
Virtual

Memory,

Part II
CS 161: Lecture 7

2/21/17

Goals of Virtual Memory
• Allow physical memory to be smaller than virtual

memory—applications receive illusion of huge

address spaces!

• At any given time, a process’ virtual address space

may be fully in RAM, partially in RAM, or not in

RAM at all

• Automate the chore of moving pages between

memory and disk

• Provide memory isolation between processes and

the OS memory (but allow sharing when desired!)

• How do systems implement paging in real life?

Case study: x86 (Hardware-defined page tables)

Directory number Page table number Offset

01112212231

PDE

PTE

%cr3

10

bits

10

bits

32

bits

0111231

4KB-aligned pgTable addrPDE

Bookkeeping stuff

Page table

Page table

directory User-mode accessible?

Holds physical
address of
directory

Present?

Writeable?

Accessed recently?

Dirty?

012345678910111231

4KB-aligned physFrame addrPTE

Directory number Page table number Offset

01112212231

PDE

PTE

PhysAddr

10

bits

10

bits

%cr3

32

bits

Page table

directory

Page table

4KB page

12 bits

Case study: x86 (Hardware-defined page tables)

Automatically set
by hardware

Directory number Page table number Offset

01112212231

PDE

PTE

PhysAddr

10

bits

10

bits

%cr3

32

bits

Page table

directory

Page table

4KB page

12 bits

Q1: How many pages can a process

contain?

Q2: How much memory does a

single page table cover?

Q4: What is the maximum size of a

machine’s physical memory?

Q3: What is the minimum size of a

machine’s physical memory?

Case study: x86 (Hardware-defined page tables)

x86 Physical Address Extension (PAE)
Directory number Page table number Offset

011122131

%cr3

32

bits

PDPTE (64 bits)

Page directory

pointer table

30 29 20

9

bits
PDE (64 bits)

Page table directory

Ptr#

4KB page

12

bits
PhysAddr9

bits

PTE (64 bits)

Page table

Note that:

• Virtual address space is still

32-bits wide

• Physical address space is

now 36-bits wide (i.e., only

36 bits of the 64-bit paging

entries are actually used for

physical addressing)

x86: Segmentation plus Paging
• x86 (32-bits) and x64 (when running in 32-bit mode) support

both segmentation and paging!

• Strictly speaking, the “linear” address space is what gets paged

Virtual address
space

0

232-1

Linear address
space

0

232-1

Physical address
space

0

P-1

x86: Segmentation plus Paging

Segment
selector

Virtual
address

Local or global
descriptor table

Segment
descriptor

Linear address
space

Segment
base

Linear addr

Segment

Page
directory

Page
table

Offset

Linear address

Page

PDPTE

PTE

directory

Page
table

%cr3

Physical
address space

Page

Physical addr

Segmentation Paging

x86: Segmentation plus Paging
• Modern OSes like Windows and Linux configure %cs, %ds,

and %ss to have a base of 0 and a bounds of 2^32 bytes

• So, segmentation is a no-op

Virtual address
space

0

232-1

Linear address
space

0

232-1

Physical address
space

0

P-1

Segmentation

x86: Segmentation plus Paging

• On 32-bit x86, modern OSes like Windows and Linux

configure %cs, %ds, and %ss to have a base of 0 and

a bounds of 2^32 bytes

• However, %fs and %gs used for systems chicanery

• Ex: x86 Linux uses the %fs segment to store per-CPU

information (remember that segment registers are per-

core!); so, an instruction like inc %gs:(%eax) will

increment a per-CPU memory location

• When x64 runs in 64-bit mode, the hardware forces

%cs, %ds, and %ss to have a base of 0 and a bounds

of 2^64 bytes

• %fs and %gs still available for systems chicanery

Q: What Do Page Tables Look Like

On MIPS R3000?

A: You Get To Decide!

1. Load entry from page table

directory

2. Load entry from page table

3. Generate the “real” memory

access

Paging: The Good and the Bad
• Good: A virtual address space can be bigger than

physical memory

• Bad: Each virtual memory access now requires at least

two physical memory accesses

%cr3

Page table

directory

Page

table

4KB

page

10
bits

10
bits

12
bits

32
bits

VirtAddr

Physical memory accesses

Translation Lookaside Buffers (TLBs)
• Idea: Cache some PTEs in small hardware buffer

• If virtual address has an entry in TLB, don’t need to

go to physical memory to fetch PTEs!

• If virtual address misses in TLB, we must pay at least

one physical memory access to fetch PTE

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

RAM

TLB TLB

Key/value

store: key

is high bits

of virt addr,

value is

phys frame

number

Translation Lookaside Buffers (TLBs)
• TLBs are effective because programs exhibit

locality

• Temporal locality: When a process accesses

virtual address x, it will likely access x again in

the future (Ex: a function’s local variable that

lives on the stack)

• Spatial locality: When the process accesses

something at memory location x, the process

will likely access other memory locations close

to x (Ex: reading elements from an array on

the heap)

The Lifecycle of a Memory Reference on x86
Virtual address

TLB lookup

TLB hit?

Access ok?
Found PTE for

virt frame?

Yes

Calculate phys

addr, send to

L1/L2/L3/RAM

Check

protection bits

Yes

HW raises a page

fault

No

HW updates

TLB

Yes

HW raises a page

fault

No

HW walks the

page table

No

The Lifecycle of a Memory Reference on x86
Virtual address

TLB lookup

HW walks the

page table

Check

protection bits

HW updates

TLB

Calculate phys

addr, send to

L1/L2/L3/RAM

HW raises a page

fault

TLB hit?

Found PTE for

virt frame?

Access ok?

HW raises a page

fault

YesNo

YesNo
NoYes

Before raising page fault

exception, HW sets %cr2 to

faulting address, and pushes

an error code onto stack
-Ex: User process tried to read a

nnon-present page

-Ex: User process tried to write

aa present but read-only page

MIPS R3000: Interacting with the TLB

Virtual frame number Address space ID Unused

0531 1112 6

Physical frame number Unused

0731 1112 8

Valid?
Writable?

Global?

TLBLO register

TLBHI register

A single TLB entry:

a TLBHI structure +

a TLBLO structure

MIPS R3000: Interacting with the TLB

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

%TLBHI

%TLBLO

%INDEX

Used to select tlb[] entry for:
• TLBR: Read TLB entry into

%TLBHI and %TLBLO

• TLBWI: Write %TLBHI and

%TLBLO to TLB entry

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[0]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[1]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[63]

. . .

TLB

OS must set ASID

during context

switch!

MIPS R3000: Interacting with the TLB

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[0]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[1]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[63]

. . .

TLB

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

%TLBHI

%TLBLO

%INDEX

Set to tlb[] index by:
• TLBP: Search TLB for entry

matching %TLBHI, set INDEX

to matching TLB entry or -1

if no match found

MIPS R3000: Interacting with the TLB

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[0]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[1]

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

tlb[63]

. . .

TLB

Virtual

frame

number

Address

space ID
Unused

Physical

frame

number

Unused

%TLBHI

%TLBLO

%INDEX

Not used by:
• TLBWR: Write %TLBHI and

%TLBLO to random TLB

entry

The Lifecycle of a Memory Reference on MIPS
Virtual address and %TLBHI::ASID

TLB lookup

Access ok?
Yes

Calculate phys

addr, send to

L1/L2/L3/RAM

Check

“writeable” bit

Yes

HW sets

%BADVADDR,

raises exception #1

(“Read-only fault”)

No

HW sets

%BADVADDR,

raises exception

#2 (“TLB miss

on load”) or #3

(“TLB miss on

store”)

No
TLB hit?

YOUR IMAGINATION

CREATES A MIRACLE

TLBs and Context Switches
• If TLB entries are tagged with ASIDs:

• OS updates current ASID (e.g., by setting TLBHI::ASID on MIPS)

• OS doesn’t need to flush TLBs

• Even if OS occasionally has to evict entries, this is better than

having to evict ALL entries during EVERY context switch (since

this generally requires size(TLB) page table walks when a new

task starts to warm TLB)

• Scheduler can reduce invalidations with AS-to-core affinity

• If TLB entries are *not* tagged with ASIDs:

• OS must invalidate all TLB entries during a context switch

• x86: Writing to %cr3 on x86—this updates PDE pointer and

invalidates all TLB entries

• MIPS: OS can use constant value for all ASIDs, and manually

invalidate all TLB entries during context switch

TLB Invalidations
• When OS changes a PTE, must also invalidate any matching

TLB entry!

• x86: “INVLPG virtAddr” invalidates individual TLB entry

• MIPS: Use “TLBP” (the TLB probe instruction) to set

%INDEX to that of the TLB entry to invalidate; then, use

“TLBWI” to overwrite it

• On a multicore machine, PTEs from a single address space

can be mapped into multiple per-core TLBs

• If a core wants to modify a PTE entry, it must send

cross-core interrupts to other cores

• Once other cores are spin-waiting, first core modifies

PTE then wakes up other cores

• Other cores invalidate relevant TLB entries and resume

execution

TLB Design Trade-offs
• Software-managed TLB

• Good: OS has freedom to design page tables, page directories,

and other arbitrarily interesting structures

• Good: OS has freedom to design TLB eviction policy that might

be too complex to implement in hardware

• Bad: Performance overhead

• Software is slower than hardware

• OS lacks access to low-level hardware state, so handling TLB

misses in software may require discarding work that’s already

in the CPU pipeline

Fetch

Decode

Execute/

Memory

Update

registers

mov %eax, [%esp]
add %eax, 42
sub %edi, %eax
...

mov %eax, [%esp]

add %eax, 42

sub %edi, %eax

TLB miss

What

happens

to this

state?

TLB Design Trade-offs
• Software-managed TLB

• Good: OS has freedom to design page tables, page directories,

and other arbitrarily interesting structures

• Good: OS has freedom to design TLB eviction policy that might

be too complex to implement in hardware

• Bad: Performance overhead

• Software is slower than hardware

• OS lacks access to low-level hardware state, so handling TLB misses in

software may require discarding work that’s already in the CPU pipeline

• Hardware-managed TLB

• Good: TLB miss doesn’t cause exception that must be handled

by OS

• Hardware can just stall the current instruction . . .

• . . . and let other instructions proceed!

• Bad: Page table/page directory/etc format can’t be changed by

OS

