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6 BASIC CONCEPTS 1.3.1́

‘INCL $X,YZ’ increases register $X by the amount YZ. When there is only one
operand, it is the unsigned three-byte number XYZ, and the symbolic notation
has no comma at all. For example, we will see that ‘JMP @+4*XYZ’ tells MMIX

to find its next instruction by skipping ahead XYZ tetrabytes; the instruction
‘JMP @+1000000’ has the hexadecimal form #f003d090, because JMP = #f0 and
250000 = #03d090.

We will describe each MMIX instruction both informally and formally. For
example, the informal meaning of ‘ADD $X,$Y,$Z’ is “Set $X to the sum of $Y
and $Z”; the formal definition is ‘s($X)← s($Y)+ s($Z)’. Here s(x) denotes the
signed integer corresponding to the bit pattern x, according to the conventions
of two’s complement notation. An assignment like s(x)← N means that x is to
be set to the bit pattern for which s(x) = N . (Such an assignment causes integer
overflow if N is too large or too small to fit in x. For example, an ADD will
overflow if s($Y) + s($Z) is less than −263 or greater than 263 − 1. When we’re
discussing an instruction informally, we will often gloss over the possibility of
overflow; the formal definition, however, will make everything precise. In general
the assignment s(x)← N sets x to the binary representation of N mod 2n, where
n is the number of bits in x, and it signals overflow if N < −2n−1 or N ≥ 2n−1;
see exercise 5.)

Loading and storing. Although MMIX has 256 different opcodes, we will see
that they fall into a few easily learned categories. Let’s start with the instructions
that transfer information between the registers and the memory.

Each of the following instructions has a memory address A obtained by
adding $Y to $Z. Formally,

A =
(

u($Y) + u($Z)
)

mod 264 ()

is the sum of the unsigned integers represented by $Y and $Z, reduced to a 64-bit
number by ignoring any carry that occurs at the left when those two integers are
added. In this formula the notation u(x) is analogous to s(x), but it considers x
to be an unsigned binary number.

• LDB $X,$Y,$Z (load byte): s($X)← s
(

M1[A]
)

.

• LDW $X,$Y,$Z (load wyde): s($X)← s
(

M2[A]
)

.

• LDT $X,$Y,$Z (load tetra): s($X)← s
(

M4[A]
)

.

• LDO $X,$Y,$Z (load octa): s($X)← s
(

M8[A]
)

.
These instructions bring data from memory into register $X, changing the data
if necessary from a signed byte, wyde, or tetrabyte to a signed octabyte of the
same value. For example, suppose the octabyte M8[1002] = M8[1000] is

M[1000]M[1001] . . .M[1007] = #0123456789abcdef. ()

Then if $2 = 1000 and $3 = 2, we have A = 1002, and

LDB $1,$2,$3 sets $1← #0000000000000045 ;
LDW $1,$2,$3 sets $1← #0000000000004567 ;
LDT $1,$2,$3 sets $1← #0000000001234567 ;
LDO $1,$2,$3 sets $1← #0123456789abcdef .

6



1.3.1́ DESCRIPTION OF MMIX 7

But if $3 = 5, so that A = 1005,

LDB $1,$2,$3 sets $1← #ffffffffffffffab ;
LDW $1,$2,$3 sets $1← #ffffffffffff89ab ;
LDT $1,$2,$3 sets $1← #ffffffff89abcdef ;
LDO $1,$2,$3 sets $1← #0123456789abcdef .

When a signed byte or wyde or tetra is converted to a signed octa, its sign bit
is “extended” into all positions to the left.

• LDBU $X,$Y,$Z (load byte unsigned): u($X)← u
(

M1[A]
)

.

• LDWU $X,$Y,$Z (load wyde unsigned): u($X)← u
(

M2[A]
)

.

• LDTU $X,$Y,$Z (load tetra unsigned): u($X)← u
(

M4[A]
)

.

• LDOU $X,$Y,$Z (load octa unsigned): u($X)← u
(

M8[A]
)

.

These instructions are analogous to LDB, LDW, LDT, and LDO, but they treat the
memory data as unsigned ; bit positions at the left of the register are set to
zero when a short quantity is being lengthened. Thus, in the example above,
LDBU $1,$2,$3 with $2 + $3 = 1005 would set $1← #00000000000000ab.

The instructions LDO and LDOU actually have exactly the same behavior,
because no sign extension or padding with zeros is necessary when an octabyte
is loaded into a register. But a good programmer will use LDO when the sign
is relevant and LDOU when it is not; then readers of the program can better
understand the significance of what is being loaded.

• LDHT $X,$Y,$Z (load high tetra): u($X)← u
(

M4[A]
)

× 232.

Here the tetrabyte M4[A] is loaded into the left half of $X, and the right half
is set to zero. For example, LDHT $1,$2,$3 sets $1 ← #89abcdef00000000,
assuming () with $2 + $3 = 1005.

• LDA $X,$Y,$Z (load address): u($X)← A.

This instruction, which puts a memory address into a register, is essentially
the same as the ADDU instruction described below. Sometimes the words “load
address” describe its purpose better than the words “add unsigned.”

• STB $X,$Y,$Z (store byte): s
(

M1[A]
)

← s($X).

• STW $X,$Y,$Z (store wyde): s
(

M2[A]
)

← s($X).

• STT $X,$Y,$Z (store tetra): s
(

M4[A]
)

← s($X).

• STO $X,$Y,$Z (store octa): s
(

M8[A]
)

← s($X).

These instructions go the other way, placing register data into the memory.
Overflow is possible if the (signed) number in the register lies outside the range
of the memory field. For example, suppose register $1 contains the number
−65536 = #ffffffffffff0000 . Then if $2 = 1000, $3 = 2, and () holds,

STB $1,$2,$3 sets M8[1000]←
#0123006789abcdef (with overflow);

STW $1,$2,$3 sets M8[1000]←
#0123000089abcdef (with overflow);

STT $1,$2,$3 sets M8[1000]←
#ffff000089abcdef ;

STO $1,$2,$3 sets M8[1000]←
#ffffffffffff0000 .

7



8 BASIC CONCEPTS 1.3.1́

• STBU $X,$Y,$Z (store byte unsigned):
u
(

M1[A]
)

← u($X) mod 28.
• STWU $X,$Y,$Z (store wyde unsigned):

u
(

M2[A]
)

← u($X) mod 216.
• STTU $X,$Y,$Z (store tetra unsigned):

u
(

M4[A]
)

← u($X) mod 232.

• STOU $X,$Y,$Z (store octa unsigned): u
(

M8[A]
)

← u($X).
These instructions have exactly the same effect on memory as their signed
counterparts STB, STW, STT, and STO, but overflow never occurs.

• STHT $X,$Y,$Z (store high tetra): u
(

M4[A]
)

←
⌊

u($X)/232
⌋

.
The left half of register $X is stored in memory tetrabyte M4[A].

• STCO X,$Y,$Z (store constant octabyte): u
(

M8[A]
)

← X.
A constant between 0 and 255 is stored in memory octabyte M8[A].

Arithmetic operators. Most of MMIX’s operations take place strictly between
registers. We might as well begin our study of the register-to-register opera-
tions by considering addition, subtraction, multiplication, and division, because
computers are supposed to be able to compute.

• ADD $X,$Y,$Z (add): s($X)← s($Y) + s($Z).
• SUB $X,$Y,$Z (subtract): s($X)← s($Y)− s($Z).
• MUL $X,$Y,$Z (multiply): s($X)← s($Y)× s($Z).
• DIV $X,$Y,$Z (divide): s($X)←

⌊

s($Y)/s($Z)
⌋

[$Z 6=0], and
s(rR)← s($Y) mod s($Z).

Sums, differences, and products need no further discussion. The DIV command
forms the quotient and remainder as defined in Section 1.2.4; the remainder goes
into the special remainder register rR, where it can be examined by using the
instruction GET $X,rR described below. If the divisor $Z is zero, DIV sets $X← 0
and rR← $Y (see Eq. 1.2.4–()); an “integer divide check” also occurs.

• ADDU $X,$Y,$Z (add unsigned): u($X)←
(

u($Y) + u($Z)
)

mod 264.

• SUBU $X,$Y,$Z (subtract unsigned): u($X)←
(

u($Y)− u($Z)
)

mod 264.
• MULU $X,$Y,$Z (multiply unsigned): u(rH $X)← u($Y)× u($Z).
• DIVU $X,$Y,$Z (divide unsigned): u($X) ←

⌊

u(rD $Y)/u($Z)
⌋

, u(rR) ←
u(rD$Y) mod u($Z), if u($Z) > u(rD); otherwise $X← rD, rR← $Y.

Arithmetic on unsigned numbers never causes overflow. A full 16-byte product
is formed by the MULU command, and the upper half goes into the special himult

register rH. For example, when the unsigned number #9e3779b97f4a7c16 in
() and () above is multiplied by itself we get

rH← #61c8864680b583ea, $X← #1bb32095ccdd51e4. ()

In this case the value of rH has turned out to be exactly 264 minus the original
number #9e3779b97f4a7c16; this is not a coincidence! The reason is that ()
actually gives the first 64 bits of the binary representation of the golden ratio
φ−1 = φ − 1, if we place a binary radix point at the left. (See Table 2 in
Appendix A.) Squaring gives us an approximation to the binary representation
of φ−2 = 1− φ−1, with the radix point now at the left of rH.

8



1.3.1́ DESCRIPTION OF MMIX 9

Division with DIVU yields the 8-byte quotient and remainder of a 16-byte
dividend with respect to an 8-byte divisor. The upper half of the dividend
appears in the special dividend register rD, which is zero at the beginning of
a program; this register can be set to any desired value with the command
PUT rD,$Z described below. If rD is greater than or equal to the divisor,
DIVU $X,$Y,$Z simply sets $X ← rD and rR ← $Y. (This case always arises
when $Z is zero.) But DIVU never causes an integer divide check.

The ADDU instruction computes a memory address A, according to defini-
tion (); therefore, as discussed earlier, we sometimes give ADDU the alternative
name LDA. The following related commands also help with address calculation.

• 2ADDU $X,$Y,$Z (times 2 and add unsigned):
u($X)←

(

u($Y)× 2 + u($Z)
)

mod 264.
• 4ADDU $X,$Y,$Z (times 4 and add unsigned):

u($X)←
(

u($Y)× 4 + u($Z)
)

mod 264.
• 8ADDU $X,$Y,$Z (times 8 and add unsigned):

u($X)←
(

u($Y)× 8 + u($Z)
)

mod 264.
• 16ADDU $X,$Y,$Z (times 16 and add unsigned):

u($X)←
(

u($Y)× 16 + u($Z)
)

mod 264.
It is faster to execute the command 2ADDU $X,$Y,$Y than to multiply by 3, if
overflow is not an issue.

• NEG $X,Y,$Z (negate): s($X)← Y − s($Z).
• NEGU $X,Y,$Z (negate unsigned): u($X)←

(

Y − u($Z)
)

mod 264.
In these commands Y is simply an unsigned constant, not a register number
(just as X was an unsigned constant in the STCO instruction). Usually Y is zero,
in which case we can write simply NEG $X,$Z or NEGU $X,$Z.

• SL $X,$Y,$Z (shift left): s($X)← s($Y)× 2u($Z).
• SLU $X,$Y,$Z (shift left unsigned): u($X)←

(

u($Y)× 2u($Z)
)

mod 264.

• SR $X,$Y,$Z (shift right): s($X)←
⌊

s($Y)/2u($Z)
⌋

.

• SRU $X,$Y,$Z (shift right unsigned): u($X)←
⌊

u($Y)/2u($Z)
⌋

.
SL and SLU both produce the same result in $X, but SL might overflow while
SLU never does. SR extends the sign when shifting right, but SRU shifts zeros in
from the left. Therefore SR and SRU produce the same result in $X if and only
if $Y is nonnegative or $Z is zero. The SL and SR instructions are much faster
than MUL and DIV by powers of 2. An SLU instruction is much faster than MULU

by a power of 2, although it does not affect rH as MULU does. An SRU instruction
is much faster than DIVU by a power of 2, although it is not affected by rD. The
notation y ≪ z is often used to denote the result of shifting a binary value y to
the left by z bits; similarly, y ≫ z denotes shifting to the right.

• CMP $X,$Y,$Z (compare):
s($X)←

[

s($Y) > s($Z)
]

−
[

s($Y) < s($Z)
]

.
• CMPU $X,$Y,$Z (compare unsigned):

s($X)←
[

u($Y) > u($Z)
]

−
[

u($Y) < u($Z)
]

.
These instructions each set $X to either −1, 0, or 1, depending on whether
register $Y is less than, equal to, or greater than register $Z.

9



10 BASIC CONCEPTS 1.3.1́

Conditional instructions. Several instructions base their actions on whether
a register is positive, or negative, or zero, etc.

• CSN $X,$Y,$Z (conditional set if negative): if s($Y) < 0, set $X← $Z.
• CSZ $X,$Y,$Z (conditional set if zero): if $Y = 0, set $X← $Z.
• CSP $X,$Y,$Z (conditional set if positive): if s($Y) > 0, set $X← $Z.
• CSOD $X,$Y,$Z (conditional set if odd): if s($Y) mod 2 = 1, set $X← $Z.
• CSNN $X,$Y,$Z (conditional set if nonnegative): if s($Y) ≥ 0, set $X← $Z.
• CSNZ $X,$Y,$Z (conditional set if nonzero): if $Y 6= 0, set $X← $Z.
• CSNP $X,$Y,$Z (conditional set if nonpositive): if s($Y) ≤ 0, set $X← $Z.
• CSEV $X,$Y,$Z (conditional set if even): if s($Y) mod 2 = 0, set $X← $Z.
If register $Y satisfies the stated condition, register $Z is copied to register $X;
otherwise nothing happens. A register is negative if and only if its leading
(leftmost) bit is 1. A register is odd if and only if its trailing (rightmost) bit is 1.

• ZSN $X,$Y,$Z (zero or set if negative): $X← $Z [s($Y)< 0].
• ZSZ $X,$Y,$Z (zero or set if zero): $X← $Z [$Y=0].
• ZSP $X,$Y,$Z (zero or set if positive): $X← $Z [s($Y)> 0].
• ZSOD $X,$Y,$Z (zero or set if odd): $X← $Z [s($Y) mod 2=1].
• ZSNN $X,$Y,$Z (zero or set if nonnegative): $X← $Z [s($Y)≥ 0].
• ZSNZ $X,$Y,$Z (zero or set if nonzero): $X← $Z [$Y 6=0].
• ZSNP $X,$Y,$Z (zero or set if nonpositive): $X← $Z [s($Y)≤ 0].
• ZSEV $X,$Y,$Z (zero or set if even): $X← $Z [s($Y) mod 2=0].
If register $Y satisfies the stated condition, register $Z is copied to register $X;
otherwise register $X is set to zero.

Bitwise operations. We often find it useful to think of an octabyte x as a
vector v(x) of 64 individual bits, and to perform operations simultaneously on
each component of two such vectors.

• AND $X,$Y,$Z (bitwise and): v($X)← v($Y) ∧ v($Z).
• OR $X,$Y,$Z (bitwise or): v($X)← v($Y) ∨ v($Z).
• XOR $X,$Y,$Z (bitwise exclusive-or): v($X)← v($Y)⊕ v($Z).
• ANDN $X,$Y,$Z (bitwise and-not): v($X)← v($Y) ∧ v̄($Z).
• ORN $X,$Y,$Z (bitwise or-not): v($X)← v($Y) ∨ v̄($Z).
• NAND $X,$Y,$Z (bitwise not-and): v̄($X)← v($Y) ∧ v($Z).
• NOR $X,$Y,$Z (bitwise not-or): v̄($X)← v($Y) ∨ v($Z).
• NXOR $X,$Y,$Z (bitwise not-exclusive-or): v̄($X)← v($Y)⊕ v($Z).
Here v̄ denotes the complement of vector v, obtained by changing 0 to 1 and
1 to 0. The binary operations ∧, ∨, and ⊕, defined by the rules

0 ∧ 0 = 0,
0 ∧ 1 = 0,
1 ∧ 0 = 0,
1 ∧ 1 = 1,

0 ∨ 0 = 0,
0 ∨ 1 = 1,
1 ∨ 0 = 1,
1 ∨ 1 = 1,

0⊕ 0 = 0,
0⊕ 1 = 1,
1⊕ 0 = 1,
1⊕ 1 = 0,

()

are applied independently to each bit. Anding is the same as multiplying or
taking the minimum; oring is the same as taking the maximum. Exclusive-oring
is the same as adding mod 2.

10



1.3.1́ DESCRIPTION OF MMIX 11

• MUX $X,$Y,$Z (bitwise multiplex): v($X)←
(

v($Y)∧v(rM)
)

∨
(

v($Z)∧v̄(rM)
)

.

The MUX operation combines two bit vectors by looking at the special multiplex

mask register rM, choosing bits of $Y where rM is 1 and bits of $Z where rM is 0.

• SADD $X,$Y,$Z (sideways add): s($X)← s
(
∑

(

v($Y) ∧ v̄($Z)
))

.

The SADD operation counts the number of bit positions in which register $Y has
a 1 while register $Z has a 0.

Bytewise operations. Similarly, we can regard an octabyte x as a vector b(x)
of eight individual bytes, each of which is an integer between 0 and 255; or we
can think of it as a vector w(x) of four individual wydes, or a vector t(x) of two
unsigned tetras. The following operations deal with all components at once.

• BDIF $X,$Y,$Z (byte difference): b($X)← b($Y)
.
− b($Z).

• WDIF $X,$Y,$Z (wyde difference): w($X)← w($Y)
.
− w($Z).

• TDIF $X,$Y,$Z (tetra difference): t($X)← t($Y)
.
− t($Z).

• ODIF $X,$Y,$Z (octa difference): u($X)← u($Y)
.
− u($Z).

Here
.
− denotes the operation of saturating subtraction,

y
.
− z = max(0, y − z). ()

These operations have important applications to text processing, as well as to
computer graphics (when the bytes or wydes represent pixel values). Exercises
27–30 discuss some of their basic properties.

We can also regard an octabyte as an 8 × 8 Boolean matrix, that is, as an
8×8 array of 0s and 1s. Let m(x) be the matrix whose rows from top to bottom
are the bytes of x from left to right; and let mT(x) be the transposed matrix,
whose columns are the bytes of x. For example, if x = #9e3779b97f4a7c16 is
the octabyte (), we have

m(x) =























1 0 0 1 1 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 1 0 0 1
1 0 1 1 1 0 0 1
0 1 1 1 1 1 1 1
0 1 0 0 1 0 1 0
0 1 1 1 1 1 0 0
0 0 0 1 0 1 1 0























, mT(x) =























1 0 0 1 0 0 0 0
0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 1
1 1 0 0 1 1 0 1
0 1 1 1 1 0 0 0























. ()

This interpretation of octabytes suggests two operations that are quite familiar
to mathematicians, but we will pause a moment to define them from scratch.

If A is an m× n matrix and B is an n× s matrix, and if ◦ and • are binary
operations, the generalized matrix product A ◦

• B is the m× s matrix C defined
by

Cij = (Ai1 •B1j) ◦ (Ai2 •B2j) ◦ · · · ◦ (Ain •Bnj) ()

for 1 ≤ i ≤ m and 1 ≤ j ≤ s. [See K. E. Iverson, A Programming Language
(Wiley, 1962), 23–24; we assume that ◦ is associative.] An ordinary matrix
product is obtained when ◦ is + and • is ×, but we obtain important operations

11



12 BASIC CONCEPTS 1.3.1́

on Boolean matrices if we let ◦ be ∨ or ⊕:

(A ∨
× B)ij = Ai1B1j ∨Ai2B2j ∨ · · · ∨AinBnj ; ()

(A ⊕
× B)ij = Ai1B1j ⊕Ai2B2j ⊕ · · · ⊕AinBnj . ()

Notice that if the rows of A each contain at most one 1, at most one term in ()
or () is nonzero. The same is true if the columns of B each contain at most
one 1. Therefore A ∨

× B and A⊕
× B both turn out to be the same as the ordinary

matrix product A +
× B = AB in such cases.

• MOR $X,$Y,$Z (multiple or): mT($X)← mT($Y) ∨
× mT($Z);

equivalently, m($X)← m($Z) ∨
× m($Y). (See exercise 32.)

• MXOR $X,$Y,$Z (multiple exclusive-or): mT($X)← mT($Y) ⊕
× mT($Z);

equivalently, m($X)← m($Z) ⊕
× m($Y).

These operations essentially set each byte of $X by looking at the corresponding
byte of $Z and using its bits to select bytes of $Y; the selected bytes are then
ored or xored together. If, for example, we have

$Z = #0102040810204080, ()

then both MOR and MXOR will set register $X to the byte reversal of register $Y:
The kth byte from the left of $X will be set to the kth byte from the right of $Y,
for 1 ≤ k ≤ 8. On the other hand if $Z = #00000000000000ff, MOR and MXOR

will set all bytes of $X to zero except for the rightmost byte, which will become
either the OR or the XOR of all eight bytes of $Y. Exercises 33–37 illustrate some
of the many practical applications of these versatile commands.

Floating point operators. MMIX includes a full implementation of the famous
IEEE/ANSI Standard 754 for floating point arithmetic. Complete details of the
floating point operations appear in Section 4.2 and in the MMIXware document;
a rough summary will suffice for our purposes here.

Every octabyte x represents a floating binary number f(x) determined as
follows: The leftmost bit of x is the sign (0 = ‘+’, 1 = ‘−’); the next 11 bits are
the exponent E; the remaining 52 bits are the fraction F. The value represented
is then

±0.0, if E = F = 0 (zero);
±2−1074F, if E = 0 and F 6= 0 (denormal);

±2E−1023(1 + F/252), if 0 < E < 2047 (normal);
±∞, if E = 2047 and F = 0 (infinite);

±NaN(F/252), if E = 2047 and F 6= 0 (Not-a-Number).

The “short” floating point number f(t) represented by a tetrabyte t is similar,
but its exponent part has only 8 bits and its fraction has only 23; the normal
case 0 < E < 255 of a short float represents ±2E−127(1 + F/223).

• FADD $X,$Y,$Z (floating add): f($X)← f($Y) + f($Z).
• FSUB $X,$Y,$Z (floating subtract): f($X)← f($Y)− f($Z).
• FMUL $X,$Y,$Z (floating multiply): f($X)← f($Y)× f($Z).
• FDIV $X,$Y,$Z (floating divide): f($X)← f($Y)/f($Z).

12



1.3.1́ DESCRIPTION OF MMIX 13

• FREM $X,$Y,$Z (floating remainder): f($X)← f($Y) rem f($Z).
• FSQRT $X,$Z or FSQRT $X,Y,$Z (floating square root): f($X)← f($Z)1/2.
• FINT $X,$Z or FINT $X,Y,$Z (floating integer): f($X)← int f($Z).
• FCMP $X,$Y,$Z (floating compare): s($X)← [f($Y) > f($Z)]−[f($Y) < f($Z)].
• FEQL $X,$Y,$Z (floating equal to): s($X)← [f($Y) = f($Z)].
• FUN $X,$Y,$Z (floating unordered): s($X)← [f($Y) ‖ f($Z)].
• FCMPE $X,$Y,$Z (floating compare with respect to epsilon):

s($X)←
[

f($Y) ≻ f($Z)
(

f(rE)
)]

−
[

f($Y) ≺ f($Z)
(

f(rE)
)]

, see 4.2.2–().
• FEQLE $X,$Y,$Z (floating equivalent with respect to epsilon):

s($X)←
[

f($Y) ≈ f($Z)
(

f(rE)
)]

, see 4.2.2–().
• FUNE $X,$Y,$Z (floating unordered with respect to epsilon):

s($X)←
[

f($Y) ‖ f($Z)
(

f(rE)
)]

.
• FIX $X,$Z or FIX $X,Y,$Z (convert floating to fixed): s($X)← int f($Z).
• FIXU $X,$Z or FIXU $X,Y,$Z (convert floating to fixed unsigned):

u($X)←
(

int f($Z)
)

mod 264.
• FLOT $X,$Z or FLOT $X,Y,$Z (convert fixed to floating): f($X)← s($Z).
• FLOTU $X,$Z or FLOTU $X,Y,$Z (convert fixed to floating unsigned):

f($X)← u($Z).
• SFLOT $X,$Z or SFLOT $X,Y,$Z (convert fixed to short float):

f($X)← f(T)← s($Z).
• SFLOTU $X,$Z or SFLOTU $X,Y,$Z (convert fixed to short float unsigned):

f($X)← f(T)← u($Z).
• LDSF $X,$Y,$Z or LDSF $X,A (load short float): f($X)← f(M4[A]).
• STSF $X,$Y,$Z or STSF $X,A (store short float): f(M4[A])← f($X).
Assignment to a floating point quantity uses the current rounding mode to
determine the appropriate value when an exact value cannot be assigned. Four
rounding modes are supported: 1 (ROUND_OFF), 2 (ROUND_UP), 3 (ROUND_DOWN),
and 4 (ROUND_NEAR). The Y field of FSQRT, FINT, FIX, FIXU, FLOT, FLOTU, SFLOT,
and SFLOTU can be used to specify a rounding mode other than the current one,
if desired. For example, FIX $X,ROUND_UP,$Z sets s($X)←

⌈

f($Z)
⌉

. Operations
SFLOT and SFLOTU first round as if storing into an anonymous tetrabyte T, then
they convert that number to octabyte form.

The ‘int’ operation rounds to an integer. The operation y rem z is defined
to be y − nz, where n is the nearest integer to y/z, or the nearest even integer
in case of a tie. Special rules apply when the operands are infinite or NaN, and
special conventions govern the sign of a zero result. The values +0.0 and −0.0
have different floating point representations, but FEQL calls them equal. All such
technicalities are explained in the MMIXware document, and Section 4.2 explains
why the technicalities are important.

Immediate constants. Programs often need to deal with small constant
numbers. For example, we might want to add or subtract 1 from a register,
or we might want to shift by 32, etc. In such cases it’s a nuisance to load the
small constant from memory into another register. So MMIX provides a general
mechanism by which such constants can be obtained “immediately” from an

13



14 BASIC CONCEPTS 1.3.1́

instruction itself: Every instruction we have discussed so far has a variant in
which $Z is replaced by the number Z, unless the instruction treats $Z as a
floating point number.

For example, ‘ADD $X,$Y,$Z’ has a counterpart ‘ADD $X,$Y,Z’, meaning
s($X) ← s($Y) + Z; ‘SRU $X,$Y,$Z’ has a counterpart ‘SRU $X,$Y,Z’, meaning
u($X) ←

⌊

u($Y)/2Z
⌋

; ‘FLOT $X,$Z’ has a counterpart ‘FLOT $X,Z’, meaning
f($X)← Z. But ‘FADD $X,$Y,$Z’ has no immediate counterpart.

The opcode for ‘ADD $X,$Y,$Z’ is #20 and the opcode for ‘ADD $X,$Y,Z’
is #21; we use the same symbol ADD in both cases for simplicity. In general the
opcode for the immediate variant of an operation is one greater than the opcode
for the register variant.

Several instructions also feature wyde immediate constants, which range
from #0000 = 0 to #ffff = 65535. These constants, which appear in the YZ
bytes, can be shifted into the high, medium high, medium low, or low wyde
positions of an octabyte.

• SETH $X,YZ (set high wyde): u($X)← YZ× 248.
• SETMH $X,YZ (set medium high wyde): u($X)← YZ× 232.
• SETML $X,YZ (set medium low wyde): u($X)← YZ× 216.
• SETL $X,YZ (set low wyde): u($X)← YZ.

• INCH $X,YZ (increase by high wyde): u($X)←
(

u($X) + YZ× 248
)

mod 264.
• INCMH $X,YZ (increase by medium high wyde):

u($X)←
(

u($X) + YZ× 232
)

mod 264.
• INCML $X,YZ (increase by medium low wyde):

u($X)←
(

u($X) + YZ× 216
)

mod 264.

• INCL $X,YZ (increase by low wyde): u($X)←
(

u($X) + YZ
)

mod 264.

• ORH $X,YZ (bitwise or with high wyde): v($X)← v($X) ∨ v(YZ≪ 48).
• ORMH $X,YZ (bitwise or with medium high wyde):

v($X)← v($X) ∨ v(YZ≪ 32).
• ORML $X,YZ (bitwise or with medium low wyde):

v($X)← v($X) ∨ v(YZ≪ 16).
• ORL $X,YZ (bitwise or with low wyde): v($X)← v($X) ∨ v(YZ).

• ANDNH $X,YZ (bitwise and-not high wyde): v($X)← v($X) ∧ v̄(YZ≪ 48).
• ANDNMH $X,YZ (bitwise and-not medium high wyde):

v($X)← v($X) ∧ v̄(YZ≪ 32).
• ANDNML $X,YZ (bitwise and-not medium low wyde):

v($X)← v($X) ∧ v̄(YZ≪ 16).
• ANDNL $X,YZ (bitwise and-not low wyde): v($X)← v($X) ∧ v̄(YZ).
Using at most four of these instructions, we can get any desired octabyte into a
register without loading anything from the memory. For example, the commands

SETH $0,#0123; INCMH $0,#4567; INCML $0,#89ab; INCL $0,#cdef

put #0123456789abcdef into register $0.
The MMIX assembly language allows us to write SET as an abbreviation for

SETL, and SET $X,$Y as an abbreviation for the common operation OR $X,$Y,0.

14



1.3.1́ DESCRIPTION OF MMIX 15

Jumps and branches. Instructions are normally executed in their natural
sequence. In other words, the command that is performed after MMIX has obeyed
the tetrabyte in memory location @ is normally the tetrabyte found in memory
location @ + 4. (The symbol @ denotes the place where we’re “at.”) But jump
and branch instructions allow this sequence to be interrupted.

• JMP RA (jump): @← RA.
Here RA denotes a three-byte relative address, which could be written more
explicitly as @+4∗XYZ, namely XYZ tetrabytes following the current location @.
For example, ‘JMP @+4*2’ is a symbolic form for the tetrabyte #f0000002; if this
instruction appears in location #1000, the next instruction to be executed will
be the one in location #1008. We might in fact write ‘JMP #1008’; but then the
value of XYZ would depend on the location jumped from.

Relative offsets can also be negative, in which case the opcode increases
by 1 and XYZ is the offset plus 224. For example, ‘JMP @-4*2’ is the tetrabyte
#f1fffffe. Opcode #f0 tells the computer to “jump forward” and opcode #f1

tells it to “jump backward,” but we write both as JMP. In fact, we usually
write simply ‘JMP Addr’ when we want to jump to location Addr, and the MMIX

assembly program figures out the appropriate opcode and the appropriate value
of XYZ. Such a jump will be possible unless we try to stray more than about 67
million bytes from our present location.

• GO $X,$Y,$Z (go): u($X)← @+ 4, then @← A.
The GO instruction allows us to jump to an absolute address, anywhere in mem-
ory; this address A is calculated by formula (), exactly as in the load and store
commands. Before going to the specified address, the location of the instruction
that would ordinarily have come next is placed into register $X. Therefore we
could return to that location later by saying, for example, ‘GO $X,$X,0’, with
Z = 0 as an immediate constant.

• BN $X,RA (branch if negative): if s($X) < 0, set @← RA.
• BZ $X,RA (branch if zero): if $X = 0, set @← RA.
• BP $X,RA (branch if positive): if s($X) > 0, set @← RA.
• BOD $X,RA (branch if odd): if s($X) mod 2 = 1, set @← RA.
• BNN $X,RA (branch if nonnegative): if s($X) ≥ 0, set @← RA.
• BNZ $X,RA (branch if nonzero): if $X 6= 0, set @← RA.
• BNP $X,RA (branch if nonpositive): if s($X) ≤ 0, set @← RA.
• BEV $X,RA (branch if even): if s($X) mod 2 = 0, set @← RA.
A branch instruction is a conditional jump that depends on the contents of
register $X. The range of destination addresses RA is more limited than it was
with JMP, because only two bytes are available to express the relative offset; but
still we can branch to any tetrabyte between @− 218 and @ + 218 − 4.

• PBN $X,RA (probable branch if negative): if s($X) < 0, set @← RA.
• PBZ $X,RA (probable branch if zero): if $X = 0, set @← RA.
• PBP $X,RA (probable branch if positive): if s($X) > 0, set @← RA.
• PBOD $X,RA (probable branch if odd): if s($X) mod 2 = 1, set @← RA.
• PBNN $X,RA (probable branch if nonnegative): if s($X) ≥ 0, set @← RA.

15
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• PBNZ $X,RA (probable branch if nonzero): if $X 6= 0, set @← RA.
• PBNP $X,RA (probable branch if nonpositive): if s($X) ≤ 0, set @← RA.
• PBEV $X,RA (probable branch if even): if s($X) mod 2 = 0, set @← RA.
High-speed computers usually work fastest if they can anticipate when a branch
will be taken, because foreknowledge helps them look ahead and get ready for
future instructions. Therefore MMIX encourages programmers to give hints about
whether branching is likely or not. Whenever a branch is expected to be taken
more than half of the time, a wise programmer will say PB instead of B.

*Subroutine calls. MMIX also has several instructions that facilitate efficient
communication between subprograms, via a register stack. The details are some-
what technical and we will defer them until Section 1.4́ ; an informal description
will suffice here. Short programs do not need to use these features.

• PUSHJ $X,RA (push registers and jump): push(X) and set rJ ← @ + 4, then
set @← RA.

• PUSHGO $X,$Y,$Z (push registers and go): push(X) and set rJ← @+ 4, then
set @← A.

The special return-jump register rJ is set to the address of the tetrabyte following
the PUSH command. The action “push(X)” means, roughly speaking, that local
registers $0 through $X are saved and made temporarily inaccessible. What
used to be $(X+1) is now $0, what used to be $(X+2) is now $1, etc. But
all registers $k for k ≥ rG remain unchanged; rG is the special global threshold
register, whose value always lies between 32 and 255, inclusive.

Register $k is called global if k ≥ rG. It is called local if k < rL; here rL is the
special local threshold register, which tells how many local registers are currently
active. Otherwise, namely if rL ≤ k < rG, register $k is called marginal, and
$k is equal to zero whenever it is used as a source operand in a command. If
a marginal register $k is used as a destination operand in a command, rL is
automatically increased to k + 1 before the command is performed, thereby
making $k local.

• POP X,YZ (pop registers and return): pop(X), then @← rJ + 4 ∗YZ.
Here “pop(X)” means, roughly speaking, that all but X of the current local
registers become marginal, and then the local registers hidden by the most recent
“push” that has not yet been “popped” are restored to their former values. Full
details appear in Section 1.4́ , together with numerous examples.

• SAVE $X,0 (save process state): u($X)← context.
• UNSAVE $Z (restore process state): context← u($Z).
The SAVE instruction stores all current registers in memory at the top of the
register stack, and puts the address of the topmost stored octabyte into u($X).
Register $X must be global; that is, X must be ≥ rG. All of the currently local
and global registers are saved, together with special registers like rA, rD, rE,
rG, rH, rJ, rM, rR, and several others that we have not yet discussed. The
UNSAVE instruction takes the address of such a topmost octabyte and restores
the associated context, essentially undoing a previous SAVE. The value of rL is
set to zero by SAVE, but restored by UNSAVE. MMIX has special registers called
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the register stack offset (rO) and register stack pointer (rS), which control the
PUSH, POP, SAVE, and UNSAVE operations. (Again, full details can be found in
Section 1.4́ .)

*System considerations. Several opcodes, intended primarily for ultrafast
and/or parallel versions of the MMIX architecture, are of interest only to ad-
vanced users, but we should at least mention them here. Some of the associated
operations are similar to the “probable branch” commands, in the sense that
they give hints to the machine about how to plan ahead for maximum efficiency.
Most programmers do not need to use these instructions, except perhaps SYNCID.

• LDUNC $X,$Y,$Z (load octa uncached): s($X)← s
(

M8[A]
)

.

• STUNC $X,$Y,$Z (store octa uncached): s
(

M8[A]
)

← s($X).
These commands perform the same operations as LDO and STO, but they also
inform the machine that the loaded or stored octabyte and its near neighbors
will probably not be read or written in the near future.

• PRELD X,$Y,$Z (preload data).
Says that many of the bytes M[A] through M[A+X] will probably be loaded or
stored in the near future.

• PREST X,$Y,$Z (prestore data).
Says that all of the bytes M[A] through M[A + X] will definitely be written
(stored) before they are next read (loaded).

• PREGO X,$Y,$Z (prefetch to go).
Says that many of the bytes M[A] through M[A + X] will probably be used as
instructions in the near future.

• SYNCID X,$Y,$Z (synchronize instructions and data).
Says that all of the bytes M[A] through M[A + X] must be fetched again before
being interpreted as instructions. MMIX is allowed to assume that a program’s
instructions do not change after the program has begun, unless the instructions
have been prepared by SYNCID. (See exercise 57.)

• SYNCD X,$Y,$Z (synchronize data).
Says that all of bytes M[A] through M[A + X] must be brought up to date in
the physical memory, so that other computers and input/output devices can
read them.

• SYNC XYZ (synchronize).
Restricts parallel activities so that different processors can cooperate reliably;
see MMIXware for details. XYZ must be 0, 1, 2, or 3.

• CSWAP $X,$Y,$Z (compare and swap octabytes).
If u(M8[A]) = u(rP), where rP is the special prediction register, set u(M8[A])←
u($X) and u($X) ← 1. Otherwise set u(rP) ← u(M8[A]) and u($X) ← 0. This
is an atomic (indivisible) operation, useful when independent computers share a
common memory.

• LDVTS $X,$Y,$Z (load virtual translation status).
This instruction, described in MMIXware, is for the operating system only.

17
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*Interrupts. The normal flow of instructions from one tetrabyte to the next
can be changed not only by jumps and branches but also by less predictable
events like overflow or external signals. Real-world machines must also cope
with such things as security violations and hardware failures. MMIX distinguishes
two kinds of program interruptions: “trips” and “traps.” A trip sends control
to a trip handler, which is part of the user’s program; a trap sends control to a
trap handler, which is part of the operating system.

Eight kinds of exceptional conditions can arise when MMIX is doing arith-
metic, namely integer divide check (D), integer overflow (V), float-to-fix over-
flow (W), invalid floating operation (I), floating overflow (O), floating under-
flow (U), floating division by zero (Z), and floating inexact (X). The special
arithmetic status register rA holds current information about all these excep-
tions. The eight bits of its rightmost byte are called its event bits, and they are
named D_BIT (#80), V_BIT (#40), . . . , X_BIT (#01), in order DVWIOUZX.

The eight bits just to the left of the event bits in rA are called the enable

bits; they appear in the same order DVWIOUZX. When an exceptional condi-
tion occurs during some arithmetic operation, MMIX looks at the corresponding
enable bit before proceeding to the next instruction. If the enable bit is 0, the
corresponding event bit is set to 1; otherwise the machine invokes a trip handler
by “tripping” to location #10 for exception D, #20 for exception V, . . . , #80

for exception X. Thus the event bits of rA record the exceptions that have not
caused trips. (If more than one enabled exception occurs, the leftmost one takes
precedence. For example, simultaneous O and X is handled by O.)

The two bits of rA just to the left of the enable bits hold the current rounding
mode, mod 4. The other 46 bits of rA should be zero. A program can change
the setting of rA at any time, using the PUT command discussed below.

• TRIP X,Y,Z or TRIP X,YZ or TRIP XYZ (trip).

This command forces a trip to the handler at location #00.

Whenever a trip occurs, MMIX uses five special registers to record the current
state: the bootstrap register rB, the where-interrupted register rW, the execution
register rX, the Y operand register rY, and the Z operand register rZ. First rB
is set to $255, then $255 is set to rJ, and rW is set to @+ 4. The left half of rX
is set to #80000000, and the right half is set to the instruction that tripped. If
the interrupted instruction was not a store command, rY is set to $Y and rZ is
set to $Z (or to Z in case of an immediate constant); otherwise rY is set to A
(the memory address of the store command) and rZ is set to $X (the quantity
to be stored). Finally control passes to the handler by setting @ to the handler
address (#00 or #10 or · · · or #80).

• TRAP X,Y,Z or TRAP X,YZ or TRAP XYZ (trap).

This command is analogous to TRIP, but it forces a trap to the operating system.
Special registers rBB, rWW, rXX, rYY, and rZZ take the place of rB, rW, rX,
rY, and rZ; the special trap address register rT supplies the address of the trap
handler, which is placed in @. Section 1.3.2́ describes several TRAP commands
that provide simple input/output operations. The normal way to conclude a
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1.3.1́ DESCRIPTION OF MMIX 19

program is to say ‘TRAP 0’; this instruction is the tetrabyte #00000000, so you
might run into it by mistake.

The MMIXware document gives further details about external interrupts,
which are governed by the special interrupt mask register rK and interrupt

request register rQ. Dynamic traps, which arise when rK ∧ rQ 6= 0, are handled
at address rTT instead of rT.

• RESUME 0 (resume after interrupt).
If s(rX) is negative, MMIX simply sets @ ← rW and takes its next instruction
from there. Otherwise, if the leading byte of rX is zero, MMIX sets @ ← rW − 4
and executes the instruction in the lower half of rX as if it had appeared in
that location. (This feature can be used even if no interrupt has occurred.
The inserted instruction must not itself be RESUME.) Otherwise MMIX performs
special actions described in the MMIXware document and of interest primarily to
the operating system; see exercise 1.4.3́ –14.

The complete instruction set. Table 1 shows the symbolic names of all 256
opcodes, arranged by their numeric values in hexadecimal notation. For example,
ADD appears in the upper half of the row labeled #2x and in the column labeled
#0 at the top, so ADD is opcode #20; ORL appears in the lower half of the row
labeled #Ex and in the column labeled #B at the bottom, so ORL is opcode #EB.

Table 1 actually says ‘ADD[I]’, not ‘ADD’, because the symbol ADD really
stands for two opcodes. Opcode #20 arises from ADD $X,$Y,$Z using register $Z,
while opcode #21 arises from ADD $X,$Y,Z using the immediate constant Z.
When a distinction is necessary, we say that opcode #20 is ADD and opcode #21

is ADDI (“add immediate”); similarly, #F0 is JMP and #F1 is JMPB (“jump back-
ward”). This gives every opcode a unique name. However, the extra I and B are
generally dropped for convenience when we write MMIX programs.

We have discussed nearly all of MMIX’s opcodes. Two of the stragglers are

• GET $X,Z (get from special register): u($X)← u(g[Z]), where 0 ≤ Z < 32.
• PUT X,$Z (put into special register): u(g[X])← u($Z), where 0 ≤ X < 32.
Each special register has a code number between 0 and 31. We speak of registers
rA, rB, . . . , as aids to human understanding; but register rA is really g[21] from
the machine’s point of view, and register rB is really g[0], etc. The code numbers
appear in Table 2 on page 21.

GET commands are unrestricted, but certain things cannot be PUT: No value
can be put into rG that is greater than 255, less than 32, or less than the current
setting of rL. No value can be put into rA that is greater than #3ffff. If a
program tries to increase rL with the PUT command, rL will stay unchanged.
Moreover, a program cannot PUT anything into rC, rN, rO, rS, rI, rT, rTT, rK,
rQ, rU, or rV; these “extraspecial” registers have code numbers in the range 8–18.

Most of the special registers have already been mentioned in connection with
specific instructions, but MMIX also has a “clock register” or cycle counter, rC,
which keeps advancing; an interval counter, rI, which keeps decreasing, and
which requests an interrupt when it reaches zero; a serial number register, rN,
which gives each MMIX machine a unique number; a usage counter, rU, which
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Table 1

THE OPCODES OF MMIX

#0 #1 #2 #3 #4 #5 #6 #7

TRAP 5υ FCMP υ FUN υ FEQL υ FADD 4υ FIX 4υ FSUB 4υ FIXU 4υ
#0x #0x

FLOT[I] 4υ FLOTU[I] 4υ SFLOT[I] 4υ SFLOTU[I] 4υ

FMUL 4υ FCMPE 4υ FUNE υ FEQLE 4υ FDIV 40υ FSQRT 40υ FREM 4υ FINT 4υ
#1x #1x

MUL[I] 10υ MULU[I] 10υ DIV[I] 60υ DIVU[I] 60υ

ADD[I] υ ADDU[I] υ SUB[I] υ SUBU[I] υ
#2x #2x

2ADDU[I] υ 4ADDU[I] υ 8ADDU[I] υ 16ADDU[I] υ

CMP[I] υ CMPU[I] υ NEG[I] υ NEGU[I] υ
#3x #3x

SL[I] υ SLU[I] υ SR[I] υ SRU[I] υ

BN[B] υ+π BZ[B] υ+π BP[B] υ+π BOD[B] υ+π
#4x #4x

BNN[B] υ+π BNZ[B] υ+π BNP[B] υ+π BEV[B] υ+π

PBN[B] 3υ−π PBZ[B] 3υ−π PBP[B] 3υ−π PBOD[B] 3υ−π
#5x #5x

PBNN[B] 3υ−π PBNZ[B] 3υ−π PBNP[B] 3υ−π PBEV[B] 3υ−π

CSN[I] υ CSZ[I] υ CSP[I] υ CSOD[I] υ
#6x #6x

CSNN[I] υ CSNZ[I] υ CSNP[I] υ CSEV[I] υ

ZSN[I] υ ZSZ[I] υ ZSP[I] υ ZSOD[I] υ
#7x #7x

ZSNN[I] υ ZSNZ[I] υ ZSNP[I] υ ZSEV[I] υ

LDB[I] µ+υ LDBU[I] µ+υ LDW[I] µ+υ LDWU[I] µ+υ
#8x #8x

LDT[I] µ+υ LDTU[I] µ+υ LDO[I] µ+υ LDOU[I] µ+υ

LDSF[I] µ+υ LDHT[I] µ+υ CSWAP[I] 2µ+2υ LDUNC[I] µ+υ
#9x #9x

LDVTS[I] υ PRELD[I] υ PREGO[I] υ GO[I] 3υ

STB[I] µ+υ STBU[I] µ+υ STW[I] µ+υ STWU[I] µ+υ
#Ax #Ax

STT[I] µ+υ STTU[I] µ+υ STO[I] µ+υ STOU[I] µ+υ

STSF[I] µ+υ STHT[I] µ+υ STCO[I] µ+υ STUNC[I] µ+υ
#Bx #Bx

SYNCD[I] υ PREST[I] υ SYNCID[I] υ PUSHGO[I] 3υ

OR[I] υ ORN[I] υ NOR[I] υ XOR[I] υ
#Cx #Cx

AND[I] υ ANDN[I] υ NAND[I] υ NXOR[I] υ

BDIF[I] υ WDIF[I] υ TDIF[I] υ ODIF[I] υ
#Dx #Dx

MUX[I] υ SADD[I] υ MOR[I] υ MXOR[I] υ

SETH υ SETMH υ SETML υ SETL υ INCH υ INCMH υ INCML υ INCL υ
#Ex #Ex

ORH υ ORMH υ ORML υ ORL υ ANDNH υ ANDNMH υ ANDNML υ ANDNL υ

JMP[B] υ PUSHJ[B] υ GETA[B] υ PUT[I] υ
#Fx #Fx

POP 3υ RESUME 5υ [UN]SAVE 20µ+υ SYNC υ SWYM υ GET υ TRIP 5υ

#8 #9 #A #B #C #D #E #F

π = 2υ if the branch is taken, π = 0 if the branch is not taken

increases by 1 whenever specified opcodes are executed; and a virtual translation

register, rV, which defines a mapping from the “virtual” 64-bit addresses used in
programs to the “actual” physical locations of installed memory. These special
registers help make MMIX a complete, viable machine that could actually be
built and run successfully; but they are not of importance to us in this book.
The MMIXware document explains them fully.

• GETA $X,RA (get address): u($X)← RA.
This instruction loads a relative address into register $X, using the same con-
ventions as the relative addresses in branch commands. For example, GETA $0,@

will set $0 to the address of the instruction itself.
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Table 2

SPECIAL REGISTERS OF MMIX

code saved? put?
rA arithmetic status register . . . . . . . . . . . . 21 √ √

rB bootstrap register (trip) . . . . . . . . . . . . . 0 √ √

rC cycle counter . . . . . . . . . . . . . . . . . . 8
rD dividend register . . . . . . . . . . . . . . . . 1 √ √

rE epsilon register . . . . . . . . . . . . . . . . . 2 √ √

rF failure location register . . . . . . . . . . . . . 22 √

rG global threshold register . . . . . . . . . . . . . 19 √ √

rH himult register . . . . . . . . . . . . . . . . . 3 √ √

rI interval counter . . . . . . . . . . . . . . . . . 12
rJ return-jump register . . . . . . . . . . . . . . . 4 √ √

rK interrupt mask register . . . . . . . . . . . . . 15
rL local threshold register . . . . . . . . . . . . . . 20 √ √

rM multiplex mask register . . . . . . . . . . . . . 5 √ √

rN serial number . . . . . . . . . . . . . . . . . . 9
rO register stack offset . . . . . . . . . . . . . . . 10
rP prediction register . . . . . . . . . . . . . . . . 23 √ √

rQ interrupt request register . . . . . . . . . . . . . 16
rR remainder register . . . . . . . . . . . . . . . . 6 √ √

rS register stack pointer . . . . . . . . . . . . . . 11
rT trap address register . . . . . . . . . . . . . . . 13
rU usage counter . . . . . . . . . . . . . . . . . . 17
rV virtual translation register . . . . . . . . . . . . 18
rW where-interrupted register (trip) . . . . . . . . . 24 √ √

rX execution register (trip) . . . . . . . . . . . . . 25 √ √

rY Y operand (trip) . . . . . . . . . . . . . . . . 26 √ √

rZ Z operand (trip) . . . . . . . . . . . . . . . . 27 √ √

rBB bootstrap register (trap) . . . . . . . . . . . . . 7 √

rTT dynamic trap address register . . . . . . . . . . . 14
rWW where-interrupted register (trap) . . . . . . . . . 28 √

rXX execution register (trap) . . . . . . . . . . . . . 29 √

rYY Y operand (trap) . . . . . . . . . . . . . . . . 30 √

rZZ Z operand (trap) . . . . . . . . . . . . . . . . 31 √

• SWYM X,Y,Z or SWYM X,YZ or SWYM XYZ (sympathize with your machinery).

The last of MMIX’s 256 opcodes is, fortunately, the simplest of all. In fact, it
is often called a no-op, because it performs no operation. It does, however,
keep the machine running smoothly, just as real-world swimming helps to keep
programmers healthy. Bytes X, Y, and Z are ignored.

Timing. In later parts of this book we will often want to compare different
MMIX programs to see which is faster. Such comparisons aren’t easy to make,
in general, because the MMIX architecture can be implemented in many different
ways. Although MMIX is a mythical machine, its mythical hardware exists in
cheap, slow versions as well as in costly high-performance models. The running
time of a program depends not only on the clock rate but also on the number of
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functional units that can be active simultaneously and the degree to which they
are pipelined; it depends on the techniques used to prefetch instructions before
they are executed; it depends on the size of the random-access memory that is
used to give the illusion of 264 virtual bytes; and it depends on the sizes and
allocation strategies of caches and other buffers, etc., etc.

For practical purposes, the running time of an MMIX program can often be
estimated satisfactorily by assigning a fixed cost to each operation, based on
the approximate running time that would be obtained on a high-performance
machine with lots of main memory; so that’s what we will do. Each operation
will be assumed to take an integer number of υ, where υ (pronounced “oops”)*
is a unit that represents the clock cycle time in a pipelined implementation.
Although the value of υ decreases as technology improves, we always keep up with
the latest advances because we measure time in units of υ, not in nanoseconds.
The running time in our estimates will also be assumed to depend on the number
of memory references or mems that a program uses; this is the number of load
and store instructions. For example, we will assume that each LDO (load octa)
instruction costs µ+ υ, where µ is the average cost of a memory reference. The
total running time of a program might be reported as, say, 35µ+1000υ, meaning
“35 mems plus 1000 oops.” The ratio µ/υ has been increasing steadily for many
years; nobody knows for sure whether this trend will continue, but experience
has shown that µ and υ deserve to be considered independently.

Table 1, which is repeated also in the endpapers of this book, displays the
assumed running time together with each opcode. Notice that most instructions
take just 1υ, while loads and stores take µ+υ. A branch or probable branch takes
1υ if predicted correctly, 3υ if predicted incorrectly. Floating point operations
usually take 4υ each, although FDIV and FSQRT cost 40υ. Integer multiplication
takes 10υ; integer division weighs in at 60υ.

Even though we will often use the assumptions of Table 1 for seat-of-the-
pants estimates of running time, we must remember that the actual running time
might be quite sensitive to the ordering of instructions. For example, integer
division might cost only one cycle if we can find 60 other things to do between
the time we issue the command and the time we need the result. Several LDB
(load byte) instructions might need to reference memory only once, if they refer
to the same octabyte. Yet the result of a load command is usually not ready
for use in the immediately following instruction. Experience has shown that
some algorithms work well with cache memory, and others do not; therefore µ
is not really constant. Even the location of instructions in memory can have
a significant effect on performance, because some instructions can be fetched
together with others. Therefore the MMIXware package includes not only a simple
simulator, which calculates running times by the rules of Table 1, but also a
comprehensive meta-simulator, which runs MMIX programs under a wide range of
different technological assumptions. Users of the meta-simulator can specify the

* The Greek letter upsilon (υ) is wider than an italic letter vee (v), but the author admits
that this distinction is rather subtle. Readers who prefer to say vee instead of oops are free to
do as they wish. The symbol is, however, an upsilon.
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characteristics of the memory bus and the parameters of such things as caches for
instructions and data, virtual address translation, pipelining and simultaneous
instruction issue, branch prediction, etc. Given a configuration file and a program
file, the meta-simulator determines precisely how long the specified hardware
would need to run the program. Only the meta-simulator can be trusted to give
reliable information about a program’s actual behavior in practice; but such
results can be difficult to interpret, because infinitely many configurations are
possible. That’s why we often resort to the much simpler estimates of Table 1.

No benchmark result should ever be taken at face value.

— BRIAN KERNIGHAN and CHRISTOPHER VAN WYK (1998)

MMIX versus reality. A person who understands the rudiments of MMIX

programming has a pretty good idea of what today’s general-purpose computers
can do easily; MMIX is very much like all of them. But MMIX has been idealized
in several ways, partly because the author has tried to design a machine that
is somewhat “ahead of its time” so that it won’t become obsolete too quickly.
Therefore a brief comparison between MMIX and the computers actually being
built at the turn of the millennium is appropriate. The main differences between
MMIX and those machines are:

• Commercial machines do not ignore the low-order bits of memory addresses,
as MMIX does when accessing M8[A]; they usually insist that A be a multiple
of 8. (We will find many uses for those precious low-order bits.)

• Commercial machines are usually deficient in their support of integer arith-
metic. For example, they almost never produce the true quotient ⌊x/y⌋ and
true remainder xmod y when x is negative or y is negative; they often throw
away the upper half of a product. They don’t treat left and right shifts as
strict equivalents of multiplication and division by powers of 2. Sometimes
they do not implement division in hardware at all; and when they do handle
division, they usually assume that the upper half of the 128-bit dividend is
zero. Such restrictions make high-precision calculations more difficult.

• Commercial machines do not perform FINT and FREM efficiently.

• Commercial machines do not (yet?) have the powerful MOR and MXOR opera-
tions. They usually have a half dozen or so ad hoc instructions that handle
only the most common special cases of MOR.

• Commercial machines rarely have more than 64 general-purpose registers. The
256 registers of MMIX significantly decrease program length, because many
variables and constants of a program can live entirely in those registers
instead of in memory. Furthermore, MMIX’s register stack is more flexible
than the comparable mechanisms in existing computers.

All of these pluses for MMIX have associated minuses, because computer design
always involves tradeoffs. The primary design goal for MMIX was to keep the
machine as simple and clean and consistent and forward-looking as possible,
without sacrificing speed and realism too greatly.
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And now I see with eye serene

The very pulse of the machine.

— WILLIAM WORDSWORTH, She Was a Phantom of Delight (1804)

Summary. MMIX is a programmer-friendly computer that operates on 64-bit
quantities called octabytes. It has the general characteristics of a so-called RISC
(“reduced instruction set computer”); that is, its instructions have only a few
different formats (OP X,Y, Z or OP X,YZ or OP XYZ), and each instruction
either transfers data between memory and a register or involves only registers.
Table 1 summarizes the 256 opcodes and their default running times; Table 2
summarizes the special registers that are sometimes important.

The following exercises give a quick review of the material in this section.
Most of them are quite simple, and the reader should try to do nearly all of them.

EXERCISES

1. [00 ] The binary form of 2009 is (11111011001)2; what is 2009 in hexadecimal?

2. [05 ] Which of the letters {A, B, C, D, E, F, a, b, c, d, e, f} are odd when considered as
(a) hexadecimal digits? (b) ASCII characters?

3. [10 ] Four-bit quantities — half-bytes, or hexadecimal digits — are often called
nybbles. Suggest a good name for two-bit quantities, so that we have a complete binary
nomenclature ranging from bits to octabytes.

4. [15 ] A kilobyte (kB or KB) is 1000 bytes, and a megabyte (MB) is 1000 kB. What
are the official names and abbreviations for larger numbers of bytes?

5. [M13 ] If α is any string of 0s and 1s, let s(α) and u(α) be the integers that it
represents when regarded as a signed or unsigned binary number. Prove that, if x is
any integer, we have

x = s(α) if and only if x ≡ u(α) (modulo 2n) and −2n−1 ≤ x < 2n−1,

where n is the length of α.

x 6. [M20 ] Prove or disprove the following rule for negating an n-bit number in two’s
complement notation: “Complement all the bits, then add 1.” (For example, #0 . . . 01
becomes #f . . . fe, then #f . . . ff; also #f . . . ff becomes #0 . . . 00, then #0 . . . 01.)

7. [M15 ] Could the formal definitions of LDHT and STHT have been stated as

s($X)← s(M4[A])× 232 and s(M4[A])← ⌊s($X)/232⌋,

thus treating the numbers as signed rather than unsigned?

8. [10 ] If registers $Y and $Z represent numbers between 0 and 1 in which the binary
radix point is assumed to be at the left of each register, () illustrates the fact that MULU
forms a product in which the assumed radix point appears at the left of register rH.
Suppose, on the other hand, that $Z is an integer, with the radix point assumed at its
right, while $Y is a fraction between 0 and 1 as before. Where does the radix point lie
after MULU in such a case?

9. [M10 ] Does the equation s($Y) = s($X) · s($Z) + s(rR) always hold after the
instruction DIV $X,$Y,$Z has been performed?
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10. [M16 ] Give an example of DIV in which overflow occurs.

11. [M16 ] True or false: (a) Both MUL $X,$Y,$Z and MULU $X,$Y,$Z produce the same
result in $X. (b) If register rD is zero, both DIV $X,$Y,$Z and DIVU $X,$Y,$Z produce
the same result in $X.

x 12. [M20 ] Although ADDU $X,$Y,$Z never signals overflow, we might want to know if
a carry occurs at the left when adding $Y to $Z. Show that the carry can be computed
with two further instructions.

13. [M21 ] Suppose MMIX had no ADD command, only its unsigned counterpart ADDU.
How could a programmer tell whether overflow occurred when computing s($Y)+s($Z)?

14. [M21 ] Suppose MMIX had no SUB command, only its unsigned counterpart SUBU.
How could a programmer tell whether overflow occurred when computing s($Y)−s($Z)?
15. [M25 ] The product of two signed octabytes always lies between −2126 and 2126,
so it can always be expressed as a signed 16-byte quantity. Explain how to calculate
the upper half of such a signed product.

16. [M23 ] Suppose MMIX had no MUL command, only its unsigned counterpart MULU.
How could a programmer tell whether overflow occurred when computing s($Y)×s($Z)?

x 17. [M22 ] Prove that unsigned integer division by 3 can always be done by multipli-
cation: If register $Y contains any unsigned integer y, and if register $1 contains the
constant #aaaaaaaaaaaaaaab, then the sequence

MULU $0,$Y,$1; GET $0,rH; SRU $X,$0,1

puts ⌊y/3⌋ into register $X.

18. [M23 ] Continuing the previous exercise, prove or disprove that the instructions

MULU $0,$Y,$1; GET $0,rH; SRU $X,$0,2

put ⌊y/5⌋ in $X if $1 is an appropriate constant.

x 19. [M26 ] Continuing exercises 17 and 18, prove or disprove the following statement:
Unsigned integer division by a constant can always be done using “high multiplication”
followed by a right shift. More precisely, if 2e < z < 2e+1 we can compute ⌊y/z⌋ by
computing ⌊ay/264+e⌋, where a = ⌈264+e/z⌉, for 0 ≤ y < 264.

20. [16 ] Show that two cleverly chosen MMIX instructions will multiply by 25 faster
than the single instruction MUL $X,$Y,25, if we assume that overflow will not occur.

21. [15 ] Describe the effects of SL, SLU, SR, and SRU when the unsigned value in
register $Z is 64 or more.

x 22. [15 ] Mr. B. C. Dull wrote a program in which he wanted to branch to location
Case1 if the signed number in register $1 was less than the signed number in register $2.
His solution was to write ‘SUB $0,$1,$2; BN $0,Case1’.

What terrible mistake did he make? What should he have written instead?

x 23. [10 ] Continuing the previous exercise, what should Dull have written if his prob-
lem had been to branch if s($1) was less than or equal to s($2)?

24. [M10 ] If we represent a subset S of {0, 1, . . . , 63} by the bit vector

([0∈S ], [1∈S ], . . . , [63∈S ]),

the bitwise operations ∧ and ∨ correspond respectively to set intersection (S ∩ T ) and
set union (S ∪ T ). Which bitwise operation corresponds to set difference (S \ T )?
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25. [10 ] The Hamming distance between two bit vectors is the number of positions
in which they differ. Show that two MMIX instructions suffice to set register $X equal
to the Hamming distance between v($Y) and v($Z).

26. [10 ] What’s a good way to compute 64 bit differences, v($X)← v($Y)
.− v($Z)?

x 27. [20 ] Show how to use BDIF to compute the maximum and minimum of eight bytes
at a time: b($X)← max(b($Y), b($Z)), b($W)← min(b($Y), b($Z)).

28. [16 ] How would you calculate eight absolute pixel differences |b($Y) − b($Z)|
simultaneously?

29. [21 ] The operation of saturating addition on n-bit pixels is defined by the formula

y +̇ z = min(2n − 1, y + z).

Show that a sequence of three MMIX instructions will set b($X)← b($Y) +̇ b($Z).

x 30. [25 ] Suppose register $0 contains eight ASCII characters. Find a sequence of three
MMIX instructions that counts the number of blank spaces among those characters. (You
may assume that auxiliary constants have been preloaded into other registers. A blank
space is ASCII code #20.)

31. [22 ] Continuing the previous exercise, show how to count the number of characters
in $0 that have odd parity (an odd number of 1 bits).

32. [M20 ] True or false: If C = A ◦
• B then CT = BT ◦

• A
T. (See ().)

33. [20 ] What is the shortest sequence of MMIX instructions that will cyclically shift

a register eight bits to the right? For example, #9e3779b97f4a7c16 would become
#169e3779b97f4a7c.

x 34. [21 ] Given eight bytes of ASCII characters in $Z, explain how to convert them to
the corresponding eight wyde characters of Unicode, using only two MMIX instructions
to place the results in $X and $Y. How would you go the other way (back to ASCII)?

x 35. [22 ] Show that two cleverly chosen MOR instructions will reverse the left-to-right
order of all 64 bits in a given register $Y.

x 36. [20 ] Using only two instructions, create a mask that has #ff in all byte positions
where $Y differs from $Z, #00 in all byte positions where $Y equals $Z.

x 37. [HM30 ] (Finite fields.) Explain how to use MXOR for arithmetic in a field of 256
elements; each element of the field should be represented by a suitable octabyte.

38. [20 ] What does the following little program do?

SETL $1,0; SR $2,$0,56; ADD $1,$1,$2; SLU $0,$0,8; PBNZ $0,@-4*3.

x 39. [20 ] Which of the following equivalent sequences of code is faster, based on the
timing information of Table 1?

a) BN $0,@+4*2; ADDU $1,$2,$3 versus ADDU $4,$2,$3; CSNN $1,$0,$4.

b) BN $0,@+4*3; SET $1,$2; JMP @+4*2; SET $1,$3 versus

CSNN $1,$0,$2; CSN $1,$0,$3.

c) BN $0,@+4*3; ADDU $1,$2,$3; JMP @+4*2; ADDU $1,$4,$5 versus

ADDU $1,$2,$3; ADDU $6,$4,$5; CSN $1,$0,$6.

d, e, f) Same as (a), (b), and (c), but with PBN in place of BN.

40. [10 ] What happens if you GO to an address that is not a multiple of 4?
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41. [20 ] True or false:
a) The instructions CSOD $X,$Y,0 and ZSEV $X,$Y,$X have exactly the same effect.
b) The instructions CMPU $X,$Y,0 and ZSNZ $X,$Y,1 have exactly the same effect.
c) The instructions MOR $X,$Y,1 and AND $X,$Y,#ff have exactly the same effect.
d) The instructions MXOR $X,$Y,#80 and SR $X,$Y,56 have exactly the same effect.

42. [20 ] What is the best way to set register $1 to the absolute value of the number
in register $0, if $0 holds (a) a signed integer? (b) a floating point number?

x 43. [28 ] Given a nonzero octabyte in $Z, what is the fastest way to count how many
leading and trailing zero bits it has? (For example, #13fd8124f32434a2 has three
leading zeros and one trailing zero.)

x 44. [M25 ] Suppose you want to emulate 32-bit arithmetic with MMIX. Show that it is
easy to add, subtract, multiply, and divide signed tetrabytes, with overflow occurring
whenever the result does not lie in the interval [−231 . . 231).
45. [10 ] Think of a way to remember the sequence DVWIOUZX.

46. [05 ] The all-zeros tetrabyte #00000000 halts a program when it occurs as an MMIX

instruction. What does the all-ones tetrabyte #ffffffff do?

47. [05 ] What are the symbolic names of opcodes #DF and #55?

48. [11 ] The text points out that opcodes LDO and LDOU perform exactly the same
operation, with the same efficiency, regardless of the operand bytes X, Y, and Z. What
other pairs of opcodes are equivalent in this sense?

x 49. [22 ] After the following “number one” program has been executed, what changes
to registers and memory have taken place? (For example, what is the final setting
of $1? of rA? of rB?)

NEG $1,1

STCO 1,$1,1

CMPU $1,$1,1

STB $1,$1,$1

LDOU $1,$1,$1

INCH $1,1

16ADDU $1,$1,$1

MULU $1,$1,$1

PUT rA,1

STW $1,$1,1

SADD $1,$1,1

FLOT $1,$1

PUT rB,$1

XOR $1,$1,1

PBOD $1,@-4*1

NOR $1,$1,$1

SR $1,$1,1

SRU $1,$1,1

x 50. [14 ] What is the execution time of the program in the preceding exercise?

51. [14 ] Convert the “number one” program of exercise 49 to a sequence of tetrabytes
in hexadecimal notation.

52. [22 ] For each MMIX opcode, consider whether there is a way to set the X, Y, and Z
bytes so that the result of the instruction is precisely equivalent to SWYM (except that
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the execution time may be longer). Assume that nothing is known about the contents
of any registers or any memory locations. Whenever it is possible to produce a no-op,
state how it can be done. Examples: INCL is a no-op if X = 255 and Y = Z = 0. BZ is
a no-op if Y = 0 and Z = 1. MULU can never be a no-op, since it affects rH.

53. [15 ] List all MMIX opcodes that can possibly change the value of rH.

54. [20 ] List all MMIX opcodes that can possibly change the value of rA.

55. [21 ] List all MMIX opcodes that can possibly change the value of rL.

x 56. [28 ] Location #2000000000000000 contains a signed integer number, x. Write
two programs that compute x13 in register $0. One program should use the minimum
number of MMIXmemory locations; the other should use the minimum possible execution
time. Assume that x13 fits into a single octabyte, and that all necessary constants have
been preloaded into global registers.

x 57. [20 ] When a program changes one or more of its own instructions in memory, it is
said to have self-modifying code. MMIX insists that a SYNCID command be issued before
such modified commands are executed. Explain why self-modifying code is usually
undesirable in a modern computer.

58. [50 ] Write a book about operating systems, which includes the complete design
of an NNIX kernel for the MMIX architecture.

Them fellers is a-mommixin’ everything.

— V. RANDOLPH and G. P. WILSON, Down in the Holler (1953)

1.3.2́ . The MMIX Assembly Language

A symbolic language is used to make MMIX programs considerably easier to read
and to write, and to save the programmer from worrying about tedious clerical
details that often lead to unnecessary errors. This language, MMIXAL (“MMIX
Assembly Language”), is an extension of the notation used for instructions in
the previous section. Its main features are the optional use of alphabetic names
to stand for numbers, and a label field to associate names with memory locations
and register numbers.

MMIXAL can readily be comprehended if we consider first a simple example.
The following code is part of a larger program; it is a subroutine to find the
maximum of n elements X[1], . . . , X[n], according to Algorithm 1.2.10M.

Program M (Find the maximum). Initially n is in register $0, and the address
of X[0] is in register x0, a global register defined elsewhere.

Assembled code Line no. LABEL OP EXPR Times Remarks

01 j IS $0 j
02 m IS $1 m
03 kk IS $2 8k
04 xk IS $3 X[k]
05 t IS $255 Temp storage
06 LOC #100

#100: #39 02 00 03 07 Maximum SL kk,$0,3 1 M1. Initialize. k ← n, j ← n.
#104: #8c 01 fe 02 08 LDO m,x0,kk 1 m← X[n].
#108: #f0 00 00 06 09 JMP DecrK 1 To M2 with k ← n− 1.
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#10c: #8c 03 fe 02 10 Loop LDO xk,x0,kk n− 1 M3. Compare.
#110: #30 ff 03 01 11 CMP t,xk,m n− 1 t← [X[k] > m]− [X[k ] < m].
#114: #5c ff 00 03 12 PBNP t,DecrK n− 1 To M5 if X[k] ≤ m.
#118: #c1 01 03 00 13 ChangeM SET m,xk A M4. Change m. m← X[k].
#11c: #3d 00 02 03 14 SR j,kk,3 A j ← k.
#120: #25 02 02 08 15 DecrK SUB kk,kk,8 n M5. Decrease k. k ← k − 1.
#124: #55 00 ff fa 16 PBP kk,Loop n M2. All tested? To M3 if k>0.
#128: #f8 02 00 00 17 POP 2,0 1 Return to main program.

This program is an example of several things simultaneously:

a) The columns headed “LABEL”, “OP”, and “EXPR” are of principal interest;
they contain a program in the MMIXAL symbolic machine language, and we shall
explain the details of this program below.

b) The column headed “Assembled code” shows the actual numeric machine
language that corresponds to the MMIXAL program. MMIXAL has been designed
so that any MMIXAL program can easily be translated into numeric machine
language; the translation is usually carried out by another computer program
called an assembly program or assembler. Thus, programmers can do all of their
machine language programming in MMIXAL, never bothering to determine the
equivalent numeric codes by hand. Virtually all MMIX programs in this book are
written in MMIXAL.

c) The column headed “Line no.” is not an essential part of the MMIXAL pro-
gram; it is merely included with MMIXAL examples in this book so that we can
readily refer to parts of the program.

d) The column headed “Remarks” gives explanatory information about the
program, and it is cross-referenced to the steps of Algorithm 1.2.10M. The reader
should compare that algorithm (page 96) with the program above. Notice that a
little “programmer’s license” was used during the transcription into MMIX code;
for example, step M2 has been put last.

e) The column headed “Times” will be instructive in many of the MMIX pro-
grams we will be studying in this book; it represents the profile, the number
of times the instruction on that line will be executed during the course of the
program. Thus, line 10 will be performed n−1 times, etc. From this information
we can determine the length of time required to perform the subroutine; it is
nµ + (5n + 4A + 5)υ, where A is the quantity that was analyzed carefully in
Section 1.2.10. (The PBNP instruction costs (n− 1 + 2A)υ.)

Now let’s discuss the MMIXAL part of Program M. Line 01, ‘j IS $0’, says
that symbol j stands for register $0; lines 02–05 are similar. The effect of lines
01 and 03 can be seen on line 14, where the numeric equivalent of the instruction
‘SR j,kk,3’ appears as #3d 00 02 03, that is, ‘SR $0,$2,3’.

Line 06 says that the locations for succeeding lines should be chosen sequen-
tially, beginning with #100. Therefore the symbol Maximum that appears in the
label field of line 07 becomes equivalent to the number #100; the symbol Loop
in line 10 is three tetrabytes further along, so it is equivalent to #10c.

On lines 07 through 17 the OP field contains the symbolic names of MMIX
instructions: SL, LDO, etc. But the symbolic names IS and LOC, found in
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the OP column of lines 01–06, are somewhat different; IS and LOC are called
pseudo-operations, because they are operators of MMIXAL but not operators of
MMIX. Pseudo-operations provide special information about a symbolic program,
without being instructions of the program itself. Thus the line ‘j IS $0’ only
talks about Program M; it does not signify that any variable is to be set equal to
the contents of register $0 when the program is run. Notice that no instructions
are assembled for lines 01–06.

Line 07 is a “shift left” instruction that sets k ← n by setting kk← 8n. This
program works with the value of 8k, not k, because 8k is needed for octabyte
addresses in lines 08 and 10.

Line 09 jumps the control to line 15. The assembler, knowing that this JMP
instruction is in location #108 and that DecrK is equivalent to #120, computes
the relative offset (#120−#108)/4 = 6. Similar relative addresses are computed
for the branch commands in lines 12 and 16.

The rest of the symbolic code is self-explanatory. As mentioned earlier,
Program M is intended to be part of a larger program; elsewhere the sequence

SET $2,100
PUSHJ $1,Maximum
STO $1,Max

would, for example, jump to Program M with n set to 100. Program M would
then find the largest of the elements X[1], . . . , X[100] and would return to the
instruction ‘STO $1,Max’ with the maximum value in $1 and with its position, j,
in $2. (See exercise 3.)

Let’s look now at a program that is complete, not merely a subroutine. If the
following program is named Hello, it will print out the famous message ‘Hello,
world’ and stop.

Program H (Hail the world).

Assembled code Line LABEL OP EXPR Remarks

01 argv IS $1 The argument vector
02 LOC #100

#100: #8f ff 01 00 03 Main LDOU $255,argv,0 $255← address of program name.
#104: #00 00 07 01 04 TRAP 0,Fputs,StdOut Print that name.
#108: #f4 ff 00 03 05 GETA $255,String $255← address of ", world".
#10c: #00 00 07 01 06 TRAP 0,Fputs,StdOut Print that string.
#110: #00 00 00 00 07 TRAP 0,Halt,0 Stop.
#114: #2c 20 77 6f 08 String BYTE ", world",#a,0 String of characters
#118: #72 6c 64 0a 09 with newline
#11c: #00 10 and terminator

Readers who have access to an MMIX assembler and simulator should take a
moment to prepare a short computer file containing the LABEL OP EXPR portions
of Program H before reading further. Name the file ‘Hello.mms’ and assemble
it by saying, for example, ‘mmixal Hello.mms’. (The assembler will produce a
file called ‘Hello.mmo’; the suffix .mms means “MMIX symbolic” and .mmo means
“MMIX object.”) Now invoke the simulator by saying ‘mmix Hello’.
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The MMIX simulator implements some of the simplest features of a hypo-
thetical operating system called NNIX. If an object file called, say, foo.mmo is
present, NNIX will launch it when a command line such as

foo bar xyzzy ()

is given. You can obtain the corresponding behavior by invoking the simulator
with the command line ‘mmix 〈options〉 foo bar xyzzy’, where 〈options〉 is a
sequence of zero or more special requests. For example, option -P will print a
profile of the program after it has halted.

An MMIX program always begins at symbolic location Main. At that time
register $0 contains the number of command line arguments, namely the number
of words on the command line. Register $1 contains the memory address of the
first such argument, which is always the name of the program. The operating
system has placed all of the arguments into consecutive octabytes, starting at
the address in $1 and ending with an octabyte of all zeros. Each argument is
represented as a string, meaning that it is the address in memory of a sequence
of zero or more nonzero bytes followed by a byte that is zero; the nonzero bytes
are the characters of the string.

For example, the command line () would cause $0 to be initially 3, and we
might have

$1=#4000000000000008 Pointer to the first string
M8[

#4000000000000008] =#4000000000000028 First argument, the string "foo"

M8[
#4000000000000010] =#4000000000000030 Second argument, the string "bar"

M8[
#4000000000000018] =#4000000000000038 Third argument, the string "xyzzy"

M8[
#4000000000000020] =#0000000000000000 Null pointer after the last argument

M8[
#4000000000000028] =#666f6f0000000000 ’f’,’o’,’o’,0,0,0,0,0

M8[
#4000000000000030] =#6261720000000000 ’b’,’a’,’r’,0,0,0,0,0

M8[
#4000000000000038] =#78797a7a79000000 ’x’,’y’,’z’,’z’,’y’,0,0,0

NNIX sets up each argument string so that its characters begin at an octabyte
boundary; strings in general can, however, start anywhere within an octabyte.

The first instruction of Program H, in line 03, puts the string pointer M8[$1]
into register $255; this string is the program name ‘Hello’. Line 04 is a special
TRAP instruction, which asks the operating system to put string $255 into the
standard output file. Similarly, lines 05 and 06 ask NNIX to contribute ‘, world’
and a newline character to the standard output. The symbol Fputs is predefined
to equal 7, and the symbol StdOut is predefined to equal 1. Line 07, ‘TRAP
0,Halt,0’, is the normal way to terminate a program. We will discuss all such
special TRAP commands at the end of this section.

The characters of the string output by lines 05 and 06 are generated by
the BYTE command in line 08. BYTE is a pseudo-operation of MMIXAL, not an
operation of MMIX; but BYTE is different from pseudo-ops like IS and LOC, because
it does assemble data into memory. In general, BYTE assembles a sequence of
expressions into one-byte constants. The construction ", world" in line 08 is
MMIXAL’s shorthand for the list

’,’,’ ’,’w’,’o’,’r’,’l’,’d’
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of seven one-character constants. The constant #a on line 08 is the ASCII newline
character, which causes a new line to begin when it appears in a file being printed.
The final ‘,0’ on line 08 terminates the string. Thus line 08 is a list of nine
expressions, and it leads to the nine bytes shown at the left of lines 08–10.

Our third example introduces a few more features of the assembly language.
The object is to compute and print a table of the first 500 prime numbers, with
10 columns of 50 numbers each. The table should appear as follows, when the
standard output of our program is listed as a text file:

First Five Hundred Primes

0002 0233 0547 0877 1229 1597 1993 2371 2749 3187

0003 0239 0557 0881 1231 1601 1997 2377 2753 3191

0005 0241 0563 0883 1237 1607 1999 2381 2767 3203
...

...

0229 0541 0863 1223 1583 1987 2357 2741 3181 3571

We will use the following method.

Algorithm P (Print table of 500 primes). This algorithm has two distinct
parts: Steps P1–P8 prepare an internal table of 500 primes, and steps P9–P11
print the answer in the form shown above.

P1. [Start table.] Set PRIME[1] ← 2, n ← 3, j ← 1. (In this program, n runs
through the odd numbers that are candidates for primes; j keeps track of
how many primes have been found so far.)

P2. [n is prime.] Set j ← j + 1, PRIME[j]← n.

P3. [500 found?] If j = 500, go to step P9.

P4. [Advance n.] Set n← n+ 2.

P5. [k ← 2.] Set k ← 2. (PRIME[k] will run through n’s possible prime
divisors.)

P6. [PRIME[k]\n?] Divide n by PRIME[k]; let q be the quotient and r the
remainder. If r = 0 (hence n is not prime), go to P4.

P7. [PRIME[k] large?] If q ≤ PRIME[k], go to P2. (In such a case, n must
be prime; the proof of this fact is interesting and a little unusual— see
exercise 11.)

P8. [Advance k.] Increase k by 1, and go to P6.

P9. [Print title.] Now we are ready to print the table. Output the title line
and set m← 1.

P10. [Print line.] Output a line that contains PRIME[m], PRIME[50 +m], . . . ,
PRIME[450 +m] in the proper format.

P11. [500 printed?] Increase m by 1. If m ≤ 50, return to P10; otherwise the
algorithm terminates.

Program P (Print table of 500 primes). This program has deliberately been
written in a slightly clumsy fashion in order to illustrate most of the features of
MMIXAL in a single program.
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P1. Start table

P2. n is prime

P3. 500 found? P4. Advance n P5. k← 2

P6. PRIME[k]\n?P7. PRIME[k] large?

P8. Advance k

P9. Print title P10. Print line P11. 500 printed?

Yes

Yes

No

No

Yes

Yes

No
No

Fig. 14. Algorithm P.

01 % Example program ... Table of primes
02 L IS 500 The number of primes to find
03 t IS $255 Temporary storage
04 n GREG 0 Prime candidate
05 q GREG 0 Quotient
06 r GREG 0 Remainder
07 jj GREG 0 Index for PRIME[j]
08 kk GREG 0 Index for PRIME[k]
09 pk GREG 0 Value of PRIME[k]
10 mm IS kk Index for output lines
11 LOC Data_Segment
12 PRIME1 WYDE 2 PRIME[1] = 2
13 LOC PRIME1+2*L
14 ptop GREG @ Address of PRIME[501]
15 j0 GREG PRIME1+2-@ Initial value of jj
16 BUF OCTA 0 Place to form decimal string
17

18 LOC #100
19 Main SET n,3 P1. Start table. n← 3.
20 SET jj,j0 j ← 1.
21 2H STWU n,ptop,jj P2. n is prime. PRIME[j+1]← n.
22 INCL jj,2 j ← j + 1.
23 3H BZ jj,2F P3. 500 found?
24 4H INCL n,2 P4. Advance n.
25 5H SET kk,j0 P5. k ← 2.
26 6H LDWU pk,ptop,kk P6. PRIME[k]\n?
27 DIV q,n,pk q ← ⌊n/PRIME[k]⌋.
28 GET r,rR r ← nmod PRIME[k].
29 BZ r,4B To P4 if r = 0.
30 7H CMP t,q,pk P7. PRIME[k] large?
31 BNP t,2B To P2 if q ≤ PRIME[k].
32 8H INCL kk,2 P8. Advance k. k ← k + 1.
33 JMP 6B To P6.
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34 GREG @ Base address
35 Title BYTE "First Five Hundred Primes"
36 NewLn BYTE #a,0 Newline and string terminator
37 Blanks BYTE " ",0 String of three blanks
38 2H LDA t,Title P9. Print title.
39 TRAP 0,Fputs,StdOut
40 NEG mm,2 Initialize m.
41 3H ADD mm,mm,j0 P10. Print line.
42 LDA t,Blanks Output " ".
43 TRAP 0,Fputs,StdOut
44 2H LDWU pk,ptop,mm pk← prime to be printed.
45 0H GREG #2030303030000000 " 0000",0,0,0

46 STOU 0B,BUF Prepare buffer for decimal conversion.
47 LDA t,BUF+4 t← position of units digit.
48 1H DIV pk,pk,10 pk← ⌊pk/10⌋.
49 GET r,rR r ← next digit.
50 INCL r,’0’ r ← ASCII digit r.
51 STBU r,t,0 Store r in the buffer.
52 SUB t,t,1 Move one byte to the left.
53 PBNZ pk,1B Repeat on remaining digits.
54 LDA t,BUF Output " " and four digits.
55 TRAP 0,Fputs,StdOut
56 INCL mm,2*L/10 Advance by 50 wydes.
57 PBN mm,2B
58 LDA t,NewLn Output a newline.
59 TRAP 0,Fputs,StdOut
60 CMP t,mm,2*(L/10-1) P11. 500 printed?
61 PBNZ t,3B To P10 if not done.
62 TRAP 0,Halt,0

The following points of interest should be noted about this program:

1. Line 01 begins with a percent sign and line 17 is blank. Such “comment”
lines are merely explanatory; they have no effect on the assembled program.

Each non-comment line has three fields called LABEL, OP, and EXPR, sep-
arated by spaces. The EXPR field contains one or more symbolic expressions
separated by commas. Comments may follow the EXPR field.

2. As in ProgramM, the pseudo-operation IS sets the equivalent of a symbol.
For example, in line 02 the equivalent of L is set to 500, which is the number of
primes to be computed. Notice that in line 03, the equivalent of t is set to $255,
a register number, while L’s equivalent was 500, a pure number. Some symbols
have register number equivalents, ranging from $0 to $255; others have pure
equivalents, which are octabytes. We will generally use symbolic names that
begin with a lowercase letter to denote registers, and names that begin with an
uppercase letter to denote pure values, although MMIXAL does not enforce this
convention.

3. The pseudo-op GREG on line 04 allocates a global register. Register $255
is always global; the first GREG causes $254 to be global, and the next GREG does
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the same for $253, etc. Lines 04–09 therefore allocate six global registers, and
they cause the symbols n, q, r, jj, kk, pk to be respectively equivalent to $254,
$253, $252, $251, $250, $249. Line 10 makes mm equivalent to $250.

If the EXPR field of a GREG definition is zero, as it is on lines 04–09, the global
register is assumed to have a dynamically varying value when the program is run.
But if a nonzero expression is given, as on lines 14, 15, 34, and 45, the global
register is assumed to be constant throughout a program’s execution. MMIXAL

uses such global registers as base addresses when subsequent instructions refer
to memory. For example, consider the instruction ‘LDA t,BUF+4’ in line 47.
MMIXAL is able to discover that global register ptop holds the address of BUF;
therefore ‘LDA t,BUF+4’ can be assembled as ‘LDA t,ptop,4’. Similarly, the
LDA instructions on lines 38, 42, and 58 make use of the nameless base address
introduced by the instruction ‘GREG @’ on line 34. (Recall from Section 1.3.1́
that @ denotes the current location.)

4. A good assembly language should mimic the way a programmer thinks

about machine programs. One example of this philosophy is the automatic
allocation of global registers and base addresses. Another example is the idea of
local symbols such as the symbol 2H, which appears in the label field of lines 21,
38, and 44.

Local symbols are special symbols whose equivalents can be redefined as
many times as desired. A global symbol like PRIME1 has but one significance
throughout a program, and if it were to appear in the label field of more than
one line an error would be indicated by the assembler. But local symbols have
a different nature; we write, for example, 2H (“2 here”) in the LABEL field, and
2F (“2 forward”) or 2B (“2 backward”) in the EXPR field of an MMIXAL line:

2B means the closest previous label 2H;
2F means the closest following label 2H.

Thus the 2F in line 23 refers to line 38; the 2B in line 31 refers back to line 21;
and the 2B in line 57 refers to line 44. The symbols 2F and 2B never refer to
their own line. For example, the MMIXAL instructions

2H IS $10

2H BZ 2B,2F

2H IS 2B-4

are virtually equivalent to the single instruction

BZ $10,@-4 .

The symbols 2F and 2B should never be used in the LABEL field; the symbol
2H should never be used in the EXPR field. If 2B occurs before any appearance
of 2H, it denotes zero. There are ten local symbols, which can be obtained by
replacing ‘2’ in these examples by any digit from 0 to 9.

The idea of local symbols was introduced by M. E. Conway in 1958, in
connection with an assembly program for the UNIVAC I. Local symbols free us
from the obligation to choose a symbolic name when we merely want to refer to
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an instruction a few lines away. There often is no appropriate name for nearby
locations, so programmers have tended to introduce meaningless symbols like
X1, X2, X3, etc., with the potential danger of duplication.

5. The reference to Data_Segment on line 11 introduces another new idea. In
most embodiments of MMIX, the 264-byte virtual address space is broken into two
parts, called user space (addresses #0000000000000000 . . #7fffffffffffffff)
and kernel space (addresses #8000000000000000 . . #ffffffffffffffff). The
“negative” addresses of kernel space are reserved for the operating system.

User space is further subdivided into four segments of 261 bytes each. First
comes the text segment ; the user’s program generally resides here. Then comes
the data segment, beginning at virtual address #2000000000000000 ; this is for
variables whose memory locations are allocated once and for all by the assembler,
and for other variables allocated by the user without the help of the system
library. Next is the pool segment, beginning at #4000000000000000 ; command
line arguments and other dynamically allocated data go here. Finally the stack

segment, which starts at #6000000000000000, is used by the MMIX hardware to
maintain the register stack governed by PUSH, POP, SAVE, and UNSAVE. Three
symbols,

Data_Segment = #2000000000000000,
Pool_Segment = #4000000000000000,

Stack_Segment = #6000000000000000,

are predefined for convenience in MMIXAL. Nothing should be assembled into
the pool segment or the stack segment, although a program may refer to data
found there. References to addresses near the beginning of a segment might
be more efficient than references to addresses that come near the end; for ex-
ample, MMIX might not be able to access the last byte of the text segment,
M[#1fffffffffffffff ], as fast as it can read the first byte of the data segment.

Our programs for MMIX will always consider the text segment to be read-

only : Everything in memory locations less than #2000000000000000 will remain
constant once a program has been assembled and loaded. Therefore Program P
puts the prime table and the output buffer into the data segment.

6. The text and data segments are entirely zero at the beginning of a
program, except for instructions and data that have been loaded in accordance
with the MMIXAL specification of the program. If two or more bytes of data are
destined for the same cell of memory, the loader will fill that cell with their
bitwise exclusive-or.

7. The symbolic expression ‘PRIME1+2*L’ on line 13 indicates that MMIXAL
has the ability to do arithmetic on octabytes. See also the more elaborate
example ‘2*(L/10-1)’ on line 60.

8. As a final note about Program P, we can observe that its instructions
have been organized so that registers are counted towards zero, and tested against
zero, whenever possible. For example, register jj holds a quantity that is related
to the positive variable j of Algorithm P, but jj is normally negative; this change
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makes it easy for the machine to decide when j has reached 500 (line 23). Lines
40–61 are particularly noteworthy in this regard, although perhaps a bit tricky.
The binary-to-decimal conversion routine in lines 45–55, based on division by 10,
is simple but not the fastest possible. More efficient methods are discussed in
Section 4.4.

It may be of interest to note a few of the statistics observed when Program P
was actually run. The division instruction in line 27 was executed 9538 times.
The total time to perform steps P1–P8 (lines 19–33) was 10036µ+641543υ; steps
P9–P11 cost an additional 2804µ+124559υ, not counting the time taken by the
operating system to handle TRAP requests.

Language summary. Now that we have seen three examples of what can
be done in MMIXAL, it is time to discuss the rules more carefully, observing in
particular the things that cannot be done. The following comparatively few rules
define the language.

1. A symbol is a string of letters and/or digits, beginning with a letter. The
underscore character ‘_’ is regarded as a letter, for purposes of this definition,
and so are all Unicode characters whose code value exceeds 126. Examples:

PRIME1, Data_Segment, Main, __, pâté.
The special constructions dH, dF, and dB, where d is a single digit, are ef-

fectively replaced by unique symbols according to the “local symbol” convention
explained above.

2. A constant is either

a) a decimal constant, consisting of one or more decimal digits {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}, representing an unsigned octabyte in radix 10 notation; or

b) a hexadecimal constant, consisting of a hash mark # followed by one or
more hexadecimal digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F},
representing an unsigned octabyte in radix 16 notation; or

c) a character constant, consisting of a quote character ’ followed by any
character other than newline, followed by another quote ’; this represents
the ASCII or Unicode value of the quoted character.

Examples: 65, #41, ’A’, 39, #27, ’’’, 31639, #7B97, ’ ’.

A string constant is a double-quote character " followed by one or more
characters other than newline or double-quote, followed by another double-
quote ". This construction is equivalent to a sequence of character constants
for the individual characters, separated by commas.

3. Each appearance of a symbol in an MMIXAL program is said to be either
a “defined symbol” or a “future reference.” A defined symbol is a symbol that
has appeared in the LABEL field of a preceding line of this MMIXAL program. A
future reference is a symbol that has not yet been defined in this way.

A few symbols, like rR and ROUND_NEAR and V_BIT and W_Handler and
Fputs, are predefined because they refer to constants associated with the MMIX
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hardware or with its rudimentary operating system. Such symbols can be re-
defined, because MMIXAL does not assume that every programmer knows all their
names. But no symbol should appear as a label more than once.

Every defined symbol has an equivalent value, which is either pure (an
unsigned octabyte) or a register number ($0 or $1 or . . . or $255).

4. A primary is either

a) a symbol; or

b) a constant; or

c) the character @, denoting the current location; or

d) an expression enclosed in parentheses; or

e) a unary operator followed by a primary.
The unary operators are + (affirmation, which does nothing), - (negation,

which subtracts from zero), ~ (complementation, which changes all 64 bits), and
$ (registerization, which converts a pure value to a register number).

5. A term is a sequence of one or more primaries separated by strong binary
operators; an expression is a sequence of one or more terms separated by weak
binary operators. The strong binary operators are * (multiplication), / (divi-
sion), // (fractional division), % (remainder), << (left shift), >> (right shift), and
& (bitwise and). The weak binary operators are + (addition), - (subtraction),
| (bitwise or), and ^ (bitwise exclusive-or). These operations act on unsigned
octabytes; x//y denotes ⌊264x/y⌋ if x < y, and it is undefined if x ≥ y. Binary
operators of the same strength are performed from left to right; thus a/b/c is
(a/b)/c and a-b+c is (a-b)+c.

Example: #ab<<32+k&~(k-1) is an expression, the sum of terms #ab<<32

and k&~(k-1). The latter term is the bitwise and of primaries k and ~(k-1).
The latter primary is the complement of (k-1), a parenthesized expression that
is the difference of two terms k and 1. The term 1 is also a primary, and also a
constant, in fact it is a decimal constant. If symbol k is equivalent to #cdef00,
say, the entire expression #ab<<32+k&~(k-1) is equivalent to #ab00000100.

Binary operations are allowed only on pure numbers, except in cases like
$1+2 = $3 and $3−$1 = 2. Future references cannot be combined with anything
else; an expression like 2F+1 is always illegal, because 2F never corresponds to a
defined symbol.

6. An instruction consists of three fields:

a) the LABEL field, which is either blank or a symbol;

b) the OP field, which is either an MMIX opcode or an MMIXAL pseudo-op;

c) the EXPR field, which is a list of one or more expressions separated by
commas. The EXPR field can also be blank, in which case it is equivalent to
the single expression 0.

7. Assembly of an instruction takes place in three steps:
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a) The current location @ is aligned, if necessary, by increasing it to the next
multiple of

8, if OP is OCTA;
4, if OP is TETRA or an MMIX opcode;
2, if OP is WYDE.

b) The symbol in LABEL, if present, is defined to be @, unless OP = IS or
OP = GREG.

c) If OP is a pseudo-operation, see rule 8. Otherwise OP is an MMIX instruction;
the OP and EXPR fields define a tetrabyte as explained in Section 1.3.1́ , and
@ advances by 4. Some MMIX opcodes have three operands in the EXPR field,
others have two, and others have only one.
If OP is ADD, say, MMIXAL will expect three operands, and will check that the

first and second operands are register numbers. If the third operand is pure,
MMIXAL will change the opcode from #20 (“add”) to #21 (“add immediate”),
and will check that the immediate value is less than 256.

If OP is SETH, say, MMIXAL will expect two operands. The first operand should
be a register number; the second should be a pure value less than 65536.

An OP like BNZ takes two operands: a register and a pure number. The pure
number should be expressible as a relative address; in other words, its value
should be expressible as @+ 4k where −65536 ≤ k < 65536.

Any OP that refers to memory, like LDB or GO, has a two-operand form $X,A

as well as the three-operand forms $X,$Y,$Z or $X,$Y,Z. The two-operand
option can be used when the memory address A is expressible as the sum $Y+Z
of a base address and a one-byte value; see rule 8(b).

8. MMIXAL includes the following pseudo-operations.

a) OP = IS: The EXPR should be a single expression; the symbol in LABEL, if
present, is made equivalent to the value of this expression.

b) OP = GREG: The EXPR should be a single expression with a pure equivalent, x.
The symbol in LABEL, if present, is made equivalent to the largest previously
unallocated global register number, and this global register will contain x
when the program begins. If x 6= 0, the value of x is considered to be a base

address, and the program should not change that global register.

c) OP = LOC: The EXPR should be a single expression with a pure equivalent, x.
The value of @ is set to x. For example, the instruction ‘T LOC @+1000’
defines symbol T to be the address of the first of a sequence of 1000 bytes,
and advances @ to the byte following that sequence.

d) OP = BYTE, WYDE, TETRA, or OCTA: The EXPR field should be a list of pure
expressions that each fit in 1, 2, 4, or 8 bytes, respectively.

9. MMIXAL restricts future references so that the assembly process can work
quickly in one pass over the program. A future reference is permitted only

a) in a relative address: as the operand of JMP, or as the second operand of a
branch, probable branch, PUSHJ, or GETA; or

b) in an expression assembled by OCTA.
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% Example program ... Table of primes

L IS 500 The number of primes to find

t IS $255 Temporary storage

n GREG ;; Prime candidate

q GREG /* Quotient */

r GREG // Remainder

jj GREG 0 Index for PRIME[j]
...

PBN mm,2B

LDA t,NewLn; TRAP 0,Fputs,StdOut

CMP t,mm,2*(L/10-1) ; PBNZ t,3B; TRAP 0,Halt,0

Fig. 15. Program P as a computer file: The assembler tolerates many formats.

MMIXAL also has a few additional features relevant to system programming
that do not concern us here. Complete details of the full language appear in the
MMIXware document, together with the complete logic of a working assembler.

A free format can be used when presenting an MMIXAL program to the
assembler (see Fig. 15). The LABEL field starts at the beginning of a line and
continues up to the first blank space. The next nonblank character begins the OP
field, which continues to the next blank, etc. The whole line is a comment if the
first nonblank character is not a letter or digit; otherwise comments start after
the EXPR field. Notice that the GREG definitions for n, q, and r in Fig. 15 have a
blank EXPR field (which is equivalent to the single expression ‘0’); therefore the
comments on those lines need to be introduced by some sort of special delimiter.
But no such delimiter is necessary on the GREG line for jj, because an explicit
EXPR of 0 appears there.

The final lines of Fig. 15 illustrate the fact that two or more instructions
can be placed on a single line of input to the assembler, if they are separated
by semicolons. If an instruction following a semicolon has a nonblank label, the
label must immediately follow the ‘;’.

A consistent format would obviously be better than the hodgepodge of
different styles shown in Fig. 15, because computer files are easier to read when
they aren’t so chaotic. But the assembler itself is very forgiving; it doesn’t mind
occasional sloppiness.

Primitive input and output. Let us conclude this section by discussing
the special TRAP operations supported by the MMIX simulator. These operations
provide basic input and output functions on which facilities at a much higher
level could be built. A two-instruction sequence of the form

SET $255,〈arg〉; TRAP 0,〈function〉,〈handle〉 ()

is usually used to invoke such a function, where 〈arg〉 points to a parameter and
〈handle〉 identifies the relevant file. For example, Program H uses

GETA $255,String; TRAP 0,Fputs,StdOut

to put a string into the standard output file, and Program P is similar.
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After the TRAP has been serviced by the operating system, register $255
will contain a return value. In each case this value will be negative if and only
if an error occurred. Programs H and P do not check for file errors, because
they assume that the correctness or incorrectness of the standard output will
speak for itself; but error detection and error recovery are usually important in
well-written programs.

• Fopen(handle ,name ,mode ). Each of the ten primitive input/output traps
applies to a handle, which is a one-byte integer. Fopen associates handle with
an external file whose name is the string name , and prepares to do input and/or
output on that file. The third parameter, mode , must be one of the values
TextRead, TextWrite, BinaryRead, BinaryWrite, or BinaryReadWrite, all of
which are predefined in MMIXAL. In the three ...Write modes, any previous file
contents are discarded. The value returned is 0 if the handle was successfully
opened, otherwise −1.

The calling sequence for Fopen is

LDA $255,Arg; TRAP 0,Fopen,〈handle〉 ()

where Arg is a two-octabyte sequence

Arg OCTA 〈name〉,〈mode〉 ()

that has been placed elsewhere in memory. For example, to call the function
Fopen(5, "foo", BinaryWrite) in an MMIXAL program, we could put

Arg OCTA 1F,BinaryWrite

1H BYTE "foo",0

into, say, the data segment, and then give the instructions

LDA $255,Arg; TRAP 0,Fopen,5 .

This would open handle 5 for writing a new file of binary output,* to be named
"foo".

Three handles are already open at the beginning of each program: The
standard input file StdIn (handle 0) has mode TextRead; the standard output
file StdOut (handle 1) has mode TextWrite; the standard error file StdErr

(handle 2) also has mode TextWrite.

• Fclose(handle ). If handle has been opened, Fclose causes it to be closed,
hence no longer associated with any file. Again the result is 0 if successful, or
−1 if the file was already closed or unclosable. The calling sequence is simply

TRAP 0,Fclose,〈handle〉 ()

because there is no need to put anything in $255.

* Different computer systems have different notions of what constitutes a text file and what
constitutes a binary file. Each MMIX simulator adopts the conventions of the operating system
on which it resides.
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• Fread(handle , buffer , size ). The file handle should have been opened with
mode TextRead, BinaryRead, or BinaryReadWrite. The next size bytes are
read from the file into MMIX’s memory starting at address buffer . The value
n− size is returned, where n is the number of bytes successfully read and stored,
or −1− size if an error occurred. The calling sequence is

LDA $255,Arg; TRAP 0,Fread,〈handle〉 ()

with two octabytes for the other arguments

Arg OCTA 〈buffer〉,〈size〉 ()

as in () and ().

• Fgets(handle , buffer , size ). The file handle should have been opened with
mode TextRead, BinaryRead, or BinaryReadWrite. One-byte characters are
read into MMIX’s memory starting at address buffer , until either size−1 characters
have been read and stored or a newline character has been read and stored; the
next byte in memory is then set to zero. If an error or end of file occurs before
reading is complete, the memory contents are undefined and the value −1 is
returned; otherwise the number of characters successfully read and stored is
returned. The calling sequence is the same as () and (), except of course that
Fgets replaces Fread in ().

• Fgetws(handle , buffer , size ). This command is the same as Fgets, except
that it applies to wyde characters instead of one-byte characters. Up to size − 1
wyde characters are read; a wyde newline is #000a.

• Fwrite(handle , buffer , size ). The file handle should have been opened with
one of the modes TextWrite, BinaryWrite, or BinaryReadWrite. The next
size bytes are written from MMIX’s memory starting at address buffer . The value
n − size is returned, where n is the number of bytes successfully written. The
calling sequence is analogous to () and ().

• Fputs(handle , string ). The file handle should have been opened with mode
TextWrite, BinaryWrite, or BinaryReadWrite. One-byte characters are writ-
ten from MMIX’s memory to the file, starting at address string , up to but not
including the first byte equal to zero. The number of bytes written is returned,
or −1 on error. The calling sequence is

SET $255,〈string〉; TRAP 0,Fputs,〈handle〉. ()

• Fputws(handle , string ). This command is the same as Fputs, except that
it applies to wyde characters instead of one-byte characters.

• Fseek(handle , offset ). The file handle should have been opened with mode
BinaryRead, BinaryWrite, or BinaryReadWrite. This operation causes the
next input or output operation to begin at offset bytes from the beginning of
the file, if offset ≥ 0, or at−offset−1 bytes before the end of the file, if offset < 0.
(For example, offset = 0 “rewinds” the file to its very beginning; offset = −1
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moves forward all the way to the end.) The result is 0 if successful, or −1 if the
stated positioning could not be done. The calling sequence is

SET $255,〈offset〉; TRAP 0,Fseek,〈handle〉. ()

An Fseek command must be given when switching from input to output or from
output to input in BinaryReadWrite mode.

• Ftell(handle ). The given file handle should have been opened with mode
BinaryRead, BinaryWrite, or BinaryReadWrite. This operation returns the
current file position, measured in bytes from the beginning, or −1 if an error has
occurred. The calling sequence is simply

TRAP 0,Ftell,〈handle〉 . ()

Complete details about all ten of these input/output functions appear in the
MMIXware document, together with a reference implementation. The symbols

Fopen = 1,
Fclose = 2,
Fread = 3,
Fgets = 4,
Fgetws = 5,

Fwrite = 6,
Fputs = 7,
Fputws = 8,
Fseek = 9,
Ftell = 10,

TextRead = 0,
TextWrite = 1,
BinaryRead = 2,
BinaryWrite = 3,

BinaryReadWrite = 4

()

are predefined in MMIXAL; also Halt = 0.

EXERCISES—First set

1. [05 ] (a) What is the meaning of ‘4B’ in line 29 of Program P? (b) Would the
program still work if the label of line 24 were changed to ‘2H’ and the EXPR field of
line 29 were changed to ‘r,2B’?

2. [10 ] Explain what happens if an MMIXAL program contains several instances of the
line

9H IS 9B+1

and no other occurrences of 9H.

x 3. [23 ] What is the effect of the following program?

LOC Data_Segment

X0 IS @

N IS 100

x0 GREG X0

〈 Insert Program M here 〉
Main GETA t,9F; TRAP 0,Fread,StdIn

SET $0,N<<3

1H SR $2,$0,3; PUSHJ $1,Maximum

LDO $3,x0,$0

SL $2,$2,3

STO $1,x0,$0; STO $3,x0,$2

SUB $0,$0,1<<3; PBNZ $0,1B

GETA t,9F; TRAP 0,Fwrite,StdOut

TRAP 0,Halt,0

9H OCTA X0+1<<3,N<<3
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4. [10 ] What is the value of the constant #112233445566778899?

5. [11 ] What do you get from ‘BYTE 3+"pills"+6’?

x 6. [15 ] True or false: The single instruction TETRA 〈expr1〉,〈expr2〉 always has the
same effect as the pair of instructions TETRA 〈expr1〉; TETRA 〈expr2〉.
7. [05 ] John H. Quick (a student) was shocked, shocked to find that the instruction

GETA $0,@+1 gave the same result as GETA $0,@. Explain why he should not have been
surprised.

x 8. [15 ] What’s a good way to align the current location @ so that it is a multiple
of 16, increasing it by 0 . . 15 as necessary?

9. [10 ] What changes to Program P will make it print a table of 600 primes?

x 10. [25 ] Assemble Program P by hand. (It won’t take as long as you think.) What
are the actual numerical contents of memory, corresponding to that symbolic program?

11. [HM20 ] (a) Show that every nonprime n > 1 has a divisor d with 1 < d ≤ √n.
(b) Use this fact to show that n is prime if it passes the test in step P7 of Algorithm P.

12. [15 ] The GREG instruction on line 34 of Program P defines a base address that is
used for the string constants Title, NewLn, and Blank on lines 38, 42, and 58. Suggest
a way to avoid using this extra global register, without making the program run slower.

13. [20 ] Unicode characters make it possible to print the first 500 primes as

tÛ¿×Ä Ên·�Ä unÛË �Ì� ¾×

3187 2749 2371 1993 1597 1229 0877 0547 0233 0002

3191 2753 2377 1997 1601 1231 0881 0557 0239 0003

3203 2767 2381 1999 1607 1237 0883 0563 0241 0005

...
...

3571 3181 2741 2357 1987 1583 1223 0863 0541 0229

with “authentic” Arabic numerals. One simply uses wyde characters instead of bytes,
translating the English title and then substituting Arabic-Indic digits #0660 –#0669

for the ASCII digits #30 –#39. (Arabic script is written from right to left, but numbers
still appear with their least significant digits at the right. The bidirectional presentation
rules of Unicode automatically take care of the necessary reversals when the output is
formatted.) What changes to Program P will accomplish this?

x 14. [21 ] Change Program P so that it uses floating point arithmetic for the divisibility
test in step P6. (The FREM instruction always gives an exact result.) Use

√
n instead

of q in step P7. Do these changes increase or decrease the running time?

x 15. [22 ] What does the following program do? (Do not run it on a computer, figure
it out by hand!)

* Mystery Program

a GREG ’*’

b GREG ’ ’

c GREG Data_Segment

LOC #100

Main NEG $1,1,75

SET $2,0

2H ADD $3,$1,75

3H STB b,c,$2

ADD $2,$2,1
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SUB $3,$3,1

PBP $3,3B

STB a,c,$2

INCL $2,1

INCL $1,1

PBN $1,2B

SET $255,c; TRAP 0,Fputs,StdOut

TRAP 0,Halt,0

16. [46 ] MMIXAL was designed with simplicity and efficiency in mind, so that people can
easily prepare machine language programs for MMIX when those programs are relatively
short. Longer programs are usually written in a higher-level language like C or Java,
ignoring details at the machine level. But sometimes there is a need to write large-scale
programs specifically for a particular machine, and to have precise control over each
instruction. In such cases we ought to have a machine-oriented language with a much
richer structure than the line-for-line approach of a traditional assembler.

Design and implement a language called PL/MMIX, which is analogous to Niklaus
Wirth’s PL/360 language [JACM 15 (1968), 37–74]. Your language should also incor-
porate the ideas of literate programming [D. E. Knuth, Literate Programming (1992)].

EXERCISES—Second set

The next exercises are short programming problems, representing typical computer
applications and covering a wide range of techniques. Every reader is encouraged to
choose a few of these problems in order to get some experience using MMIX, as well
as to practice basic programming skills. If desired, these exercises may be worked
concurrently as the rest of Chapter 1 is being read. The following list indicates the
types of programming techniques that are involved:

The use of switching tables for multiway decisions: exercise 17.
Computation with two-dimensional arrays: exercises 18, 28, and 35.
Text and string manipulation: exercises 24, 25, and 35.
Integer and scaled decimal arithmetic: exercises 21, 27, 30, and 32.
Elementary floating point arithmetic: exercises 27 and 32.
The use of subroutines: exercises 23, 24, 32, 33, 34, and 35.
List processing: exercise 29.
Real-time control: exercise 34.
Typographic display: exercise 35.
Loop and pipeline optimization: exercises 23 and 26.

Whenever an exercise in this book says “write an MMIX program” or “write an
MMIX subroutine,” you need only write symbolic MMIXAL code for what is asked. This
code will not be complete in itself; it will merely be a fragment of a (hypothetical)
complete program. No input or output need be done in a code fragment, if the data
is to be supplied externally; one need write only LABEL, OP, and EXPR fields of MMIXAL
instructions, together with appropriate remarks. The numeric machine language, line
number, and “Times” columns (see Program M) are not required unless specifically
requested, nor will there be a Main label.

On the other hand, if an exercise says “write a complete MMIX program,” it implies
that an executable program should be written in MMIXAL, including in particular the
Main label. Such programs should preferably be tested with the help of an MMIX

assembler and simulator.
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x 17. [25 ] Register $0 contains the address of a tetrabyte that purportedly is a valid,
unprivileged MMIX instruction. (This means that $0 ≥ 0 and that the X, Y, and Z bytes
of M4[$0] obey all restrictions imposed by the OP byte, according to the rules of Section
1.3.1́ . For example, a valid instruction with opcode FIX will have Y ≤ ROUND_NEAR;
a valid instruction with opcode PUT will have Y = 0 and either X < 8 or 18 < X < 32.
The opcode LDVTS is always privileged, for use by the operating system only. But most
opcodes define instructions that are valid and unprivileged for all X, Y, and Z.) Write
an MMIX subroutine that checks the given tetrabyte for validity in this sense; try to
make your program as efficient as possible.

Note: Inexperienced programmers tend to tackle a problem like this by writing
a long series of tests on the OP byte, such as “SR op,tetra,24; CMP t,op,#18;

BN t,1F; CMP t,op,#98; BN t,2F; . . . ”. This is not good practice! The best way
to make multiway decisions is to prepare an auxiliary table containing information
that encapsulates the desired logic. For example, a table of 256 octabytes, one for
each opcode, could be accessed by saying “SR t,tetra,21; LDO t,Table,t”, followed
perhaps by a GO instruction if many different kinds of actions need to be done. A
tabular approach often makes a program dramatically faster and more flexible.

x 18. [31 ] Assume that a 9× 8 matrix of signed one-byte elements













a11 a12 a13 . . . a18

a21 a22 a23 . . . a28

...
...

a91 a92 a93 . . . a98













has been stored so that aij is in location A + 8i + j for some constant A. The matrix
therefore appears as follows in MMIX’s memory:













M[A+ 9] M[A+ 10] M[A+ 11] . . . M[A+ 16]

M[A+ 17] M[A+ 18] M[A+ 19] . . . M[A+ 24]

...
...

M[A+ 73] M[A+ 74] M[A+ 75] . . . M[A+ 80]













.

An m× n matrix is said to have a “saddle point” if some position is the smallest
value in its row and the largest value in its column. In symbols, aij is a saddle point if

aij = min
1≤k≤n

aik = max
1≤k≤m

akj .

Write an MMIX program that computes the location of a saddle point (if there is at least
one) or zero (if there is no saddle point), and puts this value in register $0.

19. [M29 ] What is the probability that the matrix in the preceding exercise has a
saddle point, assuming that the 72 elements are distinct and assuming that all 72!
permutations are equally likely? What is the corresponding probability if we assume
instead that the elements of the matrix are zeros and ones, and that all 272 such
matrices are equally likely?

20. [HM42 ] Two solutions are given for exercise 18 (see page 102), and a third is
suggested; it is not clear which of them is better. Analyze the algorithms, using each
of the assumptions of exercise 19, and decide which is the better method.
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21. [25 ] The ascending sequence of all reduced fractions between 0 and 1 that have
denominators ≤ n is called the “Farey series of order n.” For example, the Farey series
of order 7 is
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If we denote this series by x0/y0, x1/y1, x2/y2, . . . , exercise 22 proves that

x0 = 0, y0 = 1; x1 = 1, y1 = n;

xk+2 = ⌊(yk + n)/yk+1⌋xk+1 − xk;

yk+2 = ⌊(yk + n)/yk+1⌋yk+1 − yk.

Write an MMIX subroutine that computes the Farey series of order n, by storing the
values of xk and yk in tetrabytes X+4k and Y+4k, respectively. (The total number of
terms in the series is approximately 3n2/π2; thus we may assume that n < 232.)

22. [M30 ] (a) Show that the numbers xk and yk defined by the recurrence in the
preceding exercise satisfy the relation xk+1yk−xkyk+1 = 1. (b) Show that the fractions
xk/yk are indeed the Farey series of order n, using the fact proved in (a).

23. [25 ] Write an MMIX subroutine that sets n consecutive bytes of memory to zero,
given a starting address in $0 and an integer n ≥ 0 in $1. Try to make your subroutine
blazingly fast, when n is large; use an MMIX pipeline simulator to obtain realistic
running-time statistics.

x 24. [30 ] Write an MMIX subroutine that copies a string, starting at the address in $0, to
bytes of memory starting at the address in $1. Strings are terminated by null characters
(that is, bytes equal to zero). Assume that there will be no overlap in memory between
the string and its copy. Your routine should minimize the number of memory references
by loading and storing eight bytes at a time when possible, so that long strings are
copied efficiently. Compare your program to the trivial byte-at-a-time code

SUBU $1,$1,$0;1H LDBU $2,$0,0; STBU $2,$0,$1; INCL $0,1; PBNZ $2,1B

which takes (2n+ 2)µ+ (4n+ 7)υ to copy a string of length n.

25. [26 ] A cryptanalyst wants to count how often each character occurs in a long
string of ciphertext. Write an MMIX program that computes 255 frequency counts, one
for each nonnull character; the first null byte ends the given string. Try for a solution
that is efficient in terms of the “mems and oops” criteria of Table 1 in Section 1.3.1́ .

x 26. [32 ] Improve the solution to the previous exercise by optimizing its performance
with respect to realistic configurations of the MMIX pipeline simulator.

27. [26 ] (Fibonacci approximations.) Equation 1.2.8–() states that the formula
Fn = round(φn/

√
5) holds for all n ≥ 0, where ‘round’ denotes rounding to the nearest

integer. (a) Write a complete MMIX program to test how well this formula behaves
with respect to floating point arithmetic: Compute straightforward approximations to
φn/
√
5 for n = 0, 1, 2, . . . , and find the smallest n for which the approximation does not

round to Fn. (b) Exercise 1.2.8–28 proves that Fn = round(φFn−1) for all n ≥ 3. Find
the smallest n ≥ 3 for which this equation fails when we compute φFn−1 approximately
by fixed point multiplication of unsigned octabytes. (See Eq. 1.3.1́ –().)

28. [26 ] A magic square of order n is an arrangement of the numbers 1 through n2 in
a square array in such a way that the sum of each row and column is n(n2 +1)/2, and
so is the sum of the two main diagonals. Figure 16 shows a magic square of order 7.
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22 47 16 41 10 35 04

05 23 48 17 42 11 29

30 06 24 49 18 36 12

13 31 07 25 43 19 37

38 14 32 01 26 44 20

21 39 08 33 02 27 45

46 15 40 09 34 03 28

5

4

6

1

3

8

7

2

START

Fig. 16. A magic square. Fig. 17. Josephus’s problem, n = 8, m = 4.

The rule for generating it is easily seen: Start with 1 just below the middle square,
then go down and to the right diagonally until reaching a filled square; if you run off
the edge, “wrap around” by imagining an entire plane tiled with squares. When you
reach a nonempty position, drop down two spaces from the most-recently-filled square
and continue. This method works whenever n is odd.

Using memory allocated in a fashion like that of exercise 18, write a complete
MMIX program to generate a 19× 19 magic square by the method above, and to format
the result in the standard output file. [This algorithm is due to Ibn al-Haytham, who
was born in Basra about 965 and died in Cairo about 1040. Many other magic square
constructions make good programming exercises; see W. W. Rouse Ball, Mathematical
Recreations and Essays, revised by H. S. M. Coxeter (New York: Macmillan, 1939),
Chapter 7.]

29. [30 ] (The Josephus problem.) There are n men arranged in a circle. Beginning
at a particular position, we count around the circle and brutally execute every mth
man; the circle closes as men die. For example, the execution order when n = 8 and
m = 4 is 54613872, as shown in Fig. 17: The first man is fifth to go, the second man
is fourth, etc. Write a complete MMIX program that prints out the order of execution
when n = 24, m = 11. Try to design a clever algorithm that works at high speed
when m and n are large (it may save your life). Reference: W. Ahrens, Mathematische
Unterhaltungen und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.

30. [31 ] We showed in Section 1.2.7 that the sum 1 + 1

2
+ 1

3
+ · · · becomes infinitely

large. But if it is calculated with finite accuracy by a computer, the sum actually
exists, in some sense, because the terms eventually get so small that they contribute
nothing to the sum if added one by one. For example, suppose we calculate the sum
by rounding to one decimal place; then we have 1 + 0.5 + 0.3 + 0.2 + 0.2 + 0.2 + 0.1 +
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.0 + · · · = 3.7.

More precisely, let rn(x) be the number x rounded to n decimal places, rounding
to an even digit in case of ties. For the purposes of this problem we can use the formula
rn(x) = ⌈10nx− 1

2
⌉/10n. Then we wish to find

Sn = rn(1) + rn( 1

2
)+ rn( 1

3
)+ · · · ;

we know that S1 = 3.7, and the problem is to write a complete MMIX program that
calculates and prints Sn for 1 ≤ n ≤ 10.
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Note: There is a much faster way to do this than the simple procedure of adding
rn(1/m), one number at a time, until rn(1/m) becomes zero. For example, we have
r5(1/m) = 0.00001 for all values of m from 66667 to 199999; it’s wise to avoid
calculating 1/m all 133333 times! An algorithm along the following lines is better.

H1. Start with m1 = 1, S ← 1, k ← 1.

H2. Calculate r ← rn(1/(mk + 1)), and stop if r = 0.

H3. Find mk+1, the largest m for which rn(1/m) = r.

H4. Set S ← S + (mk+1 −mk)r, k ← k + 1, and return to H2.

31. [HM30 ] Using the notation of the preceding exercise, prove or disprove the formula

limn→∞(Sn+1 − Sn) = ln 10.

x 32. [31 ] The following algorithm, due to the Neapolitan astronomer Aloysius Lilius
and the German Jesuit mathematician Christopher Clavius in the late 16th century, is
used by most Western churches to determine the date of Easter Sunday for any year
after 1582.

Algorithm E (Date of Easter). Let Y be the year for which Easter date is desired.

E1. [Golden number.] Set G ← (Y mod 19) + 1. (G is the so-called “golden
number” of the year in the 19-year Metonic cycle.)

E2. [Century.] Set C ← ⌊Y/100⌋ + 1. (When Y is not a multiple of 100, C is the
century number; for example, 1984 is in the twentieth century.)

E3. [Corrections.] Set X ← ⌊3C/4⌋ − 12, Z ← ⌊(8C + 5)/25⌋ − 5. (Here X is the
number of years, such as 1900, in which leap year was dropped in order to
keep in step with the sun; Z is a special correction designed to synchronize
Easter with the moon’s orbit.)

E4. [Find Sunday.] Set D ← ⌊5Y/4⌋−X−10. (March ((−D) mod 7) will actually
be a Sunday.)

E5. [Epact.] Set E ← (11G + 20 + Z − X) mod 30. If E = 25 and the golden
number G is greater than 11, or if E = 24, increase E by 1. (This number E
is the epact, which specifies when a full moon occurs.)

E6. [Find full moon.] Set N ← 44−E. If N < 21 then set N ← N + 30. (Easter
is supposedly the first Sunday following the first full moon that occurs on or
after March 21. Actually perturbations in the moon’s orbit do not make this
strictly true, but we are concerned here with the “calendar moon” rather than
the actual moon. The Nth of March is a calendar full moon.)

E7. [Advance to Sunday.] Set N ← N + 7− ((D +N) mod 7).

E8. [Get month.] If N > 31, the date is (N − 31) APRIL; otherwise the date is
N MARCH.

Write a subroutine to calculate and print Easter date given the year, assuming
that the year is less than 100000. The output should have the form “dd MONTH, yyyyy”
where dd is the day and yyyyy is the year. Write a complete MMIX program that uses
this subroutine to prepare a table of the dates of Easter from 1950 through 2000.

33. [M30 ] Some computers—not MMIX!—give a negative remainder when a negative
number is divided by a positive number. Therefore a program for calculating the
date of Easter by the algorithm in the previous exercise might fail when the quantity
(11G+ 20 + Z −X) in step E5 is negative. For example, in the year 14250 we obtain
G = 1, X = 95, Z = 40; so if we had E = −24 instead of E = +6 we would get
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the ridiculous answer “42 APRIL”. [See CACM 5 (1962), 556.] Write a complete MMIX

program that finds the earliest year for which this error would actually cause the wrong
date to be calculated for Easter.

x 34. [33 ] Assume that an MMIX computer has been wired up to the traffic signals
at the corner of Del Mar Boulevard and Berkeley Avenue, via special “files” named
/dev/lights and /dev/sensor. The computer activates the lights by outputting one
byte to /dev/lights, specifying the sum of four two-bit codes as follows:

Del Mar traffic light: #00 off, #40 green, #80 amber, #c0 red;
Berkeley traffic light: #00 off, #10 green, #20 amber, #30 red;
Del Mar pedestrian light: #00 off, #04 WALK, #0c DON’T WALK;
Berkeley pedestrian light: #00 off, #01 WALK, #03 DON’T WALK.

Cars or pedestrians wishing to travel on Berkeley across the boulevard must activate a
sensor; if this condition never occurs, the light for Del Mar should remain green. When
MMIX reads a byte from /dev/sensor, the input is nonzero if and only if the sensor has
been activated since the previous input.

Cycle times are as follows:

Del Mar traffic light is green ≥ 30 sec, amber 8 sec;
Berkeley traffic light is green 20 sec, amber 5 sec.

When a traffic light is green or amber for one direction, the other direction has a red
light. When the traffic light is green, the corresponding WALK light is on, except that
DON’T WALK flashes for 12 sec just before a green light turns to amber, as follows:

DON’T WALK 1

2
sec

off 1

2
sec

}

repeat 8 times;

DON’T WALK 4 sec (and remains on through amber and red cycles).

If the sensor is activated while the Berkeley light is green, the car or pedestrian
will pass on that cycle. But if it is activated during the amber or red portions, another
cycle will be necessary after the Del Mar traffic has passed.

Write a complete MMIX program that controls these lights, following the stated
protocol. Assume that the special clock register rC increases by 1 exactly ρ times per
second, where the integer ρ is a given constant.

35. [37 ] This exercise is designed to give some experience in the many applications of
computers for which the output is to be displayed graphically rather than in the usual
tabular form. The object is to “draw” a crossword puzzle diagram.

You are given as input a matrix of zeros and
ones. An entry of zero indicates a white square; a
one indicates a black square. The output should gen-
erate a diagram of the puzzle, with the appropriate
squares numbered for words across and down.

For example, given the matrix















1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 1















,

1 2 3

4 5 6

7 8

9 10

11 12 13

14

Fig. 18. Diagram corresponding
to the matrix in exercise 35.
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the corresponding puzzle diagram would be as shown in Fig. 18. A square is numbered
if it is a white square and either (a) the square below it is white and there is no white
square immediately above, or (b) the square to its right is white and there is no white
square immediately to its left. If black squares occur at the edges, they should be
removed from the diagram. This is illustrated in Fig. 18, where the black squares at
the corners were dropped. A simple way to accomplish this is to artificially insert rows
and columns of −1’s at the top, bottom, and sides of the given input matrix, then to
change every +1 that is adjacent to a −1 into a −1 until no +1 remains next to any −1.

Figure 18 was produced by the METAPOST program shown in Fig. 19. Simple
changes to the uses of line and black, and to the coordinates in the for loop, will
produce any desired diagram.

Write a complete MMIX program that reads a 25 × 25 matrix of zeros and ones
in the standard input file and writes a suitable METAPOST program on the standard
output file. The input should consist of 25 lines, each consisting of 25 digits followed
by “newline”; for example, the first line corresponding to the matrix above would be
‘1000011111111111111111111’, using extra 1s to extend the original 6× 6 array. The
diagram will not necessarily be symmetrical, and it might have long paths of black
squares that are connected to the outside in strange ways.

beginfig(18)

transform t; t=identity rotated -90 scaled 17pt;

def line(expr i,j,ii,jj) =

draw ((i,j)--(ii,jj)) transformed t;

enddef;

def black(expr i,j) =

fill ((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle) transformed t;

enddef;

line (1,2,1,6); line (2,1,2,7); line (3,1,3,7); line (4,1,4,7);

line (5,1,5,7); line (6,1,6,7); line (7,2,7,6);

line (2,1,6,1); line (1,2,7,2); line (1,3,7,3); line (1,4,7,4);

line (1,5,7,5); line (1,6,7,6); line (2,7,6,7);

numeric n; n=0;

for p = (1,2),(1,4),(1,5), (2,1),(2,4),(2,6),

(3,1),(3,3), (4,3),(4,5), (5,1),(5,2),(5,5), (6,2):

n:=n+1; label.lrt(decimal n infont "cmr8", p transformed t);

endfor

black(2,3); black(3,5); black(4,2); black(5,4);

endfig;

Fig. 19. The METAPOST program that generated Fig. 18.

1.3.3́ . Applications to Permutations

The MIX programs in the former Section 1.3.3 will all be converted to MMIX

programs, and so will the MIX programs in Chapters 2, 3, 4, 5, and 6. Anyone
who wishes to help with this instructive conversion project is invited to join the
MMIXmasters (see page v).
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1.4́ . SOME FUNDAMENTAL PROGRAMMING TECHNIQUES

1.4.1́ . Subroutines

When a certain task is to be performed at several different places in a pro-
gram, we usually don’t want to repeat the coding over and over. To avoid this
situation, the coding (called a subroutine) can be put into one place only, and
a few extra instructions can be added to restart the main routine properly after
the subroutine is finished. Transfer of control between subroutines and main
programs is called subroutine linkage.

Each machine has its own peculiar way to achieve efficient subroutine link-
age, usually by using special instructions. Our discussion will be based on MMIX

machine language, but similar remarks will apply to subroutine linkage on most
other general-purpose computers.

Subroutines are used to save space in a program. They do not save any
time, other than the time implicitly saved by having less space— for example,
less time to load the program, and better use of high-speed memory on machines
with several grades of memory. The extra time taken to enter and leave a
subroutine is usually negligible, except in critical innermost loops.

Subroutines have several other advantages. They make it easier to visualize
the structure of a large and complex program; they form a logical segmentation
of the entire problem, and this usually makes debugging of the program easier.
Many subroutines have additional value because they can be used by people
other than the programmer of the subroutine.

Most computer installations have built up a large library of useful sub-
routines, and such a library greatly facilitates the programming of standard
computer applications that arise. A programmer should not think of this as the
only purpose of subroutines, however; subroutines should not always be regarded
as general-purpose programs to be used by the community. Special-purpose
subroutines are just as important, even when they are intended to appear in
only one program. Section 1.4.3́ contains several typical examples.

The simplest subroutines are those that have only one entrance and one exit,
such as the Maximum subroutine we have already considered (see Program M in
Section 1.3.2́ and exercise 1.3.2́ –3). Let’s look at that program again, recasting
it slightly so that a fixed number of cells, 100, is searched for the maximum:

* Maximum of X[1..100]
j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3
Max100 SETL kk,100*8 M1. Initialize.

LDO m,x0,kk
JMP 1F

3H LDO xk,x0,kk M3. Compare.
CMP t,xk,m
PBNP t,5F

4H SET m,xk M4. Change m.
1H SR j,kk,3
5H SUB kk,kk,8 M5. Decrease k.

PBP kk,3B M2. All tested?
6H POP 2,0 Return to main program.

()
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This subroutine is assumed to be part of a larger program in which the symbol t
has been defined to stand for register $255, and the symbol x0 has been defined
to stand for a global register such that X[k] appears in location x0+8k. In that
larger program, the single instruction “PUSHJ $1,Max100” will cause register $1
to be set to the current maximum value of {X[1], . . . , X[100]}, and the position
of the maximum will appear in $2. Linkage in this case is achieved by the
PUSHJ instruction that invokes the subroutine, together with “POP 2,0” at the
subroutine’s end. These MMIX instructions cause local registers to be renumbered
while the subroutine is active; furthermore, the PUSHJ inserts a return address
into special register rJ, and the POP jumps to this location.

We can also accomplish subroutine linkage in a simpler, rather different way,
by using MMIX’s GO instruction instead of pushing and popping. We might, for
instance, use the following code in place of ():

* Maximum of X[1..100]
j GREG ;m GREG ;kk GREG ;xk GREG

GREG @ Base address
GoMax100 SETL kk,100*8 M1. Initialize.

LDO m,x0,kk
JMP 1F

3H ... (Continue as in ())
PBP kk,3B M2. All tested?

6H GO kk,$0,0 Return to main program.

()

Now the instruction “GO $0,GoMax100” will transfer control to the subrou-
tine, placing the address of the following instruction into $0; the subsequent
“GO kk,$0,0” at the subroutine’s end will return to this address. In this case
the maximum value will appear in global register m, and its location will be in
global register j. Two additional global registers, kk and xk, have also been
set aside for use by this subroutine. Furthermore, the “GREG @” provides a
base address so that we can GO to GoMax100 in a single instruction; otherwise
a two-step sequence like “GETA $0,GoMax100; GO $0,$0,0” would be necessary.
Subroutine linkage like () is commonly used on machines that have no built-in
register stack mechanism.

It is not hard to obtain quantitative statements about the amount of code
saved and the amount of time lost when subroutines are used. Suppose that
a piece of coding requires k tetrabytes and that it appears in m places in the
program. Rewriting this as a subroutine, we need a PUSHJ or GO instruction
in each of the m places where the subroutine is called, plus a single POP or GO
instruction to return control. This gives a total of m+ k + 1 tetrabytes, rather
than mk, so the amount saved is

(m− 1) (k − 1)− 2. ()

If k is 1 or m is 1 we cannot possibly save any space by using subroutines; this,
of course, is obvious. If k is 2, m must be greater than 3 in order to gain, etc.

The amount of time lost is the time taken for the PUSHJ, POP, and/or GO

instructions in the linkage. If the subroutine is invoked t times during a run of the
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program, and if we assume that running time is governed by the approximations
in Table 1.3.1́ –1, the extra cost is 4tυ in case (), or 6tυ in case ().

These estimates must be taken with a grain of salt, because they were given
for an idealized situation. Many subroutines cannot be called simply with a single
PUSHJ or GO instruction. Furthermore, if code is replicated in many parts of a
program without using a subroutine approach, each instance can be customized
to take advantage of special characteristics of the particular part of the program
in which it lies. With a subroutine, on the other hand, the code must be written
for the most general case; this will often add several additional instructions.

When a subroutine is written to handle a general case, it is expressed in
terms of parameters. Parameters are values that govern a subroutine’s actions;
they are subject to change from one call of the subroutine to another.

The coding in the outside program that transfers control to a subroutine
and gets it properly started is known as the calling sequence. Particular values
of parameters, supplied when the subroutine is called, are known as arguments.
With our GoMax100 subroutine, the calling sequence is simply “GO $0,GoMax100”,
but a longer calling sequence is generally necessary when arguments must be
supplied.

For example, we might want to generalize () to a subroutine that finds the
maximum of the first n elements of an array, given any constant n, by placing n
in the instruction stream with the two-step calling sequence

GO $0,GoMax; TETRA n. ()

The GoMax subroutine could then take the form

* Maximum of X[1..n]
j GREG ;m GREG ;kk GREG ;xk GREG

GREG @ Base address
GoMax LDT kk,$0,0 Fetch the argument.

SL kk,kk,3
LDO m,x0,kk
JMP 1F

3H ... (Continue as in ())
PBP kk,3B

6H GO kk,$0,4 Return to caller.

()

Still better would be to communicate the parameter n by putting it into a
register. We could, for example, use the two-step calling sequence

SET $1,n; GO $0,GoMax ()

together with a subroutine of the form

GoMax SL kk,$1,3 Fetch the argument.
LDO m,x0,kk
...

6H GO kk,$0,0 Return.

()

This variation is faster than (), and it allows n to vary dynamically without
modifying the instruction stream.
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Notice that the address of array element X[0] is also essentially a parameter
to subroutines (), (), (), and (). The operation of putting this address into
register x0 may be regarded as part of the calling sequence, in cases when the
array is different each time.

If the calling sequence occupies c tetrabytes of memory, formula () for the
amount of space saved changes to

(m− 1) (k − c)− constant ()

and the time lost for subroutine linkage is slightly increased.

A further correction to the formulas above can be necessary because certain
registers might need to be saved and restored. For example, in the GoMax

subroutine we must remember that by writing “SET $1,n; GO $0,GoMax” we
are not only computing the maximum value in register m and its position in
register j, we are also changing the values of global registers kk and xk. We
have implemented (), (), and () with the implicit assumption that registers
kk and xk are for the exclusive use of the maximum-finding routine, but many
computers are not blessed with a large number of registers. Even MMIX will run
out of registers if a lot of subroutines are present simultaneously. We might
therefore want to revise () so that it will work with kk ≡ $2 and xk ≡ $3, say,
without clobbering the contents of those registers. We could do this by writing

j GREG ;m GREG ;kk IS $2 ;xk IS $3
GREG @ Base address

GoMax STO kk,Tempkk Save previous register contents.
STO xk,Tempxk
SL kk,$1,3 Fetch the argument.
LDO m,x0,kk
...
LDO kk,Tempkk Restore previous register contents.
LDO xk,Tempxk

6H GO $0,$0,0 Return.

()

and by setting aside two octabytes called Tempkk and Tempxk in the data segment.
Of course this change adds potentially significant overhead cost to each use of
the subroutine.

A subroutine may be regarded as an extension of the computer’s machine
language. For example, whenever the GoMax subroutine is present in memory we
have a single machine instruction (namely, “GO $0,GoMax”) that is a maximum-
finder. It is important to define the effect of each subroutine just as carefully
as the machine language operators themselves have been defined; a programmer
should therefore be sure to write down the relevant characteristics, even though
nobody else will be making use of the routine or its specification. In the case of
GoMax as given in () or (), the characteristics are as follows:

Calling sequence: GO $0,GoMax.
Entry conditions: $1 = n ≥ 1; x0 = address of X[0].
Exit conditions: m = max1≤k≤nX[k] = X[j].

()
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A specification should mention all changes to quantities that are external to the
subroutine. If registers kk and xk are not considered “private” to the variant of
GoMax in (), we should include the fact that those registers are affected, as part of
that subroutine’s exit conditions. The subroutine also changes register t, namely
register $255; but that register is conventionally used for temporary quantities
of only momentary significance, so we needn’t bother to list it explicitly.

Now let’s consider multiple entrances to subroutines. Suppose we have a
program that requires the general subroutine GoMax, but it usually wants to use
the special case GoMax100 in which n = 100. The two can be combined as follows:

GoMax100 SET $1,100 First entrance
GoMax ... Second entrance; continue as in () or ().

()

We could also add a third entrance, say GoMax50, by putting the code

GoMax50 SET $1,50; JMP GoMax

in some convenient place.
A subroutine might also have multiple exits, meaning that it is supposed to

return to one of several different locations, depending on conditions that it has
detected. For example, we can extend subroutine () yet again by assuming
that an upper bound parameter is given in global register b; the subroutine is
now supposed to exit to one of the two tetrabytes following the GO instruction
that calls it:

Calling sequence for general n Calling sequence for n = 100

SET $1,n; GO $0,GoMax GO $0,GoMax100

Exit here if m ≤ 0 or m ≥ b. Exit here if m ≤ 0 or m ≥ b.
Exit here if 0 < m < b. Exit here if 0 < m < b.

(In other words, we skip the tetrabyte after the GO when the maximum value
is positive and less than the upper bound. A subroutine like this would be
useful in a program that often needs to make such distinctions after computing
a maximum value.) The implementation is easy:

* Maximum of X[1..n] with bounds check
j GREG ;m GREG ;kk GREG ;xk GREG

GREG @ Base address
GoMax100 SET $1,100 Entrance for n = 100
GoMax SL kk,$1,3 Entrance for general n

LDO m,x0,kk
JMP 1F

3H ... (Continue as in ())
PBP kk,3B
BNP m,1F Branch if m ≤ 0.
CMP kk,m,b
BN kk,2F Branch if m < b.

1H GO kk,$0,0 Take first exit if m ≤ 0 or m ≥ b.
2H GO kk,$0,4 Otherwise take second exit.

()
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Notice that this program combines the instruction-stream linking technique of ()
with the register-setting technique of (). The location to which a subroutine ex-
its is, strictly speaking, a parameter; hence the locations of multiple exits must be
supplied as arguments. When a subroutine accesses one of its parameters all the
time, the corresponding argument is best passed in a register, but when an argu-
ment is constant and not always needed it is best kept in the instruction stream.

Subroutines may call on other subroutines. Indeed, complicated programs
often have subroutine calls nested more than five deep. The only restriction
that must be followed when using the GO-type linkage described above is that all
temporary storage locations and registers must be distinct; thus no subroutine
may call on any other subroutine that is (directly or indirectly) calling on it. For
example, consider the following scenario:

[Main program] [Subroutine A] [Subroutine B] [Subroutine C]

A B C...
...

...
...

GO $0,A GO $1,B GO $2,C GO $0,A
...

...
...

...

GO $0,$0,0 GO $1,$1,0 GO $2,$2,0

()

If the main program calls A, which calls B, which calls C, and then C calls on A,
the address in $0 referring to the main program is destroyed, and there is no way
to return to that program.

Using a memory stack. Recursive situations like () do not often arise
in simple programs, but a great many important applications do have a nat-
ural recursive structure. Fortunately there is a straightforward way to avoid
interference between subroutine calls, by letting each subroutine keep its local
variables on a stack. For example, we can set aside a global register called sp

(the “stack pointer”) and use GO $0,Sub to invoke each subroutine. If the code
for the subroutine has the form

Sub STO $0,sp,0
ADD sp,sp,8
...
SUB sp,sp,8
LDO $0,sp,0
GO $0,$0,0

()

register $0 will always contain the proper return address; the problem of () no
longer arises. (Initially we set sp to an address in the data segment, following all
other memory locations needed.) Moreover, the STO/ADD and SUB/LDO instruc-
tions of () can be omitted if Sub is a so-called leaf subroutine—a subroutine
that doesn’t call any other subroutines.

A stack can be used to hold parameters and other local variables besides
the return addresses stored in (). Suppose, for example, that subroutine Sub

needs 20 octabytes of local data, in addition to the return address; then we can
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use a scheme like this:

Sub STO fp,sp,0 Save the old frame pointer.
SET fp,sp Establish a new frame pointer.
INCL sp,8*22 Advance the stack pointer.
STO $0,fp,8 Save the return address.
...
LDO $0,fp,8 Restore the return address.
SET sp,fp Restore the stack pointer.
LDO fp,sp,0 Restore the frame pointer.
GO $0,$0,0 Return to caller.

()

Here fp is a global register called the frame pointer. Within the “...” part of
the subroutine, local quantity number k is equivalent to the octabyte in memory
location fp+ 8k + 8, for 1 ≤ k ≤ 20. The instructions at the beginning are said
to “push” local quantities onto the “top” of the stack; the instructions at the
end “pop” those quantities off, leaving the stack in the condition it had when
the subroutine was entered.

Using the register stack. We have discussed GO-type subroutine linkage
at length because many computers have no better alternative. But MMIX has
built-in instructions PUSHJ and POP, which handle subroutine linkage in a more
efficient way, avoiding most of the overhead in schemes like () and (). These
instructions allow us to keep most parameters and local variables entirely in
registers, instead of storing them into a memory stack and loading them again
later. With PUSHJ and POP, most of the details of stack maintenance are done
automatically by the machine.

The basic idea is quite simple, once the general idea of a stack is understood.
MMIX has a register stack consisting of octabytes S[0], S[1], . . . , S[τ − 1] for
some number τ ≥ 0. The topmost L octabytes in the stack (namely S[τ − L],
S[τ −L+1], . . . , S[τ −1]) are the current local registers $0, $1, . . . , $(L−1); the
other τ −L octabytes of the stack are currently inaccessible to the program, and
we say they have been “pushed down.” The current number of local registers,
L, is kept in MMIX’s special register rL, although a programmer rarely needs to
know this. Initially L = 2, τ = 2, and local registers $0 and $1 represent the
command line as in Program 1.3.2́ H.

MMIX also has global registers, namely $G, $(G+1), . . . , $255; the value of G
is kept in special register rG, and we always have 0 ≤ L ≤ G ≤ 255. (In fact, we
also always have G ≥ 32.) Global registers are not part of the register stack.

Registers that are neither local nor global are called marginal. These regis-
ters, namely $L, $(L+ 1), . . . , $(G− 1), have the value zero whenever they are
used as input operands to an MMIX instruction.

The register stack grows when a marginal register is given a value. This
marginal register becomes local, and so do all marginal registers with smaller
numbers. For example, if eight local registers are currently in use, the instruction
ADD $10,$20,5 causes $8, $9, and $10 to become local; more precisely, if rL = 8,
the instruction ADD $10,$20,5 sets $8 ← 0, $9 ← 0, $10 ← 5, and rL ← 11.
(Register $20 remains marginal.)
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If $X is a local register, the instruction PUSHJ $X,Sub decreases the number
of local registers and changes their effective register numbers: Local registers
previously called $(X+1), $(X+2), . . . , $(L−1) are called $0, $1, . . . , $(L−X−2)
inside the subroutine, and the value of L decreases by X + 1. Thus the register
stack remains unchanged, but X + 1 of its entries have become inaccessible; the
subroutine cannot damage those entries, and it has X+1 newly marginal registers
to play with.

If X ≥ G, so that $X is a global register, the action of PUSHJ $X,Sub is
similar, but a new entry is placed on the register stack and then L+1 registers are
pushed down instead of X+1. In this case L is zero when the subroutine begins;
all of the formerly local registers have been pushed down, and the subroutine
starts out with a clean slate.

The register stack shrinks only when a POP instruction is given, or when
a program explicitly decreases the number of local registers with an instruction
such as PUT rL,5. The purpose of POP X,YZ is to make the items pushed down by
the most recent PUSHJ accessible again, as they were before, and to remove items
from the register stack if they are no longer necessary. In general the X field of a
POP instruction is the number of values “returned” by the subroutine, if X ≤ L.
If X > 0, the main value returned is $(X − 1); this value is removed from the
register stack, together with all entries above it, and the return value is placed
in the position specified by the PUSHJ command that invoked the subroutine.
The behavior of POP is similar when X > L, but in this case the register stack
remains intact and zero is placed in the position of the PUSHJ.

The rules we have just stated are a bit complicated, because many different
cases can arise in practice. A few examples will, however, make everything clear.
Suppose we are writing a routine A and we want to call subroutine B; suppose
further that routine A has 5 local registers that should not be accessible to B.
These registers are $0, $1, $2, $3, and $4. We reserve the next register, $5, for the
main result of subroutine B. If B has, say, three parameters, we set $6 ← arg0,
$7← arg1, and $8← arg2, then issue the command PUSHJ $5,B; this invokes B
and the arguments are now found in $0, $1, and $2.

If B returns no result, it will conclude with the command POP 0,YZ; this
will restore $0, $1, $2, $3, and $4 to their former values and set L← 5.

If B returns a single result x, it will place x in $0 and conclude with the
command POP 1,YZ. This will restore $0, $1, $2, $3, and $4 as before; it will
also set $5← x and L← 6.

If B returns two results x and a, it will place the main result x in $1 and
the auxiliary result a in $0. Then POP 2,YZ will restore $0 through $4 and set
$5← x, $6← a, L← 7. Similarly, if B returns ten results (x, a0, . . . , a8), it will
place the main result x in $9 and the others in the first nine registers: $0← a0,
$1 ← a1, . . . , $8 ← a8. Then POP 10,YZ will restore $0 through $4 and set
$5 ← x, $6 ← a0, . . . , $14 ← a8. (The curious permutation of registers that
arises when two or more results are returned may seem strange at first. But it
makes sense, because it leaves the register stack unchanged except for the main
result. For example, if subroutine B wants arg0, arg1, and arg2 to reappear in
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$6, $7, and $8 after it has finished its work, it can leave them as auxiliary results
in $0, $1, and $2 and then say POP 4,YZ.)

The YZ field of a POP instruction is usually zero, but in general the instruc-
tion POP X,YZ returns to the instruction that is YZ+1 tetrabytes after the PUSHJ
that invoked the current subroutine. This generality is useful for subroutines
with multiple exits. More precisely, a PUSHJ subroutine in location @ sets special
register rJ to @ + 4 before jumping to the subroutine; a POP instruction then
returns to location rJ + 4YZ.

We can now recast the programs previously written with GO linkage so that
they use PUSH/POP linkage instead. For example, the two-entrance, two-exit
subroutine for maximum-finding in () takes the following form when MMIX’s
register stack mechanism is used:

* Maximum of X[1..n] with bounds check
j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3
Max100 SET $0,100 Entrance for n = 100
Max SL kk,$0,3 Entrance for general n

LDO m,x0,kk
JMP 1F
... (Continue as in ())
BNZ kk,2F

1H POP 2,0 Take first exit if max ≤ 0 or max ≥ b.
2H POP 2,1 Otherwise take second exit.

()

Calling sequence for general n Calling sequence for n = 100

SET $A,n; PUSHJ $R,Max (A = R+1) PUSHJ $R,Max100

Exit here if $R ≤ 0 or $R ≥ b. Exit here if $R ≤ 0 or $R ≥ b.
Exit here if 0 < $R < b. Exit here if 0 < $R < b.

The local result register $R in the PUSHJ of this calling sequence is arbitrary,
depending on the number of local variables the caller wishes to retain. The
local argument register $A is then $(R + 1). After the call, $R will contain the
main result (the maximum value) and $A will contain the auxiliary result (the
array index of that maximum). If there are several arguments and/or auxiliaries,
they are conventionally called A0, A1, . . . , and we conventionally assume that
A0 = R+1, A1 = R+2, . . . when PUSH/POP calling sequences are written down.

A comparison of () and () shows only mild advantages for (): The
new form does not need to allocate global registers for j, m, kk, and xk, nor
does it need a global base register for the address of the GO command. (Recall
from Section 1.3.1́ that GO takes an absolute address, while PUSHJ has a relative
address.) A GO instruction is slightly slower than PUSHJ; it is no slower than
POP, according to Table 1.3.1́ –1, although high-speed implementations of MMIX
could implement POP more efficiently. Programs () and () both have the
same length.

The advantages of PUSH/POP linkage over GO linkage begin to manifest them-
selves when we have non-leaf subroutines (namely, subroutines that call other
subroutines, possibly themselves). Then the GO-based code of () can be re-
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placed by
Sub GET retadd,rJ

...
PUT rJ,retadd
POP X,0

()

where retadd is a local register. (For example, retadd might be $5; its register
number is generally greater than or equal to the number of returned results X,
so the POP instruction will automatically remove it from the register stack.) Now
the costly memory references of () are avoided.

A non-leaf subroutine with many local variables and/or parameters is signifi-
cantly better off with a register stack than with the memory stack scheme of (),
because we can often perform the computations entirely in registers. We should
note, however, that MMIX’s register stack applies only to local variables that are
scalar, not to local array variables that must be accessed by address computation.
Subroutines that need non-scalar local variables should use a scheme like () for
all such variables, while keeping scalars on the register stack. Both approaches
can be used simultaneously, with fp and sp updated only by subroutines that
need a memory stack.

If the register stack becomes extremely large, MMIX will automatically store
its bottom entries in the stack segment of memory, using a behind-the-scenes
procedure that we will study in Section 1.4.3́ . (Recall from Section 1.3.2́ that
the stack segment begins at address #6000000000000000.) MMIX stores register
stack items in memory also when a SAVE command saves a program’s entire
current context. Saved stack items are automatically restored from memory
when a POP command needs them or when an UNSAVE command restores a saved
context. But in most cases MMIX is able to push and pop local registers without
actually accessing memory, and without actually changing the contents of very
many internal machine registers.

Stacks have many other uses in computer programs; we will study their basic
properties in Section 2.2.1. We will get a further taste of nested subroutines
and recursive procedures in Section 2.3, when we consider operations on trees.
Chapter 8 studies recursion in detail.

*Assembly language features. The MMIX assembly language supports the
writing of subroutines in three ways that were not mentioned in Section 1.3.2́ .
The most important of these is the PREFIX operation, which makes it easy to
define “private” symbols that will not interfere with symbols defined elsewhere
in a large program. The basic idea is that a symbol can have a structured form
like Sub:X (meaning symbol X of subroutine Sub), possibly carried to several
levels like Lib:Sub:X (meaning symbol X of subroutine Sub in library Lib).

Structured symbols are accommodated by extending rule 1 of MMIXAL in
Section 1.3.2́ slightly, allowing the colon character ‘:’ to be regarded as a
“letter” that can be used to construct symbols. Every symbol that does not
begin with a colon is implicitly extended by placing the current prefix in front
of it. The current prefix is initially ‘:’, but the user can change it with the
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PREFIX command. For example,

ADD x,y,z means ADD :x,:y,:z

PREFIX Foo: current prefix is :Foo:

ADD x,y,z means ADD :Foo:x,:Foo:y,:Foo:z

PREFIX Bar: current prefix is :Foo:Bar:

ADD :x,y,:z means ADD :x,:Foo:Bar:y,:z

PREFIX : current prefix reverts to :

ADD x,Foo:Bar:y,Foo:z means ADD :x,:Foo:Bar:y,:Foo:z

One way to use this idea is to replace the opening lines of () by

PREFIX Max:
j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3
x0 IS :x0 ;b IS :b ;t IS :t External symbols
:Max100 SET $0,100 Entrance for n = 100
:Max SL kk,$0,3 Entrance for general n

LDO m,x0,kk
JMP 1F
... (Continue as in ())

()

and to add “PREFIX :” at the end. Then the symbols j, m, kk, and xk are
free for use in the rest of the program or in the definition of other subroutines.
Further examples of the use of prefixes appear in Section 1.4.3́ .

MMIXAL also includes a pseudo-operation called LOCAL. The assembly com-
mand “LOCAL $40” means, for example, that an error message should be given
at the end of assembly if GREG commands allocate so many registers that $40
will be global. (This feature is needed only when a subroutine uses more than
32 local registers, because “LOCAL $31” is always implicitly true.)

A third feature for subroutine support, BSPEC . . . ESPEC, is also provided.
It allows information to be passed to the object file so that debugging routines
and other system programs know what kind of linkage is being used by each
subroutine. This feature is discussed in the MMIXware document; it is primarily
of interest in the output of compilers.

Strategic considerations. When ad hoc subroutines are written for special-
purpose use, we can afford to use GREG instructions liberally, so that plenty of
global registers are filled with basic constants that make our program run fast.
Comparatively few local registers are needed, unless the subroutines are used
recursively.

But when dozens or hundreds of general-purpose subroutines are written for
inclusion in a large library, with the idea of allowing any user program to include
whatever subroutines it needs, we obviously can’t allow each subroutine to
allocate a substantial number of globals. Even one global variable per subroutine
might be too much.

Thus we want to use GREG generously when we have only a few subroutines,
but we want to use it sparingly when the number of subroutines is potentially
huge. In the latter case we probably can make good use of local variables without
too much loss of efficiency.
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Let’s conclude this section by discussing briefly how we might go about
writing a complex and lengthy program. How can we decide what kind of
subroutines we will need? What calling sequences should be used? One successful
way to determine this is to use an iterative procedure:

Step 0 (Initial idea). First we decide vaguely upon the general plan of
attack that the program will use.

Step 1 (A rough sketch of the program). We start now by writing the “outer
levels” of the program, in any convenient language. A somewhat systematic way
to go about this has been described very nicely by E. W. Dijkstra, Structured
Programming (Academic Press, 1972), Chapter 1, and by N. Wirth, CACM
14 (1971), 221–227. First we break the whole program into a small number of
pieces, which might be thought of temporarily as subroutines although they are
called only once. These pieces are successively refined into smaller and smaller
parts, having correspondingly simpler jobs to do. Whenever some computational
task arises that seems likely to occur elsewhere or that has already occurred
elsewhere, we define a subroutine (a real one) to do that job. We do not write
the subroutine at this point; we continue writing the main program, assuming
that the subroutine has performed its task. Finally, when the main program
has been sketched, we tackle the subroutines in turn, trying to take the most
complex subroutines first and then their sub-subroutines, etc. In this manner we
will come up with a list of subroutines. The actual function of each subroutine
has probably already changed several times, so that the first parts of our sketch
will by now be incorrect; but that is no problem, since we are merely making a
sketch. We now have a reasonably good idea about how each subroutine will be
called and how general-purpose it should be. We should consider extending the
generality of each subroutine, at least a little.

Step 2 (First working program). The next step goes in the opposite direc-
tion from step 1. We now write in computer language, say MMIXAL or PL/MMIX
or—most probably—a higher-level language. We start this time with the lowest
level subroutines, and do the main program last. As far as possible, we try never
to write any instructions that call a subroutine before the subroutine itself has
been coded. (In step 1, we tried the opposite, never considering a subroutine
until all of its calls had been written.)

As more and more subroutines are written during this process, our con-
fidence gradually grows, since we are continually extending the power of the
machine we are programming. After an individual subroutine is coded, we should
immediately prepare a complete description of what it does, and what its calling
sequences are, as in (). It is also important to be sure that global variables
are not used for two conflicting purposes at the same time; when preparing the
sketch in step 1, we didn’t have to worry about such problems.

Step 3 (Reexamination). The result of step 2 should be very nearly a
working program, but we may be able to improve it. A good way is to reverse
direction again, studying for each subroutine all of the places it is called. Perhaps
the subroutine should be enlarged to do some of the more common things that
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are always done by the outside routine just before or after the subroutine is
called. Perhaps several subroutines should be merged into one; or perhaps a
subroutine is called only once and should not be a subroutine at all. Perhaps a
subroutine is never called and can be dispensed with entirely.

At this point, it is often a good idea to scrap everything and start over
again at step 1, or even at step 0! This is not intended to be a facetious remark;
the time spent in getting this far has not been wasted, for we have learned a
great deal about the problem. With hindsight, we will probably have discovered
several improvements that could be made to the program’s overall organization.
There’s no reason to be afraid to go back to step 1— it will be much easier to go
through steps 2 and 3 again, now that a similar program has been done already.
Moreover, we will quite probably save as much debugging time later on as it will
take to rewrite everything. Some of the best computer programs ever written
owe much of their success to the fact that all the work was unintentionally lost,
at about this stage, and the authors were forced to begin again.

On the other hand, there is probably never a point when a complex computer
program cannot be improved somehow, so steps 1 and 2 should not be repeated
indefinitely. When significant improvements can clearly be made, the additional
time required to start over is well spent, but eventually a point of diminishing
returns is reached.

Step 4 (Debugging). After a final polishing of the program, including
perhaps the allocation of storage and other last-minute details, it is time to
look at it in still another direction from the three that were used in steps 1, 2,
and 3: Now we study the program in the order in which the computer will
perform it. This may be done by hand or, of course, by machine. The author
has found it quite helpful at this point to make use of system routines that trace
each instruction the first two times it is executed; it is important to rethink the
ideas underlying the program and to check that everything is actually taking
place as expected.

Debugging is an art that needs much further study, and the way to approach
it is highly dependent on the facilities available at each computer installation.
A good start towards effective debugging is often the preparation of appropriate
test data. The most successful debugging techniques are typically designed and
built into the program itself: Many of today’s best programmers devote nearly
half of their programs to facilitating the debugging process in the other half. The
first half, which usually consists of fairly straightforward routines that display
relevant information in a readable format, will eventually be of little importance,
but the net result is a surprising gain in productivity.

Another good debugging practice is to keep a record of every mistake made.
Even though this will probably be quite embarrassing, such information is in-
valuable to anyone doing research on the debugging problem, and it will also
help you learn how to cope with future errors.

Note: The author wrote most of the preceding comments in 1964, after he
had successfully completed several medium-sized software projects but before
he had developed a mature programming style. Later, during the 1980s, he
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learned that an additional technique, called structured documentation or literate
programming, is probably even more important. A summary of his current
beliefs about the best way to write programs of all kinds appears in the book
Literate Programming (Cambridge University Press, first published in 1992).
Incidentally, Chapter 11 of that book contains a detailed record of all bugs
removed from the TEX program during the period 1978–1991.

Up to a point it is better to let the snags [bugs] be there

than to spend such time in design that there are none

(how many decades would this course take?).

— A. M. TURING, Proposals for ACE (1945)

EXERCISES

1. [20 ] Write a subroutine GoMaxR that generalizes Algorithm 1.2.10M by finding the
maximum value of {X[a], X[a + r], X[a + 2r], . . . , X[n]}, where r and n are positive
parameters and a is the smallest positive number with a ≡ n (modulo r), namely
a = 1 + (n − 1) mod r. Give a special entrance GoMax for the case r = 1, using a
GO-style calling sequence so that your subroutine is a generalization of ().

2. [20 ] Convert the subroutine of exercise 1 from GO linkage to PUSHJ/POP linkage.

3. [15 ] How can scheme () be simplified when Sub is a leaf subroutine?

4. [15 ] The text in this section speaks often of PUSHJ, but Section 1.3.1́ mentions
also a command called PUSHGO. What is the difference between PUSHJ and PUSHGO?

5. [0 ] True or false: The number of marginal registers is G− L.

6. [10 ] What is the effect of the instruction DIVU $5,$5,$5 if $5 is a marginal
register?

7. [10 ] What is the effect of the instruction INCML $5,#abcd if $5 is a marginal
register?

8. [15 ] Suppose the instruction SET $15,0 is performed when there are 10 local
registers. This increases the number of local registers to 16; but the newly local registers
(including $15) are all zero, so they still behave essentially as if they were marginal. Is
the instruction SET $15,0 therefore entirely redundant in such a case?

9. [20 ] When a trip interrupt has been been enabled for some exceptional condition
like arithmetic overflow, the trip handler might be called into action at unpredictable
times. We don’t want to clobber any of the interrupted program’s registers; yet a trip
handler can’t do much unless it has “elbow room.” Explain how to use PUSHJ and POP

so that plenty of local registers are safely available to a handler.

x 10. [20 ] True or false: If an MMIX program never uses the instructions PUSHJ, PUSHGO,
POP, SAVE, or UNSAVE, all 256 registers $0, $1, . . . , $255 are essentially equivalent, in
the sense that the distinction between local, global, and marginal registers is irrelevant.

11. [20 ] Guess what happens if a program issues more POP instructions than PUSH

instructions.

x 12. [10 ] True or false:
a) The current prefix in an MMIXAL program always begins with a colon.
b) The current prefix in an MMIXAL program always ends with a colon.
c) The symbols : and :: are equivalent in MMIXAL programs.
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x 13. [21 ] Write two MMIX subroutines to calculate the Fibonacci number Fn mod 264,
given n. The first subroutine should call itself recursively, using the definition

Fn = n if n ≤ 1; Fn = Fn−1 + Fn−2 if n > 1.

The second subroutine should not be recursive. Both subroutines should use PUSH/POP
linkage and should avoid global variables entirely.

x 14. [M21 ] What is the running time of the subroutines in exercise 13?

x 15. [21 ] Convert the recursive subroutine of exercise 13 to GO-style linkage, using a
memory stack as in () instead of MMIX’s register stack. Compare the efficiency of the
two versions.

x 16. [25 ] (Nonlocal goto statements.) Sometimes we want to jump out of a subroutine,
to a location that is not in the calling routine. For example, suppose subroutine A calls
subroutine B, which calls subroutine C, which calls itself recursively a number of times
before deciding that it wants to exit directly to A. Explain how to handle such situations
when using MMIX’s register stack. (We can’t simply JMP from C to A; the stack must be
properly popped.)

1.4.2́ . Coroutines

Subroutines are special cases of more general program components, called co-

routines. In contrast to the unsymmetric relationship between a main routine
and a subroutine, there is complete symmetry between coroutines, which call on

each other.
To understand the coroutine concept, let us consider another way of thinking

about subroutines. The viewpoint adopted in the previous section was that a
subroutine was merely an extension of the computer hardware, introduced to save
lines of coding. This may be true, but another point of view is also possible:
We may consider the main program and the subroutine as a team of programs,
each member of the team having a certain job to do. The main program, in
the course of doing its job, will activate the subprogram; the subprogram will
perform its own function and then activate the main program. We might stretch
our imagination to believe that, from the subroutine’s point of view, when it
exits it is calling the main routine; the main routine continues to perform its
duty, then “exits” to the subroutine. The subroutine acts, then calls the main
routine again.

This egalitarian philosophy may sound far-fetched, but it actually rings
true with respect to coroutines. There is no way to distinguish which of two
coroutines is subordinate to the other. Suppose a program consists of coroutines
A and B; when programming A, we may think of B as our subroutine, but when
programming B, we may think of A as our subroutine. Whenever a coroutine is
activated, it resumes execution of its program at the point where the action was
last suspended.

The coroutines A and B might, for example, be two programs that play chess.
We can combine them so that they will play against each other.

Such coroutine linkage is easy to achieve with MMIX if we set aside two
global registers, a and b. In coroutine A, the instruction “GO a,b,0” is used to

66



1.4.2́ COROUTINES 67

activate coroutine B; in coroutine B, the instruction “GO b,a,0” is used to activate
coroutine A. This scheme requires only 3υ of time to transfer control each way.

The essential difference between routine-subroutine and coroutine-coroutine
linkage can be seen by comparing the GO-type linkage of the previous section
with the present scheme: A subroutine is always initiated at its beginning, which
is usually a fixed place; the main routine or a coroutine is always initiated at the

place following where it last terminated.

Coroutines arise most naturally in practice when they are connected with
algorithms for input and output. For example, suppose it is the duty of corou-
tine A to read a file and to perform some transformation on the input, reducing
it to a sequence of items. Another coroutine, which we will call B, does further
processing of those items, and outputs the answers; B will periodically call for
the successive input items found by A. Thus, coroutine B jumps to A whenever it
wants the next input item, and coroutine A jumps to B whenever an input item
has been found. The reader may say, “Well, B is the main program and A is
merely a subroutine for doing the input.” This, however, becomes less true when
the process A is very complicated; indeed, we can imagine A as the main routine
and B as a subroutine for doing the output, and the above description remains
valid. The usefulness of the coroutine idea emerges midway between these two
extremes, when both A and B are complicated and each one calls the other in
numerous places. It is not easy to find short, simple examples of coroutines that
illustrate the importance of the idea; the most useful coroutine applications are
generally quite lengthy.

In order to study coroutines in action, let us consider a contrived example.
Suppose we want to write a program that translates one code into another. The
input code to be translated is a sequence of 8-bit characters terminated by a
period, such as

a2b5e3426fg0zyw3210pq89r. ()

This code appears on the standard input file, interspersed with whitespace
characters in an arbitrary fashion. For our purposes a “whitespace character”
will be any byte whose value is less than or equal to #20, the ASCII code for ’ ’.
All whitespace characters in the input are ignored; the other characters should be
interpreted as follows, when they are read in sequence: (1) If the next character
is one of the decimal digits 0 or 1 or · · · or 9, say n, it indicates (n+1) repetitions
of the following character, whether the following character is a digit or not. (2) A
nondigit simply denotes itself. The output of our program is to consist of the
resulting sequence separated into groups of three characters each, until a period
appears; the last group may have fewer than three characters. For example, ()
should be translated into

abb bee eee e44 446 66f gzy w22 220 0pq 999 999 999 r. ()

Notice that 3426f does not mean 3427 repetitions of the letter f; it means 4
fours and 3 sixes followed by f. If the input sequence is ‘1.’, the output is
simply ‘.’, not ‘..’, because the first period terminates the output. The goal of
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our program is to produce a sequence of lines on the standard output file, with
16 three-character groups per line (except, of course, that the final line might be
shorter). The three-character groups should be separated by blank spaces, and
each line should end as usual with the ASCII newline character #a.

To accomplish this translation, we will write two coroutines and a subrou-
tine. The program begins by giving symbolic names to three global registers,
one for temporary storage and the others for coroutine linkage.

01 * An example of coroutines
02 t IS $255 Temporary data of short duration
03 in GREG 0 Address for resuming the first coroutine
04 out GREG 0 Address for resuming the second coroutine

The next step is to set aside the memory locations used for working storage.

05 * Input and output buffers
06 LOC Data_Segment
07 GREG @ Base address
08 OutBuf TETRA " ",#a,0 (see exercise 3)
09 Period BYTE ’.’
10 InArgs OCTA InBuf,1000
11 InBuf LOC #100

Now we turn to the program itself. The subroutine we need, called NextChar,
is designed to find non-whitespace characters of the input, and to return the next
such character:

12 * Subroutine for character input
13 inptr GREG 0 (the current input position)
14 1H LDA t,InArgs Fill the input buffer.
15 TRAP 0,Fgets,StdIn
16 LDA inptr,InBuf Start at beginning of buffer.
17 0H GREG Period
18 CSN inptr,t,0B If error occurred, read a ’.’.
19 NextChar LDBU $0,inptr,0 Fetch the next character.
20 INCL inptr,1
21 BZ $0,1B Branch if at end of buffer.
22 CMPU t,$0,’ ’
23 BNP t,NextChar Branch if character is whitespace.
24 POP 1,0 Return to caller.

This subroutine has the following characteristics:

Calling sequence: PUSHJ $R,NextChar.
Entry conditions: inptr points to the first unread character.
Exit conditions: $R = next non-whitespace character of input;

inptr is ready for the next entry to NextChar.

The subroutine also changes register t, namely register $255; but we usually
omit that register from such specifications, as we did in 1.4.1́ –().
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Our first coroutine, called In, finds the characters of the input code with
the proper replication. It begins initially at location In1:

25 * First coroutine
26 count GREG 0 (the repetition counter)
27 1H GO in,out,0 Send a character to the Out coroutine.
28 In1 PUSHJ $0,NextChar Get a new character.
29 CMPU t,$0,’9’
30 PBP t,1B Branch if it exceeds ’9’.
31 SUB count,$0,’0’
32 BN count,1B Branch if it is less than ’0’.
33 PUSHJ $0,NextChar Get another character.
34 1H GO in,out,0 Send it to Out.
35 SUB count,count,1 Decrease the repetition counter.
36 PBNN count,1B Repeat if necessary.
37 JMP In1 Otherwise begin a new cycle.

This coroutine has the following characteristics:

Calling sequence (from Out): GO out,in,0.
Exit conditions (to Out): $0 = next input character with proper replication.
Entry conditions

(upon return): $0 unchanged from its value at exit.

Register count is private to In and need not be mentioned.

The other coroutine, called Out, puts the code into three-character groups
and sends them to the standard output file. It begins initially at Out1:

38 * Second coroutine
39 outptr GREG 0 (the current output position)
40 1H LDA t,OutBuf Empty the output buffer.
41 TRAP 0,Fputs,StdOut
42 Out1 LDA outptr,OutBuf Start at beginning of buffer.
43 2H GO out,in,0 Get a new character from In.
44 STBU $0,outptr,0 Store it as the first of three.
45 CMP t,$0,’.’
46 BZ t,1F Branch if it was ’.’.
47 GO out,in,0 Otherwise get another character.
48 STBU $0,outptr,1 Store it as the second of three.
49 CMP t,$0,’.’
50 BZ t,2F Branch if it was ’.’.
51 GO out,in,0 Otherwise get another character.
52 STBU $0,outptr,2 Store it as the third of three.
53 CMP t,$0,’.’
54 BZ t,3F Branch if it was ’.’.
55 INCL outptr,4 Otherwise advance to next group.
56 0H GREG OutBuf+4*16
57 CMP t,outptr,0B
58 PBNZ t,2B Branch if fewer than 16 groups.
59 JMP 1B Otherwise finish the line.
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60 3H INCL outptr,1 Move past a stored character.
61 2H INCL outptr,1 Move past a stored character.
62 0H GREG #a (newline character)
63 1H STBU 0B,outptr,1 Store newline after period.
64 0H GREG 0 (null character)
65 STBU 0B,outptr,2 Store null after newline.
66 LDA t,OutBuf
67 TRAP 0,Fputs,StdOut Output the final line.
68 TRAP 0,Halt,0 Terminate the program.

The characteristics of Out are designed to complement those of In:

Calling sequence (from In): GO in,out,0.
Exit conditions (to In): $0 unchanged from its value at entry.
Entry conditions

(upon return): $0 = next input character with proper replication.

To complete the program, we need to get everything off to a good start.
Initialization of coroutines tends to be a little tricky, although not really difficult.

69 * Initialization
70 Main LDA inptr,InBuf Initialize NextChar.
71 GETA in,In1 Initialize In.
72 JMP Out1 Start with Out (see exercise 2).

This completes the program. The reader should study it carefully, noting in
particular how each coroutine can be read and written independently as though
the other coroutine were its subroutine.

We learned in Section 1.4.1́ that MMIX’s PUSHJ and POP instructions are
superior to the GO command with respect to subroutine linkage. But with
coroutines the opposite is true: Pushing and popping are quite unsymmetrical,
and MMIX’s register stack can get hopelessly entangled if two or more coroutines
try to use it simultaneously. (See exercise 6.)

There is an important relation between coroutines and multipass algorithms.
For example, the translation process we have just described could have been done
in two distinct passes: We could first have done just the In coroutine, applying
it to the entire input and writing each character with the proper amount of
replication into an intermediate file. After this was finished, we could have
read that file and done just the Out coroutine, taking the characters in groups of
three. This would be called a “two-pass” process. (Intuitively, a “pass” denotes a
complete scan of the input. This definition is not precise, and in many algorithms
the number of passes taken is not at all clear; but the intuitive concept of “pass”
is useful in spite of its vagueness.)

Figure 22(a) illustrates a four-pass process. Quite often we will find that
the same process can be done in just one pass, as shown in part (b) of the figure,
if we substitute four coroutines A, B, C, D for the respective passes A, B, C, D.
Coroutine A will jump to B when pass A would have written an item of output
on File 1; coroutine B will jump to A when pass B would have read an item of
input from File 1, and B will jump to C when pass B would have written an item
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of output on File 2; etc. UNIX
R© users will recognize this as a “pipe,” denoted by

“PassA | PassB | PassC | PassD”. The programs for passes B, C, and D are
sometimes referred to as “filters.”

Input Pass A File 1

File 1 Pass B File 2

File 2 Pass C File 3

File 3 Pass D Output

Input Coroutine A

Coroutine B

Coroutine C

Coroutine D Output

Fig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.

Conversely, a process done by n coroutines can often be transformed into an
n-pass process. Due to this correspondence it is worthwhile to compare multipass
algorithms with one-pass algorithms.

a) Psychological difference. A multipass algorithm is generally easier to create
and to understand than a one-pass algorithm for the same problem. A process
that has been broken into a sequence of small steps, which happen one after
the other, is easier to comprehend than an involved process in which many
transformations take place simultaneously.

Also, if a very large problem is being tackled and if many people are supposed
to cooperate in producing a computer program, a multipass algorithm provides
a natural way to divide up the job.

These advantages of a multipass algorithm are present in coroutines as well,
since each coroutine can be written essentially separate from the others. The
linkage makes an apparently multipass algorithm into a single-pass process.

b) Time difference. The time required to pack, write, read, and unpack the
intermediate data that flows between passes (for example, the information in
the files of Fig. 22) is avoided in a one-pass algorithm. For this reason, a one-
pass algorithm will be faster.

c) Space difference. The one-pass algorithm requires space to hold all the
programs in memory simultaneously, while a multipass algorithm requires space
for only one at a time. This requirement may affect the speed, even to a greater
extent than indicated in statement (b). For example, many computers have a
limited amount of “fast memory” and a larger amount of slower memory; if each
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pass just barely fits into the fast memory, the result will be considerably faster
than if we use coroutines in a single pass (since the use of coroutines would
presumably force most of the program to appear in the slower memory or to be
repeatedly swapped in and out of fast memory).

Occasionally there is a need to design algorithms for several computer con-
figurations at once, some of which have larger memory capacity than others. In
such cases it is possible to write the program in terms of coroutines, and to let
the memory size govern the number of passes: Load together as many coroutines
as feasible, and supply input or output subroutines for the missing links.

Although this relationship between coroutines and passes is important, we
should keep in mind that coroutine applications cannot always be split into
multipass algorithms. If coroutine B gets input from A and also sends back
crucial information to A, as in the example of chess play mentioned earlier, the
sequence of actions can’t be converted into pass A followed by pass B.

Conversely, it is clear that some multipass algorithms cannot be converted
to coroutines. Some algorithms are inherently multipass; for example, the second
pass may require cumulative information from the first pass, like the total number
of occurrences of a certain word in the input. There is an old joke worth noting
in this regard:

Little old lady, riding a bus. “Little boy, can you tell me how to get off
at Pasadena Street?”

Little boy. “Just watch me, and get off two stops before I do.”

(The joke is that the little boy gives a two-pass algorithm.)
So much for multipass algorithms. Coroutines also play an important role in

discrete system simulation; see Section 2.2.5. When several more-or-less indepen-
dent coroutines are controlled by a master process, they are often called threads

of a computation. We will see further examples of coroutines in numerous places
throughout this series of books. The important idea of replicated coroutines is
discussed in Chapter 8, and some interesting applications of this idea may be
found in Chapter 10.

EXERCISES

1. [10 ] Explain why short, simple examples of coroutines are hard for the author of
a textbook to find.

x 2. [20 ] The program in the text starts up the Out coroutine first. What would
happen if In were the first to be executed instead—that is, if lines 71 and 72 were
changed to “GETA out,Out1; JMP In1”?

3. [15 ] Explain the TETRA instruction on line 08 of the program in the text. (There
are exactly fifteen blank spaces between the double-quote marks.)

4. [20 ] Suppose two coroutines A and B want to treat MMIX’s remainder register rR
as if it were their private property, although both coroutines do division. (In other
words, when one coroutine jumps to the other, it wants to be able to assume that the
contents of rR will not have been altered when the other coroutine returns.) Devise a
coroutine linkage that allows them this freedom.
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5. [20 ] Could MMIX do reasonably efficient coroutine linkage by using its PUSH and
POP instructions, without any GO commands?

6. [20 ] The program in the text uses MMIX’s register stack only in a very limited way,
namely when In calls NextChar. Discuss to what extent two cooperating coroutines
could both make use of the register stack.

x 7. [30 ] Write an MMIX program that reverses the translation done by the program in
the text. That is, your program should convert a file containing three-character groups
like () into a file containing code like (). The output should be as short a string
of characters as possible, except for newlines; thus, for example, the zero before the z

in () would not really be produced from ().

1.4.3́ . Interpretive Routines

In this section we will investigate a common type of program known as an
interpretive routine, often called an interpreter for short. An interpretive routine
is a computer program that performs the instructions of another program, where
the other program is written in some machine-like language. By a machine-like
language, we mean a way of representing instructions, where the instructions
typically have operation codes, addresses, etc. (This definition, like most def-
initions of today’s computer terms, is not precise, nor should it be; we cannot
draw the line exactly and say just which programs are interpreters and which
are not.)

Historically, the first interpreters were built around machine-like languages
designed specially for simple programming; such languages were easier to use
than a real machine language. The rise of symbolic languages for programming
soon eliminated the need for interpretive routines of that kind, but interpreters
have by no means begun to die out. On the contrary, their use has continued
to grow, to the extent that an effective use of interpretive routines may be
regarded as one of the essential characteristics of modern programming. The
new applications of interpreters are made chiefly for the following reasons:

a) a machine-like language is able to represent a complicated sequence of deci-
sions and actions in a compact, efficient manner; and

b) such a representation provides an excellent way to communicate between
passes of a multipass process.

In such cases, special purpose machine-like languages are developed for use in
a particular program, and programs in those languages are often generated only
by computers. (Today’s expert programmers are also good machine designers:
They not only create an interpretive routine, they also define a virtual machine

whose language is to be interpreted.)
The interpretive technique has the further advantage of being relatively

machine-independent, since only the interpreter must be revised when changing
computers. Furthermore, helpful debugging aids can readily be built into an
interpretive system.

Examples of type (a) interpreters appear in several places later in this series
of books; see, for example, the recursive interpreter in Chapter 8 and the “Parsing
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Machine” in Chapter 10. We typically need to deal with situations in which a
great many special cases arise, all similar, but having no really simple pattern.

For example, consider writing an algebraic compiler in which we want to gen-
erate efficient machine-language instructions that add two quantities together.
There might be ten classes of quantities (constants, simple variables, subscripted
variables, fixed or floating point, signed or unsigned, etc.) and the combination
of all pairs yields 100 different cases. A long program would be required to do the
proper thing in each case. The interpretive solution to this problem is to make up
an ad hoc language whose “instructions” fit in one byte. Then we simply prepare
a table of 100 “programs” in this language, where each program ideally fits in
a single word. The idea is then to pick out the appropriate table entry and to
perform the program found there. This technique is simple and efficient.

An example interpreter of type (b) appears in the article “Computer-Drawn
Flowcharts” by D. E. Knuth, CACM 6 (1963), 555–563. In a multipass program,
the earlier passes must transmit information to the later passes. This information
is often transmitted most efficiently in a machine-like language, as a set of
instructions for the later pass; the later pass is then nothing but a special purpose
interpretive routine, and the earlier pass is a special purpose “compiler.” This
philosophy of multipass operation may be characterized as telling the later pass
what to do, whenever possible, rather than simply presenting it with a lot of
facts and asking it to figure out what to do.

Another example of a type-(b) interpreter occurs in connection with com-
pilers for special languages. If the language includes many features that are not
easily done on the machine except by subroutine, the resulting object programs
will be very long sequences of subroutine calls. This would happen, for example,
if the language were concerned primarily with multiple precision arithmetic. In
such a case the object program would be considerably shorter if it were expressed
in an interpretive language. See, for example, the book ALGOL 60 Implementa-
tion, by B. Randell and L. J. Russell (New York: Academic Press, 1964), which
describes a compiler to translate from ALGOL 60 into an interpretive language,
and which also describes the interpreter for that language; and see “An ALGOL

60 Compiler,” by Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964),
87–124, for examples of interpretive routines used within a compiler. The rise of
microprogrammed machines and of special-purpose integrated circuit chips has
made this interpretive approach even more valuable.

The TEX program, which produced the pages of the book you are now
reading, converted a file that contained the text of this section into an interpretive
language called DVI format, designed by D. R. Fuchs in 1979. [See D. E.
Knuth, TEX: The Program (Reading, Mass.: Addison–Wesley, 1986), Part 31.]
The DVI file that TEX produced was then processed by an interpreter called
dvips, written by T. G. Rokicki, and converted to a file of instructions in
another interpretive language called PostScriptR© [Adobe Systems Inc., PostScript
Language Reference, 3rd edition (Reading, Mass.: Addison–Wesley, 1999)]. The
PostScript file was sent to the publisher, who sent it to a commercial printer,
who used a PostScript interpreter to produce printing plates. This three-pass
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operation illustrates interpreters of type (b); TEX itself also includes a small
interpreter of type (a) to process the so-called ligature and kerning information
for characters that are being printed [TEX: The Program, §545].

There is another way to look at a program written in interpretive language:
It may be regarded as a series of subroutine calls, one after another. Such a pro-
gram may in fact be expanded into a long sequence of calls on subroutines, and,
conversely, such a sequence can usually be packed into a coded form that is read-
ily interpreted. The advantages of interpretive techniques are the compactness of
representation, the machine independence, and the increased diagnostic capabil-
ity. An interpreter can often be written so that the amount of time spent in inter-
pretation of the code itself and branching to the appropriate routine is negligible.

*An MMIX simulator. When the language presented to an interpretive routine
is the machine language of another computer, the interpreter is often called a
simulator (or sometimes an emulator).

In the author’s opinion, entirely too much programmers’ time has been
spent in writing such simulators and entirely too much computer time has been
wasted in using them. The motivation for simulators is simple: A computer
installation buys a new machine and still wants to run programs written for
the old machine (rather than rewriting the programs). However, this usually
costs more and gives poorer results than if a special task force of programmers
were given temporary employment to do the reprogramming. For example, the
author once participated in such a reprogramming project, and a serious error
was discovered in the original program, which had been in use for several years;
the new program worked at five times the speed of the old, besides giving the
right answers for a change! (Not all simulators are bad; for example, it is usually
advantageous for a computer manufacturer to simulate a new machine before it
has been built, so that software for the new machine may be developed as soon as
possible. But that is a very specialized application.) An extreme example of the
inefficient use of computer simulators is the true story of machine A simulating
machine B running a program that simulates machine C . This is the way to
make a large, expensive computer give poorer results than its cheaper cousin.

In view of all this, why should such a simulator rear its ugly head in this
book? There are three reasons:

a) The simulator we will describe below is a good example of a typical interpre-
tive routine; the basic techniques employed in interpreters are illustrated here.
It also illustrates the use of subroutines in a moderately long program.

b) We will describe a simulator of the MMIX computer, written in (of all things)
the MMIX language. This will reinforce our knowledge of the machine. It also will
facilitate the writing of MMIX simulators for other computers, although we will
not plunge deeply into the details of 64-bit integer or floating point arithmetic.

c) Our simulation of MMIX explains how the register stack can be implemented
efficiently in hardware, so that pushing and popping are accomplished with very
little work. Similarly, the simulator presented here clarifies the SAVE and UNSAVE

operators, and it provides details about the behavior of trip interrupts. Such
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things are best understood by looking at a reference implementation, so that we
can see how the machine really works.

Computer simulators as described in this section should be distinguished
from discrete system simulators. Discrete system simulators are important pro-
grams that will be discussed in Section 2.2.5.

Now let’s turn to the task of writing an MMIX simulator. We begin by
making a tremendous simplification: Instead of attempting to simulate all the
things that happen simultaneously in a pipelined computer, we will interpret
only one instruction at a time. Pipeline processing is extremely instructive and
important, but it is beyond the scope of this book; interested readers can find a
complete program for a full-fledged pipeline “meta-simulator” in the MMIXware
document. We will content ourselves here with a simulator that is blithely
unaware of such things as cache memory, virtual address translation, dynamic
instruction scheduling, reorder buffers, etc., etc. Moreover, we will simulate only
the instructions that ordinary MMIX user programs can do; privileged instructions
like LDVTS, which are reserved for the operating system, will be considered
erroneous if they arise. Trap interrupts will not be simulated by our program
unless they perform rudimentary input or output as described in Section 1.3.2́ .

The input to our program will be a binary file that specifies the initial
contents of memory, just as the memory would be set up by an operating system
when running a user program (including command line data). We want to mimic
the behavior of MMIX’s hardware, pretending that MMIX itself is interpreting the
instructions that begin at symbolic location Main; thus, we want to implement
the specifications that were laid down in Section 1.3.1́ , in the run-time envi-
ronment that was discussed in Section 1.3.2́ . Our program will, for example,
maintain an array of 256 octabytes g[0], g[1], . . . , g[255] for the simulated global
registers. The first 32 elements of this array will be the special registers listed in
Table 1.3.1́ –2; one of those special registers will be the simulated clock, rC. We
will assume that each instruction takes a fixed amount of time, as specified by
Table 1.3.1́ –1; the simulated rC will increase by 232 for each µ and by 1 for each υ.
Thus, for example, after we have simulated Program 1.3.2́ P, the simulated rC
will contain #00003228000bb091, which represents 12840µ+ 766097υ.

The program is rather long, but it has many points of interest and we will
study it in short easy pieces. It begins as usual by defining a few symbols and by
specifying the contents of the data segment. We put the array of 256 simulated
global registers first in that segment; for example, the simulated $255 will be the
octabyte g[255], in memory location Global+8*255. This global array is followed
by a similar array called the local register ring, where we will keep the top items
of the simulated register stack. The size of this ring is set to 256, although 512
or any higher power of 2 would also work. (A large ring of local registers costs
more, but it might be noticeably faster when a program uses the register stack
heavily. One of the purposes of a simulator is to find out whether additional
hardware would be worth the expense.) The main portion of the data segment,
starting at Chunk0, will be devoted to the simulated memory.
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001 * MMIX Simulator (Simplified)
002 t IS $255 Volatile register for temporary info
003 lring_size IS 256 Size of the local register ring
004 LOC Data_Segment Start at location #2000000000000000

005 Global LOC @+8*256 256 octabytes for global registers
006 g GREG Global Base address for globals
007 Local LOC @+8*lring_size lring_size octabytes for local registers
008 l GREG Local Base address for locals
009 GREG @ Base address for IOArgs and Chunk0

010 IOArgs OCTA 0,BinaryRead (See exercise 20)
011 Chunk0 IS @ Beginning of simulated memory area
012 LOC #100 Put everything else in the text segment.

One of the key subroutines we will need is called MemFind. Given a 64-bit
address A, this subroutine returns the resulting address R where the simulated
contents of M8[A] can be found. Of course 264 bytes of simulated memory
cannot be squeezed into a 261-byte data segment; but the simulator remembers
all addresses that have occurred before, and it assumes that all locations not yet
encountered are equal to zero.

Memory is divided into “chunks” of 212 bytes each. MemFind looks at the
leading 64− 12 = 52 bits of A to see what chunk it belongs to, and extends the
list of known chunks, if necessary. Then it computes R by adding the trailing 12
bits of A to the starting address of the relevant simulated chunk. (The chunk size
could be any power of 2, as long as each chunk contains at least one octabyte.
Small chunks cause MemFind to search through longer lists of chunks-in-hand;
large chunks cause MemFind to waste space for bytes that will never be accessed.)

Each simulated chunk is encapsulated in a “node,” which occupies 212 + 24
bytes of memory. The first octabyte of such a node, called the KEY, identifies the
simulated address of the first byte in the chunk. The second octabyte, called the
LINK, points to the next node on MemFind’s list; it is zero on the last node of
the list. The LINK is followed by 212 bytes of simulated memory called the DATA.
Finally, each node ends with eight all-zero bytes, which are used as padding in
the implementation of input-output (see exercises 15–17).

MemFind maintains its list of chunk nodes in order of use: The first node,
pointed to by head, is the one that MemFind found on the previous call, and it
links to the next-most-recently-used chunk, etc. If the future is like the past,
MemFind will therefore not have to search far down its list. (Section 6.1 discusses
such “self-organizing” list searches in detail.) Initially head points to Chunk0,
whose KEY and LINK and DATA are all zero. The allocation pointer alloc is set
initially to the place where the next chunk node will appear when it is needed,
namely Chunk0+nodesize.

We implement MemFind with the PREFIX operation of MMIXAL discussed in
Section 1.4.1́ , so that the private symbols head, key, addr, etc., will not conflict
with any symbols in the rest of the program. The calling sequence will be

SET arg,A; PUSHJ res,MemFind ()

after which the resulting address R will appear in register res.
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013 PREFIX :Mem: (Begin private symbols for MemFind)
014 head GREG 0 Address of first chunk
015 curkey GREG 0 KEY(head)

016 alloc GREG 0 Address of next chunk to allocate
017 Chunk IS #1000 Bytes per chunk, must be a power of 2
018 addr IS $0 The given address A
019 key IS $1 Its chunk address
020 test IS $2 Temporary register for key search
021 newlink IS $3 The second most recently used node
022 p IS $4 Temporary pointer register
023 t IS :t External temporary register
024 KEY IS 0
025 LINK IS 8
026 DATA IS 16
027 nodesize GREG Chunk+3*8
028 mask GREG Chunk-1

029 :MemFind ANDN key,addr,mask
030 CMPU t,key,curkey
031 PBZ t,4F Branch if head is the right chunk.
032 BN addr,:Error Disallow negative addresses A.
033 SET newlink,head Prepare for the search loop.
034 1H SET p,head p← head.
035 LDOU head,p,LINK head← LINK(p).
036 PBNZ head,2F Branch if head 6= 0.
037 SET head,alloc Otherwise allocate a new node.
038 STOU key,head,KEY
039 ADDU alloc,alloc,nodesize
040 JMP 3F
041 2H LDOU test,head,KEY
042 CMPU t,test,key
043 BNZ t,1B Loop back if KEY(head) 6= key.
044 3H LDOU t,head,LINK Adjust pointers: t← LINK(head),
045 STOU newlink,head,LINK LINK(head)← newlink,
046 SET curkey,key curkey← key,
047 STOU t,p,LINK LINK(p)← t.
048 4H SUBU t,addr,key t← chunk offset.
049 LDA $0,head,DATA $0← address of DATA(head).
050 ADDU $0,t,$0
051 POP 1,0 Return R.
052 PREFIX : (End of the ‘:Mem:’ prefix)

053 res IS $2 Result register for PUSHJ
054 arg IS res+1 Argument register for PUSHJ

We come next to the most interesting aspect of the simulator, the imple-
mentation of MMIX’s register stack. Recall from Section 1.4.1́ that the register
stack is conceptually a list of τ items S[0], S[1], . . . , S[τ − 1]. The final item
S[τ − 1] is said to be at the “top” of the stack, and MMIX’s local registers $0, $1,
. . . , $(L−1) are the topmost L items S[τ −L], S[τ −L+1], . . . , S[τ −1]; here L
is the value of special register rL. We could simulate the stack by simply keeping
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it entirely in the simulated memory; but an efficient machine wants its registers
to be instantly accessible, not in a relatively slow memory unit. Therefore we
will simulate an efficient design that keeps the topmost stack items in an array
of internal registers called the local register ring.

The basic idea is quite simple. Suppose the local register ring has ρ elements,
l[0], l[1], . . . , l[ρ − 1]. Then we keep local register $k in l[(α + k) mod ρ], where
α is an appropriate offset. (The value of ρ is chosen to be a power of 2, so that
remainders mod ρ require no expensive computation. Furthermore we want ρ
to be at least 256, so that there is room for all of the local registers.) A PUSH

operation, which renumbers the local registers so that what once was, say, $3 is
now called $0, simply increases the value of α by 3; a POP operation restores the
previous state by decreasing α. Although the registers change their numbers, no
data actually needs to be pushed down or popped up.

Of course we need to use memory as a backup when the register stack gets
large. The status of the ring at any time is best visualized in terms of three
variables, α, β, and γ:

α

β

γ
L

()

Elements l[α], l[α + 1], . . . , l[β − 1] of the ring are the current local registers
$0, $1, . . . , $(L − 1); elements l[β], l[β + 1], . . . , l[γ − 1] are currently unused;
and elements l[γ], l[γ + 1], . . . , l[α − 1] contain items of the register stack that
have been pushed down. If γ 6= α, we can increase γ by 1 if we first store l[γ]
in memory. If γ 6= β, we can decrease γ by 1 if we then load l[γ]. MMIX has two
special registers called the stack pointer rS and the stack offset rO, which hold
the memory addresses where l[γ] and l[α] will be stored, if necessary. The values
of α, β, and γ are related to rL, rS, and rO by the formulas

α = (rO/8) mod ρ, β = (α+ rL) mod ρ, γ = (rS/8) mod ρ. ()

The simulator keeps most of MMIX’s special registers in the first 32 positions
of the global register array. For example, the simulated remainder register rR is
the octabyte in location Global+8*rR . But eight of the special registers, includ-
ing rS, rO, rL, and rG, are potentially relevant to every simulated instruction,
so the simulator maintains them separately in its own global registers. Thus, for
example, register ss holds the simulated value of rS, and register ll holds eight
times the simulated value of rL:

055 ss GREG 0 The simulated stack pointer, rS
056 oo GREG 0 The simulated stack offset, rO
057 ll GREG 0 The simulated local threshold register, rL, times 8
058 gg GREG 0 The simulated global threshold register, rG, times 8
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059 aa GREG 0 The simulated arithmetic status register, rA
060 ii GREG 0 The simulated interval counter, rI
061 uu GREG 0 The simulated usage counter, rU
062 cc GREG 0 The simulated cycle counter, rC

Here is a subroutine that obtains the current value of the simulated register
$k, given k. The calling sequence is

SLU arg,k,3; PUSHJ res,GetReg ()

after which the desired value will be in res.

063 lring_mask GREG 8*lring_size-1
064 :GetReg CMPU t,$0,gg Subroutine to get $k:
065 BN t,1F Branch if k < G.
066 LDOU $0,g,$0 Otherwise $k is global; load g[k].
067 POP 1,0 Return the result.
068 1H CMPU t,$0,ll t← [$k is local].
069 ADDU $0,$0,oo
070 AND $0,$0,lring_mask
071 LDOU $0,l,$0 Load l[(α+ k) mod ρ].
072 CSNN $0,t,0 Zero it if $k is marginal.
073 POP 1,0 Return the result.

Notice the colon in the label field of line 064. This colon is redundant, because the
current prefix is ‘:’ (see line 052); the colon on line 029 was, however, necessary
for the external symbol MemFind, because at that time the current prefix was
‘:Mem:’. Colons in the label field, redundant or not, give us a handy way to
advertise the fact that a subroutine is being defined.

The next subroutines, StackStore and StackLoad, simulate the operations
of increasing γ by 1 and decreasing γ by 1 in the diagram (). They return
no result. StackStore is called only when γ 6= α; StackLoad is called only
when γ 6= β. Both of them must save and restore rJ, because they are not leaf
subroutines.

074 :StackStore GET $0,rJ Save the return address.
075 AND t,ss,lring_mask
076 LDOU $1,l,t $1← l[γ].
077 SET arg,ss
078 PUSHJ res,MemFind
079 STOU $1,res,0 M8[rS]← $1.
080 ADDU ss,ss,8 Increase rS by 8.
081 PUT rJ,$0 Restore the return address.
082 POP 0 Return to caller.

083 :StackLoad GET $0,rJ Save the return address.
084 SUBU ss,ss,8 Decrease rS by 8.
085 SET arg,ss
086 PUSHJ res,MemFind
087 LDOU $1,res,0 $1←M8[rS].
088 AND t,ss,lring_mask
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089 STOU $1,l,t l[γ]← $1.
090 PUT rJ,$0 Restore the return address.
091 POP 0 Return to caller.

(Register rJ on lines 074, 081, 083, and 090 is, of course, the real rJ, not the
simulated rJ. When we simulate a machine on itself, we have to remember to
keep such things straight!)

The StackRoom subroutine is called when we have just increased β. It checks
whether β = γ and, if so, it increases γ.

092 :StackRoom SUBU t,ss,oo
093 SUBU t,t,ll
094 AND t,t,lring_mask
095 PBNZ t,1F Branch if (rS−rO)/8 6≡ rL (modulo ρ).
096 GET $0,rJ Oops, we’re not a leaf subroutine.
097 PUSHJ res,StackStore Advance rS.
098 PUT rJ,$0 Restore the return address.
099 1H POP 0 Return to caller.

Now we come to the heart of the simulator, its main simulation loop. An in-
terpretive routine generally has a central control section that is called into action
between interpreted instructions. In our case, the program transfers to location
Fetch when it is ready to simulate a new command. We keep the address @ of
the next simulated instruction in the global register inst_ptr. Fetch usually
sets loc ← inst_ptr and advances inst_ptr by 4; but if we are simulating
a RESUME command that inserts the simulated rX into the instruction stream,
Fetch sets loc← inst_ptr−4 and leaves inst_ptr unchanged. This simulator
considers an instruction to be ineligible for execution unless its location loc is
in the text segment (that is, loc < #2000000000000000).

100 * The main loop
101 loc GREG 0 Where the simulator is at
102 inst_ptr GREG 0 Where the simulator will be next
103 inst GREG 0 The current instruction being simulated
104 resuming GREG 0 Are we resuming an instruction in rX?

105 Fetch PBZ resuming,1F Branch if not resuming.
106 SUBU loc,inst_ptr,4 loc← inst_ptr− 4.
107 LDTU inst,g,8*rX+4 inst← right half of rX.
108 JMP 2F
109 1H SET loc,inst_ptr loc← inst_ptr.
110 SET arg,loc
111 PUSHJ res,MemFind
112 LDTU inst,res,0 inst← M4[loc].
113 ADDU inst_ptr,loc,4 inst_ptr← loc+ 4.
114 2H CMPU t,loc,g
115 BNN t,Error Branch if loc ≥ Data_Segment.

The main control routine does the things common to all instructions. It
unpacks the current instruction into its various parts and puts the parts into
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convenient registers for later use. Most importantly, it sets global register f to
64 bits of “info” corresponding to the current opcode. A master table, which
starts at location Info, contains such information for each of MMIX’s 256 opcodes.
(See Table 1 on page 88.) For example, f is set to an odd value if and only if the
Z field of the current opcode is an “immediate” operand or the opcode is JMP;
similarly f ∧ #40 is nonzero if and only if the instruction has a relative address.
Later steps of the simulator will be able to decide quickly what needs to be done
with respect to the current instruction because most of the relevant information
appears in register f.

116 op GREG 0 Opcode of the current instruction
117 xx GREG 0 X field of the current instruction
118 yy GREG 0 Y field of the current instruction
119 zz GREG 0 Z field of the current instruction
120 yz GREG 0 YZ field of the current instruction
121 f GREG 0 Packed information about the current opcode
122 xxx GREG 0 X field times 8
123 x GREG 0 X operand and/or result
124 y GREG 0 Y operand
125 z GREG 0 Z operand
126 xptr GREG 0 Location where x should be stored
127 exc GREG 0 Arithmetic exceptions

128 Z_is_immed_bit IS #1 Flag bits possibly set in f

129 Z_is_source_bit IS #2
130 Y_is_immed_bit IS #4
131 Y_is_source_bit IS #8
132 X_is_source_bit IS #10
133 X_is_dest_bit IS #20
134 Rel_addr_bit IS #40
135 Mem_bit IS #80

136 Info IS #1000
137 Done IS Info+8*256
138 info GREG Info (Base address for the master info table)
139 c255 GREG 8*255 (A handy constant)
140 c256 GREG 8*256 (Another handy constant)

141 MOR op,inst,#8 op← inst≫ 24.
142 MOR xx,inst,#4 xx← (inst≫ 16) ∧ #ff.
143 MOR yy,inst,#2 yy← (inst≫ 8) ∧ #ff.
144 MOR zz,inst,#1 zz← inst ∧ #ff.
145 0H GREG -#10000
146 ANDN yz,inst,0B
147 SLU xxx,xx,3
148 SLU t,op,3
149 LDOU f,info,t f← Info[op].
150 SET x,0 x← 0 (default value).
151 SET y,0 y← 0 (default value).
152 SET z,0 z← 0 (default value).
153 SET exc,0 exc← 0 (default value).
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The first thing we do, after having unpacked the instruction into its various
fields, is convert a relative address to an absolute address if necessary.

154 AND t,f,Rel_addr_bit
155 PBZ t,1F Branch if not a relative address.
156 PBEV f,2F Branch if op isn’t JMP or JMPB.
157 9H GREG -#1000000
158 ANDN yz,inst,9B yz← inst ∧ #ffffff (namely XYZ).
159 ADDU t,yz,9B t← XYZ− 224.
160 JMP 3F
161 2H ADDU t,yz,0B t← YZ− 216.
162 3H CSOD yz,op,t Set yz← t if op is odd (“backward”).
163 SL t,yz,2
164 ADDU yz,loc,t yz← loc+ yz≪ 2.

The next task is critical for most instructions: We install the operands
specified by the Y and Z fields into global registers y and z. Sometimes we also
install a third operand into global register x, specified by the X field or coming
from a special register like the simulated rD or rM.

165 1H PBNN resuming,Install_X Branch unless resuming < 0.
... (See exercise 14.)

174 Install_X AND t,f,X_is_source_bit
175 PBZ t,1F Branch unless $X is a source.
176 SET arg,xxx
177 PUSHJ res,GetReg
178 SET x,res x← $X.
179 1H SRU t,f,5
180 AND t,t,#f8 t← special register number, times 8.
181 PBZ t,Install_Z
182 LDOU x,g,t If t 6= 0, set x← g[t].
183 Install_Z AND t,f,Z_is_source_bit
184 PBZ t,1F Branch unless $Z is a source.
185 SLU arg,zz,3
186 PUSHJ res,GetReg
187 SET z,res z← $Z.
188 JMP Install_Y
189 1H CSOD z,f,zz If Z is immediate, z← Z.
190 AND t,op,#f0
191 CMPU t,t,#e0
192 PBNZ t,Install_Y Branch unless #e0 ≤ op < #f0.
193 AND t,op,#3
194 NEG t,3,t
195 SLU t,t,4
196 SLU z,yz,t z← yz≪ (48, 32, 16, or 0).
197 SET y,x y← x.
198 Install_Y AND t,f,Y_is_immed_bit
199 PBZ t,1F Branch unless Y is immediate.
200 SET y,yy y← Y.
201 SLU t,yy,40
202 ADDU f,f,t Insert Y into left half of f.
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203 1H AND t,f,Y_is_source_bit
204 BZ t,1F Branch unless $Y is a source.
205 SLU arg,yy,3
206 PUSHJ res,GetReg
207 SET y,res y← $Y.

When the X field specifies a destination register, we set xptr to the memory
address where we will eventually store the simulated result; this address will be
either in the Global array or the Local ring. The simulated register stack grows
at this point if the destination register must be changed from marginal to local.

208 1H AND t,f,X_is_dest_bit
209 BZ t,1F Branch unless $X is a destination.
210 XDest CMPU t,xxx,gg
211 BN t,3F Branch if $X is not global.
212 LDA xptr,g,xxx xptr← address of g[X].
213 JMP 1F
214 2H ADDU t,oo,ll
215 AND t,t,lring_mask
216 STCO 0,l,t l[(α+ L) mod ρ]← 0.
217 INCL ll,8 L← L+ 1. ($L becomes local.)
218 PUSHJ res,StackRoom Make sure β 6= γ.
219 3H CMPU t,xxx,ll
220 BNN t,2B Branch if $X is not local.
221 ADD t,xxx,oo
222 AND t,t,lring_mask
223 LDA xptr,l,t xptr← address of l[(α+X) mod ρ].

Finally we reach the climax of the main control cycle: We simulate the
current instruction by essentially doing a 256-way branch, based on the current
opcode. The left half of register f is, in fact, an MMIX instruction that we perform
at this point, by inserting it into the instruction stream via a RESUME command.
For example, if we are simulating an ADD command, we put “ADD x,y,z” into
the right half of rX and clear the exception bits of rA; the RESUME command
will then cause the sum of registers y and z to be placed in register x, and rA
will record whether overflow occurred. After the RESUME, control will pass to
location Done, unless the inserted instruction was a branch or jump.

224 1H AND t,f,Mem_bit
225 PBZ t,1F Branch unless inst accesses memory.
226 ADDU arg,y,z
227 CMPU t,op,#A0 t← [op is a load instruction].
228 BN t,2F
229 CMPU t,arg,g
230 BN t,Error Error if storing into the text segment.
231 2H PUSHJ res,MemFind res← address of M[y+ z].
232 1H SRU t,f,32
233 PUT rX,t rX← left half of f.
234 PUT rM,x rM← x (prepare for MUX).
235 PUT rE,x rE← x (prepare for FCMPE, FUNE, FEQLE).
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236 0H GREG #30000
237 AND t,aa,0B t← current rounding mode.
238 ORL t,U_BIT<<8 Enable underflow trip (see below).
239 PUT rA,t Prepare rA for arithmetic.
240 0H GREG Done
241 PUT rW,0B rW← Done.
242 RESUME 0 Execute the instruction in rX.

Some instructions can’t be simulated by simply “performing themselves” like
an ADD command and jumping to Done. For example, a MULU command must
insert the high half of its computed product into the simulated rH. A branch
command must change inst_ptr if the branch is taken. A PUSHJ command
must push the simulated register stack, and a POP command must pop it. SAVE,
UNSAVE, RESUME, TRAP, etc., all need special care; therefore the next part of the
simulator deals with all cases that don’t fit the nice “x equals y op z” pattern.

Let’s start with multiplication and division, since they are easy:

243 MulU MULU x,y,z Multiply y by z, unsigned.
244 GET t,rH Set t← upper half of the product.
245 STOU t,g,8*rH g[rH]← upper half product.
246 JMP XDone Finish by storing x.

247 Div DIV x,y,z
... (For division, see exercise 6.)

If the simulated instruction was a branch command, say “BZ $X,RA”, the
main control routine will have converted the relative address RA to an absolute
address in register yz (line 164), and it will also have placed the contents of the
simulated $X into register x (line 178). The RESUME command will then execute
the instruction “BZ x,BTaken” (line 242); and control will pass to BTaken instead
of Done if the simulated branch is taken. BTaken adds 2υ to the simulated
running time, changes inst_ptr, and jumps to Update.

254 BTaken ADDU cc,cc,4 Increase rC by 4υ.
255 PBTaken SUBU cc,cc,2 Decrease rC by 2υ.
256 SET inst_ptr,yz inst_ptr← branch address.
257 JMP Update Finish the command.

258 Go SET x,inst_ptr GO instruction: Set x← loc+ 4.
259 ADDU inst_ptr,y,z inst_ptr← (y+ z) mod 264.
260 JMP XDone Finish by storing x.

(Line 257 could have jumped to Done, but that would be slower; a shortcut to
Update is justified because a branch command doesn’t store x and cannot cause
an arithmetic exception. See lines 500–541 below.)

A PUSHJ or PUSHGO command pushes the simulated register stack down by
increasing the α pointer of (); this means increasing the simulated rO, namely
register oo. If the command is “PUSHJ $X,RA” and if $X is local, we push X+ 1
octabytes down by first setting $X ← X and then increasing oo by 8(X + 1).
(The value we have put in $X will be used later by POP to determine how to
restore oo to its former value. Simulated register $X will then be set to the
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result of the subroutine, as explained in Section 1.4.1́ .) If $X is global, we push
rL + 1 octabytes down in a similar way.

261 PushGo ADDU yz,y,z yz← (y+ z) mod 264.
262 PushJ SET inst_ptr,yz inst_ptr← yz.
263 CMPU t,xxx,gg
264 PBN t,1F Branch if $X is local.
265 SET xxx,ll Pretend that X = rL.
266 SRU xx,xxx,3
267 INCL ll,8 Increase rL by 1.
268 PUSHJ 0,StackRoom Make sure β 6= γ in ().
269 1H ADDU t,xxx,oo
270 AND t,t,lring_mask
271 STOU xx,l,t l[(α+X) mod ρ]← X.
272 ADDU t,loc,4
273 STOU t,g,8*rJ g[rJ]← loc+ 4.
274 INCL xxx,8
275 SUBU ll,ll,xxx Decrease rL by X + 1.
276 ADDU oo,oo,xxx Increase rO by 8(X + 1).
277 JMP Update Finish the command.

Special routines are needed also to simulate POP, SAVE, UNSAVE, and several
other opcodes including RESUME. Those routines deal with interesting details
about MMIX, and we will consider them in the exercises; but we’ll skip them for
now, since they do not involve any techniques related to interpretive routines
that we haven’t seen already.

We might as well present the code for SYNC and TRIP, however, since those
routines are so simple. (Indeed, there’s nothing to do for “SYNC XYZ” except to
check that XYZ ≤ 3, since we aren’t simulating cache memory.) Furthermore,
we will take a look at the code for TRAP, which is interesting because it illustrates
the important technique of a jump table for multiway switching:

278 Sync BNZ xx,Error Branch if X 6= 0.
279 CMPU t,yz,4
280 BNN t,Error Branch if YZ ≥ 4.
281 JMP Update Finish the command.

282 Trip SET xx,0 Initiate a trip to location 0.
283 JMP TakeTrip (See exercise 13.)

284 Trap STOU inst_ptr,g,8*rWW g[rWW]← inst_ptr.
285 0H GREG #8000000000000000
286 ADDU t,inst,0B
287 STOU t,g,8*rXX g[rXX]← inst+ 263.
288 STOU y,g,8*rYY g[rYY]← y.
289 STOU z,g,8*rZZ g[rZZ]← z.
290 SRU y,inst,6
291 CMPU t,y,4*11
292 BNN t,Error Branch if X 6= 0 or Y > Ftell.
293 LDOU t,g,c255 t← g[255].
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294 0H GREG @+4
295 GO y,0B,y Jump to @ + 4 + 4Y.
296 JMP SimHalt Y = Halt: Jump to SimHalt.
297 JMP SimFopen Y = Fopen: Jump to SimFopen.
298 JMP SimFclose Y = Fclose: Jump to SimFclose.
299 JMP SimFread Y = Fread: Jump to SimFread.
300 JMP SimFgets Y = Fgets: Jump to SimFgets.
301 JMP SimFgetws Y = Fgetws: Jump to SimFgetws.
302 JMP SimFwrite Y = Fwrite: Jump to SimFwrite.
303 JMP SimFputs Y = Fputs: Jump to SimFputs.
304 JMP SimFputws Y = Fputws: Jump to SimFputws.
305 JMP SimFseek Y = Fseek: Jump to SimFseek.
306 JMP SimFtell Y = Ftell: Jump to SimFtell.

307 TrapDone STO t,g,8*rBB Set g[rBB]← t.
308 STO t,g,c255 A trap ends with g[255]← g[rBB].
309 JMP Update Finish the command.

(See exercises 15–17 for SimFopen, SimFclose, SimFread, etc.)
Now let’s look at the master Info table (Table 1), which allows the simulator

to deal rather painlessly with 256 different opcodes. Each table entry is an
octabyte consisting of (i) a four-byte MMIX instruction, which will be invoked
by the RESUME instruction on line 242; (ii) two bytes that define the simulated
running time, one byte for µ and one byte for υ ; (iii) a byte that names a special
register, if such a register ought to be loaded into x on line 182; and (iv) a byte
that is the sum of eight 1-bit flags, expressing special properties of the opcode.
For example, the info for opcode FIX is

FIX x,0,z; BYTE 0,4,0,#26 ;

it means that (i) the instruction FIX x,0,z should be performed, to round a
floating point number to a fixed point integer; (ii) the simulated running time
should be increased by 0µ + 4υ ; (iii) no special register is needed as an input
operand; and (iv) the flag byte

#26 = X_is_dest_bit + Y_is_immed_bit + Z_is_source_bit

determines the treatment of registers x, y, and z. (The Y_is_immed_bit actually
causes the Y field of the simulated instruction to be inserted into the Y field of
“FIX x,0,z”; see line 202.)

One interesting aspect of the Info table is that the RESUME command of
line 242 executes the instruction as if it were in location Done-4, since rW =
Done. Therefore, if the instruction is a JMP, the address must be relative to
Done-4; but MMIXAL always assembles JMP commands with an address relative
to the assembled location @. We trick the assembler into doing the right thing
by writing, for example, “JMP Trap+@-O”, where O is defined to equal Done-4.
Then the RESUME command will indeed jump to location Trap as desired.

After we have executed the special instruction inserted by RESUME, we nor-
mally get to location Done. From here on everything is anticlimactic; but
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Table 1

MASTER INFORMATION TABLE FOR SIMULATOR CONTROL

O IS Done-4
LOC Info
JMP Trap+@-O; BYTE 0,5,0,#0a (TRAP)
FCMP x,y,z; BYTE 0,1,0,#2a (FCMP)
FUN x,y,z; BYTE 0,1,0,#2a (FUN)
FEQL x,y,z; BYTE 0,1,0,#2a (FEQL)
FADD x,y,z; BYTE 0,4,0,#2a (FADD)
FIX x,0,z; BYTE 0,4,0,#26 (FIX)
FSUB x,y,z; BYTE 0,4,0,#2a (FSUB)
FIXU x,0,z; BYTE 0,4,0,#26 (FIXU)
FLOT x,0,z; BYTE 0,4,0,#26 (FLOT)
FLOT x,0,z; BYTE 0,4,0,#25 (FLOTI)
FLOTU x,0,z; BYTE 0,4,0,#26 (FLOTU)

...
FMUL x,y,z; BYTE 0,4,0,#2a (FMUL)
FCMPE x,y,z; BYTE 0,4,rE,#2a (FCMPE)
FUNE x,y,z; BYTE 0,1,rE,#2a (FUNE)
FEQLE x,y,z; BYTE 0,4,rE,#2a (FEQLE)
FDIV x,y,z; BYTE 0,40,0,#2a (FDIV)
FSQRT x,0,z; BYTE 0,40,0,#26 (FSQRT)
FREM x,y,z; BYTE 0,4,0,#2a (FREM)
FINT x,0,z; BYTE 0,4,0,#26 (FINT)
MUL x,y,z; BYTE 0,10,0,#2a (MUL)
MUL x,y,z; BYTE 0,10,0,#29 (MULI)
JMP MulU+@-O; BYTE 0,10,0,#2a (MULU)
JMP MulU+@-O; BYTE 0,10,0,#29 (MULUI)
JMP Div+@-O; BYTE 0,60,0,#2a (DIV)
JMP Div+@-O; BYTE 0,60,0,#29 (DIVI)
JMP DivU+@-O; BYTE 0,60,rD,#2a (DIVU)
JMP DivU+@-O; BYTE 0,60,rD,#29 (DIVUI)
ADD x,y,z; BYTE 0,1,0,#2a (ADD)
ADD x,y,z; BYTE 0,1,0,#29 (ADDI)
ADDU x,y,z; BYTE 0,1,0,#2a (ADDU)

...
CMPU x,y,z; BYTE 0,1,0,#29 (CMPUI)
NEG x,0,z; BYTE 0,1,0,#26 (NEG)
NEG x,0,z; BYTE 0,1,0,#25 (NEGI)
NEGU x,0,z; BYTE 0,1,0,#26 (NEGU)
NEGU x,0,z; BYTE 0,1,0,#25 (NEGUI)
SL x,y,z; BYTE 0,1,0,#2a (SL)

...
BN x,BTaken+@-O; BYTE 0,1,0,#50 (BN)
BN x,BTaken+@-O; BYTE 0,1,0,#50 (BNB)
BZ x,BTaken+@-O; BYTE 0,1,0,#50 (BZ)

...
PBNP x,PBTaken+@-O; BYTE 0,3,0,#50 (PBNPB)
PBEV x,PBTaken+@-O; BYTE 0,3,0,#50 (PBEV)
PBEV x,PBTaken+@-O; BYTE 0,3,0,#50 (PBEVB)
CSN x,y,z; BYTE 0,1,0,#3a (CSN)
CSN x,y,z; BYTE 0,1,0,#39 (CSNI)

...
ZSEV x,y,z; BYTE 0,1,0,#2a (ZSEV)
ZSEV x,y,z; BYTE 0,1,0,#29 (ZSEVI)

LDB x,res,0; BYTE 1,1,0,#aa (LDB)
LDB x,res,0; BYTE 1,1,0,#a9 (LDBI)

...
JMP Cswap+@-O; BYTE 2,2,0,#ba (CSWAP)
JMP Cswap+@-O; BYTE 2,2,0,#b9 (CSWAPI)
LDUNC x,res,0; BYTE 1,1,0,#aa (LDUNC)
LDUNC x,res,0; BYTE 1,1,0,#a9 (LDUNCI)
JMP Error+@-O; BYTE 0,1,0,#2a (LDVTS)
JMP Error+@-O; BYTE 0,1,0,#29 (LDVTSI)
SWYM 0; BYTE 0,1,0,#0a (PRELD)
SWYM 0; BYTE 0,1,0,#09 (PRELDI)
SWYM 0; BYTE 0,1,0,#0a (PREGO)
SWYM 0; BYTE 0,1,0,#09 (PREGOI)
JMP Go+@-O; BYTE 0,3,0,#2a (GO)
JMP Go+@-O; BYTE 0,3,0,#29 (GOI)
STB x,res,0; BYTE 1,1,0,#9a (STB)
STB x,res,0; BYTE 1,1,0,#99 (STBI)

...
STO xx,res,0; BYTE 1,1,0,#8a (STCO)
STO xx,res,0; BYTE 1,1,0,#89 (STCOI)
STUNC x,res,0; BYTE 1,1,0,#9a (STUNC)
STUNC x,res,0; BYTE 1,1,0,#99 (STUNCI)
SWYM 0; BYTE 0,1,0,#0a (SYNCD)
SWYM 0; BYTE 0,1,0,#09 (SYNCDI)
SWYM 0; BYTE 0,1,0,#0a (PREST)
SWYM 0; BYTE 0,1,0,#09 (PRESTI)
SWYM 0; BYTE 0,1,0,#0a (SYNCID)
SWYM 0; BYTE 0,1,0,#09 (SYNCIDI)
JMP PushGo+@-O; BYTE 0,3,0,#2a (PUSHGO)
JMP PushGo+@-O; BYTE 0,3,0,#29 (PUSHGOI)
OR x,y,z; BYTE 0,1,0,#2a (OR)
OR x,y,z; BYTE 0,1,0,#29 (ORI)

...
SET x,z; BYTE 0,1,0,#20 (SETH)
SET x,z; BYTE 0,1,0,#20 (SETMH)

...
ANDN x,x,z; BYTE 0,1,0,#30 (ANDNL)
SET inst_ptr,yz; BYTE 0,1,0,#41 (JMP)
SET inst_ptr,yz; BYTE 0,1,0,#41 (JMPB)
JMP PushJ+@-O; BYTE 0,1,0,#60 (PUSHJ)
JMP PushJ+@-O; BYTE 0,1,0,#60 (PUSHJB)
SET x,yz; BYTE 0,1,0,#60 (GETA)
SET x,yz; BYTE 0,1,0,#60 (GETAB)
JMP Put+@-O; BYTE 0,1,0,#02 (PUT)
JMP Put+@-O; BYTE 0,1,0,#01 (PUTI)
JMP Pop+@-O; BYTE 0,3,rJ,#00 (POP)
JMP Resume+@-O; BYTE 0,5,0,#00 (RESUME)
JMP Save+@-O; BYTE 20,1,0,#20 (SAVE)
JMP Unsave+@-O; BYTE 20,1,0,#02 (UNSAVE)
JMP Sync+@-O; BYTE 0,1,0,#01 (SYNC)
SWYM x,y,z; BYTE 0,1,0,#00 (SWYM)
JMP Get+@-O; BYTE 0,1,0,#20 (GET)
JMP Trip+@-O; BYTE 0,5,0,#0a (TRIP)

Entries not shown here explicitly follow a pattern that is easily deduced from the
examples shown. (See, for example, exercise 1.)
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we can take satisfaction in the fact that an instruction has been simulated
successfully and the current cycle is nearly finished. Only a few details still
need to be wrapped up: We must store the result x in the appropriate place, if
the X_is_dest_bit flag is present, and we must check if an arithmetic exception
has triggered a trip interrupt:

500 Done AND t,f,X_is_dest_bit
501 BZ t,1F Branch unless $X is a destination.
502 XDone STOU x,xptr,0 Store x in simulated $X.
503 1H GET t,rA
504 AND t,t,#ff t← new arithmetic exceptions.
505 OR exc,exc,t exc← exc ∨ t.
506 AND t,exc,U_BIT+X_BIT
507 CMPU t,t,U_BIT
508 PBNZ t,1F Branch unless underflow is exact.
509 0H GREG U_BIT<<8
510 AND t,aa,0B
511 BNZ t,1F Branch if underflow is enabled.
512 ANDNL exc,U_BIT Ignore U if exact and not enabled.
513 1H PBZ exc,Update
514 SRU t,aa,8
515 AND t,t,exc
516 PBZ t,4F Branch unless trip interrupt needed.

... (See exercise 13.)
539 4H OR aa,aa,exc Record new exceptions in rA.

Line number 500 is used here for convenience, although several hundred instruc-
tions and the entire Info table actually intervene between line 309 and this part
of the program. Incidentally, the label Done on line 500 does not conflict with
the label Done on line 137, because both of them define the same equivalent value
for this symbol.

After line 505, register exc contains the bit codes for all arithmetic excep-
tions triggered by the instruction just simulated. At this point we must deal with
a curious asymmetry in the rules for IEEE standard floating point arithmetic:
An underflow exception (U) is suppressed unless the underflow trip has been
enabled in rA or unless an inexact exception (X) has also occurred. (We had to
enable the underflow trip in line 238 for precisely this reason; the simulator ends
with the commands

LOC U_Handler; ORL exc,U_BIT; JMP Done ()

so that exc will properly record underflow exceptions in cases where a floating
point computation was exact but produced a denormal result.)

Finally—Hurray!—we are able to close the cycle of operations that began
long ago at location Fetch. We update the runtime clocks, take a deep breath,
and return to Fetch again:

540 0H GREG #0000000800000004
541 Update MOR t,f,0B 232mems + oops
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542 ADDU cc,cc,t Increase the simulated clock, rC.
543 ADDU uu,uu,1 Increase the usage counter, rU.
544 SUBU ii,ii,1 Decrease the interval counter, rI.
545 AllDone PBZ resuming,Fetch Go to Fetch if resuming = 0.
546 CMPU t,op,#F9 Otherwise set t← [op= RESUME].
547 CSNZ resuming,t,0 Clear resuming if not resuming,
548 JMP Fetch and go to Fetch.

Our simulation program is now complete, except that we still must initialize
everything properly. We assume that the simulator will be run with a command
line that names a binary file. Exercise 20 explains the simple format of that
file, which specifies what should be loaded into the simulated memory before
simulation begins. Once the program has been loaded, we launch it as follows:
At line 576 below, register loc will contain a location from which a simulated
UNSAVE command will get the program off to a good start. (In fact, we simulate
an UNSAVE that is being simulated by a simulated RESUME. The code is tricky,
perhaps, but it works.)

549 Infile IS 3 (Handle for binary input file)
550 Main LDA Mem:head,Chunk0 Initialize MemFind.
551 ADDU Mem:alloc,Mem:head,Mem:nodesize
552 GET t,rN
553 INCL t,1
554 STOU t,g,8*rN g[rN]← (our rN) + 1.
555 LDOU t,$1,8 t← binary file name (argv [1]).
556 STOU t,IOArgs
557 LDA t,IOArgs (See line 010)
558 TRAP 0,Fopen,Infile Open the binary file.
559 BN t,Error

... Now load the file (see exercise 20).
576 STOU loc,g,c255 g[255]← place to UNSAVE.
577 SUBU arg,loc,8*13 arg← place where $255 appears.
578 PUSHJ res,MemFind
579 LDOU inst_ptr,res,0 inst_ptr← Main.
580 SET arg,#90
581 PUSHJ res,MemFind
582 LDTU x,res,0 x← M4[

#90].
583 SET resuming,1 resuming← 1.
584 CSNZ inst_ptr,x,#90 If x 6= 0, set inst_ptr← #90.
585 0H GREG #FB<<24+255
586 STOU 0B,g,8*rX g[rX]← “UNSAVE $255”.
587 SET gg,c255 G← 255.
588 JMP Fetch Start the ball rolling.

589 Error NEG t,22 t← −22 for error exit.
590 Exit TRAP 0,Halt,0 End of simulation.

591 LOC Global+8*rK; OCTA -1
592 LOC Global+8*rT; OCTA #8000000500000000
593 LOC Global+8*rTT; OCTA #8000000600000000
594 LOC Global+8*rV; OCTA #369c200400000000
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The simulated program’s Main starting address will be in the simulated register
$255 after the simulated UNSAVE. Lines 580–584 of this code implement a
feature that wasn’t mentioned in Section 1.3.2́ : If an instruction is loaded into
location #90, the program begins there instead of at Main. (This feature allows
a subroutine library to initialize itself before starting a user program at Main.)

Lines 591–594 initialize the simulated rK, rT, rTT, and rV to appropriate
constant values. Then the program is finished; it ends with the trip-handler
instructions of ().

Whew! Our simulator has turned out to be pretty long— longer, in fact,
than any other program that we will encounter in this book. But in spite of its
length, the program above is incomplete in several respects because the author
did not want to make it even longer:

a) Several parts of the code have been left as exercises.

b) The program simply branches to Error and quits, when it detects a problem.
A decent simulator would distinguish between different types of error, and
would have a way to keep going.

c) The program doesn’t gather any statistics, except for the total running
time (cc) and the total number of instructions simulated (uu). A more
complete program would, for example, remember how often the user guessed
correctly with respect to branches versus probable branches; it would also
record the number of times the StackLoad and StackStore subroutines
need to access simulated memory. It might also analyze its own algorithms,
studying for example the efficiency of the self-organizing search technique
used by MemFind.

d) The program has no diagnostic facilities. A useful simulator would, for
example, allow interactive debugging, and would output selected snapshots
of the simulated program’s execution; such features would not be difficult
to add. The ability to monitor a program easily is, in fact, one of the main
reasons for the importance of interpretive routines in general.

EXERCISES

1. [20 ] Table 1 shows the Info entries only for selected opcodes. What entries are
appropriate for (a) opcode#3F (SRUI)? (b) opcode#55 (PBPB)? (c) opcode#D9 (MUXI)?
(d) opcode#E6 (INCML)?

x 2. [26 ] How much time does it take the simulator to simulate the instructions
(a) ADDU $255,$Y,$Z; (b) STHT $X,$Y,0; (c) PBNZ $X,@-4?

3. [23 ] Explain why γ 6= α when StackRoom calls StackStore on line 097.

x 4. [20 ] Criticize the fact that MemFind never checks to see if alloc has gotten too
large. Is this a serious blunder?

x 5. [20 ] If the MemFind subroutine branches to Error, it does not pop the register
stack. How many items might be on the register stack at such a time?

6. [20 ] Complete the simulation of DIV and DIVU instructions, by filling in the missing
code of lines 248–253.

7. [21 ] Complete the simulation of CSWAP instructions, by writing appropriate code.
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8. [22 ] Complete the simulation of GET instructions, by writing appropriate code.

9. [23 ] Complete the simulation of PUT instructions, by writing appropriate code.

10. [24 ] Complete the simulation of POP instructions, by writing appropriate code.
Note: If the normal action of POP as described in Section 1.4.1́ would leave rL > rG,
MMIX will pop entries off the top of the register stack so that rL = rG. For example, if
the user pushes 250 registers down with PUSHJ and then says “PUT rG,32; POP”, only
32 of the pushed-down registers will survive.

11. [25 ] Complete the simulation of SAVE instructions, by writing appropriate code.
Note: SAVE pushes all the local registers down and stores the entire register stack in
memory, followed by $G, $(G + 1), . . . , $255, followed by rB, rD, rE, rH, rJ, rM, rR,
rP, rW, rX, rY, and rZ (in that order), followed by the octabyte 256rG + rA.

12. [26 ] Complete the simulation of UNSAVE instructions, by writing appropriate code.
Note: The very first simulated UNSAVE is part of the initial loading process (see lines
583–588), so it should not update the simulated clocks.

13. [27 ] Complete the simulation of trip interrupts, by filling in the missing code of
lines 517–538.

14. [28 ] Complete the simulation of RESUME instructions, by writing appropriate code.
Note: When rX is nonnegative, its most significant byte is called the “ropcode”;
ropcodes 0, 1, 2 are available for user programs. Line 242 of the simulator uses
ropcode 0, which simply inserts the lower half of rX into the instruction stream.
Ropcode 1 is similar, but the instruction in rX is performed with y← rY and z← rZ
in place of the normal operands; this variant is allowed only when the first hexadecimal
digit of the inserted opcode is #0, #1, #2, #3, #6, #7, #C, #D, or #E. Ropcode 2
sets $X ← rZ and exc ← Q, where X is the third byte from the right of rX and Q is
the third byte from the left; this makes it possible to set the value of a register and
simultaneously raise any subset of the arithmetic exceptions DVWIOUZX. Ropcodes
1 and 2 can be used only when $X is not marginal. Your solution to this exercise
should cause RESUME to set resuming ← 0 if the simulated rX is negative, otherwise
resuming← (1,−1,−2) for ropcodes (0, 1, 2). You should also supply the code that is
missing from lines 166–173.

x 15. [25 ] Write the routine SimFputs, which simulates the operation of outputting a
string to the file corresponding to a given handle.

x 16. [25 ] Write the routine SimFopen, which opens a file corresponding to a given
handle. (The simulator can use the same handle number as the user program.)

x 17. [25 ] Continuing the previous exercises, write the routine SimFread , which reads
a given number of bytes from a file corresponding to a given handle.

x 18. [21 ] Would this simulator be of any use if lring_size were less than 256, for ex-
ample if lring_size = 32?

19. [14 ] Study all the uses of the StackRoom subroutine (namely in line 218, line 268,
and in the answer to exercise 11). Can you suggest a better way to organize the code?
(See step 3 in the discussion at the end of Section 1.4.1́ .)

20. [20 ] The binary files input by the simulator consist of one or more groups of
octabytes each having the simple form

λ, x0, x1, . . . , xl−1, 0

92



1.4.3́ INTERPRETIVE ROUTINES 93

for some l ≥ 0, where x0, x1, . . . , and xl−1 are nonzero; the meaning is

M8[λ+ 8k] ← xk, for 0 ≤ k < l.

The file ends after the last group. Complete the simulator by writing MMIX code to load
such input (lines 560–575 of the program). The final value of register loc should be
the location of the last octabyte loaded, namely λ+ 8(l − 1).

x 21. [20 ] Is the simulation program of this section able to simulate itself? If so, is it
able to simulate itself simulating itself? And if so, is it · · · ?

x 22. [40 ] Implement an efficient jump trace routine for MMIX. This is a program that
records all transfers of control in the execution of another given program by recording
a sequence of pairs (x1, y1), (x2, y2), . . . , meaning that the given program jumped from
location x1 to y1, then (after performing the instructions in locations y1, y1+1, . . . , x2)
it jumped from x2 to y2, etc. [From this information it is possible for a subsequent
routine to reconstruct the flow of the program and to deduce how frequently each
instruction was performed.]

A trace routine differs from a simulator because it allows the traced program to
occupy its normal memory locations. A jump trace modifies the instruction stream
in memory, but does so only to the extent necessary to retain control. Otherwise it
allows the machine to execute arithmetic and memory instructions at full speed. Some
restrictions are necessary; for example, the program being traced shouldn’t modify
itself. But you should try to keep such restrictions to a minimum.
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ANSWERS TO EXERCISES

SECTION 1.3.1́

1. #7d9 or #7D9.

2. (a) {B, D, F, b, d, f}. (b) {A, C, E, a, c, e}. An odd fact of life.

3. (Solution by Gregor N. Purdy.) 2 bits = 1 nyp; 2 nyps = 1 nybble; 2 nybbles =
1 byte. Incidentally, the word “byte” was coined in 1956 by members of IBM’s Stretch
computer project; see W. Buchholz, BYTE 2, 2 (February 1977), 144.

4. 1000 MB = 1 gigabyte (GB), 1000 GB = 1 terabyte (TB), 1000 TB = 1 petabyte
(PB), 1000 PB = 1 exabyte (EB), 1000 EB = 1 zettabyte (ZB), 1000 ZB = 1 yottabyte
(YB), according to the 19th Conférence Générale des Poids et Mesures (1990).

(Some people, however, use 210 instead of 1000 in these formulas, claiming for
example that a kilobyte is 1024 bytes. To resolve the ambiguity, such units should
preferably be called large kilobytes, large megabytes, etc., and denoted by KKB, MMB,
. . . to indicate their binary nature.)

5. If −2n−1 ≤ x < 2n−1, then −2n < x − s(α) < 2n; hence x 6= s(α) implies that
x 6≡ s(α) (modulo 2n). But s(α) = u(α)− 2n[α begins with 1] ≡ u(α) (modulo 2n).

6. Using the notation of the previous exercise, we have u(ᾱ) = 2n − 1− u(α); hence
u(ᾱ) + 1 ≡ −u(α) (modulo 2n), and it follows that s(ᾱ) + 1 = −s(α). Overflow might
occur, however, when adding 1. In that case α = 10 . . . 0, s(α) = −2n−1, and −s(α) is
not representable.

7. Yes. (See the discussion of shifting.)

8. The radix point now falls between rH and $X. (In general, if the binary radix
point is m positions from the end of $Y and n positions from the end of $Z, it is m+n
positions from the end of the product.)

9. Yes, except when X = Y, or X = Z, or overflow occurs.

10. $Y = #8000000000000000, $Z = #ffffffffffffffff is the only example!

11. (a) True, because s($Y) ≡ u($Y) and s($Z) ≡ u($Z) (modulo 264) by exercise 5.
(b) Clearly true if s($Y) ≥ 0 and s($Z) ≥ 0, because s($Y) = u($Y) and s($Z) = u($Z)
in such a case. Also true if $Z = 0 or $Z = 1 or $Z = $Y or $Y = 0. Otherwise false.

12. If X 6= Y, say ‘ADDU $X,$Y,$Z; CMPU carry,$X,$Y; ZSN carry,carry,1’. But if
X = Y = Z, say ‘ZSN carry,$X,1; ADDU $X,$X,$X’.

13. Overflow occurs on signed addition if and only if $Y and $Z have the same sign
but their unsigned sum has the opposite sign. Thus

XOR $0,$Y,$Z; ADDU $X,$Y,$Z; XOR $1,$X,$Y; ANDN $1,$1,$0; ZSN ovfl,$1,1

determines the presence or absence of overflow when X 6= Y.
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14. Interchange X and Y in the previous answer. (Overflow occurs when computing
x = y − z if and only if it occurs when computing y = x+ z.)

15. Let ẏ and ż be the sign bits of y and z, so that s(y) = y−264ẏ and s(z) = z−264ż;
we want to calculate s(y)s(z) mod 2128 = (yz − 264(ẏz + yż))mod 2128. Thus the
program MULU $X,$Y,$Z; GET $0,rH; ZSN $1,$Y,$Z; SUBU $0,$0,$1; ZSN $1,$Z,$Y;

SUBU $0,$0,$1 puts the desired octabyte in $0.

16. After the instructions in the previous answer, check that the upper half is the sign
extension of the lower half, by saying ‘SR $1,$X,63; CMP $1,$0,$1; ZSNZ ovfl,$1,1’.

17. Let a be the stated constant, which is (265+1)/3. Then ay/265 = y/3+y/(3 ·265),
so ⌊ay/265⌋ = ⌊y/3⌋ for 0 ≤ y < 265.

18. By a similar argument, ⌊ay/266⌋ = ⌊y/5⌋ for 0 ≤ y < 266 when a = (266 + 1)/5 =
#cccccccccccccccd.

19. This statement is widely believed, and it has been implemented by compiler writers
who did not check the math. But it is false when z = 7, 21, 23, 25, 29, 31, 39, 47, 49,
53, 55, 61, 63, 71, 81, 89, . . . , and in fact for 189 odd divisors z less than 1000!

Let ǫ = ay/264+e − y/z = (z − r)y/(264+ez), where r = 264+e mod z. Then
0 < ǫ < 2/z, hence trouble can arise only when y ≡ −1 (modulo z) and ǫ ≥ 1/z.
It follows that the formula ⌊ay/264+e⌋ = ⌊y/z⌋ holds for all unsigned octabytes y,
0 ≤ y < 264, if and only if it holds for the single value y = 264 − 1− (264 mod z).

(The formula is, however, always correct in the restricted range 0 ≤ y < 263.
And Michael Yoder observes that high-multiplication by ⌈264+e+1/z⌉−264, followed by
addition of y and right-shift by e+ 1, does work in general.)

20. 4ADDU $X,$Y,$Y; 4ADDU $X,$X,$X.

21. SL sets $X to zero, overflowing if $Y was nonzero. SLU and SRU set $X to zero. SR
sets $X to 64 copies of the sign bit of $Y, namely to −[$Y< 0]. (Notice that shifting
left by −1 does not shift right.)

22. Dull’s program takes the wrong branch when the SUB instruction causes overflow.
For example, it treats every nonnegative number as less than −263; it treats 263 − 1 as
less than every negative number. Although no error arises when $1 and $2 have the
same sign, or when the numbers in $1 and $2 are both less than 262 in absolute value,
the correct formulation ‘CMP $0,$1,$2; BN $0,Case1’ is much better. (Similar errors
have been made by programmers and compiler writers since the 1950s, often causing
significant and mysterious failures.)

23. CMP $0,$1,$2; BNP $0,Case1.

24. ANDN.

25. XOR $X,$Y,$Z; SADD $X,$X,0.

26. ANDN $X,$Y,$Z.

27. BDIF $W,$Y,$Z; ADDU $X,$Z,$W; SUBU $W,$Y,$W.

28. BDIF $0,$Y,$Z; BDIF $X,$Z,$Y; OR $X,$0,$X.

29. NOR $0,$Y,0; BDIF $0,$0,$Z; NOR $X,$0,0. (This sequence computes 2n − 1−
max(0, (2n − 1− y)− z) in each byte position.)

30. XOR $1,$0,$2; BDIF $1,$3,$1; SADD $1,$1,0 when $2 = #2020202020202020

and $3 = #0101010101010101.

31. MXOR $1,$4,$0; SADD $1,$1,0 when $4 = #0101010101010101.

32. CT
ji = Cij = (AT

1i • BT
j1) ◦ · · · ◦ (AT

ni •BT
jn) = (BT ◦

• A
T)ji if • is commutative.
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33. MOR (or MXOR) with the constant #0180402010080402.

34. MOR $X,$Z,[#0080004000200010]; MOR $Y,$Z,[#0008000400020001]. (Here we
use brackets to denote registers that contain auxiliary constants.)

To go back, also checking that an 8-bit code is sufficient:

PUT rM,[#00ff00ff00ff00ff]

MOR $0,$X,[#4020100804020180]

MUX $1,$0,$Y

BNZ $1,BadCase

MUX $1,$Y,$0

MOR $Z,$1,[#8020080240100401]

35. MOR $X,$Y,$Z; MOR $X,$Z,$X; here $Z is the constant ().

36. XOR $0,$Y,$Z; MOR $0,[-1],$0. Notes: Changing XOR to BDIF gives a mask for
the bytes where $Y exceeds $Z. Given such a mask, AND it with #8040201008040201

and MOR with #ff to get a one-byte encoding of the relevant byte positions.

37. Let the elements of the field be polynomials in the Boolean matrix




















0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0





















.

For example, this matrix is m(#402010080402018e), and if we square it with MXOR we
get the matrix m(#2010080402018e47). The sum and product of such field elements
are then obtained by XOR and MXOR, respectively.

(A field with 2k elements for 2 ≤ k ≤ 7 is obtained in a similar way from poly-
nomials in the matrices #0103, #020105, #04020109, #0804020112, #100804020121,
#20100804020141. Matrices of size up to 16× 16 can be represented as four octabytes;
then multiplication requires eight MXORs and four XORs. We can, however, do multipli-
cation in a field of 216 elements by performing only five MXORs and three XORs, if we
represent the large field as a quadratic extension of the field of 28 elements.)

38. It sets $1 to the sum of the eight signed bytes initially in $0; it also sets $2 to
the rightmost nonzero such byte, or zero; and it sets $0 to zero. (Changing SR to SRU

would treat the bytes as unsigned. Changing SLU to SL would often overflow.)

39. The assumed running times are (a) (3υ or 2υ) versus 2υ; (b) (4υ or 3υ) versus 2υ;
(c) (4υ or 3υ) versus 3υ; (d) (υ or 4υ) versus 2υ; (e) (2υ or 5υ) versus 2υ; (f) (2υ or
5υ) versus 3υ. So we should use the conditional instructions in cases (a, d) and (c, f),
unless $0 is negative with probability > 2/3; in the latter case we should use the PBN

variants, (d) and (f). The conditionals always win in cases (b, e).
If the ADDU commands had been ADD, the instructions would not have been equiv-

alent, because of possible overflows.

40. Suppose you GO to address #101; this sets @← #101. The tetrabyte M4[
#101] is

the same as the tetrabyte M4[
#100]. If the opcode of that instruction is, say, PUSHJ,

register rJ will be set to #105. Similarly, if that instruction is GETA $0,@, register $0
will be set to #101. In such situations the value for @ in MMIX assembly language is
slightly different from the actual value during program execution.

96



1.3.1́ ANSWERS TO EXERCISES 97

Programmers could use these principles to send some sort of signal to a subroutine,
based on the two trailing bits of @. (Tricky, but hey, why not use the bits we’ve got?)

41. (a) True. (b) True. (c) True. (d) False, but true with SRU in place of SR.

42. (a) NEGU $1,$0; CSNN $1,$0,$0. (b) ANDN $1,$0,[#8000000000000000].

43. Trailing zeros (solution by J. Dallos): SUBU $0,$Z,1; SADD $0,$0,$Z.
Leading zeros: FLOTU $0,1,$Z; SRU $0,$0,52; SUB $0,[1086],$0. (If $Z could

be zero, add the command CSZ $0,$Z,64.) This is the shortest program, but not the
fastest; we save 2υ if we reverse all bits (exercise 35) and count trailing zeros.

44. Use “high tetra arithmetic,” in which each 32-bit number appears in the left half
of a register. LDHT and STHT load and store such quantities (see exercise 7); SETMH

loads an immediate constant. To add, subtract, multiply, or divide high tetras $Y
and $Z, producing a high tetra $X with correct attention to integer overflow and divide
check, the following commands work perfectly: (a) ADD $X,$Y,$Z. (b) SUB $X,$Y,$Z.
(c) SR $X,$Z,32; MUL $X,$Y,$X (assuming that we have X 6= Y). (d) DIV $X,$Y,$Z;

SL $X,$X,32; now rR is the high tetra remainder.

46. It causes a trip to location 0.

47. #DF is MXORI (“multiple exclusive-or immediate”); #55 is PBPB (“probable branch
positive backward”). But in a program we use the names MXOR and PBP; the assembler
silently adds the I and B when required.

48. STO and STOU; also the “immediate” variants LDOI and LDOUI, STOI and STOUI;
also NEGI and NEGUI, although NEG is not equivalent to NEGU; also any two of the four
opcodes FLOTI, FLOTUI, SFLOTI, and SFLOTUI.

(Every MMIX operation on signed numbers has a corresponding operation on un-
signed numbers, obtained by adding 2 to the opcode. This consistency makes the
machine design easier to learn, the machine easier to build, and the compilers easier to
write. But of course it also makes the machine less versatile, because it leaves no room
for other operations that might be desired.)

49. Octabyte M8[0] is set to #0000010000000001; rH is set to #0000012343210000;
M2[

#0244420000000122] is set to #0121; rA is set to #00041 (because overflow occurs
on the STW); rB is set to f(7) = #401c000000000000; and $1← #6ff8ffffffffffff.
(Also rL← 2, if rL was originally 0 or 1.) We assume that the program is not located
in such a place that the STCO, STB, or STW instructions could clobber it.

50. 4µ+34υ = υ+ (µ+υ) + υ+ (µ+υ)+ (µ+υ)+ υ+ υ+10υ+ υ+ (µ+υ)+ υ+4υ+
υ + υ + υ + υ + 3υ + υ + υ + υ.

51. 35010001

b5010101

33010101

a0010101

8e010101

e4010001

2e010101

1a010101

f7150001

a5010101

db010101

08010001

f6000001

c7010101

5701ffff

c4010101

3d010101

3f010101

52. Opcodes ADDI, ADDUI, SUBI, SUBUI, SLI, SLUI, SRI, SRUI, ORI, XORI, ANDNI, BDIFI,
WDIFI, TDIFI, ODIFI: X = Y = 255, Z = 0. Opcode MULI: X = Y = 255, Z = 1.
Opcodes INCH, INCMH, INCML, INCL, ORH, ORMH, ORML, ORL, ANDNH, ANDNMH, ANDNML,
ANDNL: X = 255, Y = Z = 0. Opcodes OR, AND, MUX: X = Y = Z = 255. Opcodes CSN,
CSZ, . . . , CSEV: X = Z = 255, Y arbitrary. Opcodes BN, BZ, . . . , PBEV: X arbitrary,
Y = 0, Z = 1. Opcode JMP: X = Y = 0, Z = 1. Opcodes PRELD, PRELDI, PREGO,
PREGOI, SWYM: X, Y, Z arbitrary. (Subtle point: An instruction that sets register $X
is not a no-op when X is marginal, because it causes rL to increase; and all registers
except $255 are marginal when rL = 0 and rG = 255.)
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53. MULU, MULUI, PUT, PUTI, UNSAVE.

54. FCMP, FADD, FIX, FSUB, . . . , FCMPE, FEQLE, . . . , FINT, MUL, MULI, DIV, DIVI, ADD,
ADDI, SUB, SUBI, NEG, SL, SLI, STB, STBI, STW, STWI, STT, STTI, STSF, STSFI, PUT, PUTI,
UNSAVE. (This was not quite a fair question, because the complete rules for floating
point operations appear only elsewhere. One fine point is that FCMP might change the
I_BIT of rA, if $Y or $Z is Not-a-Number, but FEQL and FUN never cause exceptions.)

55. FCMP, FUN, . . . , SRUI, CSN, CSNI, . . . , LDUNCI, GO, GOI, PUSHGO, PUSHGOI, OR, ORI,
. . . , ANDNL, PUSHJ, PUSHJB, GETA, GETAB, PUT, PUTI, POP, SAVE, UNSAVE, GET.

56. Minimum space: LDO $1,x

SET $0,$1

SETL $2,12

MUL $0,$0,$1

SUB $2,$2,1

PBP $2,@-4*2

Space = 6× 4 = 24 bytes, time = µ+ 149υ. Faster solutions are possible.
Minimum time: The assumption that |x13| ≤ 263 implies that |x| < 25 and x8 <

239. The following solution, based on an idea of Y. N. Patt, exploits this fact.

LDO $0,x $0 = x
MUL $1,$0,$0 $1 = x2

MUL $1,$1,$1 $1 = x4

SL $2,$1,25 $2 = 225x4

SL $3,$0,39 $3 = 239x
ADD $3,$3,$1 $3 = 239x+ x4

MULU $1,$3,$2 u($1) = 225x8, rH = x5 + 225x4 [x< 0]
GET $2,rH $2 ≡ x5 (modulo 225)
PUT rM,[#1ffffff]

MUX $2,$2,$0 $2 = x5

SRU $1,$1,25 $1 = x8

MUL $0,$1,$2 $0 = x13

Space = 12×4 = 48 bytes, time = µ+48υ. At least five multiplications are “necessary,”
according to the theory developed in Section 4.6.3; yet this program uses only four!
And in fact there is a way to avoid multiplication altogether.

True minimum time: As R. W. Floyd points out, we have |x| ≤ 28, so the minimum
execution time is achieved by referring to a table (unless µ > 45υ):

LDO $0,x $0 = x
8ADDU $0,$0,[Table]

LDO $0,$0,8*28 $0 = x13

...

Table OCTA -28*28*28*28*28*28*28*28*28*28*28*28*28

OCTA -27*27*27*27*27*27*27*27*27*27*27*27*27

...

OCTA 28*28*28*28*28*28*28*28*28*28*28*28*28

Space = 3× 4 + 57× 8 = 468 bytes, time = 2µ+ 3υ.

57. (1) An operating system can allocate high-speed memory more efficiently if pro-
gram blocks are known to be “read-only.” (2) An instruction cache in hardware will be
faster and less expensive if instructions cannot change. (3) Same as (2), with “pipeline”
in place of “cache.” If an instruction is modified after entering a pipeline, the pipeline
needs to be flushed; the circuitry needed to check this condition is complex and time-
consuming. (4) Self-modifying code cannot be used by more than one process at once.
(5) Self-modifying code can defeat techniques for “profiling” (that is, for computing
the number of times each instruction is executed).
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SECTION 1.3.2́

1. (a) It refers to the label of line 24. (b) No indeed. Line 23 would refer to line 24
instead of line 38; line 31 would refer to line 24 instead of line 21.

2. The current value of 9B will be a running count of the number of such lines that
have appeared earlier.

3. Read in 100 octabytes from standard input; exchange their maximum with the
last of them; exchange the maximum of the remaining 99 with the last of those; etc.
Eventually the 100 octabytes will become completely sorted into nondecreasing order.
The result is then written to the standard output. (Compare with Algorithm 5.2.3S.)

4. #2233445566778899. (Large values are reduced mod 264.)

5. BYTE "silly"; but this trick is not recommended.

6. False; TETRA @,@ is not the same as TETRA @; TETRA @.

7. He forgot that relative addresses are to tetrabyte locations; the two trailing bits
are ignored.

8. LOC 16*((@+15)/16) or LOC -@/16*-16 or LOC (@+15)&-16, etc.

9. Change 500 to 600 on line 02; change Five to Six on line 35. (Five-digit numbers
are not needed unless 1230 or more primes are to be printed. Each of the first 6542
primes will fit in a single wyde.)

10. M2[
#2000000000000000] = #0002, and the following nonzero data goes into the

text segment:
#100: #e3 fe 00 03
#104: #c1 fb f7 00
#108: #a6 fe f8 fb
#10c: #e7 fb 00 02
#110: #42 fb 00 13
#114: #e7 fe 00 02
#118: #c1 fa f7 00
#11c: #86 f9 f8 fa
#120: #1c fd fe f9
#124: #fe fc 00 06
#128: #43 fc ff fb
#12c: #30 ff fd f9
#130: #4d ff ff f6
#134: #e7 fa 00 02
#138: #f1 ff ff f9
#13c: #46 69 72 73
#140: #74 20 46 69
#144: #76 65 20 48
#148: #75 6e 64 72
#14c: #65 64 20 50
#150: #72 69 6d 65
#154: #73 0a 00 20
#158: #20 20 00 00

#15c: #23 ff f6 00
#160: #00 00 07 01
#164: #35 fa 00 02
#168: #20 fa fa f7
#16c: #23 ff f6 1b
#170: #00 00 07 01
#174: #86 f9 f8 fa
#178: #af f5 f8 00
#17c: #23 ff f8 04
#180: #1d f9 f9 0a
#184: #fe fc 00 06
#188: #e7 fc 00 30
#18c: #a3 fc ff 00
#190: #25 ff ff 01
#194: #5b f9 ff fb
#198: #23 ff f8 00
#19c: #00 00 07 01
#1a0: #e7 fa 00 64
#1a4: #51 fa ff f4
#1a8: #23 ff f6 19
#1ac: #00 00 07 01
#1b0: #31 ff fa 62
#1b4: #5b ff ff ed

(Notice that SET becomes SETL in #100, but ORI in #104. The current location @ is
aligned to #15c at line 38, according to rule 7(a).) When the program begins, rG will
be #f5, and we will have $248 = #20000000000003e8, $247 = #fffffffffffffc1a,
$246 = #13c, $245 = #2030303030000000.
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11. (a) If n is not prime, by definition n has a divisor d with 1 < d < n. If d >
√
n,

then n/d is a divisor with 1 < n/d <
√
n. (b) If n is not prime, n has a prime

divisor d with 1 < d ≤ √n. The algorithm has verified that n has no prime divisors ≤
p = PRIME[k]; also n = pq + r < pq + p ≤ p2 + p < (p+ 1)2. Any prime divisor of n is
therefore greater than p+ 1 >

√
n.

We must also prove that there will be a sufficiently large prime less than n when n
is prime, namely that the (k + 1)st prime pk+1 is less than p2k + pk; otherwise k would
exceed j and PRIME[k] would be zero when we needed it to be large. The necessary
proof follows from “Bertrand’s postulate”: If p is prime there is a larger prime less
than 2p.

12. We could move Title, NewLn, and Blank to the data segment following BUF, where
they could use ptop as their base address. Or we could change the LDA instructions on
lines 38, 42, and 58 to SETL, knowing that the string addresses happen to fit in two
bytes because this program is short. Or we could change LDA to GETA; but in that case
we would have to align each string modulo 4, for example by saying

Title BYTE "First Five Hundred Primes",#a,0

LOC (@+3)&-4

NewLn BYTE #a,0

LOC (@+3)&-4

Blanks BYTE " ",0

(See exercises 7 and 8.)

13. Line 35 gets the new title; change BYTE to WYDE on lines 35–37. Change Fputs to
Fputws in lines 39, 43, 55, 59. Change the constant in line 45 to #0020066006600660.
Change BUF+4 to BUF+2*4 on line 47. And change lines 50–52 to

INCL r,’0’; STWU r,t,0; SUB t,t,2 .

Incidentally, the new title line might look like

Title WYDE "tÛ¿×Ä Ên·�Ä unÛË �Ì� ¾×"

when it is printed bidirectionally, but in the computer file the individual characters
actually appear in “logical” order without ligatures. Thus a spelled-out sequence like

Title WYDE ’’,’×’,’¾’,’ ’,’�’,’Ê’,’�’,’ ’,...,’¾’,’Ý’,’s’

would give an equivalent result, by the rule for string constants (rule 2).

14. We can, for example, replace lines 26–30 of Program P by

fn GREG 0

sqrtn GREG 0

FLOT fn,n

FSQRT sqrtn,fn

6H LDWU pk,ptop,kk

FLOT t,pk

FREM r,fn,t

BZ r,4B

7H FCMP t,sqrtn,t

The new FREM instruction is performed 9597 times, not 9538, because the new test in
step P7 is not quite as effective as before. In spite of this, the floating point calculations
reduce the running time by 426192υ − 59µ, a notable improvement (unless of course
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µ/υ > 7000). An additional savings of 38169υ can be achieved if the primes are stored
as short floats instead of as unsigned wydes.

The number of divisibility tests can actually be reduced to 9357 if we replace q
by
√
n− 1.9999 in step P7 (see the answer to exercise 11). But the extra subtractions

cost more than they save, unless µ/υ > 15.

15. It prints a string consisting of a blank space followed by an asterisk followed by
two blanks followed by an asterisk . . . followed by k blanks followed by an asterisk . . .
followed by 74 blanks followed by an asterisk; a total of 2+3+· · ·+75 =

(

76

2

)

−1 = 2849
characters. The total effect is one of OP art.

17. The following subroutine returns zero if and only if the instruction is OK.

a IS #ffffffff Table entry when anything goes
b IS #ffff04ff Table entry when Y ≤ ROUND_NEAR

c IS #001f00ff Table entry for PUT and PUTI

d IS #ff000000 Table entry for RESUME
e IS #ffff0000 Table entry for SAVE
f IS #ff0000ff Table entry for UNSAVE
g IS #ff000003 Table entry for SYNC
h IS #ffff001f Table entry for GET
table GREG @

TETRA a,a,a,a,a,b,a,b,b,b,b,b,b,b,b,b 0x

TETRA a,a,a,a,a,b,a,b,a,a,a,a,a,a,a,a 1x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 2x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 3x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 4x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 5x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 6x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 7x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 8x

TETRA a,a,a,a,a,a,a,a,0,0,a,a,a,a,a,a 9x

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a Ax

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a Bx

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a Cx

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a Dx

TETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a Ex

TETRA a,a,a,a,a,a,c,c,a,d,e,f,g,a,h,a Fx

tetra IS $1

maxXYZ IS $2

InstTest BN $0,9F Invalid if address is negative.
LDTU tetra,$0,0 Fetch the tetrabyte.
SR $0,tetra,22 Extract its opcode (times 4).
LDT maxXYZ,table,$0 Get Xmax,Ymax,Zmax.
BDIF $0,tetra,maxXYZ Check if any max is exceeded.
PBNP maxXYZ,9F If not a PUT, we are done.
ANDNML $0,#ff00 Zero out the OP byte.
BNZ $0,9F Branch if any max is exceeded.
MOR tetra,tetra,#4 Extract the X byte.
CMP $0,tetra,18

CSP tetra,$0,0 Set X← 0 if 18 < X < 32.
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ODIF $0,tetra,7 Set $0← X
.− 7.

9H POP 1,0 Return $0 as the answer.

This solution does not consider a tetrabyte to be invalid if it would jump to a negative
address, nor is ‘SAVE $0,0’ called invalid (although $0 can never be a global register).

18. The catch to this problem is that there may be several places in a row or column
where the minimum or maximum occurs, and each is a potential saddle point.

Solution 1: In this solution we run through each row in turn, making a list of all
columns in which the row minimum occurs and then checking each column on the list
to see if the row minimum is also a column maximum. Notice that in all cases the
terminating condition for a loop is that a register is ≤ 0.

* Solution 1

t IS $255

a00 GREG Data_Segment Address of “a00”
a10 GREG Data_Segment+8 Address of “a10”
ij IS $0 Element index and return register
j GREG 0 Column index
k GREG 0 Size of list of minimum indices
x GREG 0 Current minimum value
y GREG 0 Current element
Saddle SET ij,9*8

RowMin SET j,8

LDB x,a10,ij Candidate for row minimum
2H SET k,0 Set list empty.
4H INCL k,1

STB j,a00,k Put column index in list.
1H SUB ij,ij,1 Go left one.

SUB j,j,1

BZ j,ColMax Done with row?
3H LDB y,a10,ij

SUB t,x,y

PBN t,1B Is x still minimum?
SET x,y

PBP t,2B New minimum?
JMP 4B Remember another minimum.

ColMax LDB $1,a00,k Get column from list.
ADD j,$1,9*8-8

1H LDB y,a10,j

CMP t,x,y

PBN t,No Is row min < column element?
SUB j,j,8

PBP j,1B Done with column?
Yes ADD ij,ij,$1 Yes; ij← index of saddle.

LDA ij,a10,ij

POP 1,0

No SUB k,k,1 Is list empty?
BP k,ColMax If not, try again.
PBP ij,RowMin Have all rows been tried?
POP 1,0 Yes; $0 = 0, no saddle.
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Solution 2: An infusion of mathematics gives a different algorithm.

Theorem. Let R(i) = minj aij , C(j) = maxi aij . The element ai0j0 is a saddle point
if and only if R(i0) = maxi R(i) = C(j0) = minj C(j).

Proof. If ai0j0 is a saddle point, then for any fixed i, R(i0) = C(j0) ≥ aij0 ≥ R(i); so
R(i0) = maxi R(i). Similarly C(j0) = minj C(j). Conversely, we have R(i) ≤ aij ≤
C(j) for all i and j; hence R(i0) = C(j0) implies that ai0j0 is a saddle point.

(This proof shows that we always have maxi R(i) ≤ minj C(j). So there is no
saddle point if and only if all the R’s are less than all the C’s.)

According to the theorem, it suffices to find the smallest column maximum, then
to search for an equal row minimum.

* Solution 2

t IS $255

a00 GREG Data_Segment Address of “a00”
a10 GREG Data_Segment+8 Address of “a10”
a20 GREG Data_Segment+8*2 Address of “a20”
ij GREG 0 Element index
ii GREG 0 Row index times 8
j GREG 0 Column index
x GREG 0 Current maximum
y GREG 0 Current element
z GREG 0 Current min max
ans IS $0 Return register

Phase1 SET j,8 Start at column 8.
SET z,1000 z←∞ (more or less).

3H ADD ij,j,9*8-2*8

LDB x,a20,ij

1H LDB y,a10,ij

CMP t,x,y Is x < y?
CSN x,t,y If so, update the maximum.

2H SUB ij,ij,8 Move up one.
PBP ij,1B

STB x,a10,ij Store column maximum.
CMP t,x,z Is x < z?
CSN z,t,x If so, update the min max.
SUB j,j,1 Move left a column.
PBP j,3B

Phase2 SET ii,9*8-8 (At this point z = minj C(j).)
3H ADD ij,ii,8 Prepare to search a row.

SET j,8

1H LDB x,a10,ij

SUB t,z,x Is z > aij?
PBP t,No There’s no saddle in this row.
PBN t,2F

LDB x,a00,j Is aij = C(j)?
CMP t,x,z

CSZ ans,t,ij If so, remember a possible saddle point.
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2H SUB j,j,1 Move left in row.
SUB ij,ij,1

PBP j,1B

LDA ans,a10,ans A saddle point was found here.
POP 1,0

No SUB ii,ii,8

PBP ii,3B Try another row.
SET ans,0

POP 1,0 ans = 0; no saddle.

We leave it to the reader to invent a still better solution in which Phase 1 records
all possible rows that are candidates for the row search in Phase 2. It is not necessary
to search all rows, just those i0 for which C(j0) = minj C(j) implies ai0j0 = C(j0).
Usually there is at most one such row.

In some trial runs with elements selected at random from {−2,−1, 0, 1, 2}, So-
lution 1 required approximately 147µ + 863υ to run, while Solution 2 took about
95µ+510υ. Given a matrix of all zeros, Solution 1 found a saddle point in 26µ+188υ,
Solution 2 in 96µ+ 517υ.

If an m × n matrix has distinct elements, and m ≥ n, we can solve the problem
by looking at only O(m + n) of them and doing O(m log n) auxiliary operations. See
Bienstock, Chung, Fredman, Schäffer, Shor, and Suri, AMM 98 (1991), 418–419.

19. Assume an m × n matrix. (a) By the theorem in the answer to exercise 18, all
saddle points of a matrix have the same value, so (under our assumption of distinct
elements) there is at most one saddle point. By symmetry the desired probability is
mn times the probability that a11 is a saddle point. This latter is 1/(mn)! times the
number of permutations with a12 > a11, . . . , a1n > a11, a11 > a21, . . . , a11 > am1; and
this is 1/(m+n−1)! times the number of permutations of m+n−1 elements in which
the first is greater than the next (m− 1) and less than the remaining (n− 1), namely
(m− 1)! (n− 1)!. The answer is therefore

mn(m− 1)! (n− 1)!/(m+ n− 1)! = (m+ n)
/(

m+ n

n

)

.

In our case this is 17/
(

17

8

)

, only one chance in 1430. (b) Under the second assumption,
an entirely different method must be used since there can be multiple saddle points;
in fact either a whole row or whole column must consist entirely of saddle points. The
probability equals the probability that there is a saddle point with value zero plus the
probability that there is a saddle point with value one. The former is the probability
that there is at least one column of zeros; the latter is the probability that there is at
least one row of ones. The answer is (1− (1− 2−m)n)+ (1− (1− 2−n)m); in our case,
924744796234036231/18446744073709551616, about 1 in 19.9. An approximate answer
is n2−m +m2−n.

20. M. Hofri and P. Jacquet [Algorithmica 22 (1998), 516–528] have analyzed the
case when the m × n matrix entries are distinct and in random order. The running
times of the two MMIX programs are then (mn+mHn + 2m+ 1+ (m+ 1)/(n− 1))µ+
(6mn+7mHn +5m+11+ 7(m+1)/(n− 1))υ+O((m+n)2/

(

m+n
m

)

) and (m+1)nµ+
(5mn+ 6m+ 4n+ 7Hn + 8)υ +O(1/n) +O((log n)2/m), respectively, as m→∞ and
n→∞, assuming that (log n)/m→ 0.

21. Farey SET y,1; . . . POP.
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This answer is the first of many in Volumes 1–3 for which MMIXmasters are being
asked to contribute elegant solutions. (See the website information on page ii.)

The fourth edition of this book will present the best parts of the best programs
submitted. Note: Please reveal your full name, including all middle names, if you
enter this competition, so that proper credit can be given!

22. (a) Induction. (b) Let k ≥ 0 and X = axk+1 − xk, Y = ayk+1 − yk, where
a = ⌊(yk + n)/yk+1⌋. By part (a) and the fact that 0 < Y ≤ n, we have X ⊥ Y and
X/Y > xk+1/yk+1. So if X/Y 6= xk+2/yk+2 we have, by definition, X/Y > xk+2/yk+2.
But this implies that

1

Y yk+1

=
Xyk+1 − Y xk+1

Y yk+1

=
X

Y
− xk+1

yk+1

=

(

X

Y
− xk+2

yk+2

)

+

(

xk+2

yk+2

− xk+1

yk+1

)

≥ 1

Y yk+2

+
1

yk+1yk+2

=
yk+1 + Y

Y yk+1yk+2

>
n

Y yk+1yk+2

≥ 1

Y yk+1

.

Historical notes: C. Haros gave a (more complicated) rule for constructing such
sequences, in J. de l’École Polytechnique 4, 11 (1802), 364–368; his method was correct,
but his proof was inadequate. Several years later, the geologist John Farey indepen-
dently conjectured that xk/yk is always equal to (xk−1 + xk+1)/(yk−1 + yk+1) [Philos.
Magazine and Journal 47 (1816), 385–386]; a proof was supplied shortly afterwards by
A. Cauchy [Bull. Société Philomathique de Paris (3) 3 (1816), 133–135], who attached
Farey’s name to the series. For more of its interesting properties, see G. H. Hardy and
E. M. Wright, An Introduction to the Theory of Numbers, Chapter 3.

23. The following routine should do reasonably well on most pipeline and cache con-
figurations.

a IS $0

n IS $1

z IS $2

t IS $255

1H STB z,a,0

SUB n,n,1

ADD a,a,1

Zero BZ n,9F

SET z,0

AND t,a,7

BNZ t,1B

CMP t,n,64

PBNN t,3F

JMP 5F

2H STCO 0,a,0

SUB n,n,8

ADD a,a,8

3H AND t,a,63

PBNZ t,2B

CMP t,n,64

BN t,5F

4H PREST 63,a,0

SUB n,n,64

CMP t,n,64

STCO 0,a,0

STCO 0,a,8

STCO 0,a,16

STCO 0,a,24

STCO 0,a,32

STCO 0,a,40

STCO 0,a,48

STCO 0,a,56

ADD a,a,64

PBNN t,4B

5H CMP t,n,8

BN t,7F

6H STCO 0,a,0

SUB n,n,8

ADD a,a,8

CMP t,n,8

PBNN t,6B

7H BZ n,9F

8H STB z,a,0

SUB n,n,1

ADD a,a,1

PBNZ n,8B

9H POP

24. The following routine merits careful study; comments are left to the reader. A
faster program would be possible if we treated $0 ≡ $1 (modulo 8) as a special case.
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in IS $2

out IS $3

r IS $4

l IS $5

m IS $6

t IS $7

mm IS $8

tt IS $9

flip GREG #0102040810204080

ones GREG #0101010101010101

LOC #100

StrCpy AND in,$0,#7

SLU in,in,3

AND out,$1,#7

SLU out,out,3

SUB r,out,in

LDOU out,$1,0

SUB $1,$1,$0

NEG m,0,1

SRU m,m,in

LDOU in,$0,0

PUT rM,m

NEG mm,0,1

BN r,1F

NEG l,64,r

SLU tt,out,r

MUX in,in,tt

BDIF t,ones,in

AND t,t,m

SRU mm,mm,r

PUT rM,mm

JMP 4F

1H NEG l,0,r

INCL r,64

SUB $1,$1,8

SRU out,out,l

MUX in,in,out

BDIF t,ones,in

AND t,t,m

SRU mm,mm,r

PUT rM,mm

PBZ t,2F

JMP 5F

3H MUX out,tt,out

STOU out,$0,$1

2H SLU out,in,l

LDOU in,$0,8

INCL $0,8

BDIF t,ones,in

4H SRU tt,in,r

PBZ t,3B

SRU mm,t,r

MUX out,tt,out

BNZ mm,1F

STOU out,$0,$1

5H INCL $0,8

SLU out,in,l

SLU mm,t,l

1H LDOU in,$0,$1

MOR mm,mm,flip

SUBU t,mm,1

ANDN mm,mm,t

MOR mm,mm,flip

SUBU mm,mm,1

PUT rM,mm

MUX in,in,out

STOU in,$0,$1

POP 0

The running time, approximately (n/4 + 4)µ + (n + 40)υ plus the time to POP, is less
than the cost of the trivial code when n ≥ 8 and µ ≥ υ.

25. We assume that register p initially contains the address of the first byte, and that
this address is a multiple of 8. Other local or global registers a, b, . . . have also been
declared. The following solution starts by counting the wyde frequencies first, since
this requires only half as many operations as it takes to count byte frequencies. Then
the byte frequencies are obtained as row and column sums of a 256× 256 matrix.

* Cryptanalysis Problem (CLASSIFIED)

LOC Data_Segment

count GREG @ Base address for wyde counts
LOC @+8*(1<<16) Space for the wyde frequencies

freq GREG @ Base address for byte counts
LOC @+8*(1<<8) Space for the byte frequencies

p GREG @

BYTE "abracadabraa",0,"abc" Trivial test data

106



1.3.2́ ANSWERS TO EXERCISES 107

ones GREG #0101010101010101

LOC #100

2H SRU b,a,45 Isolate next wyde.
LDO c,count,b Load old count.
INCL c,1

STO c,count,b Store new count.
SLU a,a,16 Delete one wyde.
PBNZ a,2B Done with octabyte?































main
loop,
should
run as
fast as
possible

Phase1 LDOU a,p,0 Start here: Fetch the next eight bytes.
INCL p,8

BDIF t,ones,a Test if there’s a zero byte.
PBZ t,2B Do main loop, unless near the end.

2H SRU b,a,45 Isolate next wyde.
LDO c,count,b Load old count.
INCL c,1

STO c,count,b Store new count.
SRU b,t,48

SLU a,a,16

BDIF t,ones,a

PBZ b,2B Continue unless done.

Phase2 SET p,8*255 Now get ready to sum rows and columns.
1H SL a,p,8

LDA a,count,a a← address of row p.
SET b,8*255

LDO c,a,0

SET t,p

2H INCL t,#800

LDO x,count,t Element of column p

LDO y,a,b Element of row p

ADD c,c,x

ADD c,c,y

SUB b,b,8

PBP b,2B

STO c,freq,p

SUB p,p,8

PBP p,1B

POP

How long is “long”? This two-phase method is inferior to a simple one-phase approach
when the string length n is less than 217, but it takes only about 10/17 as much time
as the one-phase scheme when n ≈ 106. A slightly faster routine can be obtained by
“unrolling” the inner loop, as in the next answer.

Another approach, which uses a jump table and keeps the counts in 128 registers,
is worthy of consideration when µ/υ is large.

[This problem has a long history. See, for example, Charles P. Bourne and
Donald F. Ford, “A study of the statistics of letters in English words,” Information
and Control 4 (1961), 48–67.]

26. The wyde-counting trick in the previous solution will backfire if the machine’s
primary cache holds fewer than 219 bytes, unless comparatively few of the wyde counts
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are nonzero. Therefore the following program computes only one-byte frequencies. This
code avoids stalls, in a conventional pipeline, by never using the result of a LDO in the
immediately following instruction.

Start LDOU a,p,0

INCL p,8

BDIF t,ones,a

BNZ t,3F

2H SRU b,a,53

LDO c,freq,b

SLU bb,a,8

INCL c,1

SRU bb,bb,53

STO c,freq,b

LDO c,freq,bb

SLU b,a,16

INCL c,1

SRU b,b,53

STO c,freq,bb

LDO c,freq,b

...

SLU bb,a,56

INCL c,1

SRU bb,bb,53

STO c,freq,b

LDO c,freq,bb

LDOU a,p,0

INCL p,8

INCL c,1

BDIF t,ones,a

STO c,freq,bb

PBZ t,2B

3H SRU b,a,53

LDO c,freq,b

INCL c,1

STO c,freq,b

SRU b,b,3

SLU a,a,8

PBNZ b,3B

POP

Another solution works better on a superscalar machine that issues two instruc-
tions simultaneously:

Start LDOU a,p,0

INCL p,8

BDIF t,ones,a

SLU bb,a,8

BNZ t,3F

2H SRU b,a,53

SRU bb,bb,53

LDO c,freq,b

LDO cc,freqq,bb

SLU bbb,a,16

SLU bbbb,a,24

INCL c,1

INCL cc,1

SRU bbb,bbb,53

SRU bbbb,bbbb,53

STO c,freq,b

STO cc,freqq,bb

LDO c,freq,bbb

LDO cc,freqq,bbbb

SLU b,a,32

SLU bb,a,40

...

SLU bbb,a,48

SLU bbbb,a,56

INCL c,1

INCL cc,1

SRU bbb,bbb,53

SRU bbbb,bbbb,53

STO c,freq,b

STO cc,freqq,bb

LDO c,freq,bbb

LDO cc,freqq,bbbb

LDOU a,p,0

INCL p,8

INCL c,1

INCL cc,1

BDIF t,ones,a

SLU bb,a,8

STO c,freq,bbb

STO cc,freqq,bbbb

PBZ t,2B

3H SRU b,a,53

...

In this case we must keep two separate frequency tables (and combine them at the
end); otherwise an “aliasing” problem would lead to incorrect results in cases where b

and bb both represent the same character.
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27. (a)

t IS $255

n IS $0

new GREG

old GREG

phi GREG

rt5 GREG

acc GREG

f GREG

LOC #100

Main FLOT t,5

FSQRT rt5,t

FLOT t,1

FADD phi,t,rt5

INCH phi,#fff0

FDIV acc,phi,rt5

SET n,1

SET new,1

1H ADDU new,new,old

INCL n,1

CMPU t,new,old

BN t,9F

SUBU old,new,old

FMUL acc,acc,phi

FIXU f,acc

CMP t,f,new

PBZ t,1B

SET t,1

9H TRAP 0,Halt,0

(b)

t IS $255

n IS $0

new GREG

old GREG

phii GREG #9e3779b97f4a7c16

lo GREG

hi GREG

hihi GREG

LOC #100

Main SET n,2

SET old,1

SET new,1

1H ADDU new,new,old

INCL n,1

CMPU t,new,old

BN t,9F

SUBU old,new,old

MULU lo,old,phii

GET hi,rH

ADDU hi,hi,old

ADDU hihi,hi,1

CSN hi,lo,hihi

CMP t,hi,new

PBZ t,1B

SET t,1

9H TRAP 0,Halt,0

Program (a) halts with t = 1 and n = 71; the floating point representation of φ
is slightly high, hence errors ultimately accumulate until φ71/

√
5 is approximated

by F71 + .7, which rounds to F71 + 1. Program (b) halts with t = −1 and n = 94;
unsigned overflow occurs before the approximation fails. (Indeed, F93 < 264 < F94.)

29. The last man is in position 15. The total time before output is . . .

MMIXmasters, please help! What is the neatest program that is analogous to the
solution to exercise 1.3.2–22 in the third edition? Also, what would D. Ingalls do

in the new situation? (Find a trick analogous to his previous scheme, but do not use
self-modifying code.)

An asymptotically faster method appears in exercise 5.1.1–5.

30. Work with scaled numbers, Rn = 10nrn. Then Rn(1/m) = R if and only if
10n/(R+ 1

2
) ≤ m < 10n/(R − 1

2
); thus we find mk+1 = ⌊(2 · 10n − 1)/(2R − 1)⌋.

* Sum of Rounded Harmonic Series

MaxN IS 10

a GREG 0 Accumulator
c GREG 0 2 · 10n
d GREG 0 Divisor or digit
r GREG 0 Scaled reciprocal
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s GREG 0 Scaled sum
m GREG 0 mk

mm GREG 0 mk+1

nn GREG 0 n− MaxN

LOC Data_Segment

dec GREG @+3 Decimal point location
BYTE " ."

LOC #100

Main NEG nn,MaxN-1 n← 1.
SET c,20

1H SET m,1

SR s,c,1 S ← 10n.
JMP 2F

3H SUB a,c,1

SL d,r,1

SUB d,d,1

DIV mm,a,d

4H SUB a,mm,m

MUL a,r,a

ADD s,s,a

SET m,mm k ← k + 1.
2H ADD a,c,m

2ADDU d,m,2

DIV r,a,d

PBNZ r,3B

5H ADD a,nn,MaxN+1

SET d,#a Newline
JMP 7F

6H DIV s,s,10 Convert digits.
GET d,rR

INCL d,’0’

7H STB d,dec,a

SUB a,a,1

BZ a,@-4

PBNZ s,6B

8H SUB $255,dec,3

TRAP 0,Fputs,StdOut

9H INCL nn,1 n← n+ 1.
MUL c,c,10

PBNP nn,1B

TRAP 0,Halt,0

The outputs are respectively 3.7, 6.13, 8.445, 10.7504, 13.05357, 15.356255, 17.6588268,
19.96140681, 22.263991769, 24.5665766342, in 82µ+40659359υ. The calculation would
work for n up to 17 without overflow, but the running time is of order 10n/2. (We
could save about half the time by calculating Rn(1/m) directly when m < 10n/2, and
by using the fact that Rn(mk+1) = Rn(mk − 1) for larger values of m.)

31. LetN = ⌊2·10n/(2m+1)⌋. Then Sn = HN+O(N/10n)+
∑m

k=1
(⌈2·10n/(2k−1)⌉−

⌈2 · 10n/(2k + 1)⌉)k/10n = HN + O(m−1) + O(m/10n)− 1 + 2H2m −Hm = n ln 10 +
2γ − 1 + 2 ln 2 +O(10−n/2) if we sum by parts and set m ≈ 10n/2.
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Our approximation to S10 is ≈ 24.5665766209, which is closer than predicted.

32. To make the problem more challenging, the following ingenious solution due in
part to uses a lot of trickery in order to reduce execution time. Can the reader
squeeze out any more nanoseconds?

MMIXmasters: Please help fill in the blanks! Note, for example, that remainders
mod 7, 19, and 30 are most rapidly computed by FREM; division by 100 can be

reduced to multiplication by 1//100+1 (see exercise 1.3.1́ –19); etc.

[To calculate Easter in years ≤ 1582, see CACM 5 (1962), 209–210. The first
systematic algorithm for calculating the date of Easter was the canon paschalis due to
Victorius of Aquitania (A.D. 457). There are many indications that the sole nontrivial
application of arithmetic in Europe during the Middle Ages was the calculation of
Easter date, hence such algorithms are historically significant. See Puzzles and Para-
doxes by T. H. O’Beirne (London: Oxford University Press, 1965), Chapter 10, for
further commentary; and see the book Calendrical Calculations by E. M. Reingold and
N. Dershowitz (Cambridge Univ. Press, 2001) for date-oriented algorithms of all kinds.]

33. The first such year is A.D. 10317, although the error almost leads to failure in
A.D. 10108 + 19k for 0 ≤ k ≤ 10.

Incidentally, T. H. O’Beirne pointed out that the date of Easter repeats with
a period of exactly 5,700,000 years. Calculations by Robert Hill show that the most
common date is April 19 (220400 times per period), while the earliest and least common
is March 22 (27550 times); the latest, and next-to-least common, is April 25 (42000
times). Hill found a nice explanation for the curious fact that the number of times any
particular day occurs in the period is always a multiple of 25.

34. The following program follows the protocol to within a dozen or so υ ; this is more
than sufficiently accurate, since ρ is typically more than 108, and ρυ = 1 sec. All
computation takes place in registers, except when a byte is input.

* Traffic Signal Problem

rho GREG 250000000 Assume 250 MHz clock rate
t IS $255

Sensor_Buf IS Data_Segment

GREG Sensor_Buf

LOC #100

Lights IS 3 Handle for /dev/lights
Sensor IS 4 Handle for /dev/sensor
Lights_Name BYTE "/dev/lights",0

Sensor_Name BYTE "/dev/sensor",0

Lights_Args OCTA Lights_Name,BinaryWrite

Sensor_Args OCTA Sensor_Name,BinaryRead

Read_Sensor OCTA Sensor_Buf,1

Boulevard BYTE #77,0 Green/red, WALK/DON’T
BYTE #7f,0 Green/red, DON’T/DON’T
BYTE #73,0 Green/red, off/DON’T
BYTE #bf,0 Amber/red, DON’T/DON’T

Avenue BYTE #dd,0 Red/green, DON’T/WALK
BYTE #df,0 Red/green, DON’T/DON’T
BYTE #dc,0 Red/green, DON’T/off
BYTE #ef,0 Red/amber, DON’T/DON’T
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goal GREG 0 Transition time for lights
Main GETA t,Lights_Args Open the files: Fopen(Lights,

TRAP 0,Fopen,Lights "/dev/lights",BinaryWrite)

GETA t,Sensor_Args Fopen(Sensor,

TRAP 0,Fopen,Sensor "/dev/sensor",BinaryRead)

GET goal,rC

JMP 2F

GREG @

delay_go GREG

Delay GET t,rC Subroutine for busy-waiting:
SUBU t,t,goal (N.B. Not CMPU; see below)
PBN t,Delay Repeat until rC passes goal.
GO delay_go,delay_go,0 Return to caller.

flash_go GREG

n GREG 0 Iteration counter
green GREG 0 Boulevard or Avenue
temp GREG

Flash SET n,8 Subroutine to flash the lights:
1H ADD t,green,2*1

TRAP 0,Fputs,Lights DON’T WALK

ADD temp,goal,rho

SR t,rho,1

ADDU goal,goal,t

GO delay_go,Delay

ADD t,green,2*2

TRAP 0,Fputs,Lights (off)
SET goal,temp

GO delay_go,Delay

SUB n,n,1

PBP n,1B Repeat eight times.
ADD t,green,2*1

TRAP 0,Fputs,Lights DON’T WALK

MUL t,rho,4

ADDU goal,goal,t

GO delay_go,Delay Hold for 4 sec.
ADD t,green,2*3

TRAP 0,Fputs,Lights DON’T WALK, amber
GO flash_go,flash_go,0 Return to caller.

Wait GET goal,rC Extend the 18 sec green.
1H GETA t,Read_Sensor

TRAP 0,Fread,Sensor

LDB t,Sensor_Buf

BZ t,Wait Repeat until sensor is nonzero.
GETA green,Boulevard

GO flash_go,Flash Finish the boulevard cycle.
MUL t,rho,8

ADDU goal,goal,t

GO delay_go,Delay Amber for 8 sec.
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GETA t,Avenue

TRAP 0,Fputs,Lights Green light for Berkeley.
MUL t,rho,8

ADDU goal,goal,t

GO delay_go,Delay

GETA green,Avenue

GO flash_go,Flash Finish the avenue cycle.
GETA t,Read_Sensor

TRAP 0,Fread,Sensor Ignore sensor during green time.
MUL t,rho,5

ADDU goal,goal,t

GO delay_go,Delay Amber for 5 sec.
2H GETA t,Boulevard

TRAP 0,Fputs,Lights Green light for Del Mar.
MUL t,rho,18

ADDU goal,goal,t

GO delay_go,Delay At least 18 sec to WALK.
JMP 1B

The SUBU instruction in the Delay subroutine is an interesting example of a case where
the comparison should be done with SUBU, not with CMPU, in spite of the comments in
exercise 1.3.1́ –22. The reason is that the two quantities being compared, rC and goal,
“wrap around” modulo 264.

SECTION 1.4.1́

1. j GREG ;m GREG ;kk GREG ;xk GREG ;rr GREG

GREG @ Base address
GoMax SET $2,1 Special entrance for r = 1
GoMaxR SL rr,$2,3 Multiply arguments by 8.

SL kk,$1,3

LDO m,x0,kk

... (Continue as in ())
5H SUB kk,kk,rr k ← k − r.

PBP kk,3B Repeat if k > 0.
6H GO kk,$0,0 Return to caller.

The calling sequence for the general case is SET $2,r; SET $1,n; GO $0,GoMaxR.

2. j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3 ;rr IS $4

Max100 SET $0,100 Special entrance for n = 100 and r = 1
Max SET $1,1 Special entrance for r = 1
MaxR SL rr,$1,3 Multiply arguments by 8.

SL kk,$0,3

LDO m,x0,kk

... (Continue as in ())
5H SUB kk,kk,rr k ← k − r.

PBP kk,3B Repeat if k > 0.
6H POP 2,0 Return to caller.

In this case the general calling sequence is SET $A1,r; SET $A0,n; PUSHJ $R,MaxR,
where A0 = R + 1 and A1 = R+ 2.

3. Just Sub ...; GO $0,$0,0. The local variables can be kept entirely in registers.
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4. PUSHJ $X,RA has a relative address, allowing us to jump to any subroutine within
±218 bytes of our current location. PUSHGO $X,$Y,$Z or PUSHGO $X,A has an absolute
address, allowing us to jump to any desired place.

5. True. There are 256−G globals and L locals.

6. $5 ← rD and rR ← 0 and rL ← 6. All other newly local registers are also set to
zero; for example, if rL was 3, this DIVU instruction would set $3← 0 and $4← 0.

7. $L← 0, . . . , $4← 0, $5← #abcd0000, rL← 6.

8. Usually such an instruction has no essential impact, except that context switching
with SAVE and UNSAVE generally take longer when fewer marginal registers are present.
However, an important difference can arise in certain scenarios. For example, a subse-
quent PUSHJ $255,Sub followed by POP 1,0 would leave a result in $16 instead of $10.

9. PUSHJ $255,Handler will make at least 32 marginal registers available (because
G ≥ 32); then POP 0 will restore the previous local registers, and two additional instruc-
tions “GET $255,rB; RESUME” will restart the program as if nothing had happened.

10. Basically true. MMIX will start a program with rG set to 255 minus the number
of assembled GREG operations, and with rL set to 2. Then, in the absence of PUSHJ,
PUSHGO, POP, SAVE, UNSAVE, GET, and PUT, the value of rG will never change. The
value of rL will increase if the program puts anything into $2, $3, . . . , or $(rG − 1),
but the effect will be the same as if all registers were equivalent. The only register
with slightly different behavior is $255, which is affected by trip interrupts and used
for communication in I/O traps. We could permute register numbers $2, $3, . . . , $254
arbitrarily in any PUSH/POP/SAVE/UNSAVE/RESUME-free program that does not GET rL
or PUT anything into rL or rG; the permuted program would produce identical results.

The distinction between local, global, and marginal is irrelevant also with respect
to SAVE, UNSAVE, and RESUME, in the absence of PUSH and POP, except that the destina-
tion register of SAVE must be global and the destination register of certain instructions
inserted by RESUME mustn’t be marginal (see exercise 1.4.3́ –14).

11. The machine tries to access virtual address #5ffffffffffffff8, which is just
below the stack segment. Nothing has been stored there, so a “page fault” occurs and
the operating system aborts the program.

(The behavior is, however, much more bizarre if a POP is given just after a SAVE,
because SAVE essentially begins a new register stack immediately following the saved
context. Anybody who tries such things is asking for trouble.)

12. (a) True. (Similarly, the name of the current “working directory” in a UNIX shell
always begins with a slash.) (b) False. But confusion can arise if such prefixes are
defined, so their use is discouraged. (c) False. (In this respect MMIXAL’s structured
symbols are not analogous to UNIX directory names.)

13. Fib CMP $1,$0,2

PBN $1,1F

GET $1,rJ

SUB $3,$0,1

PUSHJ $2,Fib

SUB $4,$0,2

PUSHJ $3,Fib

ADDU $0,$2,$3

PUT rJ,$1

1H POP 1,0

Fib1 CMP $1,$0,2

BN $1,1F

SUB $2,$0,1

SET $0,1

SET $1,0

2H ADDU $0,$0,$1

SUBU $1,$0,$1

SUB $2,$2,1

PBNZ $2,2B

1H POP 1,0

Fib2 CMP $1,$0,1

BNP $1,1F

SUB $2,$0,1

SET $0,0

2H ADDU $0,$0,$1

ADDU $1,$0,$1

SUB $2,$2,2

PBP $2,2B

CSZ $0,$2,$1

1H POP 1,0
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Here Fib2 is a faster alternative to Fib1. In each case the calling sequence has the form
“SET $A,n; PUSHJ $R,Fib...”, where A = R + 1.

14. Mathematical induction shows that the POP instruction in Fib is executed exactly
2Fn+1 − 1 times and the ADDU instruction is executed Fn+1 − 1 times. The instruction
at 2H is performed n− [n 6=0] times in Fib1, ⌊n/2⌋ times in Fib2. Thus the total cost,
including the two instructions in the calling sequence, comes to (19Fn+1−12)υ for Fib,
(4n+ 8)υ for Fib1, and (4⌊n/2⌋+ 12)υ for Fib2, assuming that n > 1.

(The recursive subroutine Fib is a terrible way to compute Fibonacci numbers,
because it forgets the values it has already computed. It spends more than 1022υ units
of time just to compute F100.)

15. n GREG

fn IS n

GREG @

Fib CMP $1,n,2

PBN $1,1F

STO fp,sp,0

SET fp,sp

INCL sp,8*4

STO $0,fp,8

STO n,fp,16

SUB n,n,1

GO $0,Fib

STO fn,fp,24

LDO n,fp,16

SUB n,n,2

GO $0,Fib

LDO $0,fp,24

ADDU fn,fn,$0

LDO $0,fp,8

SET sp,fp

LDO fp,sp,0

1H GO $0,$0,0

The calling sequence is SET n,n; GO $0,Fib; the answer is returned in global register fn.
The running time comes to (8Fn+1 − 8)µ + (32Fn+1 − 23)υ, so the ratio between this
version and the register stack subroutine of exercise 13 is approximately (8µ/υ+32)/19.
(Although exercise 14 points out that we shouldn’t really calculate Fibonacci numbers
recursively, this analysis does demonstrate the advantage of a register stack. Even if
we are generous and assume that µ = υ, the memory stack costs more than twice as
much in this example. A similar behavior occurs with respect to other subroutines,
but the analysis for Fib is particularly simple.)

In the special case of Fib we can do without the frame pointer, because fp is
always a fixed distance from sp. A memory-stack subroutine based on this observation
runs about (6µ/υ + 29)/19 slower than the register-stack version; it’s better than the
version with general frames, but still not very good.

16. This is an ideal setup for a subroutine with two exits. Let’s assume for convenience
that B and C do not return any value, and that they each save rJ in $1 (because they are
not leaf subroutines). Then we can proceed as follows: A calls B by saying PUSHJ $R,B

as usual. B calls C by saying PUSHJ $R,C; PUT rJ,$1; POP 0,0 (with perhaps a different
value of R than used by subroutine A). C calls itself by saying PUSHJ $R,C; PUT rJ,$1;

POP 0,0 (with perhaps a different value of R than used by B). C jumps to A by saying
PUT rJ,$1; POP 0,0. C exits normally by saying PUT rJ,$1; POP 0,2.

Extensions of this idea, in which values are returned and an arbitrary jump address
can be part of the returned information, are clearly possible. Similar schemes apply to
the GO-oriented memory stack protocol of ().

SECTION 1.4.2́

1. If one coroutine calls the other only once, it is nothing but a subroutine; so we
need an application in which each coroutine calls the other in at least two distinct
places. Even then, it is often easy to set some sort of switch or to use some property
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of the data, so that upon entry to a fixed place within one coroutine it is possible to
branch to one of two desired places; again, nothing more than a subroutine would be
required. Coroutines become correspondingly more useful as the number of references
between them grows larger.

2. The first character found by In would be lost.

3. This is an MMIXAL trick to make OutBuf contain fifteen tetrabytes TETRA ’ ’,
followed by TETRA #a, followed by zero; and TETRA ’ ’ is equivalent to BYTE 0,0,0,’ ’.
The output buffer is therefore set up to receive a line of 16 three-character groups
separated by blank spaces.

4. If we include the code
rR_A GREG

rR_B GREG

GREG @

A GET rR_B,rR

PUT rR,rR_A

GO t,a,0

B GET rR_A,rR

PUT rR,rR_B

GO t,b,0

then A can invoke B by “GO a,B” and B can invoke A by “GO b,A”.

5. If we include the code
a GREG

b GREG

GREG @

A GET b,rJ

PUT rJ,a

POP 0

B GET a,rJ

PUT rJ,b

POP 0

then A can invoke B by “PUSHJ $255,B” and B can invoke A by “PUSHJ $255,A”. Notice
the similarity between this answer and the previous one. The coroutines should not
use the register stack for other purposes except as permitted by the following exercise.

6. Suppose coroutine A has something in the register stack when invoking B. Then B

is obliged to return the stack to the same state before returning to A, although B might
push and pop any number of items in the meantime.

Coroutines might, of course, be sufficiently complicated that they each do require
a register stack of their own. In such cases MMIX’s SAVE and UNSAVE operations can be
used, with care, to save and restore the context needed by each coroutine.

SECTION 1.4.3́

1. (a) SRU x,y,z; BYTE 0,1,0,#29 . (b) PBP x,PBTaken+@-O; BYTE 0,3,0,#50 .
(c) MUX x,y,z; BYTE 0,1,rM,#29 . (d) ADDU x,x,z; BYTE 0,1,0,#30 .

2. The running time of MemFind is 9υ+(2µ+8υ)C+(3µ+6υ)U+(2µ+11υ)A, where
C is the number of key comparisons on line 042, U = [key 6= curkey], and A = [new
node needed]. The running time of GetReg is µ + 6υ + 6υL, where L = [$k is local].
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If we assume that C = U = A = L = 0 on each call, the time for simulation can be
broken down as follows:

(a) (b) (c)

fetching (lines 105–115) µ+ 17υ µ+ 17υ µ+ 17υ
unpacking (lines 141–153) µ+ 12υ µ+ 12υ µ+ 12υ
relating (lines 154–164) 2υ 2υ 9υ
installing X (lines 174–182) 7υ µ+ 17υ µ+ 17υ
installing Z (lines 183–197) µ+ 13υ 6υ 6υ
installing Y (lines 198–207) µ+ 13υ µ+ 13υ 6υ
destining (lines 208–231) 8υ 23υ 6υ
resuming (lines 232–242) 14υ µ+ 14υ 16υ − π
postprocessing (lines 243–539) µ+ 10υ 11υ 11υ − 4π
updating (lines 540–548) 5υ 5υ 5υ

total 5µ+ 101υ 5µ+ 120υ 3µ+ 105υ − 5π

To these times we must add 6υ for each occurrence of a local register as a source,
plus penalties for the times when MemFind doesn’t immediately have the correct chunk.
In case (b), MemFind must miss on line 231, and again on line 111 when fetching the
following instruction. (We would be better off with two MemFind routines, one for data
and one for instructions.) The most optimistic net cost of (b) is therefore obtained
by taking C = A = 2, for a total running time of 13µ + 158υ. (On long runs of
the simulator simulating itself, the empirical average values per call of MemFind were
C ≈ .29, U ≈ .00001, A ≈ .16.)

3. We have β = γ and L > 0 on line 097. Thus α = γ can arise, but only in
extreme circumstances when L = 256 (see line 268 and exercise 11). Luckily L will
soon become 0 in that case.

4. No problem can occur until a node invades the pool segment, which begins at
address #4000000000000000 ; then remnants of the command line might interfere with
the program’s assumption that a newly allocated node is initially zero. But the data
segment is able to accommodate ⌊(261 − 212 − 24)/(212 + 24)⌋ = 559,670,633,304,293
nodes, so we will not live long enough to experience any problem from this “bug.”

5. Line 218 calls StackRoom calls StackStore calls MemFind; this is as deep as it gets.
Line 218 has pushed 3 registers down; StackRoom has pushed only 2 (since rL = 1
on line 097); StackStore has pushed 3. The value of rL on line 032 is 2 (although
rL increases to 5 on line 034). Hence the register stack contains 3 + 2 + 3 + 2 = 10
unpopped items in the worst case.

The program halts shortly after branching to Error; and even if it were to continue,
the extra garbage at the bottom of the stack won’t hurt anything—we could simply
ignore it. However, we could clear the stack by providing second exits as in exercise
1.4.1́ –16. A simpler way to flush an entire stack is to pop repeatedly until rO equals
its initial value, Stack_Segment.

6. 247 Div DIV x,y,z Divide y by z, signed.
248 JMP 1F

249 DivU PUT rD,x Put simulated rD into real rD.
250 DIVU x,y,z Divide y by z, unsigned.
251 1H GET t,rR

252 STO t,g,8*rR g[rR]← remainder.
253 JMP XDone Finish by storing x.
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7. (The following instructions should be inserted between line 309 of the text and
the Info table, together with the answers to the next several exercises.)

Cswap LDOU z,g,8*rP

LDOU y,res,0

CMPU t,y,z

BNZ t,1F Branch if M8[A] 6= g[rP].
STOU x,res,0 Otherwise set M8[A]← $X.
JMP 2F

1H STOU y,g,8*rP Set g[rP]← M8[A].
2H ZSZ x,t,1 x← result of equality test.

JMP XDone Finish by storing x.

8. Here we store the simulated registers that we’re keeping in actual registers. (This
approach is better than a 32-way branch to see which register is being gotten; it’s also
better than the alternative of storing the registers every time we change them.)

Get CMPU t,yz,32

BNN t,Error Make sure that YZ < 32.
STOU ii,g,8*rI Put the correct value into g[rI].
STOU cc,g,8*rC Put the correct value into g[rC].
STOU oo,g,8*rO Put the correct value into g[rO].
STOU ss,g,8*rS Put the correct value into g[rS].
STOU uu,g,8*rU Put the correct value into g[rU].
STOU aa,g,8*rA Put the correct value into g[rA].
SR t,ll,3

STOU t,g,8*rL Put the correct value into g[rL].
SR t,gg,3

STOU t,g,8*rG Put the correct value into g[rG].
SLU t,zz,3

LDOU x,g,t Set x← g[Z].
JMP XDone Finish by storing x.

9. Put BNZ yy,Error Make sure that Y = 0.
CMPU t,xx,32

BNN t,Error Make sure that X < 32.
CMPU t,xx,rC

BN t,PutOK Branch if X < 8.
CMPU t,xx,rF

BN t,1F Branch if X < 22.
PutOK STOU z,g,xxx Set g[X]← z.

JMP Update Finish the command.
1H CMPU t,xx,rG

BN t,Error Branch if X < 19.
SUB t,xx,rL

PBP t,PutA Branch if X = rA.
BN t,PutG Branch if X = rG.

PutL SLU z,z,3 Otherwise X = rL.
CMPU t,z,ll

CSN ll,t,z Set rL← min(z, rL).
JMP Update Finish the command.

0H GREG #40000
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PutA CMPU t,z,0B

BNN t,Error Make sure z ≤ #3ffff.
SET aa,z Set rA← z.
JMP Update Finish the command.

PutG SRU t,z,8

BNZ t,Error Make sure z < 256.
CMPU t,z,32

BN t,Error Make sure z ≥ 32.
SLU z,z,3

CMPU t,z,ll

BN t,Error Make sure z ≥ rL.
JMP 2F

1H SUBU gg,gg,8 G← G− 1. ($G becomes global.)
STCO 0,g,gg g[G]← 0. (Compare with line 216.)

2H CMPU t,z,gg

PBN t,1B Branch if G < z.
SET gg,z Set rG← z.
JMP Update Finish the command.

In this case the nine commands that branch to either PutOK, PutA, PutG, PutL, or
Error are tedious, yet still preferable to a 32-way switching table.

10. Pop SUBU oo,oo,8

BZ xx,1F Branch if X = 0.
CMPU t,ll,xxx

BN t,1F Branch if X > L.
ADDU t,xxx,oo

AND t,t,lring_mask

LDOU y,l,t y← result to return.
1H CMPU t,oo,ss

PBNN t,1F Branch unless α = γ.
PUSHJ 0,StackLoad

1H AND t,oo,lring_mask

LDOU z,l,t z← number of additional registers to pop.
AND z,z,#ff Make sure z ≤ 255 (in case of weird error).
SLU z,z,3

1H SUBU t,oo,ss

CMPU t,t,z

PBNN t,1F Branch unless z registers not all in the ring.
PUSHJ 0,StackLoad (See note below.)
JMP 1B Repeat until all necessary registers are loaded.

1H ADDU ll,ll,8

CMPU t,xxx,ll

CSN ll,t,xxx Set L← min(X, L+ 1).
ADDU ll,ll,z Then increase L by z.
CMPU t,gg,ll

CSN ll,t,gg Set L← min(L,G).
CMPU t,z,ll

BNN t,1F Branch if returned result should be discarded.
AND t,oo,lring_mask

STOU y,l,t Otherwise set l[(α− 1) mod ρ]← y.
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1H LDOU y,g,8*rJ

SUBU oo,oo,z Decrease α by 1 + z.
4ADDU inst_ptr,yz,y Set inst_ptr← g[rJ] + 4YZ.
JMP Update Finish the command.

Here it is convenient to decrease oo in two steps, first by 8 and then by 8 times z. The
program is complicated in general, but in most cases comparatively little computation
actually needs to be done. If β = γ when the second StackLoad call is given, we
implicitly decrease β by 1 (thereby discarding the topmost item of the register stack).
That item will not be needed unless it is the value being returned, but the latter value
has already been placed in y.

11. Save BNZ yz,Error Make sure YZ = 0.
CMPU t,xxx,gg

BN t,Error Make sure $X is global.
ADDU t,oo,ll

AND t,t,lring_mask

SRU y,ll,3

STOU y,l,t Set $L← L, considering $L to be local.
INCL ll,8

PUSHJ 0,StackRoom Make sure β 6= γ.
ADDU oo,oo,ll

SET ll,0 Push down all local registers and set rL← 0.
1H PUSHJ 0,StackStore

CMPU t,ss,oo

PBNZ t,1B Store all pushed down registers in memory.
SUBU y,gg,8 Set k ← G− 1. (Here y ≡ 8k.)

4H ADDU y,y,8 Increase k by 1.
1H SET arg,ss

PUSHJ res,MemFind

CMPU t,y,8*(rZ+1)

LDOU z,g,y Set z← g[k].
PBNZ t,2F

SLU z,gg,56-3

ADDU z,z,aa If k = rZ+ 1, set z← 256rG + rA.
2H STOU z,res,0 Store z in M8[rS].

INCL ss,8 Increase rS by 8.
BNZ t,1F Branch if we just stored rG and rA.
CMPU t,y,c255

BZ t,2F Branch if we just stored $255.
CMPU t,y,8*rR

PBNZ t,4B Branch unless we just stored rR.
SET y,8*rP Set k ← rP.
JMP 1B

2H SET y,8*rB Set k ← rB.
JMP 1B

1H SET oo,ss rO← rS.
SUBU x,oo,8 x← rO− 8.
JMP XDone Finish by storing x.

(The special registers saved are those with codes 0–6 and 23–27, plus (rG, rA).)
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12. Unsave BNZ xx,Error Make sure X = 0.
BNZ yy,Error Make sure Y = 0.
ANDNL z,#7 Make sure z is a multiple of 8.
ADDU ss,z,8 Set rS← z+ 8.
SET y,8*(rZ+2) Set k ← rZ+ 2. (y ≡ 8k)

1H SUBU y,y,8 Decrease k by 1.
4H SUBU ss,ss,8 Decrease rS by 8.

SET arg,ss

PUSHJ res,MemFind

LDOU x,res,0 Set x← M8[rS].
CMPU t,y,8*(rZ+1)

PBNZ t,2F

SRU gg,x,56-3 If k = rZ+ 1, initialize rG and rA.
SLU aa,x,64-18

SRU aa,aa,64-18

JMP 1B

2H STOU x,g,y Otherwise set g[k]← x.
3H CMPU t,y,8*rP

CSZ y,t,8*(rR+1) If k = rP, set k ← rR+ 1.
CSZ y,y,c256 If k = rB, set k ← 256.
CMPU t,y,gg

PBNZ t,1B Repeat the loop unless k = G.
PUSHJ 0,StackLoad

AND t,ss,lring_mask

LDOU x,l,t x← the number of local registers.
AND x,x,#ff Make sure x ≤ 255 (in case of weird error).
BZ x,1F

SET y,x Now load x local registers into the ring.
2H PUSHJ 0,StackLoad

SUBU y,y,1

PBNZ y,2B

SLU x,x,3

1H SET ll,x

CMPU t,gg,x

CSN ll,t,gg Set rL← min(x, rG).
SET oo,ss Set rO← rS.
PBNZ uu,Update Branch, if not the first time.
BZ resuming,Update Branch, if first command is UNSAVE.
JMP AllDone Otherwise clear resuming and finish.

A straightforward answer

is as good as a kiss of friendship.

— Proverbs 24 : 26
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13. 517 SET xx,0

518 SLU t,t,55 Loop to find highest trip bit.
519 2H INCL xx,1

520 SLU t,t,1

521 PBNN t,2B

522 SET t,#100 Now xx = index of trip bit.
523 SRU t,t,xx t← corresponding event bit.
524 ANDN exc,exc,t Remove t from exc.
525 TakeTrip STOU inst_ptr,g,8*rW g[rW]← inst_ptr.
526 SLU inst_ptr,xx,4 inst_ptr← xx≪ 4.
527 INCH inst,#8000

528 STOU inst,g,8*rX g[rX]← inst+ 263.
529 AND t,f,Mem_bit

530 PBZ t,1F Branch if op doesn’t access memory.
531 ADDU y,y,z Otherwise set y← (y+ z) mod 264,
532 SET z,x z← x.
533 1H STOU y,g,8*rY g[rY]← y.
534 STOU z,g,8*rZ g[rZ]← z.
535 LDOU t,g,c255

536 STOU t,g,8*rB g[rB]← g[255].
537 LDOU t,g,8*rJ

538 STOU t,g,c255 g[255]← g[rJ].

14. Resume SLU t,inst,40

BNZ t,Error Make sure XYZ = 0.
LDOU inst_ptr,g,8*rW inst_ptr← g[rW].
LDOU x,g,8*rX

BN x,Update Finish the command if rX is negative.
SRU xx,x,56 Otherwise let xx be the ropcode.
SUBU t,xx,2

BNN t,1F Branch if the ropcode is ≥ 2.
PBZ xx,2F Branch if the ropcode is 0.
SRU y,x,28 Otherwise the ropcode is 1:
AND y,y,#f y← k, the leading nybble of the opcode.
SET z,1

SLU z,z,y z← 2k.
ANDNL z,#70cf Zero out the acceptable values of z.
BNZ z,Error Make sure the opcode is “normal.”

1H BP t,Error Make sure the ropcode is ≤ 2.
SRU t,x,13

AND t,t,c255

CMPU y,t,ll

BN y,2F Branch if $X is local.
CMPU y,t,gg

BN y,Error Otherwise make sure $X is global.
2H MOR t,x,#8

CMPU t,t,#F9 Make sure the opcode isn’t RESUME.
BZ t,Error

NEG resuming,xx
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CSNN resuming,resuming,1 Set resuming as specified.
JMP Update Finish the command.

166 LDOU y,g,8*rY y← g[rY].
167 LDOU z,g,8*rZ z← g[rZ].
168 BOD resuming,Install_Y Branch if ropcode was 1.
169 0H GREG #C1<<56+(x-$0)<<48+(z-$0)<<40+1<<16+X_is_dest_bit

170 SET f,0B Otherwise change f to an ORI instruction.
171 LDOU exc,g,8*rX

172 MOR exc,exc,#20 exc← third-from-left byte of rX.
173 JMP XDest Continue as for ORI.

15. We need to deal with the fact that the string to be output might be split across
two or more chunks of the simulated memory. One solution is to output eight bytes at
a time with Fwrite until reaching the last octabyte of the string; but that approach
is complicated by the fact that the string might start in the middle of an octabyte.
Alternatively, we could simply Fwrite only one byte at a time; but that would be
almost obscenely slow. The following method is much better:

SimFputs SET xx,0 (xx will be the number of bytes written)
SET z,t Set z← virtual address of string.

1H SET arg,z

PUSHJ res,MemFind

SET t,res Set t← actual address of string.
GO $0,DoInst (See below.)
BN t,TrapDone If error occurred, pass the error to user.
BZ t,1F Branch if the string was empty.
ADD xx,xx,t Otherwise accumulate the number of bytes.
ADDU z,z,t Find the address following the string output.
AND t,z,Mem:mask

BZ t,1B Continue if string ended at chunk boundary.
1H SET t,xx t← number of bytes successfully put.

JMP TrapDone Finish the operation.

Here DoInst is a little subroutine that inserts inst into the instruction stream. We
provide it with additional entrances that will be useful in the next answers:

GREG @ Base address
:SimInst LDA t,IOArgs DoInst to IOArgs and return.

JMP DoInst

SimFinish LDA t,IOArgs DoInst to IOArgs and finish.
SimFclose GETA $0,TrapDone DoInst and finish.
:DoInst PUT rW,$0 Put return address into rW.

PUT rX,inst Put inst into rX.
RESUME 0 And do it.

16. Again we need to worry about chunk boundaries (see the previous answer), but a
byte-at-a-time method is tolerable since file names tend to be fairly short.

SimFopen PUSHJ 0,GetArgs (See below.)
ADDU xx,Mem:alloc,Mem:nodesize

STOU xx,IOArgs

SET x,xx (We’ll copy the file name into this open space.)
1H SET arg,z

PUSHJ res,MemFind
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LDBU t,res,0

STBU t,x,0 Copy byte M[z].
INCL x,1

INCL z,1

PBNZ t,1B Repeat until the string has ended.
GO $0,SimInst Now open the file.

3H STCO 0,x,0 Now zero out the copied string.
CMPU z,xx,x

SUB x,x,8

PBN z,3B Repeat until it is surely obliterated.
JMP TrapDone Pass the result t to the user.

Here GetArgs is a subroutine that will be useful also in the implementation of other
I/O commands. It sets up IOArgs and computes several other useful results in global
registers.

:GetArgs GET $0,rJ Save the return address.
SET y,t y← g[255].
SET arg,t

PUSHJ res,MemFind

LDOU z,res,0 z← virtual address of first argument.
SET arg,z

PUSHJ res,MemFind

SET x,res x← internal address of first argument.
STO x,IOArgs

SET xx,Mem:Chunk

AND zz,x,Mem:mask

SUB xx,xx,zz xx← bytes from x to chunk end.
ADDU arg,y,8

PUSHJ res,MemFind

LDOU zz,res,0 zz← second argument.
STOU zz,IOArgs+8 Convert IOArgs to internal form.
PUT rJ,$0 Restore the return address.
POP 0

17. This solution, which uses the subroutines above, works also for SimFwrite(!).

SimFread PUSHJ 0,GetArgs Massage the input arguments.
SET y,zz y← number of bytes to read.

1H CMP t,xx,y

PBNN t,SimFinish Branch if we can stay in one chunk.
STO xx,IOArgs+8 Oops, we have to work piecewise.
SUB y,y,xx

GO $0,SimInst

BN t,1F Branch if an error occurs.
ADD z,z,xx

SET arg,z

PUSHJ res,MemFind

STOU res,IOArgs Reduce to the previous problem.
STO y,IOArgs+8

ADD xx,Mem:mask,1

JMP 1B
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1H SUB t,t,y Compute the correct number of missing bytes.
JMP TrapDone

SimFwrite IS SimFread ;SimFseek IS SimFclose ;SimFtell IS SimFclose

(The program assumes that no file-reading error will occur if the first Fread was
successful.) Analogous routines for SimFgets, SimFgetws, and SimFputws can be found
in the file sim.mms, which is one of many demonstration files included with the author’s
MMIXware programs.

18. The stated algorithms will work with any MMIX program for which the number of
local registers, L, never exceeds ρ− 1, where ρ is the lring_size.

19. In all three cases the preceding instruction is INCL ll,8, and a value is stored in
location l+ ((oo+ ll) ∧ lring_mask). So we could shorten the program slightly.

20. 560 1H GETA t,OctaArgs

561 TRAP 0,Fread,Infile Input λ into g[255].
562 BN t,9F Branch if end of file.
563 LDOU loc,g,c255 loc← λ.
564 2H GETA t,OctaArgs

565 TRAP 0,Fread,Infile Input an octabyte x into g[255].
566 LDOU x,g,c255

567 BN t,Error Branch on unexpected end of file.
568 SET arg,loc

569 BZ x,1B Start a new sequence if x = 0.
570 PUSHJ res,MemFind

571 STOU x,res,0 Otherwise store x in M8[loc].
572 INCL loc,8 Increase loc by 8.
573 JMP 2B Repeat until encountering a zero.
574 9H TRAP 0,Fclose,Infile Close the input file.
575 SUBU loc,loc,8 Decrease loc by 8.

Also put “OctaArgs OCTA Global+8*255,8” in some convenient place.

21. Yes it is, up to a point; but the question is interesting and nontrivial.

To analyze it quantitatively, let sim.mms be the simulator in MMIXAL, and let
sim.mmo be the corresponding object file produced by the assembler. Let Hello.mmo

be the object file corresponding to Program 1.3.2́ H. Then the command line ‘Hello’
presented to MMIX’s operating system will output ‘Hello, world’ and stop after µ+17υ ,
not counting the time taken by the operating system to load it and to take care of
input/output operations.

Let Hello0.mmb be the binary file that corresponds to the command line ‘Hello’,
in the format of exercise 20. (This file is 176 bytes long.) Then the command line ‘sim
Hello0.mmb’ will output ‘Hello, world’ and stop after 168µ+ 1699υ.

Let Hello1.mmb be the binary file that corresponds to the command line ‘sim
Hello0.mmb’. (This file is 5768 bytes long.) Then the command line ‘sim Hello1.mmb’
will output ‘Hello, world’ and stop after 10549µ+ 169505υ.

Let Hello2.mmb be the binary file that corresponds to the command line ‘sim
Hello1.mmb’. (This file also turns out to be 5768 bytes long.) Then the command line
‘sim Hello2.mmb’ will output ‘Hello, world’ and stop after 789739µ + 15117686υ.

Let Hello3.mmb be the binary file that corresponds to the command line ‘sim
Hello2.mmb’. (Again, 5768 bytes.) Then the command line ‘sim Hello3.mmb’ will
output ‘Hello, world’ if we wait sufficiently long.
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Now let recurse.mmb be the binary file that corresponds to the command line
‘sim recurse.mmb’. Then the command line ‘sim recurse.mmb’ runs the simulator
simulating itself simulating itself simulating itself · · · ad infinitum. The file handle
Infile is first opened at time 3µ + 13υ, when recurse.mmb begins to be read by the
simulator at level 1. That handle is closed at time 1464µ + 16438υ when loading is
complete; but the simulated simulator at level 2 opens it at time 1800µ+ 19689υ, and
begins to load recurse.mmb into simulated simulated memory. The handle is closed
again at time 99650µ+1484347υ, then reopened by the simulated simulated simulator
at time 116999µ + 1794455υ. The third level finishes loading at time 6827574µ +
131658624υ and the fourth level starts at time 8216888µ + 159327275υ.

But the recursion cannot go on forever; indeed, the simulator running itself is
a finite-state system, and a finite-state system cannot produce Fopen–Fclose events
at exponentially longer and longer intervals. Eventually the memory will fill up (see
exercise 4) and the simulation will go awry. When will this happen? The exact answer
is not easy to determine, but we can estimate it as follows: If the kth level simulator
needs nk chunks of memory to load the (k + 1)st level simulator, the value of nk+1 is
at most 4+ ⌈(212 +16+ (212 +24)nk)/2

12⌉, with n0 = 0. We have nk = 6k for k < 30,
but this sequence eventually grows exponentially; it first surpasses 261 when k = 6066.
Thus we can simulate at least 1006065 instructions before any problem arises, if we
assume that each level of simulation introduces a factor of at least 100 (see exercise 2).

22. The pairs (xk, yk) can be stored in memory following the trace program itself,
which should appear after all other instructions in the text segment of the program
being traced. (The operating system will give the trace routine permission to modify
the text segment.) The main idea is to scan ahead from the current location in
the traced program to the next branch or GO or PUSH or POP or JMP or RESUME or
TRIP instruction, then to replace that instruction temporarily in memory with a TRIP

command. The tetrabytes in locations #0, #10, #20, . . . , #80 of the traced program
are changed so that they jump to appropriate locations within the trace routine; then
all control transfers will be traced, including transfers due to arithmetic interrupts.
The original instructions in those locations can be traced via RESUME, as long as they
are not themselves RESUME commands.
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When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

: (colon), 61–62, 65, 80.
" (double-quote), 31, 37, 44, 72, 100.
_ (underscore), 37.
@ (at sign), 15, 35, 38, 81.
$0, 31, 58.
$1, 31, 58.
2ADDU (times 2 and add unsigned), 9.
4ADDU (times 4 and add unsigned), 9.
8ADDU (times 8 and add unsigned), 9.
16ADDU (times 16 and add unsigned), 9.
$255, 34, 40–43, 56, 68, 114.
µ (average memory access time), 22.
φ (golden ratio), 8, 47.
υ (instruction cycle time), 22.

Absolute address, 15.
Absolute difference, 26.
Absolute value, 26, 27.
ACE computer, 65.
ADD, 8.
Addition, 8, 12, 14, 25.
Addition chains, 98.
ADDU (add unsigned), 8.
Adobe Systems, 74.
Ahrens, Wilhelm Ernst Martin Georg, 48.
ALGOL language, 74.
Algol W language, iv.
Alhazen, see Ibn al-Haytham.
Aliasing, 108.
Alignment, 39, 44.
Alpha 21164 computer, 2.
AMD 29000 computer, 2.
AND (bitwise and), 10.
ANDN (bitwise and-not), 10.
ANDNH (bitwise and-not high wyde), 14.
ANDNL (bitwise and-not low wyde), 14.
ANDNMH (bitwise and-not medium high

wyde), 14.
ANDNML (bitwise and-not medium low

wyde), 14.
ANSI: The American National Standards

Institute, 12.
Arabic numerals, 44.
Arabic script, 44, 100.
Arguments, 54.
Arithmetic exceptions, 18, 89.
Arithmetic operators of MMIX, 8–9.
Arithmetic overflow, 6, 7, 18, 25, 27,

65, 84, 95, 109.
Arithmetic status register, 18.
ASCII: American Standard Code for

Information Interchange, iv, 3, 26,
32, 34, 37, 44, 67.

Assembly language for MMIX, 28–44.
Assembly program, 29, 30, 40.
Associative law: (a ◦ b) ◦ c = a ◦ (b ◦ c), 11.
At sign (@), 15, 35, 38, 81.
Atomic instruction, 17.

b(x), 11.
Ball, Walter William Rouse, 48.
Base address, 35, 39.
BDIF (byte difference), 11, 26, 101.
Bertrand, Joseph Louis François,

postulate, 100.
BEV (branch if even), 15.
Bidirectional typesetting, 44.
Bienstock, Daniel, 104.
Big-endian convention: Most significant

byte first, 4–7, 116.
Binary file, 41.

for programs, 90, 92–93, 125.
Binary number system, 4.
Binary operators in MMIXAL, 38.
Binary radix point, 8, 24.
Binary-to-decimal conversion, 37.
BinaryRead mode, 43.
BinaryReadWrite mode, 43.
BinaryWrite mode, 43.
Bit: “Binary digit”, either zero or unity, 2.
Bit difference, 26.
Bit reversal, 26, 97.
Bit vectors, 10.
Bitwise difference, 14.
Bitwise operators of MMIX, 10, 14, 25.
Blank space, 26, 40, 67.
BN (branch if negative), 15.
BNN (branch if nonnegative), 15.
BNP (branch if nonpositive), 15.
BNZ (branch if nonzero), 15.
BOD (branch if odd), 15.
Boolean matrix, 11, 96.
Bootstrap register, 18.
Bourne, Charles Percy, 107.
BP (branch if positive), 15.
Branch operators of MMIX, 15, 85.
BSPEC (begin special data), 62.
Buchholz, Werner, 94.
Byte: An 8-bit quantity, 3, 24, 94.
Byte difference, 11, 26.
BYTE operator, 31, 39.
Byte reversal, 12.
BZ (branch if zero), 15.
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C language, iv, 45.
C++ language, iv.
Cache memory, 17, 22–23, 72, 98, 105, 107.
Calendar, 49.
Calling sequence, 54–56, 60, 68–70.
Carry, 25.
Cauchy, Augustin Louis, 105.
Ceiling, 13.
Character constant, 37.
Chess, 66.
Chung, Fan Rong King ( ), 104.
Chunks, 77, 123.
Clavius, Christopher, 49.
Clipper C300 computer, 2.
Clock register, 19, 76, 112.
CMP (compare), 9.
CMPU (compare unsigned), 9, 113.
Colon (:), 61, 65, 80.
Command line arguments, 31, 90, 125.
Comments, 29.
Commutative law: a ◦ b = b ◦ a, 95.
Comparison operators of MMIX, 9,

13, 25, 113.
Compiler algorithms, 62, 74.
Complement, 10, 24.
Complete MMIX program, 30, 45.
Conditional operators of MMIX, 10, 26.
Conversion operators of MMIX, 13.
Conway, Melvin Edward, 35.
Copying a string, 47.
Coroutines, 66–73.

linkage, 66, 72–73.
Counting bits, 11.
Coxeter, Harold Scott Macdonald, 48.
CRAY I computer, 2.
Crossword puzzle, 50–51.
Cryptanalysis, 47.
CSEV (conditional set if even), 10.
CSN (conditional set if negative), 10.
CSNN (conditional set if nonnegative), 10.
CSNP (conditional set if nonpositive), 10.
CSNZ (conditional set if nonzero), 10.
CSOD (conditional set if odd), 10.
CSP (conditional set if positive), 10.
CSWAP (compare and swap), 17, 91.
CSZ (conditional set if zero), 10.
Current prefix, 61, 65.
Cycle counter, 19.
Cyclic shift, 26.

D_BIT (integer divide check bit), 18.
Dallos, József, 97.
Data segment of memory, 36, 57,

76–77, 81, 117.
Debugging, 64–65, 73, 91.
Decimal constant, 37.
Defined symbol, 37.
Denormal floating point number, 12, 89.
Dershowitz, Nachum (UIAEYXC MEGP), 111.

Dickens, Charles John Huffam, iii.
Dictionaries, iii.
Dijkstra, Edsger Wijbe, 63.
Discrete system simulators, 76.
DIV (divide), 8, 24–25.
Divide check, 8, 18.
Dividend register, 9.
Division, 9, 13, 24–25, 49, 91.

by small constants, 25.
by zero, 18.
converted to multiplication, 25, 111.

DIVU (divide unsigned), 8.
Double-quote ("), 31, 37, 44, 72, 100.
Dull, Brutus Cyclops, 25.
DVWIOUZX, 18, 27, 89, 92.
Dynamic traps, 19.

Easter date, 49.
Emulator, 75.
Enable bits, 18, 85.
Ending a program, 19, 31.
Entrances to subroutines, 52–57, 123.
Epsilon register, 13.
Equivalent of MMIXAL symbol, 38.
Error recovery, 91.
ESPEC (end special data), 62.
Evaluation of powers, 28, 98.
Evans, Arthur, Jr., 74.
Event bits, 18, 85.
Exabyte, 94.
Exceptions, 18, 89.
Execution register, 18.
Exiting from a program, 19, 31.
Exits from subroutines, 52–57, 115.
Exponent of a floating point number, 12.
Exponentiation, 28.
EXPR field of MMIXAL line, 29, 38.
Expression, in MMIXAL, 38.
Extending the sign bit, 7, 9, 95.

f(x), 12.
FADD (floating add), 12.
Fallacies, 95.
Farey, John, 105.

series, 47.
Fascicles, iii.
Fclose operation, 41, 43.
FCMP (floating compare), 13, 98.
FCMPE (floating compare with respect

to epsilon), 13.
FDIV (floating divide), 12.
FEQL (floating equal to), 13, 98.
FEQLE (floating equivalent with respect

to epsilon), 13.
Fgets operation, 42, 43.
Fgetws operation, 42, 43.
Fibonacci, Leonardo, of Pisa.

numbers, 47, 66.
Filters, 71.
Finite fields, 26.
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FINT (floating integer), 13, 23.
FIX (convert floating to fixed), 13.
Fixed point arithmetic, 45.
FIXU (convert floating to fixed unsigned), 13.
Flag bits, 82, 87.
Floating binary number, 12.
Floating point arithmetic, 12–13, 44, 45, 89.
Floating point operators of MMIX, 12–13.
FLOT (convert fixed to floating), 13.
FLOTU (convert fixed to floating unsigned),

13, 97.
Floyd, Robert W, 98.
FMUL (floating multiply), 12.
Fopen operation, 41, 43, 92.
Ford, Donald Floyd, 107.
Forward reference, see Future reference.
Fputs operation, 42, 43, 92.
Fputws operation, 42, 43.
Fraction of a floating point number, 12.
Frame pointer, 58, 115.
Fread operation, 42, 43, 92.
Fredman, Michael Lawrence, 104.
FREM (floating remainder), 13, 23, 44, 111.
Fseek operation, 42, 43.
FSQRT (floating square root), 13.
FSUB (floating subtract), 12.
Ftell operation, 43.
Fuchs, David Raymond, 27, 74.
FUN (floating unordered), 13, 98.
FUNE (floating unordered with respect

to epsilon), 13.
Future reference, 37, 39.
Fwrite operation, 42, 43, 124.

Generalized matrix product, 11, 26.
GET (get from special register), 19, 92.
GETA (get address), 20, 100.
Gigabyte, 94.
Global registers, 16, 34, 58, 65, 79,

80, 84, 92.
Global threshold register, 16.
GO, 15, 26, 53–58.
Gove, Philip Babcock, iii.
Graphical display, 50–51.
Graphics, 11, 26.
GREG (allocate global register), 34–35, 39, 62.

Half-bytes, 24.
Halt operation, 31, 43.
Handles, 41.
Handlers, 18, 65, 89.
Hardy, Godfrey Harold, 105.
Harmonic convergence, 48.
Harmonic series, 48–49.
Haros, C., 105.
Heller, Joseph, 3.
Hello, world, 30–32, 125.
Hennessy, John LeRoy, v.
Hexadecimal constants, 37.

Hexadecimal digits, 3, 24.

Hexadecimal notation, 3, 19.

High tetra arithmetic, 97.

Hill, Robert, 111.

Himult register, 8.

Hints to MMIX, 16–17.

Hitachi SuperH4 computer, 2.

Hofri, Micha (IXTG DKIN), 104.

I_BIT (invalid floating operation bit), 18, 98.

IBM 601 computer, 2.

IBM 801 computer, 2.

Ibn al-Haytham, Abū ‘Alı al-H. asan (=
Alhazen, Í{ÛÔ¿m Ñp Ñ��¿m ÞÀ« Øp), 48.

IEC: The International Electrotechnical
Commission, 3.

IEEE: The Institute of Electrical and
Electronics Engineers.

floating point standard, 12, 89.

Immediate constants, 13–14, 19.

INCH (increase by high wyde), 14.

INCL (increase by low wyde), 14.

INCMH (increase by medium high wyde), 14.

INCML (increase by medium low wyde), 14.

Inexact exception, 18, 89.

Ingalls, Daniel Henry Holmes, 109.

Initialization, 31, 91.
of coroutines, 70.

Infinite floating point number, 12.

int x, 13.

Input-output operations, 19, 31, 40–43, 92.

Instruction, machine language: A code
that, when interpreted by the circuitry
of a computer, causes the computer
to perform some action.

in MMIX, 5–28.
numeric form, 27–29, 44.
symbolic form, 28–40.

Integer overflow, 6, 7, 18, 25, 27, 65,
84, 95, 109.

Intel i960 computer, 2.

Internet, ii, v.

Interpreter, 73–75.

Interrupt mask register, 19.

Interrupt request register, 19.

Interrupts, 18–19, 86, 89, 92.

Interval counter, 19.

Invalid floating operation, 18.

IS, 30, 34, 39.

ISO: The International Organization for
Standardization, 3.

Ivanović, Vladimir Gresham, v.

Iverson, Kenneth Eugene, 11.
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Jacquet, Philippe Pierre, 104.
Java language, iv, 45.
JMP (jump), 15.
Joke, 72.
Josephus, Flavius, son of Matthias

(DIZZN OA SQEI = Fl�bio >I¸shpo

Matj�ou), problem, 48.
Jump operators of MMIX, 15.
Jump table, 86–87.
Jump trace, 93.

Kernel space, 36.
Kernighan, Brian Wilson, 23.
Kilobyte, 24, 94.
KKB (large kilobyte), 94.
Knuth, Donald Ervin ( ), i, v,

45, 65, 74, 89.

LABEL field of MMIXAL line, 29, 38.
Large kilobyte, 94.
Large programs, 63–65.
LDA (load address), 7, 9, 100.
LDB (load byte), 6.
LDBU (load byte unsigned), 7.
LDHT (load high tetra), 7, 24, 97.
LDO (load octa), 6.
LDOU (load octa unsigned), 7.
LDSF (load short float), 13.
LDT (load tetra), 6.
LDTU (load tetra unsigned), 7.
LDUNC (load octa uncached), 17.
LDVTS (load virtual translation status), 17.
LDW (load wyde), 6.
LDWU (load wyde unsigned), 7.
Leaf subroutine, 57, 65, 80.
Library of subroutines, 52, 61, 62, 91.
Lilius, Aloysius, 49.
Linked allocation, 77–78.
Literate programming, 45, 65.
Little-endian convention: Least significant

byte first, see Bidirectional typesetting,
Byte reversal.

Loader, 36.
Loading operators of MMIX, 6–7.
LOC (change location), 30, 39.
LOCAL (guarantee locality), 62.
Local registers, 16, 58, 65, 80, 84, 92.

ring of, 76, 79–81, 92.
Local symbols, 35–37, 43.
Local threshold register, 16.
Loop optimization, 115.

m(x), 11.
Machine language, 2.
Magic squares, 47–48.
Main location, 31, 91.
Marginal registers, 16, 58, 65, 80, 84, 97.
Matrix: A two-dimensional array, 46, 106.
Matrix multiplication, generalized, 11, 26.

Maximum, 26.
subroutine, 28–29, 52–56.

Megabyte, 24, 94.
MemFind subroutine, 77–78, 91, 116–117.
Memory: Part of a computer system

used to store data, 4–6.
address, 6.
hierarchy, 17, 22–23, 72, 98, 105, 107.

Memory stack, 57–58, 115.
Mems: Memory accesses, 22.
Meta-simulator, 22–23, 47, 76.
METAPOST language, 51.
Minimum, 26.
Minus zero, 13.
MIPS 4000 computer, 2.
MIX computer, iv.
.mmb (MMIX binary file), 125.
MMB (Large megabyte), 94.
MMIX computer, iv, 2–28.
MMIX simulator, 22–23, 30.

in MMIX, 75–93.
MMIXAL: MMIX Assembly Language,

28–44, 61–62.
MMIXmasters, v, 51, 105, 111.
MMIXware document, 2.
.mmo (MMIX object file), 30, 125.
.mms (MMIX symbolic file), 30, 125.
MOR (multiple or), 12, 23, 26.
Motorola 88000 computer, 2.
Move-to-front heuristic, 77–78.
Mu (µ), 22.
MUL (multiply), 8.
Multipass algorithms, 70–72, 74.
Multiple entrances, 56, 123.
Multiple exits, 56–57, 60, 115.
Multiplex mask register, 11.
Multiplication, 8, 12, 25, 85.

by small constants, 9, 25.
Multiway decisions, 45, 46, 82, 86–88, 119.
MULU (multiply unsigned), 8, 25.
Murray, James Augustus Henry, iii.
MUX (multiplex), 11.
MXOR (multiple exclusive-or), 12, 23, 26.

NaN (Not-a-Number), 12, 98.
NAND (bitwise not-and), 10.
NEG (negate), 9.
Negation, 9, 24.
NEGU (negate unsigned), 9.
Newline, 32, 42.
NNIX operating system, 28, 31.
No-op, 21, 28.
Nonlocal goto statements, 66, 91, 117.
NOR (bitwise not-or), 10.
Normal floating point number, 12.
Not-a-Number, 12, 98.
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Notational conventions:
b(x), 11.
f(x), 12.
int x, 13.
m(x), 11.
s(x), 6, 24.
t(x), 11.
u(x), 6, 24.
v(x), 10.
v̄(x), 10.
w(x), 11.
x

.
− y, 11.

x ≫ y, 9.
x ≪ y, 9.
x ∧ y, 10.
x ∨ y, 10.
x ⊕ y, 10.
x rem y, 13.
XYZ, 6.
YZ, 5–6.

NXOR (bitwise not-exclusive-or), 10.
Nybble: A 4-bit quantity, 24.
Nyp: A 2-bit quantity, 94.

O_BIT (floating overflow bit), 18.
O’Beirne, Thomas Hay, 111.
Object file, 30–31, 125.
Octa: Short form of “octabyte”, 4.
OCTA operator, 39.
Octabyte: A 64-bit quantity, 4.
ODIF (octa difference), 11, 102.
Oops, 22.
OP field of MMIXAL line, 29, 38.
Opcode: Operation code, 5, 19.

chart, 20.
Operands, 5, 83–84.
Operating system, 28, 36, 40–43.
Optimization of loops, 47.
OR (bitwise or), 10.
ORH (bitwise or with high wyde), 14.
ORL (bitwise or with low wyde), 14.
ORMH (bitwise or with medium high

wyde), 14.
ORML (bitwise or with medium low wyde), 14.
ORN (bitwise or-not), 10.
Overflow, 6, 7, 18, 25, 27, 65, 84, 95, 109.
Oxford English Dictionary, iii.

Packed data, 82, 87–88.
Page fault, 114.
Parameters, 54.
Parity, 26.
Pascal language, iv.
Pass, in a program, 70–72.
Patt, Yale Nance, 98.
PBEV (probable branch if even), 16.
PBN (probable branch if negative), 15.
PBNN (probable branch if nonnegative), 15.
PBNP (probable branch if nonpositive), 16.

PBNZ (probable branch if nonzero), 16.
PBOD (probable branch if odd), 15.
PBP (probable branch if positive), 15.
PBZ (probable branch if zero), 15.
Petabyte, 94.
Phi (φ), 8, 47.
Pipe, 71.
Pipeline, 22, 47, 76, 98.
Pixel values, 11, 26.
PL/360 language, 45.
PL/MMIX language, 45, 63.
Pool segment of memory, 36, 117.
POP (pop registers and return), 16,

53, 59, 73, 92.
Population counting, 11.
PostScript language, 74.
POWER 2 computer, 2.
Power of number, evaluation, 28.
Predefined symbols, 36–38, 43.
Prediction register, 17.
PREFIX specification, 61–62, 65, 77–78, 80.
Prefetching, 17, 22.
Prefixes for units of measure, 94.
PREGO (prefetch to go), 17.
PRELD (preload data), 17.
PREST (prestore data), 17.
Primary, in MMIXAL, 38.
Prime numbers, program to compute,

32–34, 37.
Privileged instructions, 46, 76.
Probable branch, 15–16, 22, 26, 85.
Profile of a program: The number of

times each instruction is performed,
29, 31, 93, 98.

Program construction, 63–65.
Programming languages, iv, 63.
Pseudo-operations, 30–31.
Purdy, Gregor Neal, 94.
PUSHGO (push registers and go), 16,

65, 73, 85–86.
PUSHJ (push registers and jump), 16,

53, 59, 73, 85–86.
PUT (put into special register), 19, 92.

Quick, Jonathan Horatio, 44.

rA (arithmetic status register), 18, 28.
RA (relative address), 15.
Radix point, 8, 24.
Randell, Brian, 74.
Randolph, Vance, 28.
Rational numbers, 47.
rB (bootstrap register for trips), 18.
rBB (bootstrap register for traps), 18.
rC (cycle counter), 19, 112.
rD (dividend register), 9.
rE (epsilon register), 13.
Reachability, 51.
Read-only access, 36.
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Recursive use of subroutines, 57, 66,
125–126.

Register $0, 31, 58.
Register $1, 31, 58.
Register $255, 34, 40–43, 56, 68, 114.
Register number, 34, 58.
Register stack, 16, 58–61, 65–66, 70, 73,

78–81, 84–86, 115.
Register stack offset, 17.
Register stack pointer, 17.
Registers: Portions of a computer’s

internal circuitry in which data is
most accessible.

of MMIX, 4–5, 21, 23, 76, 79.
saving and restoring, 55; see also

SAVE, UNSAVE.
Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 111.
Relative addresses, 15–16, 20, 30, 83, 87, 99.
Remainder, 8, 13, 49.
Remainder register, 8.
Replicated coroutines, 72.
Reprogramming, 75.
RESUME (resume after interrupt), 19,

84, 92, 114, 126.
Return-jump register, 16.
Reversal of bits and bytes, 12, 26, 97.
Rewinding a file, 42.
Rewrites, v, 64.
rG (global threshold register), 16, 58, 92.
rH (himult register), 8, 28, 85, 94.
rI (interval counter), 19.
Ring of local registers, 76, 79–81, 92.
RISC: Reduced Instruction Set

Computer, 24.
RISC II computer, 2.
rJ (return-jump register), 16, 60, 80, 81.
rK (interrupt mask register), 19, 90–91.
rL (local threshold register), 16, 28, 58,

79, 92, 97, 117.
rM (multiplex mask register), 11.
rN (serial number), 19.
rO (register stack offset), 17, 79.
Rokicki, Tomas Gerhard, 74.
Roman numerals, 2, 3.
Ropcodes, 19, 92.
ROUND_DOWN mode, 13.
ROUND_NEAR mode, 13, 37.
ROUND_OFF mode, 13.
ROUND_UP mode, 13.
Rounding, 13, 18, 47, 48.
Row major order, 46.
rP (prediction register), 17.
rQ (interrupt request register), 19.
rR (remainder register), 8.
rS (register stack pointer), 17, 79.
rT (trap address register), 18, 90–91.
rTT (dynamic trap address register),

19, 90–91.

rU (usage counter), 19.
Running time, 20–23.
Russell, Lawford John, 74.
rV (virtual translation register), 20, 90–91.
rW (where-interrupted register for trips), 18.
rWW (where-interrupted register for

traps), 18.
rX (execution register for trips), 18.
rXX (execution register for traps), 18.
rY (Y operand register for trips), 18.
rYY (Y operand register for traps), 18.
rZ (Z operand register for trips), 18.
rZZ (Z operand register for traps), 18.

s(x), 6, 24.
SADD (sideways add), 11.
Saddle point, 46.
Saturating addition, 26.
Saturating subtraction, 11.
SAVE (save process state), 16, 61, 92,

114, 116.
Saving and restoring registers, 55; see

also SAVE, UNSAVE.
Scalar variables, 61.
Schäffer, Alejandro Alberto, 104.
Segments of user space, 36.
Self-modifying code, iv, 28, 93.
Self-organizing list search, 77–78.
Self-reference, 126, 132.
Sequential array allocation, 46.
Serial number register, 19.
SET, 14, 99.
Set difference, 25.
Set intersection, 25.
Set union, 25.
SETH (set high wyde), 14.
SETL (set low wyde), 14, 100.
SETMH (set medium high wyde), 14, 97.
SETML (set medium low wyde), 14.
SFLOT (convert fixed to short float), 13.
SFLOTU (convert fixed to short float

unsigned), 13.
Shift operators of MMIX, 9.
Shor, Peter Williston, 104.
Short float format, 12–13.
Sideways addition, 11.
Sign extension, 7, 9, 95.
Sign of floating point number, 12.
Signed integers, 4, 6–7, 25.
Sikes, William, iii.
Simon, Marvin Neil, v.
Simulation of computers, 75–76.
Sites, Richard Lee, v.
SL (shift left), 9, 25.
SLU (shift left unsigned), 9, 25.
Small constant numbers, 9, 13.

division by, 25.
multiplication by, 9, 25.

Sparc 64 computer, 2.
Special registers of MMIX, 5, 19, 21, 76, 118.
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Square root, 13.
SR (shift right), 9, 25.
SRU (shift right unsigned), 9, 25.
Stack offset register, 79.
Stack operators of MMIX, 16–17.
Stack pointer register, 57–58, 79.
Stack segment of memory, 36, 61, 114, 117.
Stacks, see Memory stack, Register stack.
Stalling a pipeline, 108.
Standard error file, 41.
Standard input file, 41.
Standard output file, 31, 41.
Starting a program, 31, 70, 91.
STB (store byte), 7.
STBU (store byte unsigned), 8.
STCO (store constant octabyte), 8.
StdErr (standard error file), 41.
StdIn (standard input file), 41.
StdOut (standard output file), 30–31, 41.
STHT (store high tetra), 8, 24, 97.
STO (store octa), 7.
Storing operators of MMIX, 7–8.
STOU (store octa unsigned), 8.
Stretch computer, 94.
String constant in MMIXAL, 31, 37, 100.
String manipulation, 26, 47.
Strong binary operators, 38.
StrongArm 110 computer, 2.
Structured symbols, 61–62, 65, 77–78, 80.
STSF (store short float), 13.
STT (store tetra), 7.
STTU (store tetra unsigned), 8.
STUNC (store octa uncached), 17.
STW (store wyde), 7.
STWU (store wyde unsigned), 8.
SUB (subtract), 8.
Subroutines, 30, 45, 52–70, 75, 77–81, 92.

linkage of, 52–61.
Subsets, representation of, 25.
Subtraction, 8, 12, 25.
SUBU (subtract unsigned), 8.
Superscalar machine, 108.
Suri, Subhash (s� BAq s

�

rF), 104.
Switching tables, 45, 46, 82, 86–88, 119.
SWYM (sympathize with your machinery), 21.
SYNC (synchronize), 17, 86.
SYNCD (synchronize data), 17.
SYNCID (synchronize instructions and

data), 17, 28.
System operators of MMIX, 17.
System/360 computer, 45.

t(x), 11.
Table-driven computation, 45, 46, 82,

86–88, 119.
TDIF (tetra difference), 11.
Terabyte, 94.
Term, in MMIXAL, 38.
Terminating a program, 19, 31.

Tetra: Short form of “tetrabyte”, 4.

Tetra difference, 11.

TETRA operator, 39, 72.

Tetrabyte: A 32-bit quantity, 4.

Tetrabyte arithmetic, 27.

TEX, 65, 74–75.

Text file, 41.

Text segment of memory, 36, 77, 81.

TextRead mode, 43.

TextWrite mode, 43.

Threads, 72.

Trace routine, 64, 93.

Traffic signals, 50.

TRAP (force trap interrupt), 18–19, 40, 86–87.

Trap address register, 18.

Trap handlers, 18–19.

TRIP (force trip interrupt), 18, 86.

Trip handlers, 18, 89.

Trip interrupts, 65, 92.

Turing, Alan Mathison, 65.

Twist, Oliver, iii.

Two’s complement notation, 4, 24.

u(x), 6, 24.

U_BIT (floating underflow bit), 18, 85, 89.

U_Handler: Address of an underflow trip, 89.

UCS: Universal Multiple-Octet Coded
Character Set, 3.

Underflow, 18, 89.

Underscore (_), 37.

Unicode, 3, 26, 37, 44.

Units of measure, 94.

UNIVAC I computer, 35.

UNIX operating system, 71, 114.

Unpacking, 82.

Unrolling a loop, 107.

UNSAVE (restore process state), 16, 61,
90, 92, 116.

Unsigned integers, 4, 6–8.

Upsilon (υ), 22.

Usage counter, 19.

User space, 36.

v(x), v̄(x), 10.

V_BIT (integer overflow bit), 18.

Valid MMIX instruction, 46.

Van Wyk, Christopher John, 23.

Vector, 10.

Victorius of Aquitania, 111.

Virtual address translation, 17.

Virtual machine, 73.

Virtual translation register, 20.
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w(x), 11.
W_BIT (float-to-fix overflow bit), 18.
W_Handler: Address of a float-to-fix

overflow trip, 37.
WDIF (wyde difference), 11.
Weak binary operators, 38.
Webster, Noah, iii.
Where-interrupted register, 18.
Whitespace character, 67.
Wide strings, 42.
Wilson, George Pickett, 28.
Wirth, Niklaus Emil, 45, 63.
Wordsworth, William, 24.
Wright, Edward Maitland, 105.
Wyde: A 16-bit quantity, 4.
Wyde difference, 11.
Wyde immediate, 14.
WYDE operator, 39.

X field of MMIX instruction, 5.
X_BIT (floating inexact bit), 18, 89.
XOR (bitwise exclusive-or), 10.
XYZ field of MMIX instruction, 6.

Y field of MMIX instruction, 5.
Y operand register, 18.
Yoder, Michael Franz, 95.
Yossarian, John, 3.
Yottabyte, 94.
YZ field of MMIX instruction, 5–6.

Z field of MMIX instruction, 5.
as immediate constant, 14.

Z operand register, 18.
Z_BIT (floating division by zero bit), 18.
Zero or set instructions of MMIX, 10.
Zettabyte, 94.
ZSEV (zero or set if even), 10.
ZSN (zero or set if negative), 10.
ZSNN (zero or set if nonnegative), 10.
ZSNP (zero or set if nonpositive), 10.
ZSNZ (zero or set if nonzero), 10.
ZSOD (zero or set if odd), 10.
ZSP (zero or set if positive), 10.
ZSZ (zero or set if zero), 10.

134



ASCII CHARACTERS

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #c #d #e #f

#2x ! " # $ % & ’ ( ) * + , - . / #2x

#3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? #3x

#4x @ A B C D E F G H I J K L M N O #4x

#5x P Q R S T U V W X Y Z [ \ ] ^ _ #5x

#6x ‘ a b c d e f g h i j k l m n o #6x

#7x p q r s t u v w x y z { | } ~ #7x

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #c #d #e #f

MMIX OPERATION CODES

#0 #1 #2 #3 #4 #5 #6 #7

TRAP 5υ FCMP υ FUN υ FEQL υ FADD 4υ FIX 4υ FSUB 4υ FIXU 4υ
#0x #0x

FLOT[I] 4υ FLOTU[I] 4υ SFLOT[I] 4υ SFLOTU[I] 4υ

FMUL 4υ FCMPE 4υ FUNE υ FEQLE 4υ FDIV 40υ FSQRT 40υ FREM 4υ FINT 4υ
#1x #1x

MUL[I] 10υ MULU[I] 10υ DIV[I] 60υ DIVU[I] 60υ

ADD[I] υ ADDU[I] υ SUB[I] υ SUBU[I] υ
#2x #2x

2ADDU[I] υ 4ADDU[I] υ 8ADDU[I] υ 16ADDU[I] υ

CMP[I] υ CMPU[I] υ NEG[I] υ NEGU[I] υ
#3x #3x

SL[I] υ SLU[I] υ SR[I] υ SRU[I] υ

BN[B] υ+π BZ[B] υ+π BP[B] υ+π BOD[B] υ+π
#4x #4x

BNN[B] υ+π BNZ[B] υ+π BNP[B] υ+π BEV[B] υ+π

PBN[B] 3υ−π PBZ[B] 3υ−π PBP[B] 3υ−π PBOD[B] 3υ−π
#5x #5x

PBNN[B] 3υ−π PBNZ[B] 3υ−π PBNP[B] 3υ−π PBEV[B] 3υ−π

CSN[I] υ CSZ[I] υ CSP[I] υ CSOD[I] υ
#6x #6x

CSNN[I] υ CSNZ[I] υ CSNP[I] υ CSEV[I] υ

ZSN[I] υ ZSZ[I] υ ZSP[I] υ ZSOD[I] υ
#7x #7x

ZSNN[I] υ ZSNZ[I] υ ZSNP[I] υ ZSEV[I] υ

LDB[I] µ+υ LDBU[I] µ+υ LDW[I] µ+υ LDWU[I] µ+υ
#8x #8x

LDT[I] µ+υ LDTU[I] µ+υ LDO[I] µ+υ LDOU[I] µ+υ

LDSF[I] µ+υ LDHT[I] µ+υ CSWAP[I] 2µ+2υ LDUNC[I] µ+υ
#9x #9x

LDVTS[I] υ PRELD[I] υ PREGO[I] υ GO[I] 3υ

STB[I] µ+υ STBU[I] µ+υ STW[I] µ+υ STWU[I] µ+υ
#Ax #Ax

STT[I] µ+υ STTU[I] µ+υ STO[I] µ+υ STOU[I] µ+υ

STSF[I] µ+υ STHT[I] µ+υ STCO[I] µ+υ STUNC[I] µ+υ
#Bx #Bx

SYNCD[I] υ PREST[I] υ SYNCID[I] υ PUSHGO[I] 3υ

OR[I] υ ORN[I] υ NOR[I] υ XOR[I] υ
#Cx #Cx

AND[I] υ ANDN[I] υ NAND[I] υ NXOR[I] υ

BDIF[I] υ WDIF[I] υ TDIF[I] υ ODIF[I] υ
#Dx #Dx

MUX[I] υ SADD[I] υ MOR[I] υ MXOR[I] υ

SETH υ SETMH υ SETML υ SETL υ INCH υ INCMH υ INCML υ INCL υ
#Ex #Ex

ORH υ ORMH υ ORML υ ORL υ ANDNH υ ANDNMH υ ANDNML υ ANDNL υ

JMP[B] υ PUSHJ[B] υ GETA[B] υ PUT[I] υ
#Fx #Fx

POP 3υ RESUME 5υ [UN]SAVE 20µ+υ SYNC υ SWYM υ GET υ TRIP 5υ

#8 #9 #A #B #C #D #E #F

π = 2υ if the branch is taken, π = 0 if the branch is not taken


