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ABSTRACT

Parallel, multithreaded C and C++ programs such as webrserve
database managers, news servers, and scientific appisatie be-
coming increasingly prevalent. For these applicatiors niemory
allocator is often a bottleneck that severely limits progmerfor-
mance and scalability on multiprocessor systems. Prewtosa-
tors suffer from problems that include poor performance soal-
ability, and heap organizations that introduce false sigaW\orse,
many allocators exhibit a dramatic increase in memory copsu
tion when confronted with a producer-consumer pattern ¢éaib
allocation and freeing. This increase in memory consumpten
range from a factor o’ (the number of processors) to unbounded
memory consumption.

This paper introduces Hoard, a fast, highly scalable attoca
that largely avoids false sharing and is memory efficient.addo
is the first allocator to simultaneously solve the above |zmols.
Hoard combines one global heap and per-processor heapawith
novel discipline that provably bounds memory consumptind a
has very low synchronization costs in the common case. Qur re
sults on eleven programs demonstrate that Hoard yields Ve a
age fragmentation and improves overall program performaner
the standard Solaris allocator by up to a factor of 60 on 14gw0
sors, and up to a factor of 18 over the next best allocator stede

1. Introduction

Parallel, multithreaded programs are becoming increbsprgva-
lent. These applications include web servers [35], datbzen-
agers [27], news servers [3], as well as more traditionadljsr
applications such as scientific applications [7]. For thesglica-
tions, high performance is critical. They are generallytteri in C
or C++ to run efficiently on modern shared-memory multipsso
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servers. Many of these applications make intensive userafmic
memory allocation. Unfortunately, the memory allocatoofien a
bottleneck that severely limits program scalability on tipubces-
sor systems [21]. Existing serial memory allocators do wates
well for multithreaded applications, and existing coneutrallo-
cators do not provide one or more of the following featurdspfa
which are needed in order to attain scalable and memoryiesffic
allocator performance:

Speed. A memory allocator should perform memory operations
(i.e., malloc andfree) about as fast as a state-of-the-art se-
rial memory allocator. This feature guarantees good atitmca
performance even when a multithreaded program executes
on a single processor.

Scalability. As the number of processors in the system grows, the
performance of the allocator must scale linearly with thexau
ber of processors to ensure scalable application perfareaan

False sharing avoidance. The allocator should not introduce false
sharing of cache lines in which threads on distinct proassso
inadvertently share data on the same cache line.

Low fragmentation. We definefragmentationas the maximum
amount of memory allocated from the operating system di-
vided by the maximum amount of memory required by the
application. Excessive fragmentation can degrade perfor-
mance by causing poor data locality, leading to paging.

Certain classes of memory allocators (described in Se&)on
exhibit a special kind of fragmentation that we callbwup. In-
tuitively, blowup is the increase in memory consumptionsesl
when a concurrent allocator reclaims memory freed by the pro
gram but fails to use it to satisfy future memory requests défne
blowup as the maximum amount of memory allocated by a given al
locator divided by the maximum amount of memory allocatedty
ideal uniprocessor allocator. As we show in Section 2.2 ctiva-
mon producer-consumer programming idiom can cause blolaup.
many allocators, blowup ranges from a factormf(the number
of processors) to unbounded memory consumption (the Iaheger
program runs, the more memory it consumes). Such a patlealogi
increase in memory consumption can be catastrophic, negut
premature application termination due to exhaustion ofssspeace.

The contribution of this paper is to introduce the Hoardcsdlor
and show that it enables parallel multithreaded prograrash@eve
scalable performance on shared-memory multiprocessoosrdH
achieves this result by simultaneously solving all of thevayprob-
lems. In particular, Hoard solves the blowup and false siggob-
lems, which, as far as we know, have never been addressed in th



literature. As we demonstrate, Hoard also achieves neartysy/n-
chronization costs in practice.

Hoard maintains per-processor heaps and one global heagn Wh
a per-processor heap’s usage drops below a certain fratt@ard
transfers a large fixed-size chunk of its memory from thegecessor
heap to the global heap, where it is then available for reysanb
other processor. We show that this algorithm bounds blowgp a
synchronization costs to a constant factor. This algorigvwmids
false sharing by ensuring that the same processor almoayalw
reuses (i.e., repeatediyallocs) from a given cache line. Results
on eleven programs demonstrate that Hoard scales linesutlyea
number of processors grows and that its fragmentation custs
low. On 14 processors, Hoard improves performance ovettdine s
dard Solaris allocator by up to a factor of 60 and a factor of 18
over the next best allocator we tested. These features ddve its
incorporation in a number of high-performance commerglia
cations, including the Twister, Typhoon, Breeze and Cyelohat
and USENET servers [3] and BEMSolver, a high-performange sc
entific code [7].

The rest of this paper is organized as follows. In Section@, w
explain in detail the issues of blowup and allocator-indutase
sharing. In Section 3, we motivate and describe in detaiatpe-
rithms used by Hoard to simultaneously solve these probl&es
sketch proofs of the bounds on blowup and contention in Sedti
We demonstrate Hoard’s speed, scalability, false shavioiglance,
and low fragmentation empirically in Section 5, includirghpar-
isons with serial and concurrent memory allocators. We sttgov
that Hoard is robust with respect to changes to its key paeme
We classify previous work into a taxonomy of memory allocato
in Section 6, focusing on speed, scalability, false shaaimdj frag-
mentation problems described above. Finally, we discussdu
directions for this research in Section 7, and conclude oiiGe 8.

2. Motivation

In this section, we focus special attention on the issueBafator-
induced false sharing of heap objects and blowup to motivate
work. These issues must be addressed to achieve efficienbrmem
allocation for scalable multithreaded applications bwehaeen ne-
glected in the memory allocation literature.

2.1 Allocator-Induced False Sharing of Heap Objects

False sharing occurs when multiple processors share words in the
same cache line without actually sharing data and is a matsri
cause of poor performance in parallel applications [20385, Al-
locators can cause false sharing of heap objects by divichiee
lines into a number of small objects that distinct processben
write. A program may introduce false sharing by allocatimyien-
ber of objects within one cache line and passing an objectit a
ferentthread. Itis thus impossible to completely avoidéaiharing
of heap objects unless the allocator pads out every memquese
to the size of a cache line. However, no allocator we know dipa
memory requests to the size of a cache line, and with goodmeas
padding could cause a dramatic increase in memory consoimpti
(for instance, objects would be padded to a multiple of 64&dyt
on a SPARC) and could significantly degrade spatial localityl
cache utilization.

Unfortunately, an allocator cattively inducefalse sharing even
on objects that the program does not pass to different threfact
tive false sharing is due tmalloc satisfying memory requests by
different threads from the same cache line. For instanogylesi
heap allocators can give many threads parts of the same liaghe
The allocator may divide a cache line into 8-byte chunks. uf-m
tiple threads request 8-byte objects, the allocator mag gach
thread one 8-byte object in turn. This splitting of cachedirtan

lead to false sharing.

Allocators may alsgassively induce false sharing. Passive false
sharing occurs whefree allows a futuremalloc to produce false
sharing. If aprogramintroduces false sharing by spreading the
pieces of a cache line across processors, the allocator meay t
passively induce false sharing aftefree by letting each processor
reuse pieces it freed, which can then lead to false sharing.

2.2 Blowup

Many previous allocators suffer from blowup. As we show it-Se
tion 3.1, Hoard keeps blowup to a constant factor but marstiexj
concurrent allocators hawmboundedlowup (the Cilk and STL
allocators [6, 30]) (memory consumption grows without beburhile
the memory required is fixed) or memory consumption can grow
linearly with P, the number of processors (Ptmalloc and LKmalloc
[9, 22]). It is important to note that these worst cases atqusd
theoretical. Threads in a producer-consumer relationghipm-
mon programming idiom, may induce this blowup. To the best of
our knowledge, papers in the literature do not address tils-p
lem. For example, consider a program in which a produceathre
repeatedly allocates a block of memory and gives it to a aoesu
thread which frees it. If the memory freed by the consumenis u
available to the producer, the program consumes more and mor
memory as it runs.

This unbounded memory consumption is plainly unacceptable
but aP-fold increase in memory consumption is also cause for con-
cern. The scheduling of multithreaded programs can caese th
requiremuchmore memory when run on multiple processors than
when run on one processor [6, 28]. Consider a program With
threads. Each thread cakklsmalloc(s); free(x). If these threads
are serialized, the total memory requiredsis However, if they
execute onP processors, each call talloc may run in paral-
lel, increasing the memory requirement®ox s. If the allocator
multiplies this consumption by another factor Bf then memory
consumption increases &  s.

3. TheHoard Memory Allocator

This section describes Hoard in detail. Hoard can be vievged a
an allocator that generally avoids false sharing and tlaales in-
creased (but bounded) memory consumption for reduced synch
nization costs.

Hoard augments per-processor heaps wiglohal heapthat ev-
ery thread may access (similar to Vee and Hsu [37]). Eaclathre
can access only its heap and the global heap. We designgie hea
0 as the global heap and heaps 1 throlylas the per-processor
heaps. In the implementation we actually @4 heaps (without
altering our analytical results) in order to decrease ttubalility
that concurrently-executing threads use the same heapsweau
simple hash function to map thread id’s to per-processgphtreat
can result in collisions. We need such a mapping functiombse
in general there is not a one-to-one correspondence betivesads
and processors, and threads can be reassigned to othesgorsce
On Solaris, however, we are able to avoid collisions of hesma-
ments to threads by hashing on the light-weight process (Ud/P
The number of LWP’s is usually set to the number of processors
[24, 33], so each heap is generally used by no more than one LWP

Hoard maintainsisage statisticfor each heap. These statistics
areu;, the amount of memory in use (“live”) in heapanda;, the
amount of memory allocated by Hoard from the operating syste
held in heap.

Hoard allocates memory from the system in chunks wescall
perblocks. Each superblock is an array of some number of blocks
(objects) and contains a free list of its available blocksmeéned
in LIFO order to improve locality. All superblocks are thersa



t1l: x9 = malloc(s); t1l: free(y4d);
global heap global heap
heap 1 heap 2 heap 1 heap 2
x1 1 x1 1
X2 2 x2 y2
X9 3 X9 3
4
t2: free(x2); t2: free(x9);
global heap global heap
heap 1 heap 2
x1 1
y2
) 3 heap 1 heap 2
x1 1
y2
3

Figure 1: Allocation and freeing in Hoard. See Section 3.2 for
details.

size (§), a multiple of the system page size. Objects larger than
half the size of a superblock are managed directly using itteay
memory system (i.e., they are allocated wimap and freed using
munmap). All of the blocks in a superblock are in the same size
class. By using size classes that are a powdr apart (whereb

is greater than 1) and rounding the requested size up to #re ne
est size class, we bound worst-casiernal fragmentation within

a block to a factor ob. In order to reducexternalfragmentation,
we recyclecompletely empty superblocks for re-use by any size
class. For clarity of exposition, we assume a single sizesdlathe
discussion below.

3.1 Bounding Blowup

tains the following invariant on the per-processor heafs: >
a;i — K % S) A (u; > (1 — f)a;). When we remove a superblock,
we reduceu; by at most(1 — f).S but reduces; by S, thus restor-
ing the invariant. Maintaining this invariant bounds blgwio a
constant factor, as we show in Section 4.

Hoard findsf-empty superblocks in constant time by dividing
superblocks into a number of bins that we call “fullness gsiu
Each bin contains a doubly-linked list of superblocks thatia a
given fullness range (e.g., all superblocks that are betwg¢ and
completely empty are in the same bin). Hoard moves supébloc
from one group to another when appropriate, and alwaysatksc
from nearly-full superblocks. To improve locality, we ordde
superblocks within a fullness group using a move-to-frantristic.
Whenever we free a block in a superblock, we move the supekblo
to the front of its fullness group. If we then need to allocat#ock,
we will be likely to reuse a superblock that is already in memo
because we maintain the free blocks in LIFO order, we are also
likely to reuse a block that is already in cache.

3.2 Example

Figure 1 illustrates, in simplified form, how Hoard managas s
perblocks. For simplicity, we assume there are two threads a
heaps (threadmaps to heagp). In this example (which reads from
top left to top right, then bottom left to bottom right), thenpty
fraction f is 1/4 and K is 0. Thread 1 executes code written on
the left-hand side of each diagram (prefixed by “t1:”) aneéu 2
executes code on the right-hand side (prefixed by “t2:")tidty,
the global heap is empty, heap 1 has two superblocks (onialpart
full, one empty), and heap 2 has a completely-full supetbloc

The top left diagram shows the heaps after thread 1 allog&es
from heap 1. Hoard selects the fullest superblock in heapr1 fo
allocation. Next, in the top right diagram, thread 1 frgds which
is in a superblock that heap 2 owns. Because heap 2 is sti# mor
than1/4 full, Hoard does not remove a superblock from it. In the
bottom left diagram, thread 2 free, which is in a superblock
owned by heap 1. This free does not cause heap 1 to cross the
emptiness threshold, but the next free &) does. Hoard then
moves the completely-free superblock from heap 1 to theadlob
heap.

3.3 Avoiding False Sharing

Hoard uses the combination of superblocks and multiplgea-
scribed above to avoid most active and passive false shaBinly
one thread may allocate from a given superblock since a slaoér
is owned by exactly one heap at any time. When multiple ttgead

Each heap “owns” a number of superblocks. When there is ho make simultaneous requests for memory, the requests widlyal
memory available in any superblock on a thread’s heap, Hoard be satisfied from different superblocks, avoiding activielyuced

obtains a superblock from the global heap if one is availalile

false sharing. When a program deallocates a block of memory,

the global heap is also empty, Hoard creates a new superblockHoard returns the block to its superblock. This coalescieggnts

by requesting virtual memory from the operating system aiuta
it to the thread’s heap. Hoard does not currently return gmpt
superblocks to the operating system. It instead makes these
perblocks available for reuse.

Hoard moves superblocks from a per-processor heap to thalglo
heap when the per-processor heap crossegtiptiness thresh-
old: more thanf, theempty fraction, of its blocks are not in use
(u; < (1 = f)a;), and there are more than some numkeof su-
perblocks’ worth of free memory on the heap K a; — K * S).

As long as a heap is not more thAempty, and ha® or fewer su-
perblocks, Hoard will not move superblocks from a per-pssce
heap to the global heap. Whenever a per-processor heapridsss ¢
the emptiness threshold, Hoard transfers one of its supekbkhat
is at leastf empty to the global heap. Always removing such

multiple threads from reusing pieces of cache lines thaéwassed
to these threads by a user program, avoiding passivelycadiu
false sharing.

While this strategy can greatly reduce allocator-inducaldef
sharing, it does not completely avoid it. Because Hoard mayem
superblocks from one heap to another, it is possible for teapls
to share cache lines. Fortunately, superblock transferatagively
infrequent event (occurring only when a per-processor Heep
dropped below the emptiness threshold). Further, we haserebd
that in practice, superblocks released to the global heapféen
completely empty, eliminating the possibility of false shg. Re-
leased superblocks are guaranteed to be at léashpty, so the
opportunity for false sharing of lines in each superblodieduced.

Figure 1 also shows how Hoard generally avoids false sharing

a superblock whenever we cross the emptiness threshold main Notice that when thread 1 freggl, Hoard returns this memory to



malloc (sz)
1. Ifsz> S/2, allocate the superblock from the OS
andreturnit.

2. i <« hash(the current thread).
3. Lock heap.
4. Scan heaps list of superblocks from most full to least
(for the size class corresponding to sz).
5. Ifthere is no superblock with free space,
6. Check heap 0 (the global heap) for a superblock.
7. If there is none,
8. AllocateS bytes as superblock
and set the owner to heap
9. Else,
10. Transfer the superblockio heapi.
11. U < Uo — S.U
12. Ui — u; + s.u
13. apg < ap — S
14. a; +—a; +S

15. u; « u; + Sz.

16. s.u < s.u + SzZ.

17. Unlock heap.

18. Return a block from the superblock.

free (ptr)
1. Ifthe block is “large”,
2 Free the superblock to the operating systemrahdn.
3. Find the superblock this block comes from and lock it.
4. Lock heap, the superblock’s owner.
5. Deallocate the block from the superblock.
6. wu; < u; — block size.
7. s.u « s.u — block size.
8. Ifi =0, unlock heap and the superblock
andreturn.

9. Ifu; <a;—K=Sandu; < (1— f) *a;,
10. Transfer a mostly-empty superblaek

to heap O (the global heap).
11.  wug < wo +sl.u, u; < u; — sl.u
12. ap<+—ao+S,a;i+a;i —S
13. Unlock heap and the superblock.

Figure 2: Pseudo-code for Hoard’s malloc and free.

y4’s superblock and not to thread 1's heap. Since Hoard always

uses heap to satisfy memory allocation requests from thrgad
only thread 2 can reuse that memory. Hoard thus avoids bttieac
and passive false sharing in these superblocks.

3.4 Algorithms

In this section, we describe Hoard’s memory allocation aealld-
cation algorithms in more detail. We present the pseude-dod
these algorithms in Figure 2. For clarity of exposition, wai
discussion of the management of fullness groups and suyaérbl
recycling.

Allocation

Hoard directly allocates “large” objects (sizeS/2) via the virtual
memory system. When a thread on processcalls malloc for
small objects, Hoard locks heamand gets a block of a superblock
with free space, if there is one on that heap (line 4). If therot,
Hoard checks the global heap (heap 0) for a superblock. tethe
is one, Hoard transfers it to heapadding the number of bytes in
use in the superblock.u to u;, and the total number of bytes in

the superblockS to a; (lines 10-14). If there are no superblocks

in either heap or heap 0, Hoard allocates a new superblock and
inserts it into heap (line 8). Hoard then chooses a single block

from a superblock with free space, marks it as allocatedreiogns

a pointer to that block.

Deallocation

Each superblock has an “owner” (the processor whose heap it’
in). When a processor frees a block, Hoard finds its supekbloc
(through a pointer in the block’s header). (If this block large”,
Hoard immediately frees the superblock to the operatintesys

It first locks the superblock and then locks the owner’s hétgard
then returns the block to the superblock and decrementtf the
heap is too emptyu; < a; — K * S oru; < (1 — f)a;), Hoard
transfers a superblock that is at legsempty to the global heap
(lines 10-12). Finally, Hoard unlocks heapnd the superblock.

4. Analytical Results

In this section, we sketch the proofs of bounds on blowup snd s
chronization. We first define some useful notation. We nurtiter
heaps from 0 taP: 0 is the global heap, andthroughP are the
per-processor heaps. We adopt the following conventiopitala
letters denote maxima and lower-case letters denote dwakres.
Let A(t) andU(t) denote thenaximumamount of memory allo-
cated and in use by the program (“live memory”) after memory
operatiort. Leta(t) andu(t) denote theeurrentamount of mem-
ory allocated and in use by the program after memory operatio
We add a subscript for a particular heap (eug(t)) and add a caret
(e.g.,a(t)) to denote the sum for all heapgcepthe global heap.

4.1 Boundson Blowup

We now formally define the blowup for an allocator as its worst
case memory consumption divided by the ideal worst-caseanem
consumption for a serial memory allocator (a constant faates

its maximum memory required [29]):

DEFINITION 1. blowup= O(A(t)/U(t)).

We first prove the following theorem that bounds Hoard'’s wors
case memory consumptiont(¢) = O(U(t) + P). We can show
that the maximum amount of memory in the global and the per-
processor heapsi(t)) is the same as the maximum allocated into
the per-processor heap&((t)). We make use of this lemma, whose
proof is straightforward but somewhat lengthy (the proofyrha
found in our technical report [4]).

LEMMA 1. A(t) = A(t).

Intuitively, this lemma holds because these quantitiesnzag-
ima; any memory in the global heap was originally allocated &
per-processor heap. Now we prove the bounded memory corsump
tion theorem:

THEOREM 1. A(t) = O(U(t) + P).
PROOF We restate the invariant from Section 3.1 that we main-
tain over all the per-processor heags;(t) — K = .S < u;(t)) A

(1= Hai(t) < uilt)).

The first inequality is sufficient to prove the theorem. Sumgni
over all P per-processor heaps gives us

Aty < P wi(t)+P+xKxS  bdef ofA(t)

< Ut)+P+xKxS > def. of U (t)

> U(t) < U(t)

IN

Ut)+ P+xK«S.



Since by the above lemma(t) = A(t), we haveA(t) =

oW +P). O

S, the size of a superblock. When a per-processor heap is grow-
ing, a thread can acquire the global heap lock at rhgéf = S/s)
times fork memory operations, whergis the empty fractionS

Because the number of size classes is constant, this theorenmis the superblock size, andis the object size. Whenever the per-

holds over all size classes. By the definition of blowup above
and assuming thaP << U(t), Hoard's blowup isO((U(t) +
P)/U(t)) = O(1). This result shows that Hoard’s worst case
memory consumption is at worst a constant factor overheat th
does not grow with the amount of memory required by the pro-
gram.

Our discipline for using the empty fractiofiYenables this proof,
so it is clearly a key parameter for Hoard. For reasons werithesc
and validate with experimental results in Section 5.5, idsguer-
formance is robust with respect to the choicef of

4.2 Boundson Synchronization

In this section, we analyze Hoard’s worst-case and disoymscéed
synchronization costs. Synchronization costs come in taxmfk:
contention for a per-processor heap and acquisition of kbiead)
heap lock. We argue that the first form of contention is notad-sc
ability concern, and that the second form is rare. Furtloercém-
mon program behavior, the synchronization costs are lowrmest
of the program’s lifetime.

Per-processor Heap Contention

While the worst-case contention for Hoard arises when oreath
allocates memory from the heap and a number of other threagls f
it (thus all contending for the same heap lock), this caseipar-
ticularly interesting. If an application allocates memanysuch

a manner and the amount of work between allocations is so low

that heap contention is an issue, then the applicatiorf its@ln-
damentally unscalable. Even if heap access were to be ctetyple
independent, the application itself could only achieve a-fold
speedup, no matter how many processors are available.

Since we are concerned with providing a scalable allocator f
scalable applications, we can bound Hoard’s worst caseitdr ap-
plications, which occurs when pairs of threads exhibit ttoelpcer-
consumer behavior described above. Eawlloc and eacHree
will be serialized. Modulo context-switch costs, this pattresults
in at most a two-fold slowdown. This slowdown is not desieabl
but it is scalable as it does not grow with the number of preces
(as it does for allocators with one heap protected by a siogle.

It is difficult to establish an expected case for per-progeksap
contention. Since most multithreaded applications usaxhyoally-
allocated memory for the exclusive use of the allocatingatrand
only a small fraction of allocated memory is freed by anothezad
[22], we expect per-processor heap contention to be quite lo

Global Heap Contention

Global heap contention arises when superblocks are firateze
when superblocks are transferred to and from the global, teap
when blocks are freed from superblocks held by the globaphea
We simply count the number of times the global heap’s loclcis a
quired by each thread, which is an upper-bound on conteriian

processor heap is empty, the thread will lock the global reeap
obtain a superblock with at leagt« S/s free blocks. If the thread
then callsmalloc k times, it will exhaust its heap and acquire the
global heap lock at mogt/(f * S/s) times.

When a per-processor heap is shrinking, a thread will first ac
quire the global heap lock when the release threshold isetbs
The release threshold could then be crossed on every siatile ¢
to free if every superblock is exactly empty. Completely freeing
each superblock in turn will cause the superblock to firseteased
to the global heap and every subseques to a block in that su-
perblock will therefore acquire the global heap lock. Ligkihis
pathological case is highly unlikely to occur since it reqaian
improbable sequence of operations: the program must sgtitem
cally free(1 — f) of each superblock and then free every block in
a superblock one at a time.

For the common case, Hoard will incugry lowcontention costs
for any memory operation. This situation holds when the amhou
of live memory remains within the empty fraction of the maxim
amount of memory allocated (and whenfadles are local). John-
stone and Stefanovit show in their empirical studies afcaltion
behavior that for nearly every program they analyzed, thenamg
in use tends to vary within a range that is within a fractionotél
memory currently in use, and this amount often grows ste&ti,
32]. Thus, in the steady state case, Hoard incurs no coaterstnd
in gradual growth, Hoard incurs low contention.

5. Experimental Results

In this section, we describe our experimental results. Wiopaed
experiments on uniprocessors and multiprocessors to denate
Hoard’s speed, scalability, false sharing avoidance, andftag-
mentation. We also show that these results are robust vsffecs

to the choice of the empty fraction. The platform used is aded
icated 14-processor Sun Enterprise 5000 with 2GB of RAM and
400MHz UltraSparcs with 4 MB of level 2 cache, running Sdari
7. Except for the Barnes-Hut benchmark, all programs (iticig

the allocators) were compiled using the GNU C++ compilehat t
highest possible optimization leveld6). We used GNU C++ in-
stead of the vendor compiler (Sun Workshop compiler verSion
because we encountered errors when we used high optinmzatio
levels. In the experiments cited below, the size of a supek# is

8K, the empty fractiory is 1/4, the number of superblocks that
must be free for superblocks to be released is 4, and the b#se o
exponential for size classéds 1.2 (bounding internal fragmenta-
tionto 1.2).

We compare Hoard (version 2.0.2) to the following single and
multiple-heap memory allocatorSolaris the default allocator pro-
vided with Solaris 7Ptmalloc[9], the Linux allocator included in
the GNU C library that extends a traditional allocator to meti-
ple heaps, an¥Tmallog a multiple heap allocator included with
Solaris 7 for use with multithreaded parallel applicatior{Sec-

analyze two cases: a growing phase and a shrinking phase. Wetion 6 includes extensive discussion Rfmallog MTmallog and

show that worst-case synchronization for the growing phasin-
versely proportional to the superblock size and the empatgtifon
but we show that the worst-case for the shrinking phase isrexp
sive but only for a pathological case that is unlikely to acitu
practice. Empirical evidence from Section 5 suggests thratibst
programs, Hoard will incur low synchronization costs forsnof
the program’s execution.

Two key parameters control the worst-case global heap ntiate
while a per-processor heap is growingy: the empty fraction, and

other concurrent allocators.) The latter two are the onlgliply-
available concurrent allocators of which we are aware fer3b-
laris platform (for exampleLKmalloc is Microsoft proprietary).
We use the Solaris allocator as the baseline for calculapiegdups.
We use the single-threaded applications from Wilson and-Joh
stone, and Grunwald and Zorn [12, 1@ppresspan optimizer for
programmable logic arraysGhostscript a PostScript interpreter;
LRUsim a locality analyzer, ang2c a Pascal-to-C translator. We
chose these programs because they are allocation-intearsivhave



single-threaded benchmarki2, 19] program runtime (sec) change
espresso optimizer for programmable logic arrays Solaris | Hoard
Ghostscript PostScript interpreter single-threaded benchmarks
LRUsim locality analyzer espresso 6.806 7.887 | +15.9%
p2c Pascal-to-C translator Ghostscript 3.610 3.993| +10.6%
multithreaded benchmarks LRUsIim 1615.413| 1570.488| -2.9%
threadtest each thread repeatedly allocates p2c 1.504 1.586| +5.5%
and then deallocates 100,0800bjects multithreaded benchmarks
shbench [26] each thread allocates and randomly frees threadtest 16.549 15.599| -6.1%
random-sized objects shbench 12.730 18.995| +49.2%
Larson [22] simulates a server: each thread allocates active-false 18.844 18.959| +0.6%
and deallocates objects, and then transfers passive-falsg  18.898 18.955| +0.3%
some objects to other threads to be freed BEMengine 678.30 614.94| -10.3%
active-false tests active false sharing avoidance Barnes-Hut 192.51 190.66| -1.0%
passive-false tests passive false sharing avoidance average +6.2%
BEMengine [7]  object-oriented PDE solver
Barnes-Hut [1, 2] n-body particle solver Table 2: Uniprocessor runtimes for single- and multithreaded
benchmarks.

Table 1: Single- and multithreaded benchmarks used in this
paper.

large difference between the maximum in use and the totalanem
requested (see Table 4).

Figure 3 shows that Hoard matches or outperforms all of the
allocators we tested. The Solaris allocator performs poover-
all because serial single heap allocators do not sdsli€malloc

widely varying memory usage patterns. We used the samesinput
for these programs as Wilson and Johnstone [19].
There is as yet no standard suite of benchmarks for evagpatin
multithreaded allocators. We know of no benchmarks thatispe .
often suffers from a centralized bottlenecRtmalloc scales well

ically stress multithreaded performance of server apfitina like - L
web serverg and database managers. We chose benchmarks de-only when memory operations are fa}lrly .|nfrequ.ent (Barnes-
scribed in other papers and otherwise publishedl(#rsonbench- Hutbenchmark in Figure 3(d)); otherwise, its scaling peakscatad

mark from Larson and Krishnan [22] and teebenchbenchmark 6 processors. We now discuss eaph benchmarkiin turn.

from MicroQuill, Inc. [26]), two multithreaded applicatis which In threadtest ¢ threads do n_othlng but repeatedly allocate and
include benchmarksBEMengine[7] and barnes-hut[1, 2]), and dgallocatelOO, OQO/t 8-byte ObJ?CtS.(the threads do not §ypchro-
wrote some microbenchmarks of our own to stress different as "2€ 9" share objects). As seen in Figure 3(a), Hoard extlibiéar

pects of memory allocation performandaréadtest active-false speedup, while the Solaris aMTmaIIocaIIocatqrs exhibit severe
passive-false Table 1 describes all of the benchmarks used in this slowdown. For 14 processors, the Hoard Version runs 278%”%
paper. Table 4 includes their allocation behavior: fragragon, t_han thePtmallocversion. UnlikePtmallog which uses a linked-
maximum memory in use() and allocated.4), total memory re- list of heaps, Hoard does not suffer from a scalability leoitick

. . : caused by a centralized data structure.
quested, number of objects requested, and average otzect i The shbenchbenchmark is available on MicroQuill’s website

51 Speed and is shipped with the SmartHeap SMP product [26]. This benc
) mark is essentially a “stress test” rather than a realigtizikation

Table 2 l,iStS the uniprocessor ruptimes for our app]ica;timhen of application behavior. Each thread repeatedly allocatesfrees
linked with Hoard and the Solaris allocator (each is the ager a number of randomly-sized blocks in random order, for d tfta

of three runs(,j; the variatiolr_] tr)]et_ween runs Wﬁs neg_ligiblef).a@ 50 million allocated blocks. The graphs in Figure 3(b) shbatt
erage, Hoard causes a slight increase in the runtime of #ygse 54 scales quite well, approaching linear speedup asinber
plications (6.2%), but this loss is primarily due to its merhance ¢4, rea4s increases. The slope of the speedup line is lesidbal
on shbench Hoard performs poorly oshbenctbecauseshbench o5 156 the large number of different size classes hurtedidoa

uses a wi_de range of size classes but allocates very I_ittha_crr)e raw performance. For 14 processors, the Hoard version rits 8
(see Section 5.4 for more details). The longest-runningegton, faster than the next best allocatdttfhallog. Memory usage in

LRhJsim runs almost 3%:, fa}ster Wi;]h Hogrrii.hHoartj glsollperforms shbenctremains within the empty fraction during the entire run so
Wﬁ. En IﬁEMengme(lO.ZM) asterht an wit ft e S0 ﬁ”ss oct?tor),k that Hoard incurs very low synchronization costs, wiittenalloc
which allocates more memory than any of our other benchmarks again runs into its scalability bottleneck.

(nearly 600MB). The intent of the.arsonbenchmark, due to Larson and Krishnan
52 Scalability [22], is to simulate a workload for a server. A number of tiea

) are repeatedly spawned to allocate and free 10,000 blocigs ra
In this section, we present our experiments to measuretsligla ing from 10 to 100 bytes in a random order. Further, a number
We measurespeedupwith respect to the Solaris allocator. These  of hlocks are left to be freed by a subsequent thread. Laradn a
applications vigorously exercise the allocators as recealy the  Krishnan observe this behavior (which they call “bleedirig"ac-

tual server applications, and their benchmark simulateseffect.

lMecrjnory a!lomation bec?”gje?ﬁ boEt)tIerjéeck when mos} pagesserv The henchmark runs for 30 seconds and then reports the number
are dynamically generated (Jim Davidson, personal comeatni . :
tion). Unfortunately, the SPECweb99 benchmark [31] penfor of memory operations per second. Figure 3(c) shows thatdHoar

very few requests for completely dynamically-generatedesa scales linearly, _attaining nea_rly ideal speedup. For 14gssors,
(0.5%), and most web servers exercise dynamic memory &ifoca  the Hoard version runs 18 times faster than the next bestaallo
only when generating dynamic content. tor, the Ptmallocversion. After an initial start-up phaskarson
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Figure 3: Speedup graphs.



remains within its empty fraction for most of the rest of itsir
(dropping below only a few times over a 30-second run and over
27 million mallocs) so that Hoard incurs very low synchronization
costs. Despite the fact thhairsontransfers many objects from one
thread to another, Hoard performs quite well. All of the otako-
cators fail to scale at all, running slower on 14 processuas bn
one processor.

Barnes-Huis a hierarchicahk-body particle solver included with
the Hood user-level multiprocessor threads library [1,r@h on
32,768 particles for 20 rounds. This application perfornssrall
amount of dynamic memory allocation during the tree-baihhase.
With 14 processors, all of the multiple-heap allocatorsvjate a
10% performance improvement, increasing the speedup afthe
plication from less than 10 to just above 12 (see Figure 3tard
performs only slightly better thaRtmallocin this case because
this program does not exercise the allocator much. Hoael's p
formance is probably somewhat better simply becBeames-Hut
never drops below its empty fraction during its execution.

The BEMenginebenchmark uses the solver engine from Coyote
Systems’ BEMSolver [7], a 2D/3D field solver that can solvecel
trostatic, magnetostatic and thermal systems. We repegdip
for the three mostly-parallel parts of this code (equatiegistra-
tion, preconditioner creation, and the solver). Figure) 3fews
that Hoard provides a significant runtime advantage &eralloc
and the Solaris allocatoMTmalloccaused the application to raise
a fatal exception). During the first two phases of the progrm
program’s memory usage dropped below the empty fractiop onl
25 times over 50 seconds, leading to low synchronizatiorhesa.
This application causeBtmallocto exhibit pathological behavior
that we do not understand, although we suspect that it defioen
false sharing. During the execution of the solver phaseettm-
putation, as seen in Figure 3(f), contention in the allocamot
an issue, and both Hoard and the Solaris allocator perforrallyg
well.

5.3 Falsesharing avoidance

The active-falsebenchmark tests whether an allocator avoids ac-
tively inducing false sharing. Each thread allocates onallsoiv-
ject, writes on it a number of times, and thieees it. The rate of
memory allocation is low compared to the amount of work done,
so this benchmark only tests contention caused by the cashe c
herence mechanism (cache ping-ponging) and not allocator ¢
tention. While Hoard scales linearly, showing that it agsdtively
inducing false sharing, botRtmallocandMTmalloconly scale up
to about 4 processors because they actively induce soneestads-
ing. The Solaris allocator does not scale at all becauseiitehc
induces false sharing for nearly every cache line.

The passive-falsdenchmark tests whether an allocator avoids
both passive and active false sharing by allocating a nurober
small objects and giving one to each thread, which immelgiate

program
threadtest
shbench
Larson
BEMengine
Barnes-Hut

falsely-shared objects |

0
0
0
0
0

Table 3: Possible falsely-shared objects on 14 processor s.

the superblocks were empty. These results demonstratkl tiaatl
successfully avoids allocator-induced false sharing.

5.4 Fragmentation

We showed in Section 3.1 that Hoard has bounded blowup.
this section, we measure Hoard’s average case fragmentatie
use a humber of single- and multithreaded applications atuate
Hoard'’s average-case fragmentation.

Collecting fragmentation information for multithreadgupéica-
tions is problematic because fragmentation is a global gutgp
Updating the maximum memory in use and the maximum memory
allocated would serialize all memory operations and thusgsgly
perturb allocation behavior. We cannot simply use the marim
memory in use for a serial execution because a parallel &recu
of a program may lead it to require much more memory than a se-
rial execution.

We solve this problem by collecting traces of memory opera-
tions and processing these traces off-line. We modified tHsar
that (when collecting traces) each per-processor heapdgegery
memory operation along with a timestamp (using the SPARG-hig
resolution timers viggethrtime()) into a memory-mapped buffer
and writes this trace to disk upon program termination. Vémth
merge the traces in timestamp order to build a complete wéce
memory operations and process the resulting trace to campax-
imum memory allocated and required. Collecting these sraee
sults in nearly a threefold slowdown in memory operatiort<oes
not excessively disturb their parallelism, so we beliewa these
traces are a faithful representation of the fragmentatidnéed by
Hoard.

Single-threaded Applications

We measured fragmentation for the single-threaded bendisma
We follow Wilson and Johnstone [19] and report memory alleda
without counting overhead (like per-object headers) tafoan the
allocationpolicyrather than thenechanismHoard'’s fragmentation

for these applications is between 1.05 and 1.2, exce@dpressp
which consumes 46% more memory than it requirgspressas

an unusual program since it uses a large number of diffeieat s
classes for a small amount of memory required (less than BOOK
and this behavior leads Hoard to waste space within each 8K su
perblock.

frees the object. The benchmark then continues in the same way as

the active-falsebenchmark. If the allocator does not coalesce the
pieces of the cache line initially distributed to the vagdhbreads,

it passively induces false sharing. Figure 4(b) shows thadrti
scales nearly linearly; the gradual slowdown after 12 pgeces is
due to program-induced bus traffic. Neitfmallocnor MTmal-

loc avoid false sharing here, but the cause could be eitheraotiv
passive false sharing.

In Table 3, we present measurements for our multithreadechse
marks of the number of objects that could have been resgdensib
for allocator-induced false sharing (i.e., those objettsaaly in a
superblock acquired from the global heap). In every casenwh
the per-processor heap acquired superblocks from theldiebp,

Multithreaded Applications

Table 4 shows that the fragmentation results for the mu#tated
benchmarks are generally quite good, ranging from nearlyagp
mentation (1.02) foBEMengineo 1.24 forthreadtest The anomaly
is shbenchThis benchmark uses a large range of object sizes, ran-
domly chosen from 8 to 100, and many objects remain live fer th
duration of the program (470K of its maximum 550K objects re-
main in use at the end of the run cited here). These unfreeatishj
are randomly scattered across superblocks, making it isifplego
recycle them for different size classes. This extremelyloam be-
havior is not likely to be representative of real progrant Hut it
does show that Hoard’s method of maintaining one size class p
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Figure 4: Speedup graphsthat exhibit the effect of allocator-induced false sharing.

Benchmark

Hoard fragmentation || max in use (U) | max allocated (A4) | total memory # objects average
applications (A/U) requested || requested | object size
single-threaded benchmarks
espresso 1.47 284,520 417,032| 110,143,200| 1,675,493 65.7378
Ghostscript 1.15 1,171,408 1,342,240 52,194,664 566,542 92.1285
LRUsim 1.05 1,571,176 1,645,856 1,588,320 39,109 40.6126
p2c 1.20 441,432 531,912 5,483,168 199,361 27.5037
multithreaded benchmarks
threadtest 1.24 1,068,864 1,324,848 80,391,016( 9,998,831 8.04
shbench 3.17 556,112 1,761,200| 1,650,564,600| 12,503,613 132.00
Larson 1.22 8,162,600 9,928,760| 1,618,188,592| 27,881,924 58.04
BEMengine 1.02 599,145,176 613,935,296 4,146,087,144| 18,366,795 225.74
Barnes-Hut 1.18 11,959,960 14,114,040 46,004,408 1,172,624 39.23

Table4: Hoard fragmentation resultsand application memory statistics. Wereport fragmentation statistics for 14-processor runs of

the multithreaded programs. All unitsarein bytes.

superblock can yield poor memory efficiency for certain lvidra,
although Hoard still attains good scalable performancehigrap-
plication (see Figure 3(b)).

5.5 Senditivity Study

We also examined the effect of changing the empty fractioruan
time and fragmentation for the multithreaded benchmarksaBse
superblocks are returned to the global heap (for reuse bgr oth
threads) when the heap crosses the emptiness thresho&pitg
fraction affects both synchronization and fragmentatidve var-
ied the empty fraction from/8 to 1/2 and saw very little change
in runtime and fragmentation. We chose this range to exethis
tension between increased (worst-case) fragmentatiosyaruthro-
nization costs. The only benchmark which is substantidfigcéed
by these changes in the empty fraction is te@sonbenchmark,
whose fragmentation increases from 1.22 to 1.61 for an efrgty

processors (we report the number of memory operations pende
for the Larson benchmark, which runs for 30 seconds), antt b
presents the fragmentation results. Hoard'’s runtime issblith

respect to changes in the empty fraction because programigde

reach a steady state in memory usage and stay within everedls sm them to Hoard.

program runtime (sec)

f=1/8| f=1/4| f=1/2
threadtest 1.27 1.28 1.19
shbench 1.45 1.50 1.44
BEMengine 86.85 87.49 88.03
Barnes-Hut 16.52 16.13 16.41

throughput (memory ops/sec)
Larson 4,407,654 4,416,303| 4,352,163

Table 5: Runtime on 14 processor s using Hoard with different
empty fractions.

an empty fraction a$/8, as described in Section 4.2.

6. Related Work
While dynamic storage allocation is one of the most studigits
tion of 1/2. Table 5 presents the runtime for these programs on 14 in computer science, there has been relatively little worlcon-
current memory allocators. In this section, we place paskwio
a taxonomy of memory allocator algorithms and compare each t
Hoard. We address the blowup and allocator-induced falsergh
characteristics of each of these allocator algorithms amdpare



program fragmentation
f=1/8|f=1/4]| f=1/2
threadtest 1.22 1.24 1.22
shbench 3.17 3.17 3.16
Larson 1.22 1.22 1.61
BEMengine 1.02 1.02 1.02
Barnes-Hut 1.18 1.18 1.18

Table 6: Fragmentation on 14 processorsusing Hoard with dif-
ferent empty fractions.

6.1 Taxonomy of Memory Allocator Algorithms
Our taxonomy consists of the following five categories:

Serial single heap. Only one processor may access the heap at a
time (Solaris, Windows NT/2000 [21]).

Concurrent single heap. Many processors may simultaneously op-
erate on one shared heap ([5, 16, 17, 13, 14]).

Pure private heaps. Each processor has its own heap (STL [30],
Cilk [6]).

Private heapswith ownership. Each processor has its own heap,
but memory is always returned to its “owner” proces$dry{
malloc, Ptmalloc[9], LKmalloc[22]).

Private heapswith thresholds. Each processor has its own heap
which can hold a limited amount of free memory (DYNIX
kernel allocator [25], Vee and Hsu [37], Hoard).

Below we discuss these single and multiple-heap algoritfiors
cusing on the false sharing and blowup characteristicsaf.ea

Single Heap Allocation

Serial single heap allocators often exhibit extremely low fragmen-
tation over a wide range of real programs [19] and are quie fa
[23]. Since they typically protect the heap with a singlekladich
serializes memory operations and introduces contenti@y, are
inappropriate for use with most parallel multithreadedgoams.
In multithreaded programs, contention for the lock presetioca-
tor performance from scaling with the number of procesddisst
modern operating systems provide such memory allocatattsein
default library, including Solaris and IRIX. Windows NT/20uses
64-bit atomic operations on freelists rather than lock$ y&iich is
also unscalable because the head of each freelist is a ldeotfta-
neck. These allocators all actively induce false sharing.
Concurrent single heap allocation implements the heap as a
concurrent data structure, such as a concurrent B-treel i1, 3,
14, 16, 17] or a freelist with locks on each free block [5, 8].34
This approach reduces to a serial single heap in the comnsmn ca
when most allocations are from a small number of object sizes
Johnstone and Wilson show that for every program they exaaiin
the vast majority of objects allocated are of only a few sjA¢3.
Each memory operation on these structures requires eithetin-
ear in the number of free blocks 6X(log C) time, whereC is the
number ofsize classes of allocated objects. A size class is a range
of object sizes that are grouped together (e.g., all objestween
32 and 36 bytes are treated as 36-byte objects). Like sénial s
gle heaps, these allocators actively induce false shadmpther
problem with these allocators is that they make use of mackslo

2The Windows 2000 allocator and some of lyengar’s allocaises
one freelist for each object size or range of sizes [13, 1}, 21

or atomic update operations (e.gompare-and-swap), which are
quite expensive.

State-of-the-art serial allocators are so well enginetratimost
memory operations involve only a handful of instruction3][2An
uncontendetbck acquire and release accounts for about half of the
total runtime of these memory operations. In order to be atimp
tive, a memory allocator can only acquire and release at mast
locks in the common case, or incur three atomic operationsrdi
requires only one lock for eaghalloc and two for eactiree and
each memory operation takes constant (amortized) timegsee
tion 3.4).

Multiple-Heap Allocation

We describe three categories of allocators which all usdipfed
heaps. The allocators assign threads to heaps either lgnisi
one heap to every thread (using thread-specific data) [$Q]simg

a currently unused heap from a collection of heaps [9], renatih
heap assignment (as MTmallog provided with Solaris 7 as a re-
placement allocator for multithreaded applications), yipbovid-

ing a mapping function that maps threads onto a collectidreaps
(LKmalloc[22], Hoard). For simplicity of exposition, we assume
that there is exactly one thread bound to each processorrand o
heap for each of these threads.

STL's (Standard Template Librarpthreadalloc, Cilk 4.1, and
many ad hoc allocators ugeire private heaps allocation [6, 30].
Each processor has its own per-processor heap that it usesefy
memory operation (the allocatorallocs from its heap anftees to
its heap). Each per-processor heap is “purely private” iezaach
processor never accesses any other heap for any memoryiopera
After one thread allocates an object, a second thread caiit fi@
pure private heaps allocators, this memory is placed in¢bersd
thread’s heap. Since parts of the same cache line may bedmace
multiple heaps, pure private-heaps allocators passiuelyde false
sharing. Worse, pure private-heaps allocators exhibibuntded
memory consumption given a producer-consumer allocatain p
tern, as described in Section 2.2. Hoard avoids this protidgm
returning freed blocks to the heap that owns the superbltieks
belong to.

Private heapswith ownership returns free blocks to the heap that
allocated them. This algorithm, used MTmallog Ptmalloc[9]
andLKmalloc[22], yieldsO(P) blowup, whereas Hoard h&¥(1)
blowup. Consider a round-robin style producer-consumagam:
each processarallocatesK blocks and processdi + 1)modP
frees them. The program requires ority blocks but the alloca-
tor will allocate P =+ K blocks (K on all P heaps).Ptmallocand
MTmalloccan actively induce false sharing (different threads may
allocate from the same heap)l)Kmallocs permanent assignment
of large regions of memory to processors and its immedidtgne
of freed blocks to these regions, while leading@¢P) blowup,
should have the advantage of eliminating allocator-induiedse
sharing, although the authors did not explicitly address igsue.
Hoard explicitly takes steps to reduce false sharing, atjhat can-
not avoid it altogether, while maintainir@(1) blowup.

Both PtmallocandMTmallocalso suffer from scalability bottle-
necks. InPtmallog eachmalloc chooses the first heap that is not
currently in use (caching the resulting choice for the néberapt).
This heap selection strategy causes substantial bus tvetfiich
limits Ptmallocs scalability to about 6 processors, as we show in
Section 5. MTmalloc performs round-robin heap assignment by
maintaining a “nextHeap” global variable that is updateceigry
call to malloc. This variable is a source of contention that makes
MTmallocunscalable and actively induces false sharing. Hoard has
no centralized bottlenecks except for the global heap, misioot a



Allocator algorithm fast? | scalable? avoids blowup
false sharing?
serial single heap yes no no o(1)
concurrent single heap no maybe no o(1)
pure private heaps yes yes no unbounded
private heaps w/ownership
Ptmalloc[9] | yes yes no o(P)
MTmalloc | yes no no O(P)
LKmalloc[22] | yes yes yes o(P)
private heaps wi/thresholds
Vee and Hsu, DYNIR5, 37] | yes yes no o(1)
Hoard | yes yes yes o(1)

Table 7: A taxonomy of memory allocation algorithms discussed in this paper.

frequent source of contention for reasons described ir@es4t2.
The DYNIX kernel memory allocator by McKenney and Sling-
wine [25] and the single object-size allocator by Vee and [33U
employ aprivate heaps with thresholds algorithm. These allo-
cators are efficient and scalable because they move larg&sblo
of memory between a hierarchy of per-processor heaps anb hea

allocate objects from a wide range of size classes, di&presso
andshbench

Finally, we are investigating ways of improving performaraf
Hoard on cc/NUMA architectures. Because the unit of cacheco
ence on these architectures is an entire page, Hoard’s meaoha
of coalescing to page-sized superblocks appears to be wgori

shared by multiple processors. When a per-processor heap hatant for scalability. Our preliminary results on an SGI @tig000
more than a certain amount of free memory (the thresholdjeso  show that Hoard scales to a substantially larger numberafgs-
portion of the free memory is moved to a shared heap. Thits stra sors, and we plan to report these results in the future.

egy also bounds blowup to a constant factor, since no heap MaYo  -onclusion

hold more than some fixed amount of free memory. The mecha-
nisms that control this motion and the units of memory mowed b
the DYNIX and Vee and Hsu allocators differ significantly rfro
those used by Hoard. Unlike Hoard, both of these allocatass p
sively induce false sharing by making it very easy for pieoks
the same cache line to be recycled. As long as the amountef fre
memory does not exceed the threshold, pieces of the same cach
line spread across processors will be repeatedly reuseatisfys
memory requests. Also, these allocators are forced to sgnide
every time the threshold amount of memory is allocated aedre
while Hoard can avoid synchronization altogether whileghgpti-
ness of per-processor heaps is within the empty fraction.th@n
other hand, these allocators do avoid the two-fold slowdtvenh
can occur in the worst-case described for Hoard in Sectidn 4.
Table 7 presents a summary of the above allocator algorjthms
along with their speed, scalability, false sharing and bipwhar-
acteristics. As can be seen from the table, the algorithisest
to Hoard are Vee and Hsu, DYNIX, aridKkmalloc. The first two
fail to avoid passively-induced false sharing and are fotoesyn-
chronize with a global heap after each threshold amount afiong
is consumed or freed, while Hoard avoids false sharing andtis
required to synchronize until the emptiness thresholdassezd or
when a heap does not have sufficient membKmallochas simi-
lar synchronization behavior to Hoard and avoids allocatduced
false sharing, but ha8(P) blowup.

7. FutureWork
Although the hashing method that we use has so far proven to be
an effective mechanism for assigning threads to heaps, avetpl
develop an efficient method that can adapt to the situatioanwh
two concurrently-executing threads map to the same heap.

While we believe that Hoard improves program locality in-var
ious ways, we have yet to quantitatively measure this effédée
plan to use both cache and page-level measurement toolalto ev
ate and improve Hoard's effect on program-level locality.

We are also looking at ways to remove the one size class per
superblock restriction. This restriction is responsildeifcreased
fragmentation and a decline in performance for programshvhi

In this paper, we have introduced the Hoard memory allocator
Hoard improves on previous memory allocators by simultasko
providing four features that are important for scalableligpfion
performance: speed, scalability, false sharing avoidazice low
fragmentation. Hoard’s novel organization of per-proocesand
global heaps along with its discipline for moving superkkacross
heaps enables Hoard to achieve these features and is thetkey c
tribution of this work. Our analysis shows that Hoard has/phbdy
bounded blowup and low expected case synchronization. Bur e
perimental results on eleven programs demonstrate thaaatipe
Hoard has low fragmentation, avoids false sharing, anesacadry
well. In addition, we show that Hoard’s performance andrinag-
tation are robust with respect to its primary parameter etingty
fraction. Since scalable application performance cleegtyuires
scalable architecture and runtime system support, Hoasltttkes

a key step in this direction.
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