
International Journal of Forecasting 36 (2020) 1181–1191

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

DeepAR: Probabilistic forecastingwith autoregressive
recurrent networks
David Salinas, Valentin Flunkert ∗, Jan Gasthaus, Tim Januschowski
Amazon Research, Germany

a r t i c l e i n f o

Keywords:
Probabilistic forecasting
Neural networks
Deep learning
Big data
Demand forecasting

a b s t r a c t

Probabilistic forecasting, i.e., estimating a time series’ future probability distribution
given its past, is a key enabler for optimizing business processes. In retail businesses,
for example, probabilistic demand forecasts are crucial for having the right inventory
available at the right time and in the right place. This paper proposes DeepAR, a
methodology for producing accurate probabilistic forecasts, based on training an au-
toregressive recurrent neural network model on a large number of related time series.
We demonstrate how the application of deep learning techniques to forecasting can
overcome many of the challenges that are faced by widely-used classical approaches
to the problem. By means of extensive empirical evaluations on several real-world
forecasting datasets, we show that our methodology produces more accurate forecasts
than other state-of-the-art methods, while requiring minimal manual work.

© 2020 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The majority of the forecasting methods that are in
use today have been developed in the setting of fore-
casting individual or small groups of time series. In this
approach, model parameters for each given time series are
estimated independently for each time series from past
observations. Although good and freely available auto-
matic forecasting packages exist (such as that of Hyndman
& Khandakar, 2008), typically models are selected manu-
ally, both in practice and in research, in order to account
for different factors, such as autocorrelation structure,
trend and seasonality, and in particular other explanatory
variables. The fitted model is then used to forecast the
time series into the future according to the model dynam-
ics, with probabilistic forecasts possibly being admitted
through simulation or closed-form expressions for the
predictive distributions. Many methods in this class are

∗ Corresponding author.
E-mail addresses: dsalina@amazon.com (D. Salinas),

flunkert@amazon.com (V. Flunkert), gasthaus@amazon.com
(J. Gasthaus), tjnsch@amazon.com (T. Januschowski).

based on the classical Box-Jenkins methodology, expo-
nential smoothing techniques, or state space models (Box,
Jenkins, Reinsel, & Ljung, 2015; Durbin & Koopman, 2012;
Hyndman, Koehler, Ord, & Snyder, 2008).

Over the last few years, a different type of forecast-
ing problem has gained increasing importance in many
applications. Rather than predicting individual or small
numbers of time series, one is faced with the need to
forecast thousands or millions of related time series. Ex-
amples of such problems include forecasting the energy
consumption at the level of the individual household,
forecasting the load for servers in a data center, or fore-
casting the demand for each of the products offered by
a large retailer. In each of these scenarios, a substantial
amount of data on the past behaviors of similar, related
time series can be used to produce a forecast for an indi-
vidual time series. Using data from related time series (the
energy consumption of other households, the demand for
other products) not only allows more complex (and hence
potentially more accurate) models to be fitted without
over-fitting, but can also alleviate the human time- and
labor-intensive steps of selecting and preparing covariates
and selecting models that classical techniques require.

https://doi.org/10.1016/j.ijforecast.2019.07.001
0169-2070/© 2020 The Authors. Published by Elsevier B.V. on behalf of International Institute of Forecasters. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijforecast.2019.07.001
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2019.07.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dsalina@amazon.com
mailto:flunkert@amazon.com
mailto:gasthaus@amazon.com
mailto:tjnsch@amazon.com
https://doi.org/10.1016/j.ijforecast.2019.07.001
http://creativecommons.org/licenses/by/4.0/

1182 D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191

Fig. 1. Histogram of the average number of sales per item (in log–log
scale) for 500K items of ec, showing the scale-free nature (approxi-
mately straight line) of the ec dataset (axis labels omitted due to the
non-public nature of the data). This figure was created by grouping the
items in the dataset into buckets according to their average weekly
sales and counting the number of items in each bucket. The number
of items per bucket is then plotted against the number of sales (both
axes in log scale).

This work presents DeepAR, a forecasting method
based on autoregressive recurrent neural networks, which
learns a global model from historical data of all time series
in the dataset. Our method builds upon previous work on
deep learning for time series data (Graves, 2013; van den
Oord et al., 2016; Sutskever, Vinyals, & Le, 2014), and tai-
lors a similar long short-term memory (LSTM; Hochreiter
& Schmidhuber, 1997) based recurrent neural network
architecture to the probabilistic forecasting problem.

One challenge that is encountered often when at-
tempting to learn from multiple time series jointly in
real-world forecasting problems is that the magnitudes of
the time series differ widely, and the distribution of the
magnitudes is skewed strongly in practical applications.
This issue is illustrated in Fig. 1, which shows a histogram
(in log–log scale) of the number of sales per item for
millions of items sold by Amazon. We refer to this as the
velocity of an item. Segmenting time series according to
their velocity is crude yet intuitive, is easy to convey to
non-experts and suffices for our arguments and the main
application further on.

The distribution of the velocity over a few orders
of magnitude is an approximate power-law. This ob-
servation has fundamental implications for forecasting
methods that attempt to learn a single model from such
datasets. The scale-free nature of the distribution makes
it difficult to divide the dataset into sub-groups of time
series in a certain velocity band and learn separate models
for them, as each such velocity sub-group will have a
similar skew. Furthermore, group-based regularization
schemes, such as that proposed by Chapados (2014),
may fail, as the velocities will be differ vastly within
each group. Finally, such skewed distributions make the
use of certain commonly-employed normalization tech-
niques, such as input standardization or batch normaliza-
tion (Ioffe & Szegedy, 2015), less effective.

The main contributions of this paper are twofold:
(1) we propose a recurrent neural network (RNN) archi-
tecture for probabilistic forecasting, which incorporates
a negative binomial likelihood for count data as well as
special treatment for the case where the magnitudes of

the time series vary widely; and (2) we demonstrate em-
pirically, on several real-world datasets, that this model
produces accurate probabilistic forecasts across a range
of input characteristics, thus showing that modern deep
learning based approaches can be effective at addressing
the probabilistic forecasting problem. This provides fur-
ther evidence that neural networks are a useful, general-
purpose forecasting technique (see e.g. Kourentzes, 2013,
for a further successful application of a less deep neural
network).

In addition to providing a better forecast accuracy than
previous methods, our approach has a number of key
advantages over classical approaches:

(i) As the model learns seasonal behaviors and de-
pendencies on given covariates across time series,
minimal manual intervention in providing covari-
ates is needed in order to capture complex, group-
dependent behavior.

(ii) DeepAR makes probabilistic forecasts in the form of
Monte Carlo samples that can be used to compute
consistent quantile estimates for all sub-ranges in
the prediction horizon.

(iii) By learning from similar items, our method is able
to provide forecasts for items that have little or no
history available, a case where traditional single-
item forecasting methods fail.

(vi) Our approach does not assume Gaussian noise, but
can incorporate a wide range of likelihood func-
tions, allowing the user to choose one that is ap-
propriate for the statistical properties of the data.

Points (i) and (iii) are what sets DeepAR apart from
classical forecasting approaches, while (ii) and (iv) are
instrumental in the production of accurate, calibrated
forecast distributions that are learned from the histori-
cal behavior of all of the time series jointly, which has
not been addressed by previous related methods (see
Section 2). Such probabilistic forecasts are of crucial im-
portance in many applications, as, in contrast to point
forecasts, they enable optimal decision making under un-
certainty by minimizing risk functions, i.e., expectations
of some loss function under the forecast distribution.

This paper is structured as follows. We begin by dis-
cussing related work in Section 2. Section 3 provides a
brief overview of the key deep learning techniques on
which we build in this paper. These techniques are well-
established in the machine learning community, but we
provide them here for convenience. Section 4 discusses
the architecture of the DeepAR model in detail, and also
details how the training of the model works. Section 5
provides empirical evidence for the practical usability of
our method, and we conclude in Section 6.

2. Related work

In practical forecasting problems, especially in the de-
mand forecasting domain, one is often faced with highly
lumpy or intermittent data which violate the core as-
sumptions of many classical techniques, such as Gaussian-
ity, stationarity, or homoscedasticity of the time series.
This has long been recognized as an important issue.

D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191 1183

Intermittent demand can be treated using techniques that
range from classical methods (Croston, 1972) to neu-
ral networks (Gutierrez, Solis, & Mukhopadhyay, 2008)
directly. Data-preprocessing methods such as Box–Cox
transformations (Box & Cox, 1964) or differencing (Hynd-
man & Athanasopoulos, 2012, provides an overview) have
been proposed in order to alleviate unfavorable char-
acteristics of time series, but with mixed results. Other
approaches incorporate more suitable likelihood func-
tions, such as the zero-inflated Poisson distribution, the
negative binomial distribution (Snyder, Ord, & Beaumont,
2012), a combination of both (Chapados, 2014), or a tai-
lored multi-stage likelihood (Seeger, Salinas, & Flunkert,
2016). We approach the (demand) forecasting problem
by incorporating appropriate likelihoods and combining
them with non-linear data transformation techniques,
as learned by a (deep) neural network. In particular,
we use a negative binomial likelihood in the case of
demand forecasting, which improves the accuracy but
precludes us from applying standard data normalization
techniques directly. By using deeper networks than have
been proposed previously in the forecasting literature,
we allow the neural network to represent more complex
data transformations. Goodfellow, Bengio, and Courville
(2016) provides a comprehensive overview of modern
deep neural networks, including justifications of why
deep neural networks are preferable to shallow and wide
neural networks.

When faced with time series as they occur in indus-
trial applications, sharing information across time series
is key to improving the forecast accuracy. However, this
can be difficult to accomplish in practice, due to the
often heterogeneous nature of the data. A prominent ap-
proach to sharing information across time series is to
use clustering techniques such as k-means clustering to
compute seasonality indices, which are then combined
with classic forecasting models (see for example the Fore-
sight 2007 Spring issue on seasonality for a number of
examples, as well as the papers by ,Chen & Boylan, 2008
and Mohammadipour, Boylan, & Syntetos, 2012). Other
examples include the explicit handling of promotional
effects (see e.g. Trapero, Kourentzes, & Fildes, 2015, and
references therein) via pooled principal component anal-
ysis regression. The latter is another instance of using
an unsupervised learning technique as a pre-processing
step. These effects need to be handled in practical appli-
cations, which leads to complex pipelines that are difficult
both to tune and to maintain. The complexity of such
pipelines is likely to increase when one needs to ad-
dress specific sub-problems such as forecasts for new
products. Effectively, one decomposes the overall fore-
casting problem into a number of distinct forecasting
sub-problems and applies a dedicated model or even a
chain of models to each one. These models can range from
classical statistical models (e.g. Hyndman et al., 2008) to
machine learning models (e.g. Laptev, Yosinsk, Li Erran, &
Smyl, 2017; Wen, Torkkola, & Narayanaswamy, 2017) and
judgmental approaches (e.g. Davydenko & Fildes, 2013).
However, the forecasting problem might not lend itself to
a decomposition into a sequence of distinct procedures,
in which case one would have to think about model

consolidation, blending, or ensembling (e.g. Oliveira &
Torgo, 2014; Timmermann, 2006). These techniques in-
crease the complexity still further. Deep neural networks
offer an alternative to such pipelines. Such models require
a limited amount of standardized data pre-processing,
after which the forecasting problem is solved by learn-
ing an end-to-end model. In particular, data-processing
is included in the model and optimized jointly towards
the goal of producing the best possible forecast. In prac-
tice, deep learning forecasting pipelines rely almost exclu-
sively on what the model can learn from the data, unlike
traditional pipelines, which rely heavily on heuristics such
as expert-designed components and manual covariate de-
sign.

Other approaches to the sharing of information across
time series are via matrix factorization methods (e.g. the
recent work of Yu, Rao, and Dhillon (2016)). We compare
our approach to this method directly in Section 5, and
show how we empirically outperform it. Further methods
that share information include Bayesian methods that
share information via hierarchical priors (Chapados, 2014)
and by making use of any hierarchical structure that may
be present in the data (Ben Taieb, Taylor, & Hyndman,
2017; Hyndman, Ahmed, Athanasopoulos, & Shang, 2011).

Finally, we note that neural networks have been be-
ing investigated in the context of forecasting for a long
time by both the machine learning and forecasting com-
munities (for more recent work considering LSTM cells,
see for example the numerous references in the surveys
by Zhang, Eddy Patuwo, & Hu, 1998, Fildes, Nikolopoulos,
Crone, & Syntetos, 2008, and Gers, Eck, & Schmidhu-
ber, 2001). Outside of the forecasting community, time
series models based on RNNs have been applied very
successfully to various other applications, such as natural
language processing (NLP) (Graves, 2013; Sutskever et al.,
2014), audio modeling (van den Oord et al., 2016) or
image generation (Gregor, Danihelka, Graves, Rezende,
& Wierstra, 2015). Direct applications of RNNs to fore-
casting include the recent papers by Wen et al. (2017)
and Laptev et al. (2017). Our work differs from these
in that it provides a comprehensive benchmark includ-
ing publicly available datasets and a fully probabilistic
forecast.1

Within the forecasting community, neural networks in
forecasting have been applied typically to individual time
series, i.e., a different model is fitted to each time series
independently (Díaz-Robles et al., 2008; Ghiassi, Saidane,
& Zimbra, 2005; Hyndman & Athanasopoulos, 2018; Kaas-
tra & Boyd, 1996). Kourentzes (2013) applies neural net-
works specifically to intermittent data. The author uses a
feed-forward neural network (which, by design, ignores

1 Since the initial pre-print of the present work became available,
neural networks have received an increasing amount of attention,
see for example (Bandara, Bergmeir, & Smyl, 2017; Gasthaus, Benidis,
Wang, Rangapuram, Salinas, Flunkert, et al., 2019; Oreshkin, Carpov,
Chapados, & Bengio, 2019; Rangapuram, Seeger, Gasthaus, Stella, Wang,
& Januschowski, 2018; Smyl, Ranganathan, & Pasqua, 2018; Toubeau,
Bottieau, Vallée, & De Grève, 2018). The winning solution to the M4
competition was based on a neural network (Makridakis, Spiliotis, &
Assimakopoulos, 2018; Smyl et al., 2018). Future work will address a
systematic review of these methods.

1184 D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191

the sequential nature of the data) and provides a shallow
neural network that contains one hidden layer. Given the
limited training data, this shallowness allows for effec-
tive training, and the author obtains promising results.
However, the use of larger datasets and data augmenta-
tion techniques such as we discuss further on allows us
to train deeper neural networks. Furthermore, we pro-
vide more details regarding the set-up for the training
of the RNN and a methodology for obtaining probabilistic
forecasts. Gutierrez et al. (2008) also use a feed-forward
neural network for lumpy demand forecasting data. RNNs
have the advantage for modeling the sequential nature
of time series explicitly, and thus have a smaller number
of parameters that need fitting. Our work differs from
these papers in that it provides more details on the neural
network architecture and utilizes recent advances from
the machine learning community on the training of RNNs.
In addition, in contrast to the aforementioned papers, our
work also provides the full probability distribution of the
forecasts, which is crucial for optimal decision making in
downstream applications.

3. Background: RNNs

We assume that the reader is familiar with basic neu-
ral network nomenclature around multi-layer percep-
trons (MLPs) or feed-forward neural networks, which
have been applied successfully to forecasting problems
by the forecasting community (e.g., Gutierrez et al., 2008;
Kourentzes, 2013); in particular, modern forecasting text-
books include MLPs, e.g., (Hyndman & Athanasopoulos,
2018). We refer the interested reader to Goodfellow et al.
(2016) for a comprehensive introduction to modern deep
learning approaches and Faloutsos, Flunkert, Gasthaus,
Januschowski, and Wang (2019) for a tutorial that focuses
on forecasting. In what follows, we provide a brief in-
troduction to recurrent neural networks (RNNs) and key
techniques for handling them, as they have not been dealt
with extensively in the forecasting literature (though the
machine learning community have applied them to fore-
casting problems with some success; e.g. Laptev et al.,
2017; Wen et al., 2017). We follow (Goodfellow et al.,
2016) in our exposition.

A classic dynamic system driven by an external signal
x(t) is given by

h(t)
= f (h(t−1), x(t); θ), (1)

where h(t) is the state of the system at step t and θ
is a parameter of a transit function f . RNNs use Eq. (1)
to model the values of their hidden units (recall that a
hidden unit of a neural network is one that is neither the
input layer nor the output layer).

This means that RNNs are deterministic, non-linear dy-
namic systems, in contrast to additive exponential
smoothing in state space form, which can be represented
as linear non-deterministic dynamic systems with a single
source of error/innovation (Hyndman et al., 2008).

Fig. 2 contains a depiction of a simple RNN. The recur-
sive structure of the RNN means that fewer parameters
need to be learned than in the case of MLPs. However,
a technical difficulty arises in the training of RNNs via a

Fig. 2. Left. A RNN without an output layer. Right. A partially unrolled
RNN with an output layer and multiple hidden units.

gradient-based optimization procedure. The recursive na-
ture of RNNs often results in ill-conditioned optimization
problems which are referred to commonly in the machine
learning community as vanishing or exploding gradients.
The long short-term memory (LSTM) model (Hochreiter &
Schmidhuber, 1997) alleviates this problem (among other
favorable properties), and it is the approach that we adopt
in this paper. We do not present the full functional form
of LSTMs, as this is unnecessary for our arguments, but
again refer to the paper by Goodfellow et al. (2016) for
an overview and a comprehensive exposition. All mod-
ern neural learning packages, such as that of Chen et al.
(2015), include an implementation of LSTM-based RNNs.

In addition to LSTMs, another concept from RNNs
will be useful: the encoder–decoder framework, which
allows RNNs to be used to map an input sequence x =

(x1, . . . , xnx) to an output sequence y = (y1, . . . , yny) of
differing lengths. This idea is used frequently in NLP and
machine translation, and works as follows. Given an input
sequence, a first RNN processes this sequence and emits
a so-called context, a vector or a sequence of vectors. In
practice, this is often the last state hnx of the encoder
RNN. A second RNN, the decoder RNN, is conditioned on
the context in order to generate the output sequence. The
two RNNs are trained jointly to maximize the average of
log P(y|x) over all pairs x, y in the training set. Section 4
discusses the application of this concept to forecasting.

4. Model

Denoting the value of time series (for an item) i at time
t by zi,t , our goal is to model the conditional distribution

P(zi,t0:T |zi,1:t0−1, xi,1:T)

D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191 1185

Fig. 3. Summary of the model. Training (left): At each time step t , the inputs to the network are the covariates xi,t , the target value at the previous
time step zi,t−1 , and the previous network output hi,t−1 . The network output hi,t = h(hi,t−1, zi,t−1, xi,t , Θ) is then used to compute the parameters
θi,t = θ (hi,t , Θ) of the likelihood p(z|θ), which is used for training the model parameters. For prediction, the history of the time series zi,t is fed
in for t < t0 , then in the prediction range (right) for t ≥ t0 a sample ẑi,t ∼ p(·|θi,t) is drawn and fed back for the next point until the end of the
prediction range t = t0 + T , generating one sample trace. Repeating this prediction process yields many traces that represent the joint predicted
distribution.

of the future of each time series [zi,t0 , zi,t0+1, . . . , zi,T] :=

zi,t0:T given its past [zi,1, . . . , zi,t0−2, zi,t0−1] := zi,1:t0−1,
where t0 denotes the time point from which we assume
zi,t to be unknown at prediction time, and xi,1:T are covari-
ates that are assumed to be known for all time points. To
limit ambiguity, we avoid the terms ‘‘past’’ and ‘‘future’’
and will refer to the time ranges [1, t0 − 1] and [t0, T] as
the conditioning range and prediction range, respectively.
The conditioning range corresponds to the encoder range
introduced in Section 3 and the prediction range to the
decoder range. During training, both ranges have to lie in
the past so that the zi,t are observed, but during predic-
tion, zi,t is only available in the conditioning range. Note
that the time index t is relative, i.e. t = 1 can correspond
to a different actual/absolute time period for each i.

Our model, summarized in Fig. 3, is based on an au-
toregressive recurrent network architecture (Graves, 2013;
Sutskever et al., 2014). We assume that our model dis-
tribution QΘ (zi,t0:T |zi,1:t0−1, xi,1:T) consists of a product of
likelihood factors

QΘ (zi,t0:T |zi,1:t0−1, xi,1:T) =

T∏
t=t0

QΘ (zi,t |zi,1:t−1, xi,1:T)

=

T∏
t=t0

p(zi,t |θ (hi,t , Θ)),

parametrized by the output hi,t of an autoregressive re-
current network

hi,t = h
(
hi,t−1, zi,t−1, xi,t , Θ

)
, (2)

where h is a function that is implemented by a multi-layer
recurrent neural network with LSTM cells parametrized
by Θ . We provide further details of the architecture and
hyper-parameters in Section 5. The model is autoregres-
sive, in the sense that it consumes the observation at
the last time step zi,t−1 as an input, as well as recur-
rent, i.e., the previous output of the network hi,t−1 is fed
back as an input at the next time step. The likelihood2
p(zi,t |θ (hi,t)) is a fixed distribution with parameters that

2 We refer to p(z|θ) as a likelihood when we think of it as a function
of θ for a fixed z.

are given by a function θ (hi,t , Θ) of the network output
hi,t (see below).

Information about the observations in the condition-
ing range zi,1:t0−1 is transferred to the prediction range
through the initial state hi,t0−1. In the sequence-to-
sequence setup, this initial state is the output of an en-
coder network. While in general this encoder network
can have a different architecture, in our experiments
we opt to use the same architecture for the model in
both the conditioning range and the prediction range
(corresponding to the encoder and decoder in a sequence-
to-sequence model). Further, we share weights between
them, so that the initial state for the decoder hi,t0−1 is
obtained by computing Eq. (2) for t = 1, . . . , t0−1, where
all required quantities are observed. The initial states of
both the encoder hi,0 and zi,0 are initialized to zero.

Given the model parameters Θ , we can obtain joint
samples z̃i,t0:T ∼ QΘ (zi,t0:T |zi,1:t0−1, xi,1:T) directly through
ancestral sampling. First, we obtain hi,t0−1 by computing
Eq. (2) for t = 1, . . . , t0. For t = t0, t0 +1, . . . , T , we sam-
ple z̃i,t ∼ p(·|θ (h̃i,t , Θ)), where h̃i,t = h

(
hi,t−1, z̃i,t−1, xi,t ,

Θ
)
initialized with h̃i,t0−1 = hi,t0−1 and z̃i,t0−1 = zi,t0−1.

Samples from the model obtained in this way can then
be used to compute quantities of interest, e.g. quantiles
of the distribution of the sum of values for some future
time period.

4.1. Likelihood model

The likelihood p(z|θ) determines the ‘‘noise model’’,
and should be chosen to match the statistical properties of
the data. In our approach, the network directly predicts all
parameters θ (e.g. mean and variance) of the probability
distribution for the next time point.

For the experiments in this paper, we consider two
choices: Gaussian likelihood for real-valued data, and
negative-binomial likelihood for positive count data. Other
likelihood models can also be used readily, e.g. a beta like-
lihood for data in the unit interval, a Bernoulli likelihood
for binary data, or mixtures in order to handle complex
marginal distributions, as long as samples from the dis-
tribution can be obtained cheaply, and the log-likelihood
and its gradients with respect to the parameters can be
evaluated. We parametrize the Gaussian likelihood using

1186 D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191

its mean and standard deviation, θ = (µ, σ), where the
mean is given by an affine function of the network output,
and the standard deviation is obtained by applying an
affine transformation followed by a softplus activation in
order to ensure σ > 0:

pG(z|µ, σ) = (2πσ 2)−
1
2 exp(−(z − µ)2/(2σ 2)) ,

µ(hi,t) = wT
µhi,t + bµ ,

σ (hi,t) = log(1 + exp(wT
σhi,t + bσ)) .

The negative binomial distribution is a common choice
for modeling time series of positive count data (Chapados,
2014; Snyder et al., 2012). We parameterize the negative
binomial distribution by its mean µ ∈ R+ and a shape
parameter α ∈ R+,

pNB(z|µ, α) =
Γ (z +

1
α
)

Γ (z + 1)Γ (1
α
)

(
1

1 + αµ

) 1
α

(
αµ

1 + αµ

)z

,

µ(hi,t) = log(1 + exp(wT
µhi,t + bµ)) ,

α(hi,t) = log(1 + exp(wT
αhi,t + bα)) ,

where both parameters are obtained from the network
output by a fully-connected layer with softplus activation
so as to ensure positivity. In this parameterization of the
negative binomial distribution, the shape parameter α

scales the variance relative to the mean, i.e. Var[z] =

µ + µ2α. While other parameterizations are possible,
preliminary experiments showed this particular one to be
especially conducive to fast convergence.

4.2. Training

Given a dataset of time series {zi,1:T }i=1,...,N and asso-
ciated covariates xi,1:T , obtained by choosing a time range
such that zi,t in the prediction range is known, the param-
eters Θ of the model, consisting of the parameters of both
the RNN h(·) and θ (·), can be learned by maximizing the
log-likelihood

L =

N∑
i=1

T∑
t=t0

log p(zi,t |θ (hi,t)) . (3)

As hi,t is a deterministic function of the input, all quanti-
ties required for computing Eq. (3) are observed, so that,
in contrast to state space models with latent variables, no
inference is required, and Eq. (3) can be optimized directly
via stochastic gradient descent by computing gradients
with respect to Θ . In our experiments, where the encoder
model is the same as the decoder, the distinction between
the encoder and the decoder is somewhat artificial during
training, so that we also include the likelihood terms for
t = 0, . . . , t0 − 1 in Eq. (3) (or, equivalently, set t0 = 0).

For each time series in the dataset, we generate multi-
ple training instances by selecting from the original time
series windows with different starting points. In prac-
tice, we keep both the total length T and the relative
lengths of the conditioning and prediction ranges fixed for
all training examples. For example, if the total available
period for a given time series ranges from 2013-01-01
to 2017-01-01, we can create training examples where

t = 1 corresponds to 2013-01-01, 2013-01-02, 2013-
01-03, and so on. When choosing these windows, we
ensure that the entire prediction range is always cov-
ered by the available ground truth data, but we may
chose to have t = 1 lie before the start of the time
series, e.g. 2012-12-01 in the example above, padding
the unobserved target with zeros. This allows the model
to learn the behavior of ‘‘new’’ time series by taking
into account all other available covariates. Augmenting
the data using this windowing procedure ensures that
information about absolute time is available to the model
only through covariates, not through the relative position
of zi,t in the time series. Fig. 4 contains a depiction of this
data augmentation technique.

Bengio, Vinyals, Jaitly, and Shazeer (2015) noted that
the autoregressive nature of such models means that op-
timizing Eq. (3) directly causes a discrepancy between
the ways in which the model is used during training
and when obtaining predictions from the model: during
training, the values of zi,t are known in the prediction
range and can be used to compute hi,t ; however, during
prediction, zi,t is unknown for t ≥ t0, and a single sample
z̃i,t ∼ p(·|θ (hi,t)) from the model distribution is used
in the computation of hi,t according to Eq. (2) instead.
While this disconnect has been shown to pose a severe
problem for NLP tasks, for example, we have not observed
adverse effects from it in a forecasting setting. Preliminary
experiments with variants of scheduled sampling (Bengio
et al., 2015) did not show any noteworthy improvements
in accuracy (but did slow convergence).

4.3. Scale handling

Applying the model to data that exhibit a power-law
of scales, as depicted in Fig. 1, presents two challenges.
Firstly, the autoregressive nature of the model means
that both the autoregressive input zi,t−1 and the output
of the network (e.g. µ) scale with the observations zi,t
directly, but the non-linearities of the network in between
have a limited operating range. Thus, without further
modifications, the network has to learn, first, to scale the
input to an appropriate range in the input layer, then to
invert this scaling at the output. We address this issue by
dividing the autoregressive inputs zi,t (or z̃i,t) by an item-
dependent scale factor νi, and conversely multiplying the
scale-dependent likelihood parameters by the same fac-
tor. For instance, for the negative binomial likelihood, we
use µ = νi log(1+exp(oµ)) and α = log(1+exp(oα))/

√
νi,

where oµ and oα are the outputs of the network for these
parameters. Note that while one could alternatively scale
the input in a preprocessing step for real-valued data, this
is not possible for count distributions. The selection of
an appropriate scale factor might be challenging in itself
(especially in the presence of missing data or large within-
item variances). However, scaling by the average value
νi = 1 +

1
t0

∑t0
t=1 zi,t , as we do in our experiments, is a

heuristic that works well in practice.
Secondly, the imbalance in the data means that a

stochastic optimization procedure that picks training in-
stances uniformly at random will visit the small number
time series with large scales very infrequently, resulting

D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191 1187

Fig. 4. Depiction of the data setup for training and forecasting for a single input time series z with covariates x. The green vertical line separates
the training data from the testing data, so we compute the out-of-sample accuracy for forecasts to the right of the green line; in particular, no data
to the right of the green line is used in training. Left. The data setup during the training phase. The red lines marks the slices of x that are presented
to the model during training, where the left part marks the conditioning range and the right part the prediction range. Note that all windows are
to the left of the green line. Right. During forecasting, when the model is fully trained, only the conditioning range is to the left of the green line.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in those time series being underfitted. This could be
especially problematic in the demand forecasting set-
ting, where high-velocity items can exhibit qualitatively
different behaviors from low-velocity items, and having
accurate forecasts for high-velocity items might be more
important for meeting certain business objectives. We
counteract this effect by sampling the examples non-
uniformly during training. In particular, our weighted
sampling scheme sets the probability of selecting a win-
dow from an example with scale νi proportional to νi. This
sampling scheme is simple yet effective in compensating
for the skew in Fig. 1.

4.4. Covariates

The covariates xi,t can be item-dependent, time-
dependent, or both. This distinction is mainly of practical
importance. In theory, any covariate xi,t that does not
vary with time can be generalized trivially to be time-
dependent by repeating it along the time dimension.
Examples of such time-independent covariates include
the categorization of item i, for example to denote mem-
bership to a certain group of products (e.g., product i
is a shoe, so xi,t = s, where s is an identifier for the
shoe category). Such covariates allow for the fact that
time series with the same time-independent covariate
may be similar. Examples of time-dependent covariates
include information about the time point (e.g. week of
year) of the model. They can also be used to include
covariates that one expects to influence the outcome
(e.g. price or promotion status in the demand forecasting
setting), as long as the covariates’ values are available
in the prediction range as well. If these values are not
available (e.g., future price changes), one option is to
set them manually (e.g., assume that there are no price
changes), which allows for what-if analysis. The solution
based on principles is to predict these time series jointly,
e.g., forecast demand and price jointly in a multivariate
forecast. What-if analyses are possible when future prices
become known via conditioning. We leave multivariate
forecasting as a valuable direction for future work.

All of our experiments use an ‘‘age’’ covariate,
i.e., the distance to the first observation in that time
series. We also add day-of-the-week and hour-of-the-day
for hourly data, week-of-the-year for weekly data and
month-of-the-year for monthly data. We encode these
simply as increasing numeric values, instead of using

multi-dimensional binary variables to encode them. Fur-
thermore, we include a single categorical item covariate,
for which an embedding is learned by the model. In the
retail demand forecasting datasets, the item covariate
corresponds to a (coarse) product category (e.g. ‘‘cloth-
ing’’), while in the smaller datasets it corresponds to the
item’s identity, allowing the model to learn item-specific
behaviors. By appropriate normalization, we standardize
all covariates to have a zero mean and unit variance.

5. Applications and experiments

We implement our model using MXNet (Chen et al.,
2015), and use a single p2.xlarge AWS EC2 compute in-
stance containing 4 CPUs and 1 GPU to run all experi-
ments.3 With this set-up, training and prediction on the
large ec dataset containing 500K time series can be com-
pleted in less than 10 h. Note that prediction with a
trained model is fast (in the order of tens of minutes for a
single compute instance), and can be sped-up if necessary
by executing prediction in parallel.

We use the ADAM optimizer (Kingma & Ba, 2014) with
early stopping and standard LSTM cells with a forget bias
set to 1.0 in all experiments, and 200 samples are drawn
from our decoder for generating predictions.

5.1. Datasets

We use five datasets for our evaluations. The first
three, namely parts, electricity, and traffic, are
public datasets; parts consists of 1046 aligned time se-
ries of 50 time steps each, representing the monthly sales
of different items by a US automobile company (Seeger
et al., 2016); electricity contains hourly time series of
the electricity consumptions of 370 customers (Yu et al.,
2016); and traffic, also used by Yu et al. (2016), con-
tains the hourly occupancy rates, between zero and one,
of 963 car lanes of San Francisco bay area freeways. For
the parts dataset, we use the 42 first months as training
data and report the error on the remaining 8 months.
For the other datasets, electricity, traffic, ec-sub
and ec, the set of possible training instances is sub-
sampled to the number indicated in Table 1. The results
for electricity and traffic are computed using a
rolling window of predictions, as described by Yu et al.

3 Implementations of DeepAR are available on Amazon SageMaker
(closed-source) and as part of GluonTS (Alexandrov et al., 2019).

1188 D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191

Fig. 5. Example time series of ec. The vertical line separates the conditioning period from the prediction period. The black line shows the true target.
In the prediction range, we plot the p50 as a blue line (mostly zero for the three slow items), along with 80% confidence intervals (shaded). The
model learns accurate seasonality patterns and uncertainty estimates for items of different velocities and ages. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Dataset statistics and RNN parameters.

parts electricity traffic ec-sub ec

of time series 1046 370 963 39700 534884
time granularity month hourly hourly week week
domain N R+

[0, 1] N N
encoder length 8 168 168 52 52
decoder length 8 24 24 52 52
of training examples 35K 500K 500K 2M 2M
item input embedding dimension 1046 370 963 5 5
item output embedding dimension 1 20 20 20 20
batch size 64 64 64 512 512
learning rate 1e−3 1e−3 1e−3 5e−3 5e−3
of LSTM layers 3 3 3 3 3
of LSTM nodes 40 40 40 120 120
running time 5 min 7h 3h 3h 10h

(2016). We do not retrain our model for each window,
but use a single model trained on the data before the
first prediction window. The remaining two datasets, ec
and ec-sub, are the weekly item sales from Amazon that
were used by Seeger et al. (2016), and we predict the 52
weeks following 2014-09-07. The time series in these
two datasets are very diverse and lumpy, ranging from
very fast-moving to very slow-moving items, and include
‘‘new’’ products that were introduced in the weeks be-
fore the forecast time 2014-09-07; see Fig. 5. Further,
the item velocities in these datasets have a power-law
distribution, as shown in Fig. 1.

Table 1 also lists running times as measured by an
end-to-end evaluation, e.g. processing covariates, training
the neural network, drawing samples and evaluating the
distributions produced.

For each dataset, a grid-search is used to find the best
value for the hyper-parameters item output embedding
dimension and # of LSTM nodes (e.g. hidden number of
units). To do so, the data before the forecast start time
are used as the training set and split into two parti-
tions. For each hyper-parameter candidate, we fit our
model on the first partition of the training set, containing
90% of the data, and pick the one that has the mini-
mal negative log-likelihood on the remaining 10%. Once
the best set of hyper-parameters has been found, the
evaluation metrics (0.5-risk, 0.9-risk, ND and RMSE) are
evaluated on the test set, that is, the data coming after
the forecast start time. Note that this procedure could
lead to the hyper-parameters being over-fitted to the
training set, but this would also degrade the metric that
we report. A better procedure would be to fit the param-
eters and evaluate the negative log-likelihood not only

on different windows, but also on non-overlapping time
intervals. We tune the learning rate manually for ev-
ery dataset and keep it fixed in hyper-parameter tuning.
Other parameters such as the encoder length, decoder
length and item input embedding are considered to be
domain-dependent, and are not fitted. The batch size is
increased on larger datasets in order to benefit more
from GPU’s parallelization. Finally, the running time mea-
sures an end-to-end evaluation, e.g. processing covariates,
training the neural network, drawing samples for the
production of probabilistic forecasts, and evaluating the
forecasts.

5.2. Accuracy comparison

For the parts and ec/ec-sub datasets, we provide
comparisons with the following baselines, which repre-
sent the state-of-the-art on these datasets to the best of
our knowledge:

• Croston: the Croston method developed for in-
termittent demand forecasting, from the R package
of Hyndman and Khandakar (2008).

• ETS: the ETS model (Hyndman et al., 2008) from
the R package with automatic model selection. Only
additive models are used, as multiplicative models
shows numerical issues on some time series.

• Snyder: the negative-binomial autoregressive
method of Snyder et al. (2012).

• ISSM: the method of Seeger et al. (2016) using an in-
novative state space model with covariate features.

In addition, we compare our results to two baseline
RNN models:

D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191 1189

Table 2
Accuracy metrics relative to the strongest previously published method (baseline).

0.5-risk 0.9-risk Average

parts
(L, S) (0, 1) (2, 1) (0, 8) all(8) (0, 1) (2, 1) (0, 8) all(8) average

Snyder (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Croston 1.47 1.70 2.86 1.83 – – – – 1.97
ISSM 1.04 1.07 1.24 1.06 1.01 1.03 1.14 1.06 1.08
ETS 1.28 1.33 1.42 1.38 1.01 1.03 1.35 1.04 1.23
rnn-gaussian 1.17 1.49 1.15 1.56 1.02 0.98 1.12 1.04 1.19
rnn-negbin 0.95 0.91 0.95 1.00 1.10 0.95 1.06 0.99 0.99
DeepAR 0.98 0.91 0.91 1.01 0.90 0.95 0.96 0.94 0.94

ec-sub
(L, S) (0, 2) (0, 8) (3, 12) all(33) (0, 2) (0, 8) (3, 12) all(33) average

Snyder 1.04 1.18 1.18 1.07 1.0 1.25 1.37 1.17 1.16
Croston 1.29 1.36 1.26 0.88 – – – – 1.20
ISSM (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ETS 0.83 1.06 1.15 0.84 1.09 1.38 1.45 0.74 1.07
rnn-gaussian 1.03 1.19 1.24 0.85 0.91 1.74 2.09 0.67 1.21
rnn-negbin 0.90 0.98 1.11 0.85 1.23 1.67 1.83 0.78 1.17
DeepAR 0.64 0.74 0.93 0.73 0.71 0.81 1.03 0.57 0.77

ec
(L, S) (0, 2) (0, 8) (3, 12) all(33) (0, 2) (0, 8) (3, 12) all(33) average

Snyder 0.87 1.06 1.16 1.12 0.94 1.09 1.13 1.01 1.05
Croston 1.30 1.38 1.28 1.39 – – – – 1.34
ISSM (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ETS 0.77 0.97 1.07 1.23 1.05 1.33 1.37 1.11 1.11
rnn-gaussian 0.89 0.91 0.94 1.14 0.90 1.15 1.23 0.90 1.01
rnn-negbin 0.66 0.71 0.86 0.92 0.85 1.12 1.33 0.98 0.93
DeepAR 0.59 0.68 0.99 0.98 0.76 0.88 1.00 0.91 0.85

Note: The best results are marked in bold (lower is better).

• rnn-gaussian uses the same architecture as
DeepAR with a Gaussian likelihood; however, it uses
uniform sampling and a simpler scaling mechanism,
where the time series zi are divided by νi and the
outputs are multiplied by νi.

• rnn-negbin uses a negative binomial distribution,
but does not scale the inputs and outputs of the
RNN, and the training instances are drawn uniformly
rather than using weighted sampling.

We define the error metrics used in our comparisons
formally below. The metrics are evaluated for certain
spans [L, L + S) in the prediction range, where L is a lead
time after the forecast start point.

5.2.1. ρ-risk metric
Following Seeger et al. (2016), we use ρ-risk metrics

(quantile loss) that quantify the accuracy of a quantile ρ
of the predictive distribution.

The aggregated target value of an item i in a span is
denoted by Zi(L, S) =

∑t0+L+S
t=t0+L zi,t . For a given quantile

ρ ∈ (0, 1) we denote the predicted ρ-quantile for Zi(L, S)
by Ẑρ

i (L, S). We obtain such a quantile prediction from a
set of sample paths by first summing each realization in
the given span. The samples of these sums then represent
the estimated distribution for Zi(L, S), and we can take the
ρ-quantile from the empirical distribution.

The ρ-quantile loss is then defined as

Lρ(Z, Ẑρ) = 2(Ẑ − Z)
(
ρIẐρ>Z − (1 − ρ)IẐρ≤Z

)
.

We summarize the quantile losses for a given span across
all items by considering a normalized sum of quantile
losses

(∑
i Lρ(Zi, Ẑ

ρ

i)
)

/
(∑

i Zi
)
, which we call the ρ-risk.

5.2.2. ND and RMSE metrics
The ND and RMSE metrics are defined as

ND =

∑
i,t |zi,t − ẑi,t |∑

i,t |zi,t |
and

RMSE =

√
1

N(T−t0)

∑
i,t (zi,t − ẑi,t)2

1
N(T−t0)

∑
i,t |zi,t |

,

where ẑi,t is the predicted median value for item i at time
t and the sums are over all items and all time points in
the prediction period.

5.2.3. Results
Table 2 shows the 0.5-risk and 0.9-risk for different

lead times and spans. Here, all(K) denotes the average
risk of the marginals [L, L + 1) for L < K . We nor-
malize all reported metrics with respect to the strongest
previously-published method (baseline). DeepAR outper-
forms all other methods on these datasets. The results
also show the importance of modeling these datasets
using a count distribution, as rnn-gaussian leads to
worse accuracies. The ec and ec-sub datasets exhibit the
power-law behavior discussed above, and overall forecast
accuracy is affected negatively by the absence of scaling
and weighted sampling (rnn-negbin). On the parts
dataset, which does not exhibit the power-law behavior,
the performance of rnn-negbin is similar to that of
DeepAR.

Table 3 compares the point forecast accuracies on
the electricity and traffic datasets against that
of the matrix factorization technique (MatFact) pro-
posed by Yu et al. (2016). We consider the same metrics,

1190 D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191

Fig. 6. Uncertainty growth over time for the ISSM and DeepAR models.
Unlike the ISSM, which postulates a linear growth of uncertainty, the
behavior of the uncertainty is learned from the data, resulting in a
non-linear growth with a (plausibly) higher uncertainty around Q4.
The aggregate is calculated over the entire ec dataset.

Fig. 7. Coverages for two spans of the ec-sub dataset. The left panel
shows the coverage for a single time-step interval, while the right
panel shows these metrics for a larger time interval with nine time-
steps. When the samples for each time step are shuffled, the correlation
in the prediction sample paths is destroyed and the forecast becomes
less calibrated. This shuffled prediction also has a 10% higher 0.9-risk.

Table 3
Comparison with MatFact.

electricity traffic

ND RMSE ND RMSE

MatFact 0.16 1.15 0.20 0.43
DeepAR 0.07 1.00 0.17 0.42

namely the normalized deviation (ND) and normalized
RMSE (NRMSE). The results show that DeepAR outper-
forms MatFact on both datasets.

5.3. Qualitative analysis

Fig. 5 shows example predictions from the ec dataset.
Fig. 6 shows aggregate sums of different quantiles of the
marginal predictive distribution for DeepAR and ISSM
on the ec dataset. In contrast to ISSM models such as
that of Seeger et al. (2016), where a linear growth of
uncertainty is part of the modeling assumptions, the un-
certainty growth pattern is learned from the data. In

this case, the model does learn an overall growth of un-
certainty over time. However, this is not simply linear
growth: uncertainty (correctly) increases during Q4, and
decreases again shortly afterwards.

The calibration of the forecast distribution is depicted
in Fig. 7. Here, we show the Coverage(p) for each per-
centile p, which is defined as the fraction of time series
in the dataset for which the p-percentile of the predictive
distribution is larger than the true target. For a perfectly
calibrated prediction, it holds that Coverage(p) = p, which
corresponds to the diagonal. Overall, the calibration is
improved compared to the ISSM model.

We assess the effect of modeling correlations in the
output, i.e., how much they differ from independent dis-
tributions for each time-point, by plotting the calibration
curves for a shuffled forecast, where the realizations of
the original forecast have been shuffled for each time
point, destroying any correlation between time steps. For
the short lead-time span (left), which consists of just
one time-point, this has no impact, because it is just the
marginal distribution. However, for the longer lead-time
span (right), destroying the correlation leads to a worse
calibration, showing that important temporal correlations
are captured between the time steps.

6. Conclusion

We have shown that forecasting approaches based
on modern deep learning techniques can improve the
forecast accuracy drastically relative to state-of-the-art
forecasting methods on a wide variety of datasets. Our
proposed DeepAR model is effective at learning a global
model from related time series, can handle widely-varying
scales through rescaling and velocity-based sampling, gen-
erates calibrated probabilistic forecasts with high accu-
racy, and is able to learn complex patterns such as
seasonality and uncertainty growth over time from the
data.

Interestingly, the method works on a wide variety of
datasets with little or no hyperparameter tuning, and is
applicable to medium-sized datasets that contain only a
few hundred time series.

References

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V.,
Gasthaus, J., Januschowski, T., et al. (2019). GluonTS: probabilis-
tic time series models in Python. ICML time series workshop,
abs/1906.05264 arXiv:1906.05264.

Bandara, K., Bergmeir, C., & Smyl, S. (2017). Forecasting across time se-
ries databases using long short-term memory networks on groups
of similar series. arXiv preprint arXiv:1710.03222 8 (pp. 805–815).

Ben Taieb, S., Taylor, J. W., & Hyndman, R. J. (2017). Coherent proba-
bilistic forecasts for hierarchical time series. In Proceedings of the
34th international conference on machine learning .

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled sam-
pling for sequence prediction with recurrent neural networks. In
Advances in neural information processing systems (pp. 1171–1179).

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal
of the Royal Statistical Society. Series B. Statistical Methodology, 26(2),
211–252.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time
series analysis: forecasting and control. John Wiley & Sons.

http://arxiv.org/abs/1906.05264
http://arxiv.org/abs/1710.03222
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb4
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb4
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb4
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb4
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb4
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb5
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb5
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb5
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb5
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb5
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb6
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb6
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb6

D. Salinas, V. Flunkert, J. Gasthaus et al. / International Journal of Forecasting 36 (2020) 1181–1191 1191

Chapados, N. (2014). Effective Bayesian modeling of groups of related
count time series. In Proceedings of the 31st international conference
on machine learning (pp. 1395–1403).

Chen, H., & Boylan, J. E. (2008). Empirical evidence on individual, group
and shrinkage seasonal indices. International Journal of Forecasting,
24(3), 525–534.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., et al. (2015). MXNet:
A Flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274.

Croston, J. (1972). Forecasting and stock control for intermittent
demands. Operational Research Quarterly, 23, 289–304.

Davydenko, A., & Fildes, R. (2013). Measuring forecasting accuracy:
the case of judgmental adjustments to SKU-level demand forecasts.
International Journal of Forecasting, 29(3), 510–522.

Díaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J.
C., Watson, J. G., et al. (2008). A hybrid ARIMA and artificial
neural networks model to forecast particulate matter in urban
areas: the case of Temuco, Chile. Atmospheric Enviroment, 42(35),
8331–8340.

Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space
methods: Vol. 38. OUP Oxford.

Faloutsos, C., Flunkert, V., Gasthaus, J., Januschowski, T., & Wang, Y.
(2019). Forecasting big time series: theory and practice. In KDD
’19, Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 3209–3210). New York,
NY, USA: ACM.

Fildes, R., Nikolopoulos, K., Crone, S., & Syntetos, A. (2008). Forecasting
and operational research: a review. The Journal of the Operational
Research Society, 59(9), 1150–1172.

Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas, D.,
Flunkert, V., et al. (2019). Probabilistic forecasting with spline
quantile function RNNs. In The 22nd international conference on
artificial intelligence and statistics (pp. 1901–1910).

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time
series predictable through time-window approaches. In G. Dorffner
(Ed.), Artificial neural networks – ICANN 2001 (Proceedings)
(pp. 669–676). Springer.

Ghiassi, M., Saidane, H., & Zimbra, D. (2005). A dynamic artificial neural
network model for forecasting time series events. International
Journal of Forecasting, 21(2), 341–362.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: Adaptive
computation and machine learning. MIT Press.

Graves, A. (2013). Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015).
DRAW: a recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623.

Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy
demand forecasting using neural networks. International Journal of
Production Economics, 111(2), 409–420.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Compututation, 9(8), 1735–1780.

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L.
(2011). Optimal combination forecasts for hierarchical time series.
Computational Statistics & Data Analysis, 55(9), 2579–2589.

Hyndman, R. J., & Athanasopoulos, G. (2012). Forecasting: principles and
practice. OTexts.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and
practice. OTexts.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecast-
ing: the forecast package for R. Journal of Statistical Software, 26(3),
1–22.

Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Springer
series in statistics, Forecasting with exponential smoothing: the state
space approach. Springer.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Pro-
ceedings of the 32nd international conference on machine learning
(pp. 448–456).

Kaastra, I., & Boyd, M. (1996). Designing a neural network for fore-
casting financial and economic time series. Neurocomputing, 10(3),
215–236.

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Kourentzes, N. (2013). Intermittent demand forecasts with neural
networks. International Journal of Production Economics, 143(1),
198–206.

Laptev, N., Yosinsk, J., Li Erran, L., & Smyl, S. (2017). Time-series extreme
event forecasting with neural networks at Uber. ICML time series
workshop.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 Com-
petition: results, findings, conclusion and way forward. International
Journal of Forecasting, 34(4), 802–808.

Mohammadipour, M., Boylan, J., & Syntetos, A. (2012). The application
of product-group seasonal indexes to individual products. Foresight:
The International Journal of Applied Forecasting, 26, 20–26.

Oliveira, M. R., & Torgo, L. (2014). Ensembles for time series forecasting.
Journal of Machine Learning Research (JMLR).

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., et al. (2016). Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499.

Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2019),
N-BEATS: neural basis expansion analysis for interpretable time
series forecasting. arXiv preprint arXiv:1905.10437.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., &
Januschowski, T. (2018). Deep state space models for time series
forecasting. In Advances in neural information processing systems (pp.
7785–7794).

Seeger, M. W., Salinas, D., & Flunkert, V. (2016). Bayesian intermittent
demand forecasting for large inventories. In Advances in neural
information processing systems (pp. 4646–4654).

Smyl, S., Ranganathan, J., & Pasqua, A. (2018). M4 Forecasting compe-
tition: introducing a new hybrid ES-RNN model. https://eng.uber.
com/m4-forecasting-competition.

Snyder, R. D., Ord, J., & Beaumont, A. (2012). Forecasting the intermit-
tent demand for slow-moving inventories: a modelling approach.
International Journal of Forecasting, 28(2), 485–496.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems (pp. 3104–3112).

Timmermann, A. (2006). Forecast combinations. In G. Elliott, C. Granger,
& A. Timmermann (Eds.), Handbook of economic forecasting: Vol. 1
(1st ed.). (pp. 135–196). Elsevier.

Toubeau, J.-F., Bottieau, J., Vallée, F., & De Grève, Z. (2018). Deep
learning-based multivariate probabilistic forecasting for short-term
scheduling in power markets. IEEE Transactions on Power Systems,
34(2), 1203–1215.

Trapero, J. R., Kourentzes, N., & Fildes, R. (2015). On the identification of
sales forecasting models in the presence of promotions. The Journal
of the Operational Research Society, 66(2), 299–307.

Wen, R. W., Torkkola, K., & Narayanaswamy, B. (2017). A multi-horizon
quantile recurrent forecaster. NIPS time series workshop.

Yu, H.-F., Rao, N., & Dhillon, I. S. (2016). Temporal regularized matrix
factorization for high-dimensional time series prediction. In D.
D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.),
Advances in neural information processing systems 29 (pp. 847–855).
Curran Associates, Inc..

Zhang, G., Eddy Patuwo, B., & Hu, Y. M. (1998). Forecasting with
artificial neural networks:: the state of the art. International Journal
of Forecasting, 14(1), 35–62.

http://refhub.elsevier.com/S0169-2070(19)30188-8/sb8
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb8
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb8
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb8
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb8
http://arxiv.org/abs/1512.01274
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb10
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb10
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb10
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb11
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb11
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb11
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb11
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb11
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb12
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb13
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb13
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb13
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb14
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb15
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb15
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb15
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb15
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb15
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb17
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb18
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb18
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb18
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb18
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb18
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb19
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb19
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb19
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1502.04623
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb22
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb22
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb22
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb22
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb22
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb23
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb23
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb23
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb24
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb24
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb24
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb24
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb24
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb25
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb25
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb25
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb26
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb26
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb26
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb27
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb27
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb27
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb27
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb27
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb28
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb28
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb28
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb28
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb28
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb30
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb30
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb30
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb30
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb30
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb32
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb32
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb32
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb32
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb32
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb34
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb34
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb34
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb34
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb34
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb35
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb35
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb35
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb35
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb35
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb36
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb36
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb36
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1905.10437
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb39
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb40
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb40
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb40
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb40
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb40
https://eng.uber.com/m4-forecasting-competition
https://eng.uber.com/m4-forecasting-competition
https://eng.uber.com/m4-forecasting-competition
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb42
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb42
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb42
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb42
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb42
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb43
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb43
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb43
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb43
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb43
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb44
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb44
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb44
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb44
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb44
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb45
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb46
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb46
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb46
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb46
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb46
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb48
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb49
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb49
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb49
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb49
http://refhub.elsevier.com/S0169-2070(19)30188-8/sb49

	DeepAR: Probabilistic forecasting with autoregressive recurrent networks
	Introduction
	Related work
	Background: RNNs
	Model
	Likelihood model
	Training
	Scale handling
	Covariates

	Applications and experiments
	Datasets
	Accuracy comparison
	ρ-risk metric
	ND and RMSE metrics
	Results

	Qualitative analysis

	Conclusion
	References

