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ABSTRACT

This paﬁer makes contributions to the structure theory of finite
éemifields, i,e., of finite nonassociative division algebras with unit.
It is shown that a semifield may be conveniently represented as a
3-dimensional array of numbers, and that metrix multiplicafions
applied to each of the three dimensions correspond to the concept of
isotopy. The six permutations of three coordinates yield a(new way
to obtain projective planes fronm é given plane. OSeveral new classes
of semifields are constructea; in particular one class, called the
binary semifields, provides an affirmative answer to the conjecture
that there exist non-Desarguesian projective planes of all orders
28,.if n is greater than 3, With the advent of binary semifields,
the gap between necessary and sufficient conditions on the possiﬁle

orders of semifields has disappeared.
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I. INTRODUCTION

In'this paper, the term semifield is used to describe an
algebfaic system which satisfies all properties of a field except
for the commutativity and associativity of multiplication., Semifields
are of special interest today because the projective planes constructed
from them have rather remarkable properties.

It is easy to show that the order of a proper semifield, i.e., a
finite semifield which is not a field, must be p", where p is a
prime, n is an integer greater than 2, and p® is greater than 8.
But the question whether such systems exist for all p" meeting these
requirements has been in doubt for many years.

Various constructions of proper semifields have appeared in the
liferature; the earliest works in this area gave many constructions
for odd primes p and eventually the existence of proper semifields

for all possible orders p"

was known, as long as p was odd.
Constructions appeared later for the case 2%, but in every case the
exponent n was composite. Therefore, the existence of proper semie
fields of order 2%, where g is a prime number greater than 3, was
still in doubt., In fact, no projective planes of these orders 29
were known, except for the Desarguesian planes derived from a field.
But this question is settled in Section VIII of the present paper,

wvhere a class of proper semifields including all of the missing orders

is exhibited.
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This paper is esseﬁtially self-contained; the theory of semifields
is developed from the beginning, requiring no previous familiarity with
the subject on the part of the reader. Section IT contains a review
of the basic definitions and theory of semifields, along with illustra-
tions of some.interesting semifields of order 16.

in Section I1II, we describe a "homogeneous” notation for represent-
ing points and lines of an arbitrary projective plane in terms of its
- ternary ring. The concept of isotopy is generalized to apply ﬁo
arbitrary ternary rings, and a simple method for mechanically con-
structing all ternary rings isotopic to a given one is presented. OSome
known theorems about collineations of planes, and of semifield planes
in particular, are proved concisely using the homogeneous notation.
Finally, the question of whether a nonlinear "isotopy" can yield new
semifields is considered. |

Cubical arrays of numbers, of arbitrary finite dimension, ‘are the
subﬁect of Section IV. First, operations of transposition and multi-
plication are discussed. Then the notion of a nonsingular hypercube
is introduced. Semifields are shown to be equivalent to a certain {ype
of 3-dimensional cubical array, and the projective planes coordinatized
by semifields are in 1-1 correspondence with equivalence classes of
nonsingular 3-cubes.

By transposition of a 3-cube, up to five new projective planes can
be constructed from a single semifield plane. This construction is the
topic of Séction V. By exhibiting all of the semifield planes of order
32, with their interrelations and collineation groups, we give examples

of transposed planes,
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The finite semifields which have appeared in the literature are
surveyed in Section VI, including a discussion of all semifields of
order 16; of some commutative semifields due to Dickson; of the twisted
fields due to Albert; and of seminuclear extensions due to Sandler.

A general class of quadratic extensions is considered iﬂ Secfion
VII, in which the semifield is a vector space of dimension 2 over a
so=called weak nucleus F. In particular, all guadratic eitenéions
of F, for which F 1is equal to any two of the nuclei, are con-
structed, thus generalizing a result due to Hughes and Kleinfeld.'

The last section deals with binary semifields, a new class of
semifields of orders 2%, where n# 3 and n # 2™, It is shown
that many of these systems of the same order are isotopic. Some of
these systems having B automorphisms are exhibitéd, and the autotopism
groups are partiallybdetermined.

The symbol "I" will be used throughout this paper to mean:-
"This completes the proof of the theorem," or ."This is all the proof

of the theorem which will be given here."

The most interesting results of this paper are found perhaps in
theorems 3.3.1, 3.3.2, 3.3.h4, k.b,2, k.5.,2, 5.1.1, 5.2.1, 7.2.1,

7.4.1, 8.2.1, 8.4.2, and 8.5.1.



IT. SEMIFIELDS AND PRE-SEMIFIELDS,

We are concerned with a certain type of algebraic systeﬁ, célled
a semifield. Such a system has several names in the literature, where
it is called, for example, a "nonassociative division ring" or a
"distributive quasifield." Since these terms are somewhat lengthy,
and since we make frequent reference to such systems in this paper,

the more convenient name semifield will be used.

2.1, Definition of semifield. A finite semifield S 1is a finite

algebraic system containing at least two elements; S possesses
two binary opergtions, addition and multiplication, which satisfy the
following axioms,

Al. Addition is a group, with identity element O,

A2, If &b =0, then either a =0 or b = 0.

A3. a(b+ ¢) =ab + ac; f{a+ ble = ac + bc.

Ab. There is an element 1 in S such that la = al = a.
Throughout this paper, the term semifield will always Dbe ﬁsedbto denote
a finite semifield. The definition given here would actually be
insufficient to define infinite semifields, for the stronger condition
that the equations ax =b and ya = b are uniquely solvable for
X,y would necessarily replace axiom A2, Notice that a semifield
is much like a field, except that multiplication of nonzerc elements

is required to be merely a loop instead of a group.
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Every field is a semifield; the term proper semifield will mean

a semifield which is not a field; i.e., there exist elements a,b,c

such that (ab)c # a(be) in a proper semifield.

2.2. Examples. The following remarkable system V is a proper gemi-

field with 16 elements: Let F ©be the field GF(4), so that F has
the elements 0, 1, w,w2 = 1+w,., The elements of V are of the form

u+ Av, vhere u,v ¢ F, Addition is defined in an obvious way:
(u+rv) + (x+Xy) = (utv) + A(x+y) ‘ (2.1)

using the addition of F, Multiplication is also defined in terms of

the multiplication and addition of F, wusing the following rule:

(u+ Av)(x + Ay) = (ux + v2y) + Ar(vx + uly + v3y2). (2.2}

It is clear that F is embedded in V, and also that Al, A3, and
Al hold. To demonstrate A2, suppose that (u + Av)(x + Av) = 0,
Then, in particular, ux + v2y = 0, soO that, if neither of the

original factors is zero, there is a nonzero element =z € F, such that

X = zv%, ¥y = zu.
Then v + u?y + v2y2 = zv3 + zud + z2u?v? = 0.
But this isiimpossible in F, unless u=v =0,
V is certainly a proper semifield, since V is not commutative.
But there is still a good deal of associativity present in Vi in
fact (ab)e = a{bec) if any two of a,b,c are in F.

The remarkable property of V is that it possesses 6 sutomor—-

phisms, while the field of 16 elements possesses only 4. The



auntomorphisms oj; are given by:
(u+ Avlagy = wl + detvd for i =0,1,2; § =1,2.
(No other semifield of order 16 has as many automorphisms.) V is
also anti-isomorphic to itself, under the mapping (u + Av)T = u + AvZ,
Other examples of semifields which have properties in cémmon‘with
V will be discussed later. We will remark here, however, that if

we had defined multiplication by the rule
(u + Av)(x + ry) = (ux + @v2y) + A(vx + u2y) (2.3)

rather than as in (2.1l), we would have obtained another proper semi-
field containing F; and this system has the stronger associativity
property that (ab)e = a(bec), whenever any one of a,b,c is in F.
Let us call the latter system W.

We will see in Section 6.1 that a proper semifield must contain

at least 16 elements.

g;§. Pre-semifields. We say the system 8 is a pre-semifield if it

- satisfies all the axioms for a semifield, except possibly Ab; i.e., it
need not have é multiplicative identity.

A simple example of a pre-semifield can be derived frqm a field
F which has more than one sutomorphism. In fact, let 0 be an
gutomorphism, not the identity, and define x oy = (xy)®. Then
(F,+,0) 1is a pre-semifield, and it has no identity; for 1 o 1 =1
implies that 1 must be the identity if any exists, yet 1l o y = vo # ¥

for some Y.
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We will see in Section IV that a finite pre-semifield can be
thought of as a three-dimensional array of integers, and that a

semifield can be constructed from a pre-gemifield in several ways.

2.4, The additive group. It is easy to show that the additive group
of a pre-semifield 5 must be commutative. By the distributive iaws,
(sc + ad) + (be + bd) = (a + b)(c + d) = (ac + be) + (ad + bd).
Therefore, by Al, ad + be = bc + ad, and any elements which can be
written as products commute under addition. But by A2 and finiteness,
any element of S can be written as a product; therefore, the
additive group is Abelian.

Another simple argument shows that the additive group is elementary
Avelian, In fact, iet a# 0, and let p be the additive order of a,
Then p must be a prime number, since (na)(ma) = (mm)a for integers
n,m, The fact that every nonzero element has prime order suffices to
show that the group is elementary Abelian, and that all nonzero elements
havé the same prime order p. This number p 1is called the charac-.

teristic of the pre-~semifield.

2.5. Vector space representation. Let 'S be a pre-semifield, and

let F be the field OF(p), where p is the characteristic of S.
Then we can consider the elements of F to be "scalars,"” and S is
a vector space over F. In particular, S must have p" elements,
where n 1is the dimension of § over F.

The simple observations just made in the preceding paragraph are

surprisingly useful, since many of the concepts of semifields and
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pre-semifields are fruitfully translated into vector space terminology.
This will be exploited further in Section IV, We can, for example,
rephrase the distributive laws as follows: Let a be a nonzero element

of B3 we define the functions La and Ra as follows:

b L, = ab; b R, = ba. (2.4)

Then the distributive laws A3 are equlivalent to the statement that

La and Ra are linear transformations of the vector space ihto itself,
Furthermore, the axiom A2 states that these transformations are all
nonsingular, if a # 0, Therefore, La and Ra can be represented

as nonsingular matrices, with elements in GF(p).

2.6, Nuclei. Various special subsystems are defined for a semifield

S, indicating degrees of associativity. The most important of these

are the following:

U

The left nucleus N,: { x | (xa)b = x(ab), a,b € 8}.

fl

The middle nueleus N : { x | (ax)b = a(xb), a,b e 8},

m

a(bx), a,b € S},

The right nucleus N : { x| (ab)x

The nucleus N is the intersection of the left, middle,Aand right
nuclei. The field GF(p), where p is the characteristic of S,
is obviously always part of the nucleus.

In many cases, the nuclei are all trivial, i.e., equal to GF(p).
This is the case for the system V in Section 2.2.‘ But the system

W described in that same section has nucleus F = GF(L).
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It is easy to verify that each of the nuclei is actually a field.
Furthermore, S 1s a vector space over any of its nuclei: it is a

left vector space over N, N and N; it is a right vector space

m’

over Nm’ N and N, The operations La and Ra defined by

r’
equation (2.4) are not necessarily linear transformations over the
nuclei; but Ra is a linear transformation over Nz, and La is

a linear transformation over Nr, vhen S 1s regarded as s left,

right vector space, respectively.
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III, PRCJECTIVE PLANES, ISOTOPY,

Perhaps the major application of semifields today is for the
constiuction of combinatorial designs, and of projective planes in
particular. Every proper semifield determines a non-Desarguesién
projective plaﬁe. In this section we discuss projective planes; and

the question whether two semifields coordinatize the same plane.

3.1, Homogeneous coordinates. Let % be a projective pléne, and let

T be a ternary ring coordinatizing =, as in [1]. We write the
ternary operation a*bec, and write as usual a*bo0 = ab, a-loc =
It is convenient to introduce a new type of coordinate system, for

simplicity in notation, as follows:

Homogeneous Notation Notation in [1]
Points: (0,0, 1) (=)
(0,1,a), acT (a)
(1,a,b), abed (a,b)
Lines: fo,0,1] L( =)
[o,1,a], aeT x+a=0
[1,a,b], abeT Yy=X°*aob

The principal feature of this notation is that the point (xl,xe,x3)
is incident with the line [yl,yz,y3] if and only if

- . x -
ylx3 X, y2 ° ly3

atc.

(3.1)
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Since yy and Xy musﬁ equal O or 1, the meaning of the
"multiplications" ¥ %, and X)¥s is clear in this relation. The
fact that incidence can be expressed in a single formula means that
meny specisl cases can often be eliminated, when carrying out proofs.
The symmetry of this‘definition also mekes the duality relation ciear.
We let A:B denote the line Joining points A and B, and let

LAM denote the point common to lines L and M, Furthermore, we

deline the elements &v and "va Dby the equations
(av) + a =0, a + {va) = 0, (3.2)

The following formulas can be easily verified:

Mav) = (Ma)¥ = a (3.3)
[0,0,1]} = (0,0,1):(0,1,0) (0,0,1) = [0,0,11~[0,1,0]
(0,1,va] = (0,0,1):(1,a,b) (0,1,a) = [0,0,11~(1,a,b]
[1,a,b] = (0,1,a2):(1,0,b) (1,a,p) = [0,1,%a]A[1,0,b]

3.2. Isotopes. Let T and T, be ternary rings. An isotopism

1
from T, omto T is a set of three functions (F,G,H), each being
1-1 correspondences from Tl to T, such that
(0)H = 0,
- (3.1)
(asboe)d = (aF)+(bG)o{cH), for all a,b,ce T .

Theorem 3.2.1. Let (F,G,H) be an isotopism from Ty to T. Then

H = Fy = G (3.5)
where ¢ = L.y, ¥ = Rigs 2nd vhere L and R denote left and right

multiplication in the ring T.
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Proof: Set ¢ = 0 in formula (3.4) to obtain

(ab)E = (aF)(bG).
In particular, all = (aF)(1G) = aFR, . = aFy,
bH = (1F)(bG) = bGLlF = bGo. i

Theorem 3.2.2. Letb‘T be a ternary ring with n elements. _The

number of nonisomorphic ternary rings isotopic to T is at most

(n“'.l)zo
Proof: Let Tl and T2 be ternary rings isotopic to T, under
the funetions (F ,G H }): T -+ T and (F ,G ,H): T > T. Let the
1 1 1 1 2 2 2 2

ternary operation of R. be denoted by (a,b,c) and let the ternary

1

operation for R, be denoted by [a,b,c]. We will show that if

2

lFl = lF2 = vy, and if lGl = 1G2 = z, then Tl and T2 are

isomorphic. Since there are (n-1) choices for ¥, and (n-1)

independent choices for 1G there will be at most '(n-l)z non-

lb

isomorphic ternary rings, as claimed.

By Theorem 3.2.1, we have

i}
o
©

]
=

Fo¥ 1 1°
F2 v o= G2 ¢ = H2,
where ¢ = Ly’ v = Rz. Hence,
Fle"l = G1G2'1 = Hlﬂz”l = aq.

Now a is the required isomorphism, since
[aasba,cal = (aaF29baG200aH2)H§1 = (éFl'bGl°CH1)Hi%’= (aybyc)a. |

We note that the limit (n~1)? is best possible; there is a ternary

ring with 32 elements which has 31% distinct isotopic ternary rings.
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(See Section V.) But if T is a field, we have the other extreme

where all isotopic rings are isomorphic to T.

Theorem 3,2.3, Let T be a ternary ring, and let ¥,z be nonzero

elements of T. Let ¢ = Lys ¥ =R,, and F= vl, ¢ = ¢-1, and let

Tl be the system consisting of the elements of T with a new ternary

operastion defined as follows:

(a,b,e) = aF * bG o c. ' | (3.6)

Then T is also a ternary ring, having the identity element yz.

1

Tl is isotopic to T, and furthermore all ternary rings isotopic to

T can be constructed in this way (up to isomorphism).

Proof: Note that F and G are well-defined since y and =z
are nonzero. The latter part of this theorem follows from the pre-
ceding theorem; we must show only that (a,b,c) satisfies the reguire=-

ments for a ternary ring.

I. (0,b,e) = 0sbGoc = ¢ = aF-Qoc = (a,0,c). ' \
II. (yz,b,0) = y*bGeO = y(bG) = bG¢ = b,
(a,yz,0) = aF*200 = (aF)z = aFy = a.

III. We can solve (a,b,x) = ¢ uniquely for x, since
aF«bGox = ¢ is uniquely solvable for x.
IV. We can solve (x,bl,cl) = (x,ba,ce) uniquely for x, if

Goe, = xF+b_Goc

1 5 > is uniquely solvable

b, # b,, since xFobl

for xF.

V. Finally, we can solve (a_ ,w,x) = ey (az,w,x) = ¢, uniquely

1? 2
for (w,x), if a # 8,9 since we can solve ValF-wGox = ¢

aeF*wGox = ¢, uniquely for (wG, x). |

l’
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Theorem 3.2.3 is essentially a converse to theorem 3.2.1, for it
says that the relations (O0)E = 0 and H = Fy = G§ are sufficient to
construct a new ternary operation; no stronger condition can be derived
from general isctopy. Theorem 3.2.3 also provides a convenient way to
galculate all ternary rings isotopic to a given oné. An isoﬁopiém

where H is the identity is called a "principal isotope.”

3.3. The significance of isotopy in geometry. An isomorphism «

between projective planes is a 1l-1 correspondence between points and
lines which preserves incidence; i.e., point P is on line L if and
only if point Pa is on line 14, An automorphism of a plane is

commonly called a collineation.

Theorem 3,3.,1, Let 7 and #' be projective planes and let o De

an isomorphism from w#' onto 7w  suech that

(0,0,1)a = (0,0,1)
(0,1,0)a = (0,1,0)

(1,0,0)a = (1,0,0).

Then the ternary rings of = and n!' are isotgpip.

Proof: [0,0,1]a = (0,0,1)0:(0,1,0)a = [0,0,1]. Therefore,
(0,1,a)a 1lies on [0,0,1], and there must be a 1l-1 correspondence G
such that

(0,1,a)a = (0,1,aG). ’ (3.7)
Similarly we find [0,1,0)e = [0,1,0], [1,0,0]0 = [1,0,0]; hence
there are 1-1 correspondences H,F such that

(1,0,bH).

(1,0,b)a
(3.8)

(1,2,0)a (1,aF,0).
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We can now calculate the images of all lines:

i

[0,1,vale = {0,0,1)0:(1,8,0)a = [0,1,v(aF)]

[1,a,b]a = (0,1,2)a:(1,0,b)o = [1,aG,bH].

Finally, we find the image of every point:

(1,a,b)a

[}

[0,1,va]len [1,0,b]0 = (1,aF,bH).

Now we can derive the desired law:

(l,xgsx?,) E [1,y2,y3] g (lsx2:x3)u’ € [leQsY3]a.

i,e. X > x H =

3 3

and this is precisely the relation used for isotopy.

= x2'y2°y3 x2F-y2Goy3H,

(3.9)

(3.10)

(3.11)

Theorem 3.3.2. (Converse of Theorem 3.3.1). Let (F,G,H) Dbe an
isotopy from & ternary ring T' to T, and let w',m be the

corresponding planes. Define @ by eguations (3.7)-(3.10); then

is an isomorphism between 7' and T

»

Proof: Since o is 1-1 and onto, and since (3.11) holds

directly from the law of isotopy, there are only a few cases to

consider,
I. (1,%p,%x3) € [0,¥553] <« yp, =1 and yp= x,
(l,xz,XB)a £ [O,ye,yB]a = ¥p =1 and yF=-xF.
II. (O,xe,x3) € [l,yg,y3] «r x, =1 and %3 =7y,
(O,xz,xB)u € {l,yg,y3]u <> x3 =1 and %36 = y,C.
1I1. (O,xg,x3) € [anng3] “r %, =0 or y, =0
(0,x2,x3)u € [O,yg,y3]a «> %, =0 or y,=0. i

We define autotopism in an obvious way, as an isotopism of sa

ternary ring onto itself, If (F,G,H)

and (F',G',H') are autotopisms,
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(asboc)HH' = (aF+bGocH)H' = aFF'+LGG'gcHH',
so we define the product of two autotopisms aé
(F,G,H)(F',G'" ,H') = (FF',GG' ,HH"). | (3.12)
An automorphism is the special case (F,F,F) of an autotopism

where all three permutations are equal.

Corollary 3.3.3. All isotopic ternary rings coordinatize the same

projective plane. The collineations of a projective plane which fix

(0,0,1), {0,1,0), and (1,0,0) form a group isomorphic to the group

of autotopisms of the ternary ring. |

Theorem 3.3.4. Let T be a ternary ring with n elements, and let

h be the order of the autotopism group of T. Then

132 = h .
(n-1) ZP' GIR) (3.13)

where T' ranges over all nonisomorphic ternary rings isotopic to

T, - and where k(T') is the number of automorphisms of T'.

Proof: Let y,z range over the nonzero elements of T, and
consider the (n—l)2 ternary rings constructed in Theorem 3.2.3. If
T*' is any of these ternary rings, we will show thét there are exactly
h/k(T') ternary rings of the set which are isomorphic to T', and
this will prove formula (3.13).

We need only show that h/k(T) of the ternary rings are isomorphic
to T, because the autotopism group of T' is conjugate to the

autotopism group of T and therefore has the same order, and because
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the (n-1)2 ternary rings formed from T' are isomorphic in some order
to the (m-1)? ternary rings formed from T (using Theorem 3.2.2,
since the rings are determined by 1F and 1G).

Let o be an isomorphism from T to the ring ’l"(R;I,L-'1

v »1) .

There are k(T) such isomorphisms. Then

(a*bec)o = (aa,ba,ca) = &aRzl'baL§1°Ca,
i.e., (GREI,GLgl,a) is an autotopism. By Theorem 3.2.1, every auto-
topism is of this form, and defines y and z; therefore, if r of
the pairs y,z yield isomorphic rings, there are h = rk(T) auto-

topisms. |

3.4, Isotopy of semifields. A semifield is a particular type of

ternary ring, where asboc = ab + ¢ and axioms Al-A4 hold. We now
specialize the material of the preceding sections to the case of

semifields.

Theorem 3.4.1. Let S5 be a semifield of characteristic .p. All

ternary rings isotopic to S are semifields. (¥,G,H) is an isotopism

from S5' to0o S 1if and only if F, G, and H are nonsingular linear

transformations from S5' to S over GF(p), satisfying the condition

(ab)d = (aF)(bG). (3.1h)

Proof: Suppose S' is isotopic to S, and (arboc)H = (aF)(bG)+cH.
Then (a*loc)H = (aF)(1G) + cH = aH + cH, so H is an isomorphism
between the addition of S' and the addition of S, i.,e., H is

a nonsingular linear transformation over CF(p), Now H = Fy = Gé
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by Theorem 3.2.1, where ¢ and ¢, being functions of left and right
multiplication, are nonsingular linear transformations over GF(p)

of S8 into itselfj hence f and G are also nonsingular linear
transformations. Properties AL through AL are now verified immediately,

as is the converse portion of the theorem. |

Theorem 3.4.2. Every collineation of a plane coordinatized by a

proper semifield fixes (0,0,1) and [0,0,1].

Proof: This theorem is well known, but its proof requires the
development of more geometrical tools then are appropriate here.
Proofs may be found in [2] and [3]. |

The previous theorem holds primarily because any semifield
already has a great number of collineations, and if it were permitted
to move the point (0,0,1) or [0,0,1] it would have so many more
collineations, it would become Desarguesian.

The standard collineations, holding in any semifield plané, are
the translations t(h,k) and the generslized shears o(h,k),

defined for all h,k in the semifield as follows:

(xl,xg,x3)r(h,k) = (xl,x2+xlh,x3+xlk)
lyysv,avglelik) = [y)3y,.y-hy +y k] (3.15)
(xl,x2,x3)o(h,k) = (xl,xz,x3+x2h+xlk)
[y s¥,0v5la(nsk) = [y sy +y hoy gty ki

The proof that these are collineations is very simple with

homogeneous coordinates: ylx3 = x2y2 + xly3
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if and only if y(xgtxpk) = (xy*x)h)y, + %) (yg=hy,+y k)
if and only if yl(x3+x2h+xlk) = x,(y *y h) + %, (y3*y k),
remembering that X and y, are restricted to be 0 or 1.
The following relations are easily computed, using the formulas

already derived; here o(F,G,H) represents a collineation correspond-

ing to an autotopism.

1(0,k) = o{(0,k)

t(h,k)t(h' k') = t(h+h' k+k')

i

o(h,k)o(h',k") og(h+h' k+k')

a(F,G,H)a(F',G' ,i') = oFF',GG",HH®)
(3.16)
t(h,k)~lo(L,m)t(h,k) = o(%,m-ht)
o(h,k)"1t(2,m)o(h,k) = t(&,m+2h)
a(F,G,H)" t(h,k)a(F,G,H) = 1(hF,kH)

o{F,G,H)" o (h,k)e(F,G,H)

o{hG,kH)

Thebrem.S.h.S. Two semifields coordinatize the same plane if and only .

if they are isotopic.

Proof: If B 1is an isomorphism between two semifield planes, then
(0,0,1)g = (0,0,1) anda [0,0,1]8 = [0,0,1] because this point and

line are characterized by Theorem 3.4.2. Hence (0,1,0)8 = (0,1,a),

and (1,0,0)8 = (1,b,c). Let a = Bo(-a,0)1(~b,ba~c). Then

(0,0,1)o = (0,0,1); (1,0,0)e = (1,0,0); (0,1,0)a = (0,1,0);

and Theorem 3.3.1 applies. The converse is part of Corollary 3.3.3. |
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Theorem 3.4.4. Let G be the collineation group of a semifield plane;

let T be the subgroup of translations, S the subgroup of generalized

shears, H the subgroup corresponding to autoto;:_isms, and A the

elementary Abelian additive group of the semifield. Then we have the

following normal series for G

[

I 9T7TAS <) T<adTuS <l TWSuUH G.

The quotient groups are equal respectively to A, A, A, and H.

Proof: This follows from formulas {3.16), and the fact that
Tw SwH = G as proved in the preceding theorem. 0

Theorems 3.4.3 and 3.4.4 are well known; they indicaté how
important isotopy is when considering semifield planes. The use of
homogeneous coordinates simplifies and clarifies previous proofs of

these¢ theorems.

3.5. Nonlinear isotopes. One might pose an interesting problem

here, concerning whether linearity of F,G,H 1is really a necessary

condition for constructing semifields. Suppose we have a semifield

8 and we have defined a new multiplication ¥ on S by the formula

(a*p)E = (aF)(bG).

We require that F,G,H be permutations of S, and that

(atb)*ec = a¥%e + b¥c,.
ck(atb) = csxa + cxb,
lga = axl = a.

Question: Does this imply that F,G,H are linear?

(3.17)
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The following theorem does not settle this question by any means,
but it does provide some insight into the matter. We say an element

x € 5 1s noncentral if xy = yx implies that
y=r+sx, r,s & GF(p).

Theorem 3.5.1. If S has characteristic 2, and if every element

of S - GF(2) is noncentral, then the functions F,G,H of (3.17)

mist be linear.

Proof: The conditions imply that ai~1 = ar-lig-l = lF‘l*aG’l,

so we can write H = PF = QG where P and Q are linear. Thus
(aH)(bH) = (aP » bQ)H. (3.18)

Let x be such that xH = 1. Then since (aH)(xH) = (xH)(aH),
equation (3.18) shows us that aPxxQ = xPxaQ, for all a € S.

Adding aPxad to each side, we obtain aP x (a+x)Q = (a+x)P % aQ;
hence (aH)((a+x)H) = ((a+x)H)(aH),

i.e., al commutes with (a+x)H. This is the relation which we
will use in order to show that H 1is linear.
We can at least prove that (0)H = 0, since (OH)(aH) =

(0P%aQ)H = (0)H for all a., Therefore x # 0. We will now show that

(a+x)H = ail +xH = gH + 1, for all a. (3.19)

i~

H

o
H

0 or if a = x, this is obviously true (using the fact that

0). Otherwise aH is noncentral, by hypothesis. By the

]
+
»

]

definition, this implies that (a+x)i = 0 or 1 or ald or aH + 1.
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The first three possibilities are clearly impossible, so (3.19) is
established,

Since H = G¢, where ¢ ‘is linear, we have
(a+x)G = (a+x)H¢™! = aH¢=! + xHO™! = aG + xG.

Finally, then, let a,b be arbitrary nonzero elements of §;

define ¢,d such that a = c#x, b = cxd. Then

]
[}

(a#b)H (ex(x+d))H (cF)((x+a)G)

i

(eF){(xG + 4G)

H

(eP)(xG) + (cF)(dG) = aH + DbH.
Thus H is linear and therefore so are F and G. |

Remark. The above theorem is not trivial, for there exist
systems in which the hypothesis is satisfied (e.g., V in Section
2.2). PFurthermore, some hypothesis is necessary for the thebrem,
because there are examples in which F,G,H .are ggg linear. Such
an example is the field S = GF(8). Let x be a primitivé element

with minimum polynomial x3+x2+l; then define H by
( %1 (moa x3+x2+1) JH = xi (mod x3+x+1).

If we write (asb)H = (aH)(bH), the equations (3.17) are
satisfied, but (L + x?)H = 1 + x # 1 + x% = 1H + x°H.

Such nonlinear isotopies do not have geometric significance,
however, according to Theorem 3.k.1, and they will not be considered

further in this paper.
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v, NONSINGULAR HYPERCUBES,

In this section Qe turn to another way of looking at semifields
and their isotopisms, wheré we think of 3-~dimensional matrices. The
3-dimensional representation allows us to see several symmetries in
the situation which are not otherwise apparent; and it also allows

us to work with pre-semifields, when it is convenient.

L.,1. Hypercubes and their elementary operations. An m-dimensional

hypercube A, m > 1, is an array of n® elements belonging to a

field; the elements are denoted by A where there are m sub-

ijeeer
scripts, and each subscript varies from 1 to n. We consider n to
be a Tixed integer- throughout the entire discussion.

It is easy to devise extremely cumberséme ﬁotations for such
systems, so an attempt will be made to keep the notation as simple
as possible.

Let ¢ be a permutation on the elements 1,2;...m. Then A°
will represent the m-cube A with subscripts permuted by -o; .i.e.,
the ko-th subscript of A° is the keth subscript of A. This is

a generalization of the concept of transposition of matrices; if A 1is

Al12) | In the 3-dimensional case, if

2), AT

a matrix (m

A(123) = (B.. ) we have B,. = A for

ijk)’ ijk ijk Jki
all i,j,k. We also have the general law (A9)% = A0T,

A= (A then if B
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If m>1, we form (m-l)-dimensional subcubes of an m=cube
A, denoted by Alt], as follows:

B = alt] = (8

) £y B =

1jeeer = Brig..pe

(L,1)

1jessr
Here 1 <t < n. Additional subcubes which hold other positions
fixed'cén be formed.by combining the operations AY and alt]
déscribed here; actually all conceivable subcubes can be obtained in

this manner,

4,2. Sums and products of hypercubes. The sum of two m-cubes A

and B is simply defined as the m-cube consisting of the sums of the

components:

C=a+B=(Cy, .») < Ajgr*Bij..r=Cijr (L.2)

The products of a p-cube B times an m-cube A, yielding an
(m+p-2)=-cube, can be defined in the same way as the tensor dot>product

of tensors, as follows:

1

C = B X A= (Ci...jk...r

) O e g I P

Actually, n of such products can be defined, and we write in general

g
%

(c )

¢c=8 lesejkesoqree.s

A

(4.3)
Ci.l'jk..'qr...s = % Bk.l'thi.I.jtrl.‘s

where "i...J" represents 4£-1 subscripts, "r...s" represents n-g.
1
x

Notice that Alt] = B x A, where B is the l-cube (B;) = (Git)'

2 T
A=3BA, Cx4a=acT,

X

We also see that if A,B,C are matrices, B
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expressing the familiarlfact that premultiplication corresponds to
operating on rows of a matrix, posfmultiplication corresponds to
operating on columns,
The associative law for matrix multiplication, (Ba)cT = B(ACT),
2 1

1 2
can be written in the form C x (B x A) = B x (C x A), This relation

is a special case of a general rule for products of hypercubes.

Theorem 4.2.1. (Generalized associative law). If u < v, and if

the dimension of € is f + 2, then

c ¥ (B % A) = B Vit (¢ % A) (4.h)

Proof: Let the dimensions of A and B be n and 7p,

respectively, The general element D of

i.l.jk...qr‘..sw.l.xy.-.z
the product C ® (B X A), wvhere i.,..j represents -u-l subscripts,
X...q represents f+1 subscripts, r...s respresents v-u-1 sub-

scripts, W...x vrepresents p-l1 subscripts, and y...z represents

m-v subscripts, is, by definition,

z Ck...qt( E Bw...thi...jtr...shy...z)’

The same general element of the right~hend product is

E.BW...xt( g ck...thi...jhr...sty...z)’

and these are clearly equal. [
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Corollary 4,2.,2. Let m be the dimension of A, and let

Bl’B2""Bm be matrices. Then the m multiplications 'Bi % A

can be performed on A in any order, i,e., if g 1is a permutation,

Bl )l( (B2 i (... (Bmgﬁ)...))

18 28 mB (L.5)
= BlB X' (BQB X (ooo (BmB X A)...)).

Proof: If the dimension is 2, then f in Theorem 4.2.1 is
always zero, so this result follows by repeated application of that
theorem. | |

We will write

[Bl’B2""Bm1 X A

to denote the multiplication operations expressed in equation (k,5).

The following law generalizes the matrix equation (CA)T = ATCT:

Theorem 4.2,3. If C is a matrix, and if o is a permutation,

c¥n’ = ¢c¥a | J (4.6)

Proof: Let the subscripts be il’i2""im' The desired result

follows from the formulas

(A%, . ., = A, .
Tiloeeedy 110%20* *tmo
1
(C x A) = ) C
i i ...i i t i ‘..i t ...l
l112 m t lu 1 u-1 lu 1 m
(c x> a%) = )
i i .'.- i t i ...i t. ...i L]
BT AR t tus” ‘io (u-l)o l(u+l)o mo “
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Several other associative laws can be formulated to include the
cases not meeting the hypothesis of Theorem 4.2.1; i.e., when we are
) u v :
given a product C x (B x A) such that u > v and that wu+2-dim C < v,

But only one of these is of concern to us here:

Theorem 4.2.h4.

[C1’02’°"’Cm] x ([Bl,Bg,...,Bm] x A) = [CB1,CoByessC B 1 X A, | (4.7)

Proof: 1In lieu of Theorems 4.2.1 and 4.2.3, it suffices to show

1 1 1 _ ,
that (C x (B x A) = (CB) x A when C,B are matrices. The general

element Di' of the left hand side is

LI ]

% Cit(% Bonng...r)?

on the right hand side it is

% (E cihBht)Atd...r’
l

and. these are equal.

4,3, Nonsingular hypercubes. The concept of a nonsingular matrix

can be generalized to m-cubes in a significant way . The definition
proceeds inductively: We say that a vector, or l-cube, A is singular
if and only if A =0. For m> 1, we say that an m-cube A is
singular if and only if there exists a nonsingular vector B such

1
that B x A is singular.



28.

Another way to state this definition is that an mecube A is

nonsingular if the following condition is satisfied:

"xlA[1]+x2A[2]+ ces + an[n] is singular implies that

= | L. = ::O."
x1 x2 xn

In other words, any nonzero linear combination of the subcubes Alt]
must be nonsingular. This definition certainly includes the
ordinary definition of a nonsingular matrix, for in the special

case m = 2 it 'says that the rows of A are linearly independent.

Theorem 4.3.1. Let A be an m-cube, and let 0 be a permutation

of {1,2,...,m}. Then A is nonsingular if and only if A% is

nonsingular.

Proof: We use induction on m. For m =1 it is trivial, and
for m =2 it is a special case of the theorem that "row rank equals
column rank of a matrix." We assume, therefore, that m > 2.

Withqut loss of generality we may assume that O islof the.form
(12) or (23°*'*m), since these two permutations generate all of

the m! permutations.
If o = (12}, we argue as follows, where B and C 'deﬁote vectors:
A is nonsingular <> (C# 0> C i A is nonsingular)
« (C#£0>(B#0-~ Bi(C i A) is nomnsingular)) since m > 2
« (B#F 0~ (C#0-~> Bi(c ; A) is nonsingular))

1 2
(B# 0> (C#0~+ Ccx(Bx A) is nonsingular)) by Th. L.2.1

L o d

2
<> (B#0=B X A is nonsingular)

1 1 (12) 2
<> (B # 0+ B x A° is nonsingular) since B x A =B x A
<>

A% is nonsingular,
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On the other hand if o = (23°**m), let T = (12***(m-1)),

1 1
Then since (B x A)T =B x (A9) we argue as follows:
- k3 1
A is nonsingular <> (B # 0+ B x A is nonsingular)
1 . . e a
<> (B# 0+ (B x A)T is nonsingular) by induction
1 o R .
<> (B#0~+B x (A”) is nonsingular)
<> AU is nonsingular. |

Theorem 1,3.2. Let A be an m-cube and let CysChsesssCy De

nongingular matrices. Then A 1s nonsingular if and only if

[cl,ce,...,om] x A

is nonsingular.

Proof: For m =1 this is merely the definition of a singular
matrix. For m > 1, it suffices to show that A is singular if, and

2 .
only if, C x A 1is singular because of Theorem L4.2.3 and Theorem 4.3.1.

2 1 2 , o
C x A is nonsingular <* (B # 0> B x {(C x A) is nonsingular)

W

1
<« (B#0~>Cx (B x A) is nonsingular) by Th.

)"'62.1
1
« (B # 0+ B x A is nonsingular) by induction
< A is nonsingular. [
Finally, we define an equivalence relation between m-cubes as

follows:

A =B if and only if A = [cl,cz,...,cm] x B ' (b.8)
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for nonsingular matrices 01,02,...,0 « By Theorem L.2.4 this is
n
an equivalence relation, and by the preceding theorem this preserves

singularity.

4,4, Pre-semifields represented as 3-cubes. We now specialize to the

case m = 3. Let S5 be a pre-semifield of characteristic p. Accord-
ing to Section 2.5, S 1is a vector space over F = GF(p). Let
{xi,xg,...,xn} be a basis of S over F. We can write the multipli-

cation in terms of the basis elements:

X, x, = ) A (h-9)'

. X. o
i™] ® ijk "k
This gives us a 3-cube, A, with entries in F, A is called a

cube corresponding to S.

The multiplication in S 1is completely determined by the
products of the basis elements, according to the distributive laws
since (L o.x, )Y ex.) =) bex.x, =) ] b.c.A . (k.20)
i ivi 3 373 13 173717 i3k i~) 1Jk%k

Theorem L4, 4.1, A cube corresponding to a pre-semifield is nonsingular,

Conversely, if A is a nonsingular 3-cube, we can define a pre-

semifield S by equation (4.10), with the x; being formal basis

elements.

Proof: Because of our other observations, we need show only
that multiplication defined by equation (4.10) satisfies axiom A2
if and only if A is nonsingular. In the proof of Theorem h.3.1,

we have shown that A is nonsingular if and only if
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1
B#0 and C#0 » Cx (BxA) #0 (in the case m = 3).

1 1
But C x (B x A) is the vector D = (Dk) where

D, = ) B, ) C
S

r

] Arsk;
therefore, this is precisely the condition that

a#0 and D#0 - ab# 0. |

We observe that a nonsingular b-cube would correspond to zn
algebraic system with a ternary multiplication abe satisfying
three distributive laws, and with no "zero-divisors." 1In general,
a nonsingular m-cube will lead to an (m-1)-ary operation.

If we change to a different basis {yl,...,yn} of 8 over

F, we have

Z ClJ 50 where C = (Cij) is a nonsingular matrix.

This introduces a corresponding change in A; let the nev cube be. B.

Then

= (2 Clr r)(i stxs} = 2 2 z CerJsArsk k
rsk
=y Y1V e c A Coly.
r s k £ ir’js rsk’kt "k
Now Bijk is the coefficient of yk, hence

B = [c,Cc,cT]xa, (%.11)

where =T denotes inverse transpose. Thus B = A.
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Let us now consider what would happen if we were to define a

new maltiplication on the elements of 8:
(a % D)H = (aF) (bG) (k.12)

where F, G, H are arbitrary nonsingular linear transformations of
5 into itself. This gives us another pre-semifield S', which is
éaid to be isotopic to S,

Llet B be a cube corrgsponding to the derived pre-semifield 3.
We may assume S' has the same basis {xl,x2,...xn} as S, and

that A is the cube for 5 with this basis. Consider F,G,H as

matrices;
i.e., x,F = Y F, x. (k.13)
i r irr
Then  x #x, = ((x,F)(x,6)E" Y = ((} F, x )(} ¢, x ))E~}
b | i J r T js s
-1
= (2 z 2 FirstArstxt)H
rst .

- z z E % Firl js tk BrgeXie . (h.14)

Therefore B = [F,G, 7] xA. » (4.15)

This proves the following fundamental theorem.

Theorem 4.4.2. Let S and S' be pre-semifields, and let A,A'

be any cubes corresponding to 5 and S'. Then S is isctopic to

S' if and only if A = A' (where equivalence is defined in eguation

(L.8)).
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4,5, Semifields and equivalent pre-semifields. The preceding

discussion applies to semifields as special cases of pre-semifields.
If S5 1is a semifield, we can assume the basis is of the form

{l,xz,...,xn}. The corresponding cube A then has a special property.

We write arex = plr]
axrx = (p(132)4[r] | (4.16)
AREY = (A(IZS))[T].

T*% AT AR% :
In other words, AT¥#% A%T# A%%T gre the matrices (Arij)’(Ajri)’(AiJr)

respectively. AY#*% ig the matrix Lx of left multiplicétion by
r

X A*r¥ ig the transpose of the matrix for right multiplication, .

Rx . The following formulas are readily verified:
r

([F,G,H] x A)r#e = F_ (GAd##HT) + ... + F_(Ganwsy’),

([F,6,1) x A)¥r* = g (HA*ISFT) + ... + G (HasnufT), | (4.17)

#%T = } xxlol %xnal
([F,G,H] % A) Hrl(FA G') + sa. * Hrn(FA G).

We say A is in standard form if Al#% = axl% = T,

Theorem 4.5.,1. Let S be a semifield with basis {l,xg,;..,xn};

then the cube corregponding to S 1is nonsingular and in standard

form; conversely, every nonsingular 3-cube in standard form yields a

semifield, if multiplication is defined by (L.10).
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Proof: Because of Theorem 4.h,1, we must merely observe that
standard form is equivalent to axiom Ak, But this is obvious, since

standard form is nothing but the statement that Ll = Rl =1, |

Theorem 4.5.2. Let S,5' be semifields with corresponding cubes

AA'., Then S and S' coordinatize the same projective plane

if and only if A = A'. Semifield planes are in l-l1 correspondence

with eguivalence classes of nonsingular 3-cubes.

Proof: Apply Theorems 4.,4,2 and 3.4.3. |

Theorem 4.5.3. If A 1is a cube corresponding to a proper semifield

S, the autotopism group of S is isomorphic to the group of all

triples of matrices (F,G,H) such that

[F,G,H]xA = A, (4.18)

Proof: This fbllows from equation (4.15). |

We note that the same result holds for'any’3-cube B, if
BE2A, even if B 1is not in standard form. |

Now we turn to the question of constructing a semifield from a
pre-semifield. This is merely a question of finding thrée nonsingular
matrices such that [F,G,H] x A is in standard form. Such a con-

struction can be done in several ways; for example:



1. Set G = (Al##$)~1  get B =G x A, set F = (p*l®)~T g =1,
2, Set F = (A##)-T  gset B=7F x A, set G = (Bl*%)71 gy =T,
3. Set H = (Al#x)=T 5 = ples(p#le)=T ¢ =1,
L, Set H = (A*l®)~1 ¢ = A%1sT(pl#x)=1  F = T,

The proofs that these do the job are similar, using equations (4.17).

We consider for example method 3:

s

a a a a a see 2 "l lo 'l‘o
111 112 lin 111 112 1ln

a a a a -—
1212122 #1om] [*211%212 &l =

. [} L] . L} . LI L]

*®
%
&

. - L] L] . . s . -

Therefore ([F,G,H] x A)l#x = GAl**ﬁT = I;
and ([F,G,H] x A)*1% = Ha*lsp’ = I,

These methods can all be translated into algebraic terms; e.g.,

here is method 3 ip this form:

Theorem 4.,5.4, Let (S,+,0) Dbe a pre-semifield, and let u e S.

Then if we define a new multiplication % DOy the rule

(aou) x (Wob) = aob | (4.19)

we obtain a semifield (S,+,*#) with unit u°u. |

Notice that if (8,+,°) 1is commutative, so is (5,+,%).
Formula (h.19) is really an instance of equation (3.6) which
is actually more general. A less symmetric way to write this formula

can be read directly from method 3, namely

uo° (a*b)=(uc a)R;lo b,
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which yields an isomorphic system with unit element wu. Method L
gives another isomorphic system, dual to this one.

Thus, we can obtain semifields from pre-semifields in several
ways; in each method we were able to leave F,G, or H equal.to ﬁhe
identity. DNo matter which way we choose, the result is equivalent
in the sense that the samé projective plane will result.

The extra degree of freedom we seem to have in this standardiza-
tion process indicates that we should seek a "more standard" standard
form, so that it might actually be a canonical form. One idea sug-
gests itself immediately: we could require that A*#l = T also.

If S 1is a field with p2 elements, it can always be put into
the form

10 c1

Al#x = A2%% =
01 la

9

if a is chosen such that x2 + ax = 1 is irreducible (mod b).

The field GF(8) can be put into the forms

100 01¢ 00l 100 010 001
010 101 o©O01 or 010 - 1li 01l .
001 o011 111 001 011 110

where we adopt the convention of writing A'¥%, pA2#%, ...‘in this
order. It is unclear whether this form is possible in general.
These examples show that it is not a canonical form; but if it is
true that all nonsingular cubes can be standardized in this way,

it would be useful for eliminating cases when constructing the systems.
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A way to.utilize the extra freedom which has been very fruitful
is to adjust A%%%_  We can essentially perform any desired similar-
ity transformation on Az**, while the standardization is taking
placé; therefore, in particular, if the characteristic equation qf
A?%% gafter standardization is irreducible, we can transform it into
a companion matrix and resfandardize; this means we are taking the
basis of the Vector space to be of the form 1, x, x%, x(x?), #(x(xz)),
etec. Operations of this kind can be exploited when all possible

semifields of a given order are to be constructed [see reference 2],
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V. TRANSPOSE OF A PLANE.

This section diécusses an interesting relationship between some
planes coordinatized by semifields. The relationship is somewhat
peculiar since it has algebraic significance but does not seem to

have any readily seen geometric significance.

5.1, Transpose defined. Let =# be a projective plane, let S5 be

a semifield of coordinates for w, and let A be a cube éorresn
ponding to S. Let Sy be the pre-semifield described by A(23),
and let 82 be a semifield constructed from Sl by isotopy. Then
we define nT, the transpose of w, %o be the plane coordinatized
by 82'

Theorem 5.1.1. 7+ is uniquely defined.

Proof: No matter which choice of S5 is made, the resulting
A's will be equivalent, by Theorem L4.5.2. The 3-cube al23) g
nonsingular, by Theorem L.3.1, If A £ B, then al23)= 3(23),
because of Theorem 4.2.3. Therefore A(za) is uniquely determined

up to equivalence. Thus the plane 7T  is uniquely determined. |

Corollary 5.1.2. ()T = m, I
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5.2, Dual defined. The dual 7m0 of a projective plane coordinatized

by a semifield is well known to be determined by constructing the
anti-isomorphic semifield, i.e,, replacing ab by ba in the semi-
field. (This is easy to see by considering the homogeneous coordinate
notation.) This definition can be phrased in the same way as the

T

definition for 7, by uéing A(lz) rather than A(23). We may

write w0 = n(lz)’ 7T = n(23)

Theorem 5.2.,1. The operations of dual and transpose generate a

series of at most six planes, according to the following scheme:

n
AT/ D
(23) (12)
ks ™
> f $ o
1T(123) Tr(3.32)
T 1‘3‘/"
Tr(13)

Proof: This theorem is c¢lear from the manner in which dual and

transpose have been defined. |

Corollary 5.2.2. If m = 7P # #T there exists a third plene

TTTD # Ty TTTD # 'I'TTO
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5.3. Collineations.

A

Theorem 5.3.1. The collineation group of nl has the same order as

the collineation group of T,

Proof: Refer to Theorem 3.4.4. The groups of translations and

shears are ismorphic. The autotopism groups are also isomorphic, by

Theorem 4,2.3, since

[F,0,H] x A= A <« [F,H,6] x a(23) = 5(23)

Therefore, the orders of the collineation groups are the same,

(5.1)

interrelations of autctopisms, translations, and shears are, however,

different as equations (3.16) show. |

5.4, Examples. The conecept of transpose can be generalized to apply

to Veblen-Wedderburn systems, but that will be omitted here.

The transpose of a Desarguesian plane
matrices of left multiplication are powers
this property remains under transposition.

The semifield planes of order 32 have

by R. J. Walker [4]. Besides the Desarguesian plane, there are five

iz Desarguesian, for all

of the same matrix, and

been completely tabulated

others. These calculations were independently checked by fhe present

author and some interesting relationships were found.

Plane P(1l) has the 3=-cube representation

10000 01000 00100 00010
01000 00100 00010 0Q0QL
00100 00010 01001 10100
00010 00001 11010 11110
00001 10010 11011 10000

00001
10160
00101
10111
01110

(5.2)



No way to construct this plane, except by trial and error, is known.
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The solution given of all the representatives of the plane has, in

some sense, a relatively high degree of symmetry.

This plane was

discovered in December, 1961, by a program written for a Burroughs

220 digital computer,

There are no autotopisms except the identity; hence, the ¢ol-

lineation group of P(l) consists entirely of translations and shears.

This is the only known semifield plane (except for its dual) with this

property. A further consequence is that there are

312 distincet

semifields, isotopic but not isomorphic (see equation (3.13)).

Plane P(2) is the dual and also the transpose of P(1l), and

it has the same properties.

Plane P(3) is constructed by the method of Section VIII. It

has the following 3-cube representation:

10000
01000
00100
00010
00001

01000
00100
00010
00001
11000

00100
00010
11001
01010
00111

00010
00001
01010
11011
11100

00001
11000
00111
111060
10111

This particular representative has five automorphisms and no

other autotopisms; there are 192 other distinct systems isotopiec

to this one, and none of these have any automorphisms. This agrees

with formula 3.13:

312

= (5/5)

+ 192+<(5/1).

(5.3)
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Plane P(3) is self-dual since its semifield is commtative,
but it is not selfw-transpose. Therefore, {Corollary 5.2.2) there
are two other planes, P(L4) = P(B)T, and P(5) = P(4)P. These planes
also contain one system with automorphisms and 192 other systems
without.

It has been shown, by exhaustive enumeration on a computer,
that these five planes constitute the entire set of proper semifield

planes of order 32.
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VI, SOME KNOWN SEMIFIELDS.

In this section, we discuss many of the known semifields and
consider what the possible orders of semifields are. Throughout

this section the letter p will denote a prime number.

6.1, Orders which are excluded. We have seen that semifields must

have ph

elements, For each p and n there is a unique field
with p" elements, What can be said about proper semifieids?

If the order is p, & semifield must be the field GF(p).
Furthermore, if the order is p?, it is well known that a semifield
must be the field GF(p2): Let {1,x} be a basis for the semifield;
the multiplication is determined by the definition of x%= ax + b.
But the polynomial x? - ax - b has no roofs in GF(p), ‘else ve
would have (x-r)(x~-s) = x? -ax = b = 0 contradicting axiom A2,
Thus, x* - ax - b is irreducible, and the multiplication is that
of GF(p?).

If the order is 8, one easily verifies that we have ohly the
field GF(8). This must be true since there is a unique projective
plane of order 8, but we can verify this particular case directly:

Let {l,x,y} be a basis, and let L be the matrix AZ*¥¥ for left

miltiplication by x. If the characteristic equation of L is
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A3 4+ ax? + by + ¢ =0, L satisfies this equation, so we find that
x(x?) + ax2 + bx + ¢ = 0. This polynomial must have no linear
factors; hence, it is irreducible and takes one of the two forms
x(x?)+x+l = 0 or x(x2)+x?+l = 0. Replacing x by =x+1, if
necessary, we can assume x(x?) + x+ 1= 0, in particular,
{l,x;xz} is a basis.

The remainder of the proof considers various nontrivial poé—

sibilities and will only be sketched:

i
1

I. If x2x = x%+1, x?x2 = x, then (x%2+x)2 = 0.

x24x, then (x%+1)(x%+x+1) = 0.

II. If x%x = x2+l, x%x2

III. If x%x = x+1, x%x?

1, then (x2+1)2 = 0,

IV, If x?x = x+1, x%x2 = x, then (x%+x)(x2+x+l) = 0,
Ve If x2x = x+l, x2x2 = x2+41, then (x2+41)(x2+x) =0

VI. If =x2x = x+l, x°x2 = x2+x, then we have the field GF(8).

We have proved the following theorem:

Theorem 6.1. A proper semifield has order p", where n > 3 and

p® > 16. i
We will show in Section VIII that these easily obtained, necessary

conditions on the order are actually sufficient.
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6.2. Semifields of order 16. The semifields of order 16 have been

tabulated in [5], and these have been independently checked on a
computer. There are 23 nonisomorphic, proper semifields of order 16.
These are all isotopic to either system V or to system W .of
Section 2.2; consequently, two projective planes are formed.

>The first plane, consisting of those semifields isotopic to V,
contains 18 distinct semifields. There is one (namely V) with 6
automerphisms, another with 3 automorphisms, 8 with 2 automorphisms,
and 8 with only the identity automorphism. Hence, there must be 18
autotopisms in agreement with formula (3.13):

1 8 8
3t 5 + l). (6.1)

1
152 = 18(% +
6
The second plane has only five distinet semifields. One of these

has 4 automorphisms, one (W) has 3, and the other three have 2

automorphisms., Thus, by formula 3.13, there are 108 autotopisms, and

152 = 108(= + = + 3, ’ (6.2)

B |
w -

n

Since the number of autotopisms is different, we can conclude

that each plane is selfw«dual and self«transpose.

6.3, Early work of Dickson. The study of semifields apparently was

originated by L. E. Dickson in 1905 [6]. In two early papers on the
subject, he considered the construction of all possible semifields
of order p3, and of all possible commutative semifields of order

p*, where p is odd.
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Perhaps the simplest way to construct proper semifields is
analogous to our construction of V and W in Section I1; we start
with a field GF(p®) and construct a semifield of order p°%, having
elements e + Ab; a,b ¢ GF(p™).

One must merely define

(a + Ab)(c + xa) = f(a,b,c,d) + rgla,b,c,d) | (6.3)
where f,g are linear in all four variables, and where
f(a,b,c,d) = gla,b,c,d) = 0 implies a =b =0 or c¢ = d =0,
There are many, many ways to do this, seemingly unrelated; a quite
general class of these constructions is investigated in Seétion VII,

Dickson [7] gave a particularly simple construction of a

commutative semifield of this type, for p odd:
(a + Ab)(ec + 2d) = (ae + ©%3%f) + A(ad+be) (6.4)

whgre ¢ is an automorphism and where f 'is a nonsguare of the
field OCF(p™). The condition that f must be a nonsquare element
is clear, for if f = a2 choose b such that b9 = a=1, Then
(1L + 2b)(1 - Ab) = 0. It is easy to verify that the condition is
also sulfficient (see Section VII).

The complex numbers are a particular case of the system (6.4),
although f being a nonsquare is not always sufficient in the

infinite case. The system (6.4) is associative if and only if o = I.
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6.4, Twisted fields. The following construction is due to

A. A. Alvert [2,8,9]. Define a new multiplication on the elements

of GF(p™) by

xo0oy=xy? =c xly, ' - (6.5)

where g = pm, l<m<n, eand where ¢ # a@L ror a e GF(pP).
Then we obtain a pre-semifield, since x2 + y& = (x + y)%, and since

xey=0 implies x=0 or y=0 or c = (y/x)2L,
Now pass to a semifield by using (4.19); the result is cailed a
twisted field,

The construction can be carried out only if ¢ exists.subject to
the required conditions., This will be the case when (q-1,pP-1) > 1,
i.e., wvhen gq=1 and p"-1 have a common factor, since multiplication
is cyclic of order p®-l. But if p is odd, there is always the
common factor p - 13 if p = 2 we have (Zm-l,En-l) = Q(m’n)-l,
so we néed (m,n) > 1. If n = mk, where k >.2, it has been shown
that the semifield constructed is nonassociative.

Twisted fields exist for nearly all orders not excluded by
Theorem 6.1.1, The missing orders are 2%, and 2P, where p

is a prime greater than 3,

6.5. Sandler's construction. An interesting class of semifields

' 2
has been constructed by R. Sandler [10]. There are pt™ elements

in these semifields, where m 1is greater than 1.
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For Sandler's construction, let g = p®; the elements of S are

cos m-1 m
ag + Aa, + + A B 1 B € GF(q™). (6.6)

Multiplication is defined as follows:

(Aix)(kjy) Ai+3xq3y, 0xic<my 02J <=

o= g, _ (6.7)

with the convention that AF denotes left powers of A , i.e.,
A+l = Ak, I § is chosen such that it satisfies no polynomial
of degree less than m over GF(q), this gives a semifield.

For example, let us construct such a system S of oréer' 29,

The elements are

a + Ab + A\c, a,b,c & GF(8).
Multiplication is defined by the rule
(a + Ab + A2c)(d + Ae + A2f) = ad + lafe + A%alf
+ SbUF + Abd  + ngze
+ §cle + )\gckf + A?cd. (6.8)

Note the similarity between this and the definition of the system W
in Section 2.2. This can be written in matrix form, since 5  is a
right vector space over GF(8); the matrix of left multiplication

by (a + Ab + A2c) is then

L = |b a2 §c*|. (6.9)
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The determinant of L is a’ + 6b7 + 6%2c’ - §(ab"e + abZe" + alpe?)

=r +s8+té%, Since r2=r, g2 =g, tZ = t this is a poly-
nomial of degree 2 or less over GF(2), and cannot be zero by
hypothesis unless all of the coefficients vanish; but this would.

require a =b =¢ = 0.
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VII. WEAK NUCLEI AND QUADRATIC EXTENSIONS,

The concept of nucleus (Section 2.,6) is generalized here, and

this leads to an important class of semifields of the form (6.3).

7.1. Definition of wesk nucleus. Let F be a field contained in

a semifield S, We say F 1is a weak nucleus for S if (ab)ec = a(be)

whenever any two of  a,b,c are in F. S will be a vector space
over F, but left and right multiplication will not in geheral be
linear transformations over F,

An example of such a system is the semifield V of Section 2.2,
Here F 1is contained in neither the left, middle, or right nucleus
of V, There are, on the other hand, semifields of order 16 whose
left nucleus is not a weak nuecleus. In other words, the statement,
"F is a weak nucleus" does not imply and is not impliedlby the
statement "F 1is a left nucleus.” However, if F is contained in
any two of the nuclei Nﬁ, Nm, or Nr’ F must necessarily be a

weak nucleus.

T.2. Quadratic extensions.

Theorem 7.2.1. Let F De a weak nucleus for 5, and let &5 have

dimension 2 over F. Then the elements of S have the form

a + \b, 2, b & F; (7.1)
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and A can be chosen such that

al = Aaf (7.2)

for all a e F, where ¢ 1is an sutomorphism of F.

Proof: Let x be a primitive element of the field F,. and let
XA = a+ b, (7.3)

Case I. b = x. Then we can prove by induction that

XA = nax®l o+ Ax%, o (T7.h)

n
i}

n+1)\

for x (xx®)A = x(xP2) = x(naxB~1 + Ax®) = nax® + x(Ax®)

(n+l)ax® + AxB*l,

nax? + (xA\)x® = nax® + (a + Ax)x?

Notice that the associative law was applied here only when permis-
sible. If F has p™ elements, we can put n = p®, and since

pPa = 0 and xP" = x, we have by (T.L)
xA = )\X- (7'5)

Case II. b # x. Then we may replace A by A' = A+ a(b-x)"1,
and e fiﬁd xA' = A'b., We easily prove by induction that
A" = A'b®, Sinece x 1is a primitive element, b 1is a power of
x, say xY. This shows that yA' = A'y9 for all nonzero vy,

and in fact

(yz)ar = A'(y%z%), , (7.6)



52.

for all nonzero y,z since y and 2 are powers of x. Further-

more,
(y + z)a = A (y° + 29),

by the distributive laws. These equations hold trivially if 7y
or z 1is zero; therefore, we have shown that (yz)® = y9z%,

(y+2)9 = y¥ + 29, This means ¢ is an automorphism, i.e., o =

for some k. |

Te3. Construction of semifields., The rule for multiplication in =a

quadratic extension of a weak nucleus must be
(a + xb)(c + Ad) = ac + A(2%Q + be) + (ap)(2d),

according to the preceding theorem. But the fact that ¥ is a
weak nucleus tells us nothing about what the product (ab)(ad)
must be; such products never occur unless two elements not in- F
are multiplied together. This product can be defined as
f(b,d) + Ag{b,d) where f and g are bilinear functioné, as
long as no zero divisors are introduced.

Although maeny choices might be made for f and g,bwe will

make the assumption here that they have a certain simple form.
Let (Ab)(Ad) = b%aBr +x(vYalg)

where f,g are now elements of F, and where «,B8,y,8 are

sutomorphisms of F. Under what conditions can we conclude that

no zero divisors have been introduced?

(7.7)

(7.8)

(7.9)
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Suppose (atAb) # 0, (c + Ad) # 0, but {(a + Ab)(c + Ad) = O.
Then, in the first place, we have
ac + b%Pr = 0

this implies there is an element x # 0 in F such that

a=xdf, ¢ = -x"1oor.
The other condition is that
a%d + be + b¥dSg = 0, i.e.,

x9aBo+l | potly=le 4 pYaSg = 0

Case I. g =0, If g =0, we have x9aP0+1l = potly=le,
Here b and d must be nonzero, and f = xO+1gPo+1y-1-08. ppere-
fore, if p 1is an odd prime, o+l, fo+l, and -l-a are even and
we could conclude that f 1is a square; so choose f to bé'a
nonsquare.,

Otﬁer a priori choices of a,f and f caﬁ be made, in which
f is a square, as we will see in our discussion of Case II. . For
particular fields, special choices may be possible.

Case II., g # 0. In this case, we will try to choose «,B,Y,§
so that {7.11) is a nonzero constant times a polynomial in a single
variable. This can be done in essentially one way by writing it in

the form

x—lba+1(xc+1b-1-ad80+1 + be*l““dag -f) = o0,

and we require that

x°+1b‘i'°‘d3°+l - (be-l"GdCS)U"'l.

(7.10)

(T.11)

(7.12)
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Theorem 7.3.1.

p*+p° 2p%+p

if and only if aze,b =d or azd,b =c (mod m).

Proof: Since p® = 1 (mod p®~1l), we may assume

0 < a,b,c,d < m. Then we have 2 < p? + p° <2p™! < p™, ana
2 < p¢ + pd < 2p™! < p™, so we may conclude that
p® + pP = p¢ + pd,

We may now divide by p if necessary, until one of a,b,c,d is
zero, say a. Then it is e¢lear that either ¢ or d must be
zero, and the theorem follows. |

Now suppose F = GF(p®), and let t = o~l, Then (7.12) can

be written

Bo + 1 S0 + & (mod pP-1)

131

ag + o (mod pB-1)-

il

YO + Yy
By Theorem T.3.1l, these two congruences have four soclutions:
(8,8) = (12,1) or (1,1) ; (a,y) = (x,1) or (o,0).

Using any of these four solutions, we can conclude that there are

no zero divisors if and only if the polynomial
y'* v gy - f = 0

has no solutions in F,

{T.13)

(7.1k)

(7.15)
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There are in general many such polynomials, as long as F is
not a prime field. For example, if p is o0dd, we may take g = O,
o=p and f any element not of the form yP*l, If p =2, we
can take g =1 and o =2, and f any element not of the form

y® + y. (Such an element must exist, since 03 + 0 = 13 + 1.)

7.&. The four types. We obtain many proper semifields, which are

quadratic over a weask nucleus, by the construction in the previous

section. Those of Case I have the multiplication rule

(a + Ab)(e + 2d) = (ac + p®aPr) + A(a% + be) | (7.16)

where P is odd and f 1is a nonsquare; o,8, and ¢ are arbi-
trary automorphisms, but not all the identity. Dickson's construc—
tion (see Section 6.3) is a special case, indeed the only commutative
semifield of this type.

Other semifields, those of Case II, are constructed by finding

an automorphism ¢ # I and elements f,g ¢ F such that -
vt 4 gy - f # 0, for y e F.

Then four types of semifields are produced, all for the same ¢,f,g

and for 1 = ¢g~1:

(a + Ab)(c + Ad)
2
I. (ac +b9%47°f) + A(ve + 2% + b%dTg)
II. (ac +b% f) + A(be + a%a + b%a g)
(7.17)

ITI. (sc + bTaT’f) + Albe + 2% + b aTg)

IV, (ac + bTd f) + A(bc + a% + b 4 g)
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For example, the system V of Section 2.2 is of type I. The
system W of that section is actually of all four types. The
systems of type II were discovered by Hughes and Kleinfeld [11l].

Autotopisms of systems of type Il are discussed in [10,12,13].

Theorem T.k.l. Let S be a proper semifield, gquadratic over a

finite field F. Let NgoN,,N,. Dbe the nuclei of S. Then

"
=
n

(a) F Nm if and only if S is of type II.

{(b) F=0N

. Nm if and only if S5 is of type III.

i}
=
it

(c) F o =N if and only if 5 is of type IV.

Proof: The "if" parts of this theorem can be obtained by
direct calculation, and will be omitted. The "only if" parts
follow since, first, F 1is a weak nucleus if it equals any two of
the nuclei, so Theorem T.2.1 holds. We need then merely calculate

(ab)}(Ad) under the assumptions (a), (b), (e) given.

Let A2 = f + Ag. Then

(a) (xp)(Ad) = ((Ap)A)a = (A(bA))a = (A(Ap9))d = A((Ab9)d)

1]
1}

AMA(b%4)) = A%(b%) = vaf + Ao%ag.

(6TA)(aTA) = BT(A(ATA)) = BT((AaT)A) = BT((AT A)A)

(b) (Ab)(ad)

= bT(dexz) = (deTZ)x2 = deTz(f + Ag)
= pTat'r + Abdtg.
(e) (xp)(ad) = (BTa)(ad) = vT(a(ad)) = bT(A24)

PY({f + Ag)d) = bTAf + Xodg.
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The proof is completed by observing that either of the three
types implies the existence of the polynomial (T7.15) which has no
solutions in F. |

No characterisation of type I is known.

Corollary T.4.2. Under the hypotheses of Theorem T.4.1,

F o= NL = Nm = Nr if and only if S is of all four types 1, IIl 11T,
IV vhere o2 =1 and g = O.

Proof: By the theorem, we must have S of types II, III, IV at
least. These types are the same if and only if o2 =1 and g = O,
since o # 1. |

This corollary and part (a) of Theorem T.4.1 were discovered by

Hughes and Kleinfeld in their original paper [11].
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VIII., BINARY SEMIFIELDS.

Constructions given in this section fill the gap in the
existence theorems for semifields and non-Desarguesian planes
of all possible orders p”. Proper semifields of all orders 20,

where n # 3 and n is not a power of 2, are constructed.

8.1, The binary pre-semifields. Let K = GF(2™!) where n is

odd, n > 1; let K, be the subfield GF(2"), Considering K
as a vector space over Ko, lJet f be any nonzero linear

functional from K to K :
f(xa + yb) = xf(a) + yf(b),

for all a,b e K, and all x,y € Ko.

Define a new multiplication in K as follows:
a°ob = ab+ [f(a)b + f(b)al?.

This product clearly is linear in both variables, so it satisfies

(8.1)

(8.2)

both distributive laws., We will show that there are no zerco divisors:

Suppose a o b =0, and a,b # O; then let x = ab~!, This implies

x + £(8)2 + £(v)2x2 = 0.



59.

We have a gquadratic equation with coefficients in Ko; but since
the degree of K/K, 1is odd, this equation must be reducible. There-

fore, x e K,- But then a = xb implies

ao0ob=ab+ [f(xb)b + f(b)xb]? = ab # 0.

8,2, The binary semifields. A semifield can be obtained from this
pre-semifield in any of the standard ways described in Section 4.5;

let us call any such semifield a binary semifield. We will give a

particular construction in detail here. It is necessary to do this,
to make sure the resulting semifield is not a field.

Let {1,x,x2,...,x""1} be a basis of K over K ; set
£(1) = £(x) = eee = £(x7=2) = 0, f(x*1) = 1. (8.3)
With this definition, we find that, for y € Ko,
10y=y,10YX =YX, eesy 1 0 yx*2 = 172,
1 o yxnnl = yxn-l + yz;
and therefore l1o0o(loa)=a, all acK. (8.4)
Define the multiplication 4 by the rule

a%b - {1 o a)o (1od), - (8.5)

Then 1 is an identity for a # b, and we have a semifield

(S,+,%).



60.

Notice that we have now defined three different multiplications
on the elements of K: ab, a o b, and a # b. It is important to
keep this distinetion in mind, since all three multiplications are
used simultanecusly in many proofs. The powers of an element az,

a3, ete., will alvays refer to the multiplication of the field.

Theorem 8.2.1. 5 1is a proper semifield of order 2™, if n is
odd, and if mn > 3,
Proof: If n > 3, let k = (n-1)/2; then k > 1, .and
X*(Xk*xk)=X*Xn-19‘xn=(x*xk) *xk-

Thus, multiplication is not associative in this case.

If n=3, let y be an element of K,; we have

¥
[

(x % x) #yx=x2 % yx = {x2 + 1)oyx = yx(x2+1) + y2x2.
x % (x % yx) = x x yx2 = x o (yx2+y2) = (yx2+y2)x + y2x2.

Thus, multiplication is still not associative, unless v = y. We

can always choose y # y® unless K = GF(8), in which case we have

shown before that no proper semifield exists. |

Corollary 8.2.2. (Converse of Theorem 6.1) Proper semifields exist

for all orders p%, where n >3 and p° > 16. |

Corollary 8.2.3. Non-Desarguesian projective planes exist for all

orders p%, provided n > 2 and »" > 9.

Proof: Hall systems (Veblen-Wedderburn systems) exist for the

remaining orders p?, p odd. |
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8.3. 1Isotopes. The definition in 8.1 involves an arbitrary linear

functional f. In this section, however, we show that all of the

binary semifields are isotopie, sc only one plane is determined.

Theorem 3.3.1. If f,g are nonzero linear functionals from K to

K

Ky» Lhere exists an element z ¢ K such that f(az) = g(a), for

all a in K.

Proof: A simple counting argument applies. Let {xl,xg,;..xn}
be a basis of K over K,» A linear functional is completely
specified by giving f(x;), 1 < i < n, and these choices are
independent; hence there are 2™ - 1 nonzero linear functionals.

Suppose f is a nonzero linear functional; then f{xz) is
also a nonzero linear functional, if 2z # 0, There are 2P% . 1
choices for 2z, so we need only show that no two of these give the
same function.

But if f(azl) = f(azQ) for all a, we have f(a(z

7)) = 0

for all a, hence 2) -2, = 0. 1|

Theorem 8.3.2. All binary semifields, for given K and XK.,

are isotopic.

Proof: We need only show that any two of the pre-semifields

are isotopic. Suppose we have

it}

aob=ab+ [fla)b + £(b)a]?

ab + [gla)b + g(b)al)?.

o
o'
[
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By Theorem 6.3.1, we find 2z ¢ K such that f(az) = g{a) for all

a., Then we have

az © bz = abz? + [gla)bz + g{blaz]® = (a * b)22. |

8.4, Automorphisms. The binary semifield exhibited for the plahe

»P(3) in Section 5.4 has 5 automorphisms. This property holds in
general: we will show there is a binary semifield with n ‘auto~
morphisms.

In this section we let g = on,

Theoren 8.4.1. Let f be such that f(a) = x whenever

a=x+b+ bq, x e K, b e K.

Then f 1is a linear functional from K to Ko‘

Proof: First we show that £ 1s well-defined. Suppose
x+b+bl=y+c+c? for x#y; then (b+c)d = (b+c) + xty,
i.e., al = a + z, for some a € K, z ¢€ KO. Applying this rule
again, we find

a% = 39 4 23 = 4% 4 2 = a.

1 n+l -
a. But af = al, hence

H

. . n+
Since n 1is odd, we find af
z = 0, Thus f is well-defined.

Furthermore,

1

£(x+b+bq + yocted) = £(x+y + (bee) + (b+c)d) =x + y

£(x+b+b%) + f(y+c+c?),

fy(x+b+p?)) = f{yx + yb + (yp)%) = yx
= yf{x+b+bd),

This shows that f is a linear functicnal. |

(8.6)
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Theorem 8.4.2. Let f be defined as in Theorem 8.4.,1, and let the

product a o b be defined by equation (8.2). The multiplication «

defined by

(Loa)#*{(Lob)=aohb (8.7)

has the automorphism a - a%, hence there are at least n auto-

morphisms of the binary semifiield.

Proof: We show first that a -+ a2 is an automorphism of the
circle product a o b. (By a2 we mean the multiplication of the

field K.)

(a o b)d = (ab + [fla)b + £(b)a]?)d

1}

adbd + [£(a)bd + £(b)ad]?

adbd + [£(a?)p? + £(b9)a2]? = a% o b,
since f(a) = f(a%) Dby definition.
The automorphism carries over to the star product, since

((loa) # (1eb))? = (aob)d = a% o b2

1

(10a?) & (1opd)

(1%a3) # (1%b9) = (loa)? # (lob)d, |

il

8.5. Autotopisms. Let us investigate the autotopism group of a

binary semifield; it suffices to consider autotopisms of the pre-
semifields. The following theorem is an important step in this

direction:
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Theorem 8.5.1. If [F,G,H] is an autotopism of a binary pre-

semifield, we have F =0z, for z # 0 in K,; i.e,,

i

aF z(aG), for all a e K. (8.8)

Proof: We have
aF o bG = (aob)i = (boa)iH = bF © aG, for all a,b.
Therefore
(aﬁ)(bc) + [£(aF)bG + £(bG)aF]? = (aG)(bF) + [f(aG)bF + f(bF)aG]?.’ (8.9)
Let V) = {a | £(aF) = 0}, V, = {a | £(aG) = 0}.

vV, and V, are vector spaces of dimension m{n-1) over :GF(2),
since the kernel of f: K » K, must have dimension n-1 over K.

Let V3 = Vln V2. Then

v
no
L

dim V5 = dim V) + dim V, - dim V; 0 V, 2 2m(n-1)-m = m(n-2) 2

Therefore V3 contains at least two nonzero elements.

We apply formula (8.9), to find,

(aF)(bG) = (aG)(vbF), if £(aF) = f(aG) = f£(bF) = £(bG) = O;

i.e., 8F = BL = 4, forall ab € Vy- {0}, (8.10)
aG  bG

Now, let a e Vg~ {0} and let b Dbe arbitrary; welhave
2(a6)(00) + [2£(06)(aG)]% = (aG)(bF) + [£{0F)(aG)]?,

ieea, z(bG) + bF = (aG)[2f(bG) + £(bF)]2. (8.11)
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Let a run through two distinct elements 85589 of V3 - {0}
the left hand side stays constant, hence we find
(a,C - a,G) [2£(bG) + £(vF)]? = 0.
But G is 1-1, so a,G - a,G # 0. This shows us that
2zf(bG) + £(bF) = 0, all b,
In particular, if b ¢ V,, ve find z e K.
| Finally, equation (8.11) becomes
z(bG) + bBF = 0, all b,
and this is precisely equation (8.8). |
Remarks: Put a =Db, we find (& o a)i = (a2)d = z(aG)2,
so H is given in terms of G. Other relationships can now be

obtained, using methods similar to those of the preceding theorem,

but this investigation is incomplete at the present time.
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