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Figure 1: Comparisons of different schemes for generating oriented proposals. (a) Rotated RPN densely places rotated
anchors with different scales, ratios, and angles. (b) RoI Transformer+ learns oriented proposal from horizontal RoI. It
involvs RPN, RoI Alignment, and regression. (c) Our proposed oriented RPN generates high-quality proposals in a nearly
cost-free manner. The number of parameters of oriented RPN is about 1/3000 of RoI Transformer+ and 1/15 of rotated RPN.

Abstract

Current state-of-the-art two-stage detectors generate
oriented proposals through time-consuming schemes. This
diminishes the detectors’ speed, thereby becoming the com-
putational bottleneck in advanced oriented object detection
systems. This work proposes an effective and simple ori-
ented object detection framework, termed Oriented R-CNN,
which is a general two-stage oriented detector with promis-
ing accuracy and efficiency. To be specific, in the first stage,
we propose an oriented Region Proposal Network (oriented
RPN) that directly generates high-quality oriented propos-
als in a nearly cost-free manner. The second stage is ori-
ented R-CNN head for refining oriented Regions of Interest
(oriented RoIs) and recognizing them. Without tricks, ori-
ented R-CNN with ResNet50 achieves state-of-the-art de-
tection accuracy on two commonly-used datasets for ori-
ented object detection including DOTA (75.87% mAP) and
HRSC2016 (96.50% mAP), while having a speed of 15.1
FPS with the image size of 1024×1024 on a single RTX
2080Ti. We hope our work could inspire rethinking the
design of oriented detectors and serve as a baseline for
oriented object detection. Code is available at https:
//github.com/jbwang1997/OBBDetection.

*Corresponding author. + denotes the official version of RoI Trans-
former implemented on AerialDetection (the same below).

1. Introduction

Most existing state-of-the-art oriented object detection
methods [7, 37, 41] depend on proposal-driven frameworks,
like Fast/Faster R-CNN [11, 10, 32]. They involve two key
steps: (i) generating oriented proposals and (ii) refining pro-
posals and classifying them into different categories. Nev-
ertheless, the step of producing oriented proposals is com-
putationally expensive.

One of the early methods of generating oriented pro-
posals is rotated Region Proposal Network (rotated RPN
for short) [26], which places 54 anchors with different an-
gles, scales and aspect rations (3 scales×3 ratios×6 an-
gles) on each location, as shown in Figure 1(a). The intro-
duction of rotated anchors improves the recall and demon-
strates good performance when the oriented objects dis-
tribute sparsely. However, abundant anchors cause massive
computation and memory footprint. To address this issue,
RoI Transformer [7] learns oriented proposals from hori-
zontal RoIs by complex process, which involves RPN, RoI
Alignment and regression (see Figure 1(b)). The RoI Trans-
former scheme provides promising oriented proposals and
drastically reduces the number of rotated anchors, but also
brings about expensive computation cost. Now, how to de-
sign an elegant and efficient solution to generate oriented
proposals is the key to breaking the computational bottle-
neck in state-of-the-art oriented detectors.
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To push the envelope further: we investigate why the
efficiency of region proposal-based oriented detectors has
trailed thus far. Our observation is that the main obsta-
cle impeding the speed of proposal-driven detectors is from
the stage of proposal generation. A natural and intuitive
question to ask is: can we design a general and simple
oriented region proposal network (oriented RPN for short)
to generate high-quality oriented proposals directly? Mo-
tivated by this question, this paper presents a simple two-
stage oriented object detection framework, called oriented
R-CNN, which obtains state-of-the-art detection accuracy,
while keeping competitive efficiency in comparison with
one-stage oriented detectors.

To be specific, in the first stage of oriented R-CNN, a
conceptually simple oriented RPN is presented (see Figure
1(c)). Our oriented RPN is a kind of light-weight fully con-
volutional network, which has extremely fewer parameters
than rotated RPN and RoI transformer+, thus reducing the
risk of overfitting. We realize it by changing the number
of output parameters of RPN regression branch from four
to six. There is no such thing as a free lunch. The de-
sign of oriented RPN benefits from our proposed represen-
tation scheme of oriented objects, named midpoint offset
representation. For arbitrary-oriented objects in images, we
utilize six parameters to represent them. The midpoint off-
set representation inherits horizontal regression mechanism,
as well as provides bounded constraints for predicting ori-
ented proposals. The second stage of oriented R-CNN is
oriented R-CNN detection head: extracting the features of
each oriented proposal by rotated RoI alignment and per-
forming classification and regression.

Without bells and whistles, we evaluate our oriented R-
CNN on two popular benchmarks for oriented object de-
tection, namely DOTA and HRSC2016. Our method with
ResNet-50-FPN surpasses the accuracy of all existing state-
of-the-art detectors, achieving 75.87% mAP on the DOTA
dataset and 96.50% mAP on the HRSC2016 dataset, while
running at 15.1 FPS with the image size of 1024×1024 on
a single RTX 2080Ti. Thus, the oriented R-CNN is a prac-
tical object detection framework in terms of both accuracy
and efficiency. We hope our method will inspire rethink-
ing the design of oriented object detectors and oriented ob-
ject regression scheme, as well as serve as a solid baseline
for oriented object detection. For future research, our code
is available at https://github.com/jbwang1997/
OBBDetection.

2. Related Work
In the past decade, remarkable progresses [23, 33, 2, 42,

31, 24, 45, 13, 20, 29] have been made in the field of ob-
ject detection. As an extended branch of object detection,
oriented object detection [7, 37, 26, 12, 5, 28] has received
extensive attention driven by its wide applications.

General object detection methods (e.g., Faster R-CNN)
relying on horizontal bounding boxes could not tightly lo-
cate oriented objects in images, because a horizontal bound-
ing box may contain more background regions or multiple
objects. This results in the inconsistency between the fi-
nal classification confidence and localization accuracy. To
address this issue, much attention has been devoted. For
instance, Xia et al. [36] built a large-scale object detection
benchmark with oriented annotations, named DOTA. Many
existing oriented object detectors [7, 37, 41, 26, 25, 18]
are mainly based on typical proposal-based object detection
frameworks. A nature solution to oriented object is to set ro-
tated anchors [26, 25], such as rotated RPN [26], in which
the anchors with different angles, scales and aspect ratios
are placed on each location. These densely rotated anchors
lead to extensive computations and memory footprint.

To decrease the large number of rotated anchors and
reduce the mismatch between features and objects, Ding
et.al [7] proposed the RoI transformer that learns rotated
RoIs from horizontal RoIs produced by RPN. This manner
greatly boosts the detection accuracy of oriented objects.
However, it makes the network heavy and complex because
it involves fully-connected layers and RoI alignment oper-
ation during the learning of rotated RoIs. To address the
challenges of small, cluttered, and rotated object detection,
Yang et.al [41] built an oriented object detection method on
the generic object detection framework of Faster R-CNN.
Xu et.al [37] proposed a new oriented object representation,
termed gliding vertexes. It achieves oriented object detec-
tion by learning four vertex gliding offsets on the regression
branch of Faster R-CNN head. However, these two meth-
ods both adopt horizontal RoIs to perform classification and
oriented bounding box regression. They still suffer from se-
vere misalignment between objects and features.

In addition, some works [12, 28, 39, 27, 43, 16, 40, 47,
15] have explored one-stage or anchor-free oriented object
detection frameworks: outputting object classes and ori-
ented bounding boxes without region proposal generation
and RoI alignment operation. For example, Yang et.al [39]
proposed a refined one-stage oriented object detector, which
involves two key improvements, including feature refine-
ment and progressive regression, to address the problem of
feature misalignment. Ming et.al [27] designed a new la-
bel assignment strategy for one-stage oriented object de-
tection based on RetinaNet [22]. It assigns the positive
or negative anchors dynamically through a new matching
strategy. Han et.al [12] proposed a single-shot alignment
network (S2ANet) for oriented object detection. S2ANet
aims at alleviating the inconsistency between the classifica-
tion score and location accuracy via deep feature alignment.
Pan et.al [28] devised a dynamic refinement network (DRN)
for oriented object detection based on the anchor-free object
detection method CenterNet [46].
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Figure 2: Overall framework of oriented R-CNN, which is a two-stage detector built on FPN. The first stage generates
oriented proposals by oriented RPN and the second stage is oriented R-CNN head to classify proposals and refine their
spatial locations. For clear illustration, we do not show the FPN as well as the classification branch in oriented RPN.

In contrast with the above methods, our work falls within
proposal-based oriented object detection methods. It fo-
cuses on designing a high-efficiency oriented RPN to break
the computational bottleneck of generating oriented propos-
als.

3. Oriented R-CNN
Our proposed object detection method, called oriented

R-CNN, consists of an oriented RPN and an oriented R-
CNN head (see Figure 2). It is a two-stage detector, where
the first stage generates high-quality oriented proposals in a
nearly cost-free manner and the second stage is oriented R-
CNN head for proposal classification and regression. Our
FPN backbone follows [21], which produces five levels
of features {P2, P3, P4, P5, P6}. For simplicity, we do
not show the FPN architecture as well as the classifica-
tion branch in oriented RPN. Next, we describe the oriented
RPN and oriented R-CNN head in detail.

3.1. Oriented RPN

Given an input image of any size, oriented RPN outputs
a sparse set of oriented proposals. The entire process can be
modeled by light-weight fully-convolutional networks.

Specifically, it takes five levels of features
{P2, P3, P4, P5, P6} of FPN as input and attaches a
head of the same design (a 3×3 convolutional layer and
two sibling 1×1 convolutional layers) to each level of
features. We assign three horizontal anchors with three

aspect rations {1:2, 1:1, 2:1} to each spatial location in
all levels of features. The anchors have the pixel areas
of

{
322, 642, 1282, 2562, 5122

}
on {P2, P3, P4, P5, P6},

respectively. Each anchor a is denoted by a 4-dimensional
vector a = (ax, ay, aw, ah), where (ax, ay) is the center
coordinate of the anchor, aw and ah represent the width
and height of the anchor. One of the two sibling 1×1 con-
volutional layers is regression branch: outputting the offset
δ = (δx, δy, δw, δh, δα, δβ) of the proposals relative to the
anchors. At each location of feature map, we generate A
proposals (A is the number of anchors at each location, and
it equals to 3 in this work), thus the regression branch has
6A outputs. By decoding the regression outputs, we can
obtain the oriented proposal. The process of decoding is
described as follows: ∆α = δα · w, ∆β = δβ · h

w = aw · eδw , h = ah · eδh
x = δx · aw + ax, y = δy · ah + ay

(1)

where (x, y) is the center coordinate of the predicted pro-
posal, w and h are the width and height of the external rect-
angle box of the predicted oriented proposal. ∆α and ∆β
are the offsets relative to the midpoints of the top and right
sides of the external rectangle. Finally, we produce oriented
proposals according to (x, y, w, h,∆α,∆β).

The other sibling convolutional layer estimates the ob-
jectness score for each oriented proposal. For clear illustra-
tion, we omit the scoring branch in Figure 2. The oriented
RPN is acctually a natural and intuitive idea, but its key lies



Figure 3: Illustration of midpoint offset representation. (a)
The schematic diagram of midpoint offset representation.
(b) An example of midpoint offset representation.

in the representation of oriented objects. Under this circum-
stance, we design a new and simple representation scheme
of oriented objects, called midpoint offset representation.

3.1.1 Midpoint Offset Representation

We propose a novel representation scheme of oriented ob-
jects, named midpoint offset representation, as shown in
Figure 3. The black dots are the midpoints of each side
of the horizontal box, which is the external rectangle of the
oriented bounding box O. The orange dots stand for the ver-
texes of the oriented bounding box O.

Specifically, we use an oriented bounding box O with six
parameters O = (x, y, w, h,∆α,∆β) to represent an object
computed by Equation (1). Through the six parameters, we
can obtain the coordinate set v = (v1,v2,v3,v4) of four
vertexes for each proposal. Here, ∆α is the offset of v1
with respect to the midpoint (x, y − h/2) of the top side of
the horizontal box. According to the symmetry, −∆α rep-
resents the offset of v3 with respect to the bottom midpoint
(x, y+ h/2). ∆β stands for the offset of v2 with respect to
the right midpoint (x + w/2, y), and −∆β is the offset of
v4 with respect to the left midpoint (x−w/2, y). Thus, the
coordinates of four vertexes can be expressed as follows.

v1 = (x, y − h/2) + (∆α, 0)
v2 = (x+ w/2, y) + (0,∆β)
v3 = (x, y + h/2) + (−∆α, 0)
v4 = (x− w/2, y) + (0,−∆β)

(2)

With the representation manner, we implement the re-
gression for each oriented proposal through predicting the
parameters (x, y, w, h) for its external rectangle and infer-
ring the parameters (∆α,∆β) for its midpoint offset.

3.1.2 Loss Function

To train oriented RPN, the positive and negative samples
are defined as follows. First, we assign a binary label
p∗ ∈ {0, 1} to each anchor. Here, 0 and 1 mean that the an-
chor belongs to positive or negative sample. To be specific,

Figure 4: The illustration of box-regression parameteriza-
tion. Black dots are the midpoints of the top and right sides,
and orange dots are the vertexes of the oriented bounding
box. (a) Anchor. (b) Ground-truth box. (c) Predicted box.

we consider an anchor as positive sample under one of the
two conditions: (i) an anchor having an Intersection-over-
Union (IoU) overlap higher than 0.7 with any ground-truth
box, (ii) an anchor having the highest IoU overlap with a
ground-truth box and the IoU is higher than 0.3. The an-
chors are labeled as negative samples when their IoUs are
lower than 0.3 with ground-truth box. The anchors that are
neither positive nor negative are considered as invalid sam-
ples, which are ingnored in the training process. It is worth
noting that the above-mentioned ground-truth boxes refer to
the external rectangles of oriented bounding boxes.

Next, we define the loss function L1 as follows:

L1 =
1

N

N∑
i=1

Fcls (pi, p
∗
i ) +

1

N
p∗i

N∑
i=1

Freg (δi, t
∗
i ) (3)

Here, i is the index of the anchors and N (by default
N=256) is the total number of samples in a mini-batch. p∗i
is the ground-truth label of the i-th anchor. pi is the output
of the classification branch of oriented RPN, which denotes
the probability that the proposal belongs to the foreground.
t∗i is the supervision offset of the ground-truth box relative
to i-th anchor, which is a parameterized 6-dimensional vec-
tor t∗i =

(
t∗x, t

∗
y, t

∗
w, t

∗
h, t

∗
α, t

∗
β

)
from the regression branch

of oriented RPN, denoting the offset of the predicted pro-
posal relative to the i-th anchor. Fcls is the cross entropy
loss. Freg is the Smooth L1 loss. For box regression (see
Figure 4), we adopt the affine transformation, which is for-
mulated as follows:

δα = ∆α/w, δβ = ∆β/h
δw = log (w/wa) , δh = log (h/ha)
δx = (x− xa) /wa, δy = (y − ya) /ha

t∗α = ∆αg/wg, t∗β = ∆βg/hg

t∗w = log (wg/wa) , t∗h = log (hg/ha)
t∗x = (xg − xa) /wa, t∗y = (xg − xa) /ha

(4)

where (xg, yg), wg and hg are the center coordinate, width,
and height of external rectangle, respectively. ∆αg and
∆βg are the offsets of the top and right vertexes relative
to the midpoints of top and left sides.



Figure 5: Illustration of the process of rotated RoIAlign.
Blue box is a parallelogram proposal generated by oriented
RPN, and the most-left red box is its corresponding rectan-
gular proposal used for projection and rotated RoIAlign.

3.2. Oriented R-CNN Head

Oriented R-CNN head takes the feature maps
{P2, P3, P4, P5} and a set of oriented proposals as in-
put. For each oriented proposal, we use rotated RoI
alignment (rotated RoIAlign for short) to extract a fixed-
size feature vector from its corresponding feature map.
Each feature vector is fed into two fully-connected layers
(FC1 and FC2, see Figure 2), followed by two sibling
fully-connected layers: one outputs the probability that the
proposal belongs to K+1 classes (K object classes plus 1
background class) and the other one produces the offsets of
the proposal for each of the K object classes.

3.2.1 Rotated RoIAlign

Rotated RoIAlign is an operation for extracting rotation-
invariant features from each oriented proposal. Now, we
describe the process of rotated RoIAlign according to Fig-
ure 5. The oriented proposal generated by oriented RPN
is usually a parallelogram (blue box in Figure 5), which is
denoted with the parameters v = (v1,v2,v3,v4), where
v1, v2, v3, and v4 are its vertex coordinates. For ease of
computing, we need to adjust each parallelogram to a rect-
angular with direction. To be specific, we achieve this by
extending the shorter diagonal (the line from v2 to v4 in
Figure 5) of the parallelogram to have the same length as
the longer diagonal. After this simple operation, we obtain
the oriented rectangular (x, y, w, h, θ) (red box in Figure 5)
from the parallelogram, where θ ∈ [−π/2, π/2] is defined
by the intersection angle between the horizontal axis and
the longer side of the rectangular.

We next project the oriented rectangular (x, y, w, h, θ)
to the feature map F with the stride of s to obtain a rotated
RoI, which is defined by (xr, yr, wr, hr, θ) through the fol-
lowing operation.{

wr = w/s, hr = h/s
xr = ⌊x/s⌋, yr = ⌊y/s⌋ (5)

Then, each rotated RoI is divided into m×m grids (m
defaults to 7) to get a fixed-size feature map F′ with the
dimension of m×m×C. For each grid with index (i, j)

(0 ≤ i, j ≤ m − 1) in the c-th channel (1 ≤ c < C), its
value is calculated as follows:

F′
c(i, j) =

∑
(x,y)∈area(i,j)

Fc(R(x, y, θ))/n (6)

where Fc is the feature of the c-th channel, n is the number
of samples localized within each grid, and area(i, j) is the
coordinate set contained in the grid with index (i, j). R(·)
is a rotation transformation the same as [7].

3.3. Implementation Details

Oriented R-CNN is trained in an end-to-end manner by
jointly optimizing oriented RPN and oriented R-CNN head.
During inference, the oriented proposals generated by ori-
ented RPN generally have high overlaps. In order to re-
duce the redundancy, we remain 2000 proposals per FPN
level in the first stage, followed by Non-Maximum Sup-
pression (NMS). Considering the inference speed, the hor-
izontal NMS with the IoU threshold of 0.8 is adopted. We
merge the remaining proposals from all levels, and choose
top-1000 ones based on their classification scores as the in-
put of the second stage. In the second stage, ploy NMS for
each object class is performed on those predicted oriented
bounding boxes whose class probability is higher than 0.05.
The ploy NMS IoU threshold is 0.1.

4. Experiments
To evaluate our proposed method, we conduct extensive

experiments on two most widely-used oriented object de-
tection datasets, namely DOTA [36] and HRSC2016 [25].

4.1. Datasets

DOTA is a large-scale dataset for oriented object de-
tection. It contains 2806 images and 188282 instances
with oriented bounding box annotations, covered by the
following 15 object classes: Bridge (BR), Harbor (HA),
Ship (SH), Plane (PL), Helicopter (HC), Small vehicle
(SV), Large vehicle (LV), Baseball diamond (BD), Ground
track field (GTF), Tennis court (TC), Basketball court (BC),
Soccer-ball field (SBF), Roundabout (RA), Swimming pool
(SP), and Storage tank (ST). The image size of the DOTA
dataset is large: from 800×800 to 4000×4000 pixels. We
use training and validation sets for training and the rest for
testing. The detection accuracy is obtained by submitting
testing results to DOTA’s evaluation server.

HRSC2016 is another widely-used dataset for arbitrary-
oriented ship detection. It contains 1061 images with the
size ranging from 300×300 to 1500×900. Both the train-
ing set (436 images) and validation set (181 images) are
used for training and the remaining for testing. For the de-
tection accuracy on the HRSC2016, we adopt the mean av-
erage precision (mAP) as evaluation criteria, which is con-
sistent with PASCAL VOC 2007 [8] and VOC 2012.



Figure 6: Proposals generated by oriented RPN on the DOTA dataset. The top-200 proposals per image are displayed.

Figure 7: Examples of detection results on the DOTA dataset using oriented R-CNN with R-50-FPN backbone. The confi-
dence threshold is set to 0.3 when visualizing these results. One color stands for one object class.

Method R300 R1000 R2000

Oriented RPN 81.60 92.20 92.80

Table 1: Recall results on the DOTA validation set.

4.2. Parameter settings

We use a single RTX 2080Ti with the batch size of 2
for training. The inference time is also tested on a sin-

gle RTX 2080Ti. The experimental results are produced
on the mmdetection platform [3]. ResNet50 [14] and
ResNet101 [14] are used as our backbones. They are pre-
trained on ImageNet [6]. Horizontal and vertical flipping
are adopted as data augmentation during training. We opti-
mize the overall network with SGD algorithm with the mo-
mentum of 0.9 and the weight decay of 0.0001. On the



Figure 8: Examples of detection results on the HRSC2016 dataset using oriented R-CNN with R-50-FPN backbone. The
oriented bounding boxes whose scores are higher than 0.3 are shown.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

One-stage

RetinaNet-O† R-50-FPN 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43

DRN [28] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

R3Det [39] R-101-FPN 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79

PIoU [4] DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

RSDet [30] R-101-FPN 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20

DAL [27] R-50-FPN 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11 71.44

S2ANet [12] R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

two-stage

ICN [1] R-101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

Faster R-CNN-O† R-50-FPN 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05

CAD-Net [44] R-101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

RoI Transformer [7] R-101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [41] R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

RoI Transformer+ R-50-FPN 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61

Gliding Vertex [37] R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

FAOD [19] R-101-FPN 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

CenterMap-Net [35] R-50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74

FR-Est [9] R-101-FPN 89.63 81.17 50.44 70.19 73.52 77.98 86.44 90.82 84.13 83.56 60.64 66.59 70.59 66.72 60.55 74.20

Mask OBB [34] R-50-FPN 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86

Ours

Oriented R-CNN R-50-FPN 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87

Oriented R-CNN R-101-FPN 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

Oriented R-CNN‡ R-50-FPN 89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87
Oriented R-CNN‡ R-101-FPN 90.26 84.74 62.01 80.42 79.04 85.07 88.52 90.85 87.24 87.96 72.26 70.03 82.93 78.46 68.05 80.52

Table 2: Comparison with state-of-the-art methods on the DOTA dataset. † means the results from AerialDetection (the same
below). ‡ denotes multi-scale training and testing.

DOTA dataset, we crop the original images into 1024×1024
patches. The stride of cropping is set to 824, that is, the
pixel overlap between two adjacent patches is 200. With re-
gard to multi-scale training and testing, we first resize the
original images at three scales (0.5, 1.0 and 1.5) and crop
them into 1024×1024 patches with the stride of 524. We
train oriented R-CNN with 12 epochs. The initial learning
rate is set to 0.005 and divided by 10 at epoch 8 and 11.
The ploy NMS threshold is set to 0.1 when merging image
patches.

For the HRSC2016 dataset, we do not change the aspect
ratios of images. The shorter sides of the images are resized
to 800 while the longer sides are less than or equal to 1333.
During training, 36 epochs are adopted. The initial learning
rate is set to 0.005 and divided by 10 at epoch 24 and 33.

4.3. Evaluation of Oriented RPN

We evaluate the performance of oriented RPN in terms
of recall. The results of oriented RPN are reported on the
DOTA validation set, and ResNet-50-FPN is used as the
backbone. To simplify the process, we just calculate the
recall based on the patches cropped from original images,
without merging them. The IoU threshold with ground-
truth boxes is set to 0.5. We respectively select top-300,
top-1000, and top-2000 proposals from each image patch
to report their recall values, denoted as R300, R1000, and
R2000. The results are presented in Table 1. As can be seen,
our oriented RPN can achieve the recall of 92.80% when
using 2000 proposals. The recall drops very slightly (0.6%)
when the number of proposals changes from 2000 to 1000,
but it goes down sharply when using 300 proposals. There-



Method Backbone mAP(07) mAP(12)

PIoU [4] DLA-34 89.20 -

DRN [28] H-34 - 92.70

R3Det [39] R-101-FPN 89.26 96.01

DAL [27] R-101-FPN 89.77 -

S2ANet [12] R-101-FPN 90.17 95.01

Rotated RPN [26] R-101 79.08 85.64

R2CNN [17] R-101 73.07 79.73

RoI Transformer [7] R-101-FPN 86.20 -

Gliding Vertex [37] R-101-FPN 88.20 -

CenterMap-Net [35] R-50-FPN - 92.80

Oriented R-CNN R-50-FPN 90.40 96.50

Oriented R-CNN R-101-FPN 90.50 97.60

Table 3: Comparison results on the HRSC2016 dataset.

Method Framwork FPS mAP

RetinaNet-O† One-stage 16.1 68.43

S2ANet [12] One-stage 15.3 74.12

Faster R-CNN-O† Two-stage 14.9 69.05

RoI Transformer+ Two-stage 11.3 74.61

Oriented R-CNN Two-stage 15.1 75.87

Table 4: Speed versus accuracy on the DOTA dataset.

fore, in order to trade-off the inference speed and detection
accuracy, we choose 1000 proposals as the input of oriented
R-CNN head at test-time for both of the two datasets. In
Figure 6, we show some examples of proposals generated
by oriented RPN on the DOTA dataset. The top-200 pro-
posals per image are displayed. As shown, our proposed
oriented RPN could well localize the objects no matter their
sizes, aspect ratios, directions, and denseness.

4.4. Comparison with State-of-the-Arts

We compare our oriented R-CNN method with 19 ori-
ented object detection methods for the DOTA dataset, and
10 methods for the HRSC2016 dataset. Table 2 and Table
3 report the detailed comparison results on the DOTA and
HRSC2016 datasets, respectively. The backbones are as
follows: R-50 stands for ResNet-50, R-101 denotes ResNet-
101, H-104 is the 104-layer hourglass network [38], and
DLA-34 means the 34-layer deep layer aggregation net-
work [46].

On the DOTA dataset, our method surpasses all com-
parison methods. With R-50-FPN and R-101-FPN as the
backbones, our method obtains 75.87% and 76.28% mAP,
respectively. It is surprising that using the backbone of R-
50-FPN, we even outperform all comparison methods with
the R-101-FPN backbone. In addition, with multi-scale
training and testing strategies, our method reaches 80.87%
mAP using R-50-FPN backbone, which is very competitive
compared to the current state-of-the-art methods. Figure 7
shows some results on the DOTA dataset.

For the HRSC2016 dataset, we list the mAP values of

Figure 9: Speed versus accuracy on the DOTA test set.

different methods under PASCAL VOC 2007 and VOC
2012 metrics. With R-50-FPN and R-101-FPN, our ori-
ented R-CNN both achieves the best accuracy. Some vi-
sualization results are presented in Figure 8.

4.5. Speed versus Accuracy

Under the same setting, we compare the speed and ac-
curacy of different methods. The comparison results are
presented in Table 4. All methods adopt R-50-FPN as the
backbone. The hardware platform of testing is a single RTX
2080Ti with batch size of 1. During testing, the size of input
images is 1024×1024. As shown in Table 4, our method has
higher detection accuracy (75.87% mAP) than other meth-
ods but runs with comparable speed (15.1 FPS). The speed
of oriented R-CNN is almost close to one-stage detectors,
but the accuracy is much higher than one-stage detectors
(see Table 4 and Figure 9).

5. Conclusions
This paper proposed a practical two-stage detector,

named oriented R-CNN, for arbitrary-oriented object detec-
tion in images. We conduct extensive experiments on two
challenging oriented object detection benchmarks. Exper-
imental results show that our method has competitive ac-
curacy to the current advanced two-stage detectors, while
keeping comparable efficiency compared with one-stage
oriented detectors.
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for generic object detection: A survey. International Journal
of Computer Vision, 128(2):261–318, 2020.

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, pages 21–37,
2016.

[25] Zikun Liu, Hongzhen Wang, Lubin Weng, and Yiping Yang.
Ship rotated bounding box space for ship extraction from
high-resolution optical satellite images with complex back-
grounds. IEEE Geoscience and Remote Sensing Letters,
13(8):1074–1078, 2016.

[26] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang,
Yingbin Zheng, and Xiangyang Xue. Arbitrary-oriented
scene text detection via rotation proposals. IEEE Transac-
tions on Multimedia, 20(11):3111–3122, 2018.



[27] Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Hongwei Zhang,
and Linhao Li. Dynamic anchor learning for arbitrary-
oriented object detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2020.

[28] Xingjia Pan, Yuqiang Ren, Kekai Sheng, Weiming Dong,
Haolei Yuan, Xiaowei Guo, Chongyang Ma, and Chang-
sheng Xu. Dynamic refinement network for oriented and
densely packed object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 11207–11216, 2020.

[29] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra R-CNN: Towards bal-
anced learning for object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 821–830, 2019.

[30] Wen Qian, Xue Yang, Silong Peng, Yue Guo, and Junchi
Yan. Learning modulated loss for rotated object detection.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2021.

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 779–788, 2016.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(6):1137–1149, 2016.

[33] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 9627–9636, 2019.

[34] Jinwang Wang, Jian Ding, Haowen Guo, Wensheng Cheng,
Ting Pan, and Wen Yang. Mask OBB: A semantic attention-
based mask oriented bounding box representation for multi-
category object detection in aerial images. Remote Sensing,
11(24):2930, 2019.

[35] Jinwang Wang, Wen Yang, Heng-Chao Li, Haijian Zhang,
and Gui-Song Xia. Learning center probability map for de-
tecting objects in aerial images. IEEE Transactions on Geo-
science and Remote Sensing, 59(5):4307–4323, 2021.

[36] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-
longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-
pei Zhang. DOTA: A large-scale dataset for object detection
in aerial images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3974–
3983, 2018.

[37] Yongchao Xu, Mingtao Fu, Qimeng Wang, Yukang Wang,
Kai Chen, Gui-Song Xia, and Xiang Bai. Gliding vertex on
the horizontal bounding box for multi-oriented object detec-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(4):1452–1459, 2021.

[38] Jing Yang, Qingshan Liu, and Kaihua Zhang. Stacked hour-
glass network for robust facial landmark localisation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 79–87, 2017.

[39] Xue Yang, Qingqing Liu, Junchi Yan, Ang Li, Zhiqiang
Zhang, and Gang Yu. R3Det: Refined single-stage detector

with feature refinement for rotating object. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2021.

[40] Xue Yang and Junchi Yan. Arbitrary-oriented object detec-
tion with circular smooth label. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 677–694, 2020.

[41] Xue Yang, Jirui Yang, Junchi Yan, Yue Zhang, Tengfei
Zhang, Zhi Guo, Xian Sun, and Kun Fu. SCRDet: Towards
more robust detection for small, cluttered and rotated ob-
jects. In Proceedings of the IEEE International Conference
on Computer Vision, pages 8232–8241, 2019.

[42] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen
Lin. Reppoints: Point set representation for object detec-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 9657–9666, 2019.

[43] Jingru Yi, Pengxiang Wu, Bo Liu, Qiaoying Huang, Hui Qu,
and Dimitris Metaxas. Oriented object detection in aerial
images with box boundary-aware vectors. In Proceedings
of the IEEE Winter Conference on Applications of Computer
Vision, pages 2150–2159, 2021.

[44] Gongjie Zhang, Shijian Lu, and Wei Zhang. CAD-Net: A
context-aware detection network for objects in remote sens-
ing imagery. IEEE Transactions on Geoscience and Remote
Sensing, 57(12):10015–10024, 2019.

[45] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9759–9768, 2020.

[46] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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