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Abstract

Diffusion models are loosely modelled based on non-equilibrium thermodynamics, where diffu-
sion refers to particles flowing from high-concentration regions towards low-concentration regions.
In statistics, the meaning is quite similar, namely the process of transforming a complex distribu-
tion pcomplex on Rd to a simple distribution pprior on the same domain. This constitutes a Markov
chain of diffusion steps of slowly adding random noise to data, followed by a reverse diffusion
process in which the data is reconstructed from the noise. The diffusion model learns the data
manifold to which the original and thus the reconstructed data samples belong, by training on a
large number of data points. While the diffusion process pushes a data sample off the data man-
ifold, the reverse process finds a trajectory back to the data manifold. Diffusion models have –
unlike variational autoencoder and flow models – latent variables with the same dimensionality as
the original data, and they are currently1 outperforming other approaches – including Generative
Adversarial Networks (GANs) – to modelling the distribution of, e.g., natural images.

1 Introduction

This document aims at being a coherent description of the mathematical foundation relevant for
diffusion models. The body of literature in this area is growing very quickly, but the underlying
mathematics of the diffusion process remains largely unchanged. In this document we give a self-
contained presentation of this foundation, using coherent notation. We will whenever possible avoid
discussing issues related to implementation, and rather focus on the fundamental properties of the
diffusion models. This document was initially prepared as lecture notes for the course “IT3030: Deep
Learning” at The Norwegian University of Science and Technology.

2 The diffusion process

2.1 Forward diffusion

Assume that we have a distribution that we can draw data samples x0 from. The subscript 0 indicates
that this is an original data sample (for instance an image) without any noise added. In the forward
diffusion process, noise is gradually added to the sample in T steps, generating increasingly noisy sam-
ples x1,x2, . . . ,xT , with xT ∼ pprior (meaning that the xT - samples follow a predefined distribution
pprior for sufficiently large T ). The noising procedure must be scheduled to add noise (“destroy” the
data sample) at the right pace. To this end, the variance β of the added noise increases following a

schedule, i.e. the diffusion steps are parameterised by a variance schedule {βt}Tt=1. The data distribu-
tion is gradually converted into another distribution by repeatedly applying a Markov diffusion kernel
K, i.e. the data sample xt at step t is generated from xt−1 using

q(xt|xt−1) = K (xt|xt−1;βt) , (1)

where βt is the diffusion rate. This makes it clear that the process is Markovian, as each step depends
only on the immediately preceding sample. The joint probability of the entire process from the original
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Figure 1: The forward diffusion process from pcomplex to pprior.

data sample x0 to the final sample at step T can be written as

q(x1:T |x0) = q(x1|x0)

T∏

t=2

q(xt|xt−1) =

T∏

t=1

q(xt|xt−1) . (2)

Using a Gaussian Markov diffusion kernel K, we have so-called Gaussian diffusion, as introduced in
[Sohl-Dickstein et al., 2015]. Then, Equation (1) becomes

q(xt|xt−1) = N (xt;
√
1− βt xt−1, βtI) , (3)

where N denotes a Gaussian distribution and we have parameterized the distribution with mean
µ =

√
1− βt xt−1 and covariance matrix Σ = βtI. The diffusion rate βt typically starts close to 0

for small t, meaning that the variance of the conditional distribution in Equation (3) is small, while√
1− βt is close to 1, and thus the conditional mean is close to xt−1, the sample at the previous step.

It also follows that
q(xT ) ≈ pprior(xT ) = N (xT ;0, I) ,

with q(xT ) = pprior(xT ) in the limit as T → ∞. A schematic visualisation of the diffusion process
depicted as moving between distributions is shown in Figure 1.

The Gaussian distribution-function in vector notation is

N (x;µ,Σ) =
1√

(2π)
k
detΣ

exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
.

We can draw samples from this distribution using that if X ∼ N (x;µ,Σ), then we can reformulate X
as

X = µ+AZ, Z ∼ N (0, I) , (4)

where A is choses to ensure that Σ = AAT . Thus, defining αt = 1 − βt, we can use Equation (3) to
write

Xt =
√
αt Xt−1 +

√
1− αt Zt ,

if we let
√
1− αt I play the role of A in Equation (4) and choose Zt to follow the standard Gaussian

distribution. We can use this recursive relation to express Xt in terms of X0 directly as follows:

Xt =
√
αt Xt−1 +

√
1− αt Zt (5)

=
√
αtαt−1 Xt−2 +

√
αt(1− αt−1)Zt−1 +

√
1− αtZt (6)

=
√
αtαt−1 Xt−2 +

√
1− αtαt−1 Zt−1:t (7)

= . . . (8)

=
√
ᾱt X0 +

√
1− ᾱt Z0:t . (9)
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Figure 2: Parameter values for β = [10−4, 0.02] over 1000 time steps t using a linear schedule. The
information in the two figures are the same, but the right-hand side uses log-scale on the y-axis to
show the speed of which ᾱt goes towards zero.

In Equation (6) we have used Equation (5) to representXt−1 viaXt−2 and Zt−1. To get to Equation (7)
we used two facts about random variables: First, the sum of two Gaussian variables with parameters
(µ1 = 0,Σ1 = σ2

1I) and (µ2 = 0,Σ2 = σ2
2I) is a new Gaussian variable with mean 0 and covariance

(σ2
1 + σ2

1) · I. Second, for a scalar γ and a random variable W, we have Var(γW) = γ2 Var(W). Now,
the transition from Equation (6) to Equation (7) holds because

√
αt(1− αt−1)Zt−1 +

√
1− αtZt = N (0, αt(1− αt−1)I) +N0, (1− αt)I)

= N (0, (1− αtαt−1)I)

=
√

1− αtαt−1N (0, I) .

We have given the Z-variables explicit indices in the development above to keep track of the time
step(s), but remember that all of them follow the standard Gaussian distribution with mean 0 and
covariance-matrix I. The dots in (8) indicate repeating this procedure for all steps until X0, and in
Equation (9) we have introduced the compact notation ᾱt =

∏t
i=1 αi. We have thus arrived at an

expression for generating a single noisy sample xt given an initial sample x0:

q(xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
. (10)

Note that the covariance matrix of the added noise is diagonal throughout. The samples xt gradually
become more noisy, and as T →∞, xT is drawn from an isotropic Gaussian distribution, q(xT |x0) ≈
N (0, I) = pprior. [Ho et al., 2020] use T = 1000. Regarding the variance schedule, values of βt are
typically in the range [10−4, 0.02]. The schedule used in [Sohl-Dickstein et al., 2015] defines a linear
relationship between t and βt, while the one used in [Nichol and Dhariwal, 2021] is a cosine. The
parameter values for this range, using a linear scale for simplicity, are shown in Figure 2.

To summarise, the forward diffusion process consists of a step-wise transformation of a sampled
x0 to a random Gaussian noise-variable xT ∼ N (0, I). We start from x0, and at each time-step
t = 1, . . . , T , make adjustments so that xt has a mean that is gradually moved towards zero and a
variance that gradually increases towards unity as t increases. This is most easily seen by studying
the numerical values of the parameters in Equation (10) using Figure 2.

Finally, we can also use Equation (10) to generate a sample xt directly from an original sample x0

via
xt =

√
ᾱtx0 +

√
1− ᾱt ϵ , ϵ ∼ N (0, I). (11)

Figure 3 shows example trajectories from a univariate diffusion process. The top part of the figure
shows ten trajectories all starting from the same x0. The data is generated by iteratively sample using
q(xt|xt−1) following Equation (3). Eventually, at t = T , the samples approximately follow the targeted
Gaussian distribution shown on the right-hand side. The bottom part of Figure 3 gives the estimated
density q(xt|x0) for each t based on a high number of sampled trajectories, see also Equation (10),
again using the same starting-point x0 as in the top part of the figure.
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Figure 3: The forward process moves in the direction of increasing time (left to right). The marginal
distribution on the right-hand side of each plot gives the distribution q(xT |x0). Top: 10 trajectories
sampled from the same starting-point x0. Bottom: For each t the figure shows the estimated conditional
distribution q(xt|x0) based on 25.000 trajectories sampled from the same starting-point x0.

The last point to make about the forward diffusion process is that we do not need to train a
machine learning model to do any of this. We are simply following Equation (3) mechanically to
transform a sample x0 from the data distribution pdata until we obtain a transformed sample xT that
(approximately) comes from the much simpler pprior. One could ask what we have gained by this.
That will hopefully become clear in the next subsection when we reverse the process: Starting from a
sample xT ∼ pprior, we will gradually change that until we obtain an x0 that (approximately) is from
pcomplex.

2.2 Generative modelling = undoing diffusion

Having completed the forward diffusion process, we would now like to be able to undo that again,
that is, gradually remove noise from a sample xT , ending up with a data sample x0 from the original
distribution. An important result in this context is by [Feller, 1949], showing that in the limit of
infinitesimal step size, the true reverse process will have the same distributional form as the forward
process. In our case, we should thus expect the reversed process to be a series of random variables

4



following the Gaussian distribution (since the forward-process only involved Gaussians). In essence it
should thus be possible to model the reverse process – we only need to calculate the parameters of
the Gaussians. Nevertheless, while the forward diffusion process is fixed, finding the reverse process
requires quite some effort.

Ideally, we would just calculate q(xt−1|xt) and sample step-wise from the distribution guiding us
from a sample xT ∼ pprior to a sample x0 ∼ pcomplex. However, using Bayes’ rule to calculate q(xt−1|xt)
from q(xt|xt−1) means that we will need to not only represent the distribution q(x0), but also be able
to integrate over it. This follows because the only way to use Bayes rule when we do not have access
to the marginals q(xt−1) and q(xt) would be as follows:

q(xt−1|xt) =
q(xt|xt−1) · q(xt−1)

q(xt)

=
q(xt|xt−1) ·

∫
x0

q(xt−1|x0)q(x0)dx0∫
x0

q(xt|x0)q(x0)dx0
.

Remember that we previously referred to q(x0) as pcomplex because we have no reason to believe that
it is a Gaussian (or that it comes from any other mathematically convenient distributional family,
for that matter): It is only for t > 0 and conditionally on the starting-point x0 that all variables are
Gaussians. In conclusion, we will not be able to calculate q(xt−1|xt) directly, but need to do something
else. The idea is instead to find a suitable approximation to q(xt−1|xt) and let that approximation
define the reverse process. Fortunately, we can define such a reverse diffusion process even if we limit
our use of pcomplex. In the following we will only be accessing samples from the distribution. We will
generate those samples by randomly selecting examples from the training-data, which represents the
data-distribution pdata, and therefore approximates pcomplex. This is the core idea behind diffusion
models, and how all of this fit together will be described next.

As an alternative to reversing the diffusion process with Bayes rule, we will define a new distribution
that is meant to be representing the reverse process directly. That is, we will create a step-wise noise
reduction process p(xt−1|xt) that at least approximates q(xt−1|xt). Leveraging the observation that
the reverse process must have the same functional form as the forward process (given that each βt is
sufficiently small in the forward process), each reverse step can be parameterised as a Gaussian, and
the parameters can be learned by fitting a neural network, as observed by [Sohl-Dickstein et al., 2015].
This means that we only have to estimate the mean and variance of the distribution p(xt−1|xt) in order
to draw samples from it. Letting a neural network parameterised by θ represent this distribution, i.e.,
produce the distributional parameters µ and Σ, we can thus write

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) . (12)

When learning the network that generates the parameters in Equation (12), the deep neural network
takes as input the sample at time t, xt, in addition to the time step t itself, in order to account for
the variance schedule of the forward process; as different time steps are associated with different noise
levels, the model must learn to undo these individually.

Like the forward process, the reverse process is a Markov chain, and we can write the joint proba-
bility of a sequence of samples as a product of conditionals and the marginal probability of xT ,

pθ(x0:T ) = p(xT )

T∏

t=1

pθ(xt−1|xt) . (13)

Here, the distribution p(xT ) is the same as q(xT ), namely the pure noise distribution pprior =
N (xT ; 0, I). This means that the generation process starts with Gaussian noise, followed by sam-
pling from the learned individual steps of the reverse process.

Note that while the original data-samples (e.g., images) do not have zero off-diagonal covariance
(neighbouring pixels contain information about each other), the noise added to the original samples
was diagonal, meaning that we can assume that the variance of the removed noise is also diagonal,
i.e. Σ = σ · I for some scalar value σ. In the case of a diagonal covariance matrix Σ, the mean and
the variance in each dimension can be estimated separately, and the multivariate density function
can be described in terms of a product of univariate Gaussians. If the variance is given, we merely
have to predict the mean. In [Nichol and Dhariwal, 2021], it is shown empirically that learning the
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Figure 4: The general idea of the reverse diffusion process is to go backwards in time, starting with
a sample xT ∼ pprior and end up with x0 that (approximately) comes from pcomplex. Compare this
to the forward process in Figure 1 to realise that the major difference between the forward and the
backward process is that when the forward process was defined by Equation (2), the reverse needs to
be learned, cf. Equation (12).

covariance can improve the quality of the generated samples, but this is not something we will focus
on here. We will rather predict only the mean of the reversed diffusion process-distribution, while
the variance follows a schedule parameterised by t. The general process of the reverse process is thus
as shown in Figure 4. We start by a sample from pprior, use Equation (12) powered by the neural
network with parameters θ, and eventually obtain x0. We will discuss two different reverse processes,
namely the Denoising Diffusion Probabilistic Model [Ho et al., 2020, Nichol and Dhariwal, 2021] and
Denoising Diffusion Implicit Models [Song et al., 2020]. However, we will first discuss how to define
the loss function of the neural network.

2.3 The loss

What objective are we optimising when training the neural network to learn Equation (12)? All
generative models attempt to learn the distribution of their training data, so it would make sense to
maximise the likelihood assigned to x0 by the model. Calculating this would require us to marginalise
over all steps from t = T down to t = 1,

pθ(x0) =

∫
pθ(x0:T )dx1:T . (14)

Maximising Equation (14) gives the process pθ over xT → xT−1 . . .x1 → x0 that has the largest log
likelihood of producing the observed x0 from the noise xT . However, evaluating the above expression
involves integrating over all possible trajectories from noise to the data manifold, which is intractable.
Instead we can maximise a lower bound of the log likelihood, taking a page out of the book of variational
autoencoders.

To get to these results we will first discuss some results regarding variational inference (Section 2.3.1)
and the VAE (Section 2.3.2). Unfortunately, some of the syntax used by the community behind these
results differ from what is used elsewhere in this document. Nevertheless, we have been true to the
original lingo in our description, and then try to “translate” the core concepts and ideas back to our
language in Section 2.3.3.

2.3.1 Variational Lower Bound

Imagine that we are given a process z→ x that can generate data samples x from latent variables z.
The latent variable can e.g. contain information about the properties of an image, and through the
process, denoted p(x|z), the properties manifest into an actual image x. We would like to know the
reverse process, i.e. how to obtain z from x. Knowing the distribution of z, we could try to use Bayes’
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rule,

p(z|x) = p(z)p(x|z)∫
p(z,x)dz

.

However, in general we do not know how to evaluate the integral
∫
p(z,x) dz. Therefore, we cannot

calculate the denominator in the above expression, and instead choose to approximate p(z|x) by a
function qϕ(z|x). This function can come from an approximation family Q, where we seek to select
the one that minimises some distance measure ∆ between qϕ and the true distribution p. Formally,

q̂ϕ(z|x) = argmin
q∈Q

∆(qϕ(z|x)||p(z|x)) . (15)

So, if for instance we let Q be the set of all Gaussian distributions then ϕ = {µ,Σ} is the param-
eterisation that identifies each member of Q, and Equation (15) abstractly describes how the best
parameterisation is to be chosen. For reasons beyond our control, the Kullbach-Leibler (KL) di-
vergence DKL has been deemed a favourable distance measure, since it has some nice mathematical
properties. It is calculated as

DKL (q||p) =
∫

q(x) log
q(x)

p(x)
dx = Ex∼q

[
log

q(x)

p(x)

]
,

and quantifies how different the probability distribution p is from another distribution q. The shorthand
Ex∼q indicates that the expectation is calculated using values of x coming from q. The KL divergence
is always positive, but failing to be symmetrical under the interchange of p and q is one of its less
desirable mathematical properties. Figure 5 gives an example using two Gaussians, where the KL
divergence is the area under the red curve. Note that the KL divergence cannot be negative, even if
the red curve itself should sometimes take negative values.

Figure 5: The KL divergence between two Gaussians, here from q ∼ N (x;µ = 1, σ2 = 1) (green) to
p ∼ N (x;µ = 0, σ2 = 4) (blue) is given by the area under the red curve.

Armed with the KL divergence, and using that the probability distribution of qϕ(z|x) is normalised,
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x z

p(x|z)

q(z|x)

Figure 6: In a variational autoencoder, the encoder q(z|x) defines a distribution over latent variables z
given observations x, and the decoder p(x|z) defines the distribution over observations given the latent
variables.

i.e.
∫
qϕ(z|x)dz = 1, we can now rewrite the log likelihood over the observed data, log p(x), as

log p(x) = log p(x)

∫
qϕ(z|x)dz Multiply by

∫
qϕ(z|x)dz = 1

=

∫
qϕ(z|x) log p(x)dz Bring p into integral

= Eqϕ(z|x) [log p(x)] Expectation

= Eqϕ(z|x)

[
log

p(x, z)

p(z|x)

]
Multiply by

p(z|x)
p(z|x) = 1; use chain rule

= Eqϕ(z|x)

[
log

p(x, z)qϕ(z|x)
p(z|x)qϕ(z|x)

]
Multiply by

qϕ(z|x)
qϕ(z|x)

= 1

= Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
+ Eqϕ(z|x)

[
log

qϕ(z|x)
p(z|x)

]
Split up

= Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
+DKL (qϕ(z|x)||p(z|x)) Definition of KL divergence

≥ Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
KL divergence always positive .

The quantity on the last line is known as the Evidence Lower Bound (ELBO), and it is a lower bound
on log p(x) because DKL is always positive. This step is often skipped in lecture notes and papers,
referring to “Jensen’s inequality”, which generalises that the secant line of a convex function lies above
the graph of the function itself. In the standard formulation of variational autoencoders (VAEs), the
objective is to maximise the ELBO. The term variational refers to the optimisation of qϕ(z|x) from
the family Q of potential approximation functions.

Note that the true data distribution p(x) is constant with respect to qϕ (the real world doesn’t
care which function we choose for approximating it), meaning that the ELBO and the KL divergence
sum to a constant under optimisation of ϕ. Therefore, maximising the ELBO with respect to ϕ is
identical to a minimisation of DKL, corresponding to finding an optimal model for approximating the
true latent distribution.

2.3.2 Variational Autoencoders

An autoencoder is a neural network consisting of an encoder q that transforms observed data x to a
latent representation z, and a decoder p that transforms the data from the latent representation back
to the original, see Figure 6. We do not know the ground truth encoder q(z|x) or the decoder p(x|z),
but we can estimate them using parameterised models qϕ(z|x) and pθ(x|z), where the parameters ϕ
and θ have to be optimised.
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In order to optimise using the ELBO as loss function, we need to write it in terms we can calculate,

log p(x) ≥ Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
Definition of ELBO.

= Eqϕ(z|x)

[
log

pθ(x|z)p(z)
qϕ(z|x)

]
Chain rule.

= Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x)

[
log

p(z)

qϕ(z|x)

]
Split up.

= Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL (qϕ(z|x)||p(z))︸ ︷︷ ︸
prior matching term

Definition of KL divergence .

When optimising the ELBO we thus learn two distributions; the prior matching term optimises the
parameters ϕ of the encoding function qϕ(z|x) to match the true latent distribution p(z), i.e. it
encourages the approximate posterior to be similar to the prior on the latent variable, while the
reconstruction term optimises the parameters θ of the decoding function pθ(x|z), maximising the
expected probability density assigned to the data given the latent variables. Optimising the parameters
ϕ and θ jointly is a defining feature of VAEs.

In order to calculate the loss for each choice of parameters, we have to specify a prior on the latent
variables, and for VAEs (as for Gaussian diffusion), the common choice is a standard multivariate
Gaussian,

p(z) = N (z;0, I) .

During training, we get data samples x by drawing from our training data. Modelling the encoder as
a multivariate Gaussian with unknown mean µϕ and covariance σϕ, assuming diagonal covariance,

qϕ(z|x) = N (z,µϕ(x), σ
2
ϕ(x)I) ,

the KL divergence term can be computed analytically. The reconstruction term can be approximated
using a Monte Carlo (MC) estimate (which is a fancy way of saying “random sampling”), see Ap-
pendix A.1. We thus rewrite our objective as

argmax
ϕ,θ

Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x)||p(z)) ≈ argmax
ϕ,θ

L∑

l=1

log pθ(x|zl)−DKL (qϕ(z|x)||p(z)) ,

where the Monte Carlo action happens as we sample the zl from qϕ(z|x) for every x in the training
data. After training, new data can be generated by sampling directly from the latent space via p(z)
and running the decoder on these samples.

2.3.3 Back to the diffusion

The diffusion model story is the reverse of the variational autoencoder story from Section 2.3.2: We
start with an object x0 that we gradually convert to noise through the known process q(xt|xt−1).
This is in contrast to the VAEs setting, as our forward process – corresponding to the encoding to
latent variables – is not learned, but fixed. We therefore do not have a parameterised qϕ. However,
the reverse process has to be learned, so we still have the parameterised pθ. We thus only need one
neural network model (that learns the reverse process), analogous to the decoder part of the VAE.
Nevertheless, we can make use of the training objective used by VAEs.

We have the conditional distribution from Equation (2), repeated here for convenience:

q(x1:T |x0) =

T∏

t=1

q(xt|xt−1) , (16)

and the joint distribution from Equation (13),

p(x0:T ) = p(xT )

T∏

t=1

pθ(xt−1|xt) , (17)
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where, as before, p(xT ) = N (0, I). Let us now derive the ELBO again, using the diffusion model
notation and these two distributions:

log p(x0) = log

∫
p(x0:T )dx1:T

= log

∫
p(x0:T )q(x1:T |x0)

q(x1:T |x0)
dx1:T

= logEq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]

≥ Eq(x1:T |x0)

[
log

p(x0:T )

q(x1:T |x0)

]
Jensen’s inequality

= Eq(x1:T |x0)

[
log

p(xT )
∏T

t=1 pθ(xt−1|xt)∏T
t=1 q(xt|xt−1)

]
Use Equation (16) and Equation (17). (18)

We will later promote log p(x0) to be the (negative) loss function, so let us begin by discussing why
this is reasonable. Obviously, log p(x0) evaluated at an element from the training data set gives the
log likelihood of that specific example, i.e., the log likelihood that the reverse process starting from
a random initialisation should end up at that specific data point. If this number is high, we have a
reverse process that makes generating the data point likely. In other words, the reverse process has a
good chance of producing x0. If the reverse process is able to give a reasonably sized log likelihood to
all the examples in our training data, this indicates that the reverse process is well suited to generate
our data. Overall, using the negative log likelihood summed over all data points in the training data
set seems reasonable, and is therefore the strategy we would like to follow. Unfortunately, this quantity
is not available to us, which is why we instead use the ELBO discussed in Section 2.3.1 and defined
for diffusion models in Equation (18).

Next, we look at how the ELBO can be calculated efficiently. In the following, we use that for
positive real numbers a and b, log a · b = log a + log b, and log a/b = log a − log b. Using this in
Equation (18), we obtain

log pθ(x0) ≥ Eq(x1:T |x0)

[
log

p(xT )
∏T

t=1 pθ(xt−1|xt)∏T
t=1 q(xt|xt−1)

]

= Eq(x1:T |x0) [log pθ(x0|x1)] + Eq(x1:T |x0)

[
log

pθ(xT )

q(xT |xT−1)

]
+

T−1∑

t=1

Eq(x1:T |x0)

[
log

pθ(xt|xt+1)

q(xt|xt−1)

]

= Eq(x1|x0) [log pθ(x0|x1)] + Eq(xT−1:T |x0)

[
log

pθ(xT )

q(xT |xT−1)

]

+

T−1∑

t=1

Eq(xt−1:t+1|x0)

[
log

pθ(xt|xt+1)

q(xt|xt−1)

]
. (19)

The last equality follows from that the expectation of a function of the subset of variables xa:b with
1 ≤ a ≤ b ≤ T , say f(xa:b) wrt. a distribution q(x1:T |x0), is given by taking the expectation only over
the variables xa:b:

Eq(x1:T |x0) [f(Xa:b)] =

∫

x1:T

q(x1:T |x0) · f(xa:b) dx1:T

=

∫

x1:T

q(xa:b|x0) · q(x1:a−1,b+1:T |x0,xa:b) · f(xa:b) dx1:T

=

∫

xa:b

q(xa:b|x0)f(xa:b)

∫

x1:a−1,b+1:T

q(x1:a−1,b+1:T |x0,xa:b) dx1:a−1,b+1:T

︸ ︷︷ ︸
The inner integral equals 1.

dxa:b

=

∫

xa:b

q(xa:b|x0)f(xa:b) dxa:b

= Eq(xa:b|x0) [f(Xa:b)] . (20)
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(a) Forward process: q(x1:T |x0) (b) Consistency term in Equation (21)

Figure 7: Motivation for the consistency term in Equation (21).

With the help of Equation (20), and remembering that DKL (q||pθ) = Ex∼q

[
log q(x)

pθ(x)

]
, we can

simplify Equation (19) as follows:

log pθ(x0) ≥
Reconstruction︷ ︸︸ ︷

Eq(x1|x0) [log pθ(x0|x1)]−
Prior matching︷ ︸︸ ︷

Eq(xT−1|x0) [DKL (q(xT |xT−1)||pθ(xT ))]

−
T∑

t=1

Eq(xt−1,t+1|x0) [DKL (q(xt|xt−1)||pθ(xt|xt+1))]︸ ︷︷ ︸
Consistency terms

, (21)

which is finally the (negative) loss function for training our diffusion model.
Let us look at each term of Equation (21) in turn: The reconstruction term represents how successful

the model is on average at reconstructing a data point x0 after one step in the diffusion process. The
prior matching term compares the average result of the forward process at xT to pθ(xT ). Since pθ(xT )
is fixed to be the standard Gaussian already, the prior matching term will be disregarded in the
following. This leaves us with the consistency term, which we will consider in detail with the help of
Figure 7.

Starting with Figure 7a, this diagram shows the (forward) diffusion process evaluated from an
initial x0. We sample from q(xt|xt−1) at each time-step t, and end up at xT . The figure indicates
only a handful of trajectories using q(xt|xt−1) ∼ N

(
xt;
√
1− βt xt−1, βt I

)
(see Equation (3)), but we

can of course perform this as many times as we want. As defined in Equation (10), we also know that
q(xt|x0) ∼ N (xt;

√
ᾱt x0, (1− ᾱt) I).

In Figure 7b, we focus on a given t and can reason as follows:

“If the reverse process p(xt|xt+1) works well at time t, we should be able to sample from
p(xt|xt+1) and get values of xt similar to what we got when sampling using the forward
process q(xt|xt−1).”

This means that the distribution for the reverse process at time t (red area in Figure 7b) should be as
close as possible to the (green) forward-process at the same time.
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As indicated in Figure 7b, one idea to operationalise this insight is to take the samples obtained
by the forward process from x0 at time t + 1, and use those to start off the sampling of p(xt|xt+1).
The resulting distribution should be compared to the forward process that we can obtain by looking
at samples fromq(xt|xt−1) initialized at time t− 1 with samples obtained by starting from x0.

Armed with this intuition, we turn to defining p(xt|xt+1). First, and as already noted, we know
that the forward process will be a Gaussian distribution. Since the reverse is supposed to mimic that
distribution over xt, it is reasonable to enforce that the reverse process should be Gaussian, too. Finally,
we will use the KL divergence as a means to compare distributions, and we now aim to formalise the
general idea. To minimise DKL (q(xt|Xt−1)||pθ(xt|Xt+1)) we must let the two conditioning variables
Xt−1 and Xt+1 be related to our initial x0. In principle we can think that we are sampling the forward
process starting from x0 a number of times and average DKL (q(xt|Xt−1)||pθ(xt|Xt+1)) over these
samples. Mathematically we here use that Xt−1 ∼ q(xt−1|x0) and Xt+1 ∼ q(xt+1|x0), and we end
up with Eq(Xt−1,t+1|x0) [DKL (q(Xt|Xt−1)||pθ(Xt|Xt+1))] as our measure of the quality of pθ at time t.
This is exactly the consistency term at time t in Equation (21). Notice that since both pθ and q are
Gaussian distributions, we can calculate the KL divergence analytically (see Equation (26) below).

2.3.4 Only one expectation

As briefly eluded to above, it is natural to define our loss function as L(θ) = − log pθ(x0) because a low
log likelihood of an observed data-point x0, log pθ(x0), implies poor predictive performance for that x0.
Since we are unable to calculate this log likelihood analytically, we can instead utilise Equation (21),
repeated here for ease of reference:

log pθ(x0) ≥ Eq(x1|x0) [log pθ(x0|x1)]− Eq(xT−1|x0) [DKL (q(xT |xT−1)||pθ(xT ))]

−
T∑

t=1

Eq(xt−1,t+1|x0) [DKL (q(xt|xt−1)||pθ(xt|xt+1))]

Notice here the term Eq(xt−1,t+1|x0) [DKL (q(xt|xt−1)||pθ(xt|xt+1))], where we for each t need to
calculate the expectation over Xt−1,t+1|x0. The source for the double expectation is that while the
q-process works in the forward direction (from t− 1 to t), the pθ-process works in reverse (from t+ 1
to t). The idea now is to use Bayes rule to change the direction of the q-process in our definition of
the loss function, meaning that we try to express

q(x1:T |x0) =

T∏

t=1

q(xt|xt−1)

through the alternative representation where we now reverse the process, i.e., focus on the transition
from t to t− 1 instead of the forward process:

q(x1:T |x0) = q(xT |x0)

T∏

t=2

q(xt−1|xt,x0) .

Ensuring that both processes pθ and q are reversed in time makes them easier to compare. Doing so,
we find that the loss can be expressed as − log pθ(x0) ≤ Lvlb :=

∑T
t=0 Lt with

L0 = −Eq(x1|x0) [log pθ(x0|x1)]

Lt−1 = Eq(xt|x0) [DKL (q(xt−1|xt,x0)||pθ(xt−1|xt))] , for 2 ≤ t ≤ T (22)

LT = DKL (q(xT |x0)||p(xT )) ,

where you should notice that the p(xT ) used in LT is parameter-free (no θ) as it is simply assumed to
be a standard Gaussian.

Calculating L0 and LT is straightforward, and – as above – we argue that LT can be neglected.
To evaluate Equation (22), we calculate q(xt−1|xt,x0) using Bayes’ rule:

q(xt−1|xt,x0) =
q(xt−1|x0)q(xt|xt−1,x0)

q(xt|x0)
. (23)
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We already know how to calculate two of the terms in Equation (23) (see Equation (10)), which are

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) ,

q(xt−1|x0) = N (xt−1;
√
ᾱt−1x0, (1− ᾱt−1)I) .

For the final term, we utilise that q(x1:T |x0) is Markovian so that q(xt|xt−1,x0) = q(xt|xt−1), defined
in Equation (3), so that

q(xt|xt−1,x0) = q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI).

Now, we have defined all the terms used to calculate q(xt−1|xt,x0) in Equation (23), and some
pencil pushing reveals that

q(xt−1|xt,x0) = N
(
xt−1; µ̃(xt,x0), β̃tI

)
, (24)

with

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt ; β̃t :=

1− ᾱt−1

1− ᾱt
βt. (25)

To summarise, the loss can be decomposed as L =
∑T

t=0 Lt, and if we zoom in on the contributions
2 ≤ t ≤ T , then Lt−1 is determined by a KL divergence term between two Gaussian distributions:
q(xt−1|xt,x0), that we now know how to calculate, and pθ(xt−1|xt), that we will choose ourselves, i.e.,
optimise with respect to the parameters θ.

Moving on, we note that the KL divergence between two multivariate Gaussian distributions,
DKL

(
N (µq,Σq)||N (µp,Σp)

)
, can be calculated as

DKL

(
N (µq,Σq)||N (µp,Σp)

)
=

1

2

[
log
|Σp|
|Σq|

− d+ tr(Σ−1
p Σq) +

(
µq − µp

)⊤
Σ−1

p

(
µq − µp

)]
. (26)

We want to minimise this KL divergence, and can choose both µp and Σp freely when doing so. First,

note that we know Σq = β̃tI, and choose Σp to be the same. This gives us

DKL

(
N (µq,Σq)||N (µp,Σp)

)
=

1

2

[(
µq − µp

)⊤
Σ−1

q

(
µq − µp

)]

=
1

2β̃t

∣∣∣∣µq − µp

∣∣∣∣2
2
. (27)

When minimising Lt−1, we would therefore prefer to choose pθ(xt−1|xt) as a Gaussian with mean
µ̃ (xt,x0) to perfectly match q(xt−1|xt,x0) in Equation (24). However, we are not able to calculate
µ̃ (xt,x0), since the p-distribution is only conditioned on xt, while x0 is unknown. Basically, what we
try to do is force the pθ - distribution that is not conditioned on x0 to fit with the q-distribution that
is conditioned on x0 as we minimise Lt−1.

The solution is to train a neural network to guess what x0 is. Basically, we create a neural network
with parameters θ that takes as input the noisy object xt and the time-index t, and outputs a best
guess on the final x0. We use x̂θ(xt, t) to denote this “predicted x0”.

Using

µq =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (From Equation (25))

µp =

√
ᾱt−1βt

1− ᾱt
x̂θ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt (Substituting x̂θ(xt, t) for the unknown x0)

in Equation (27), yields

Lt−1 =
1

2β̃t

ᾱt−1 · β2
t

(1− ᾱt)2
· Eq(xt|x0)

[
||x̂θ(xt, t)− x0||22

]
. (28)

Optimizing our neural network to minimise a loss similar to Equation (28) will help us define a
generative process that allocates as high a likelihood to the training data as possible. We will soon
discuss how to use this to generate new samples that (approximately) are sampled from pcomplex, but
first we will summarise what we have found so far.
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2.3.5 Summary of the diffusion process and model training loss

We will consider how to efficiently optimise this loss wrt. θ in the following section, but let us first
summarise where we are and how we got here:

• Starting from a predetermined and fixed diffusion model q(xt|xt−1), we gradually diffuse a data-
point x0 from the data distribution pcomplex into a point xT from a simple distribution pprior,
typically assumed to be a standard Gaussian.

• We now aim to reverse the diffusion process, that is, find the “inverse” of q(xt|xt−1), which we
denote pθ(xt−1|xt). We have the benefit of knowing where the reverse process is supposed to
end up, i.e., we know that the marginal distribution for t = 0, pθ(x0), must be equal to pdata,
which again approximates pcomplex.

• Starting out with the goal of maximising the likelihood pθ(x0) =
∫
x1:T

p(xT )
∏T

t=1 pθ(xt−1|xt) dx1:T ,
we ended up with the goal of minimising terms like

Eq(xt|x0) [DKL (q(xt−1|xt,x0)||pθ(xt−1|xt))] .

We argued that this is obtained by choosing pθ(xt−1|xt) to be a Gaussian with variance depending
only on the scheduling parameters {βt}Tt=0. The mean, on the other hand, should be determined
as a combination of xt and x0, because we are starting from xt and taking a step intended to
be in the direction of x0. Unfortunately, though, x0 is not known. Therefore, we create a neural
network with weights θ that uses the current value xt and the time-index t as inputs, and outputs
an estimate for x0, denoted x̂θ(xt, t). Loss terms like Equation (28) help optimise θ.

• Before continuing on to actually optimise the loss, consider first why one would expect that it is
even possible to train a good model x̂θ(xt, t). Let us first consider t = 1. Now, as the network is
asked to generate x̂0 := x̂θ(x1, t = 1), it has two pieces of information: First, if x1 is meaningful,
then the generated x̂0 must be “close” to x1 – because the pair (x̂0,x1) should be likely under the
known model q(x1|x0), and this process typically has a very small variance (1−α1) I. Second, x̂0

should be likely under pcomplex. For small values of t one would thus expect to have a reasonable
learning signal for learning x̂θ(xt, t). As t grows larger, the strength of the signal decreases.
While it is still true that the predicted x̂0 should be likely under pcomplex, the guiding from
xt decreases in t (remember that the variance in q(xt|x0) is (1 − ᾱt)I, see Equation (10), and
consider how quickly ᾱt drops in Figure 2). To accept that it still works, though, the argument
can be made that if x̂t−1 := x̂θ(xt, t) is sufficiently precise for all t ≤ t′ it is possible to utilise
this for t = t′ + 1 too: x̂t′ must be fairly close to xt′+1 to ensure that the continuation is likely
under q(xt+1|xt′) (notice how αt drops off much slower than ᾱt in Figure 2). Step by step, this
argument can be used to argue that it should be possible to learn x̂θ(xt, t) for all t ≤ T .

2.4 Reverse samplers

Now that we have the general principles for defining the loss, we turn back to how to define the reverse
diffusion process.

2.4.1 The DDPM sampler

The Denoising Diffusion Probabilistic Model (DDPM) [Ho et al., 2020, Nichol and Dhariwal, 2021],
learns the following parameterised Gaussian transitions:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃t I) , (29)

with β̃t defined as in Equation (25). This leaves us with only having to learn µθ(xt, t); compare this
to Equation (12). Furthermore, [Ho et al., 2020] showed that rather than training a neural network
to predict x0 (via x̃θ(xt, t)) using the loss we found in Equation (28), it is beneficial to take one more
look at this and try to reformulate the objective. Starting from Equation (11), we can represent x0 as

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵt

)
, (30)
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where ϵt is a multivariate standard Gaussian.
If we use the x0 from Equation (30) when calculating µ̃(xt,x0) in Equation (25), we find that

µ̃(xt,x0), the expectation of the distribution q(xt−1|xt,x0), and therefore our desired choice for the
expectation of pθ(xt−1|xt), too, can be re-written as

µ̃(xt,x0) =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
. (31)

A main idea is now to use the representation Equation (31) for learning. This means, instead of
learning the estimator x̂θ(xt, t), we will approximate ϵt, and call the output from the learned model
ϵ̂θ(xt, t). Using this idea, we can (after some pencil-pushing) reformulate the KL-loss in Equation (27)
as

Lt−1 =
1

2β̃t

(1− αt)
2

αt(1− ᾱt)
· Eq(xt|x0)

[
||ϵ̂θ(xt, t)− ϵt||22

]
. (32)

It was later shown empirically by [Ho et al., 2020] that one obtained better results ignoring the
weighing-term in the loss, so that

Lt−1 ← Eq(xt|x0)

[
||ϵ̂θ(xt, t)− ϵt||22

]
. (33)

This gives us the training algorithm given in Algorithm 1.

Algorithm 1 Training using learning-rate η

1: repeat
2: x0 ∼ pdata
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: xt ←

√
ᾱt · x0 +

√
1− ᾱt · ϵ

6: θ ← θ − η ·∇θ ||ϵ̂θ(xt, t)− ϵ||22
7: until converged

Given the DDPM’s approach to finding ϵθ(xt, t), one step of the denoising process from t to t− 1
is done via

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+

√
β̃tz , z ∼ N (0, I). (34)

Therefore, the reverse DDPM progresses as shown in Algorithm 2.

Algorithm 2 Reverse DDPM

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: if t > 1 then
4: λ← 1
5: else
6: λ← 0
7: end if
8: z ∼ N (0, I)

9: xt−1 ← 1√
αt

(
xt − 1−αt√

1−ᾱt
· ϵθ(xt, t)

)
+ λ ·

√
β̃t · z

10: end for
11: return x0

Figure 8 shows the DDPM-sampler at work for a simple univariate problem. The figure shows a
number of trajectories all starting from the same sampled xT , and as the value of t is reduced from
t = T to t = 0 (i.e., moving from right to left) the end-result produces samples from a bimodal
distribution quite similar to the target-distribution used to generate the training-data.
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Figure 8: Reverse process: Samples from DDPM, all starting from the same xT . The reverse process
starts from t = T and moves towards t = 0, so from right to left in the figure. The marginal drawn
with a solid line at the far left shows the empirical distribution when repeating the samples several
times, whereas the shaded area is the actual distribution pcomplex used to generate the training-data
in this example. Notice how trajectories starting from a fixed xT still can cover the full distribution
pcomplex.

2.4.2 DDIM: Deterministic denoising

Referring again to the DDPM sampler in Equation (34), also depicted in Figure 8, we see that the
denoising procedure is stochastic, and we cannot determine which latent location xT is the origin
of a sampled x0. However, given the noise prediction model ϵθ(xt, t), we can alternatively create a
deterministic denoising process to create samples from the target distribution. This is called Denoising
Diffusion Implicit Models (DDIMs), introduced in [Song et al., 2020].

A key observation is that the DDPM objective in Equation (28) and Equation (33), the latter
repeated here for convenience,

Lt−1 = Eq(xt|x0)

[
||ϵ̂θ(xt, t)− ϵt||22

]
,

only depends on q(xt|x0) (this is the distribution used in the expectation), and not explicitly on
the joint distribution q(x1:T |x0) or each of the noising-steps q(xt|xt−1). Since many joint distri-
butions q(x1:T |x0) can have the same marginals q(xt|x0), [Song et al., 2020] explore an alternative,
non-Markovian inference processes leading to new generative processes, but with the same surrogate
objective function as DDPM: They consider a family of distributions defined as

qσ(x1:T |x0) := qσ(xT |x0)

T∏

t=2

qσ(xt−1|xt,x0) .

Notice how the joint distribution q(x1:T |x0) is defined in the direction of reversed time; where we
previously had q(xt|xt−1) as our building-blocks, the joint of the forward process is now defined using
the reverse view, and focus is on qσ(xt−1|xt,x0). In order to arrive at an operational expression for
the forward, i.e. the noising process, we can use Bayes’ rule:

qσ(xt|xt−1,x0) =
qσ(xt−1|xt,x0) · qσ(xt|x0)

qσ(xt−1|x0)
. (35)

Notice that this forward process, qσ(xt|xt−1,x0), is not Markovian, as the distribution of xt is condi-
tioned on both xt−1 and x0. Please compare Equation (35) to Equation (3) and note this important
difference.

Next, [Song et al., 2020] introduce the following functional representation2 of the denoising process

2Note the subtle difference between our notation and what was used in [Song et al., 2020]: Our ᾱt corre-
sponds to αt in [Song et al., 2020]. We have chosen to use this notation to be consistent with [Ho et al., 2020,
Nichol and Dhariwal, 2021].
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for all t > 1,

qσ(xt−1|xt,x0) = N
(
xt−1;

√
ᾱt−1 · x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t · I
)

. (36)

This is selected to ensure that qσ(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) for all t, i.e. exactly our Equation (10).

The expression in Equation (36) is similar to Equation (24), but notice that the variance term has been
replaced by the parameter σt that can take any value, including zero. Since qσ(xt|x0) = N (

√
ᾱtx0, (1−

ᾱt)I), just as is was for DDPM, and this term is the only one that played a role in the loss (see the
expectation in Equation (33)), we see that training for the two approaches will be identical: A neural
network trained as a DDPM model to estimate ϵθ(xt, t) can be directly used by the DDIM reverse
process. This is really the exciting part: We do not have to train a different model for every choice of
σt, but can use our DDPM objective to learn a generative process also for the non-Markovian forward
processes parameterised by σt!

The difference between DDPM and DDIM instead lies in how we define pθ(xt−1|xt), and thus how
to “translate” the estimate of ϵθ(xt, t) into a new sample xt−1. The DDPM lead us to investigate
the distribution in Equation (24), and obtaining the sampling-step in Equation (34), repeated here for
reference:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+

√
β̃t · z , z ∼ N (0, I).

Similarly, DDIM starts from Equation (36), and results in the sampling procedure

xt−1 =
1√
αt

(
xt −

√
1− ᾱt · ϵθ(xt, t)

)

︸ ︷︷ ︸
Predicted x0

+
√

1− ᾱt−1 − σ2
t · ϵθ(xt, t)

︸ ︷︷ ︸
Direction of xt

+σt · z︸ ︷︷ ︸
Noise

, z ∼ N (0, I). (37)

The DDIM-sampling of xt−1 consists of three parts: We first estimate x0 from ϵθ(xt, t), then (since
xt−1 is not supposed to be x0 if t > 0, but rather a step on a path between x0 and xt), a move is made
in the direction from x0 towards xt. Finally, we add Gaussian noise, scaled by the constant σt. The
last part, regarding the level of noise, gives us extra flexibility here as compared to the DDPM. For
DDPM, noise had to be scheduled according to β̃t as defined in Equation (25). However, in DDIM, σt

has been introduced as an extra constant that we can choose ourselves. If we were to select

σt =

√
1− ᾱt−1

1− ᾱt

√
1− ᾱt

ᾱt−1
,

the forward process becomes Markovian and we re-obtain the DDPM generative process. On the other
hand, it has become customary to rather select σt = 0, in which case the generative process is determin-
istic. This model is a so-called implicit probabilistic model [Mohamed and Lakshminarayanan, 2017].
The generative process performed by such a model is coined a denoising diffusion implicit model, short
DDIM, by [Song et al., 2020]. The important insight to remember is that the training objectives are
equivalent for any value of σt, meaning that a model trained using the general DDPM process can be
used for any generative process in the family, including DDIM, and thus be used to generate samples
deterministically. This leads us to the sampling procedure in Algorithm 3.

Algorithm 3 Reverse DDPM

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: if t > 1 then
4: λ← 1
5: else
6: λ← 0
7: end if
8: xt−1 ← 1√

αt

(
xt −

√
1− ᾱt · ϵθ(xt, t)

)
+ λ · √1− ᾱt−1 · ϵθ(xt, t) .

9: end for
10: return x0
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Figure 9: Reverse process using DDIM: xT is sampled from a isotropic Gaussian distribution, while
the following steps are deterministic. The reverse process is shown, hence moving from right to left.
The solid-line marginal at the far left shows the empirical distribution when repeating the samples
several times, whereas the shaded area is the actual distribution pcomplex. Notice how the deterministic
relationship between the starting xT and the resulting x0 makes it necessary to sample many xT to
get a decent approximation to pcomplex.

Having removed the stochastic element from the denoising process, this is fully deterministic, and
we obtain the concept of a unique latent space for the model. To concretise: given the same initial
sample xT , the DDIM process, Equation (37), always generates the same final sample, while the
DDPM process, Equation (34), generates different final samples for the same initial sample. This can
be observed in Figure 9.

The number of steps, T , in the forward, i.e. noising, process is an important hyper-parameter
in diffusion models. As mentioned earlier, a small step size lets the denoising process approach a
Gaussian, so that the generative process modelled with a Gaussian conditional distributions is a good
approximation. This motivates large values of T , as in [Ho et al., 2020]. However, in contrast to
other generative models where the processes can be parallellised, all steps in the denoising process of
DDPM must be performed sequentially. This gives the process of generation by denoising a significant
disadvantage compared to other generative models. An important result related to the developments
of DDIM is therefore that one can in principle only evaluate the reverse process on a subset of points
instead of doing it at each and every t, often without significant drops in quality of the generated
objects. As this finding is not at the core of the definition of the model itself, we do not discuss the
result here, but refer the interested reader to [Song et al., 2020].

3 Text-prompting

3.1 Text-conditioning

The most basic attempt at text-conditioning is described in [Nichol et al., 2022], and is tightly con-
nected to the structure of the model: The U-Net [Ronneberger et al., 2015], that is used for predicting
ϵ̂θ(xt, t). The key is, for each text prompt y, to first encode the text into a sequence of k tokens, and
feed that into a transformer model. The last layer of the transformer’s token embeddings (a sequence
of k feature vectors) is concatenated to the attention context at each layer in the U-Net. However,
this approach reportedly leads to unstable image generation, and a need for stronger signal from the
text-prompting. This is discussed next.

3.2 Classifier guidance

Text-conditioning (as presented in Section 3.1) gives us the opportunity to be gently steer the model
towards objects that relate to the text-prompt. However, there is ample evidence showing that this
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can be improved even further. In this subsection we describe classifier guidance, a way to guide the
generation using an external classifier. We first describe the main idea and its mathematical foundation,
then motivate how this can be used for text-guiding.

3.2.1 The main idea

Classifier guidance was introduced to diffusion models in [Dhariwal and Nichol, 2021]. The core idea is
inspired by work on GANs, but we will develop it independently of GAN-lingo here. Our starting-point
is that we have learned the reverse (unconditional) process pθ(xt−1|xt), but now want to extend that
using information from a separately trained probabilistic classifier. The classifier takes an input-point,
e.g. an image x, and produce a distribution over the random variable Y that signifies the classes of the
object (e.g., images can be of cars, horses, or people). This classifier is trained with weights ξ different
from the diffusion-model, so we will use pξ(y|x) to signify the output of the classifier. Now, the idea
is to define the reverse diffusion pθ, ξ(xt|xt+1, y). This means we are making the reverse conditional
on the class. This will make us say, e.g., “generate an image of a horse” instead of just asking for a
general image (that could come from any class represented in the training data, of course including
horses). [Dhariwal and Nichol, 2021] showed how this could be done using some simple tricks. First,
assume that Y ⊥⊥ Xt+1|Xt. This means that any trace of the class variable that is present in Xt+1 is
also available after “cleaning up” to get Xt. Therefore, if we want to guess on the class and have both
xt and xt+1 available, then using only the former will suffice. Then

pθ, ξ(xt|xt+1, y) =
pθ, ξ(xt,xt+1, y)

pθ, ξ(xt+1, y)

∝ pθ, ξ(xt,xt+1, y)

= pθ(xt+1) · pθ(xt|xt+1) · pξ(y|xt)

∝ pθ(xt|xt+1) · pξ(y|xt) , (38)

where both proportionality statements follow from our interest on a distribution over only xt so any
distribution over the other variables are collected in proportionality constants. Further, the second
equality follows from the conditional independence assumption: pθ,ξ(y|xt,xt+1) = pξ(y|xt). The
consequence of Equation (38) is that we can utilise both the externally learned classifier pξ(y|x) and
the reverse diffusion process pθ(xt|xt+1) as they are, and incorporate the classifier’s output to guide
the reverse diffusion towards creating objects seen as representatives from a particular class y. What
is still problematic, though, is that we do not really know what distribution family pθ, ξ(xt|xt+1, y)
will belong to. Without knowing this, it will be difficult to sample from the distribution. pθ(xt|xt+1)
has been assumed to be a Gaussian, but we have no reason to make strong assumptions about the
structure of the likelihood pξ(y|xt) (that is, as a function of xt, and not y). To simplify matters, we
will use a one-step Taylor approximation of log pξ(y|xt) around some value ν:

log pξ(y|xt) ≈ log pξ(y|xt)|xt=ν + (xt − ν)
⊤ ∇xt log pξ(y|xt)|xt=ν .

Notice that since log pξ(y|xt)|xt=ν = log pξ(y|ν) is constant in xt, we will simplify an write that

log pξ(y|xt) ≈ (xt − ν)
⊤ ∇xt log pξ(y|xt)|xt=ν + C ′ where C ′ collects terms not related to xt. We can

simplify further by utilising that also ∇xt log pξ(y|xt)|xt=ν is constant in xt after inserting that xt = ν,
and we get

log pξ(y|xt) ≈ x⊤
t ∇xt

log pξ(y|xt)|xt=ν + C. (39)

If we look back at Equation (38) and use Equation (39) to approximate the effect of the classifier,
we see that we can express the classifier-guided reverse process as

log pθ, ξ(xt|xt+1, y) = log pθ(xt|xt+1) + log pξ(y|xt) + C1

≈ log pθ(xt|xt+1) + x⊤
t ∇xt log pξ(y|xt)|xt=ν + C2. (40)

Remember that we previously decided that log pθ(xt|xt+1) should be a Gaussian with given mean
and covariance (see Equation (12)). Let’s call these parameters µt and Σt for simplicity. Further,
note that a random variable Z follows the multivariate Gaussian with these parameters if and only if
its log-density can be expressed as

log p(z|µt,Σt) = −
1

2
z⊤Σ−1

t z+ z⊤Σ−1
t µt + constant , (41)
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where the term “constant” refers to terms independent of z. Using this representation for log pθ(xt|xt+1)
in Equation (40) and deciding to do the Taylor approximation around ν = µt, we get

log pθ, ξ(xt|xt+1, y) ≈ log pθ(xt|xt+1) + x⊤
t ∇xt

log pξ(y|xt)|xt=µt
+ C2

= −1

2
x⊤
t Σ

−1
t xt + x⊤

t Σ
−1
t µt + x⊤

t ∇xt
log pξ(y|xt)|xt=µt

+ C

= −1

2
x⊤
t Σ

−1
t xt + x⊤

t Σ
−1
t µt + x⊤

t Σ
−1
t Σt∇xt

log pξ(y|xt)|xt=µt
+ C

= −1

2
x⊤
t Σ

−1
t xt + x⊤

t Σ
−1
t

[
µt +Σt∇xt log pξ(y|xt)|xt=µt

]
+ C (42)

Comparing Equation (42) to Equation (41) we realise that log pθ, ξ(xt|xt+1, y) is (approximately)
the log-pdf of a Gaussian with mean µt +Σt∇xt

log pξ(y|xt)|xt=µt
and covariance Σt. Therefore the

classifier-corrected reverse diffusion process is also (approximately) Gaussian, with known parameters.
This result is quite fascinating: At each point in time, the classifier-guided reverse will sample from
a distribution which has its mean nudged a little bit off the mean that we would have had without
the classifier. The offset is Σt ∇xt log pξ(y|xt)|xt=µt

. As Σt is simply a constant times the identity
matrix, the contribution from the classifier guidance is in ∇xt

log pξ(y|xt)|xt=µt
. Remember that the

vector ∇x log pξ(y|x) points in the direction (in x-space) for which log pξ(y|x) increases the most from
a starting-point x. This means that when starting from an object x, the clever thing to do to make it
more like “something from class y” is to make an adjustment in the direction of ∇x log pξ(y|x). This
is also exactly what goes on in Equation (42). So, while the developments leading to Equation (42)
were based on careful examination of the independence structure (Equation (38)) and a first-order
Taylor approximation to the classifier’s likelihood (Equation (39)), the end-result is also intuitive and
easily acceptable. Finally, [Dhariwal and Nichol, 2021] argue that one may want more or less focus
on the classifier guidance, and they therefore introduce a hyper-parameter s to determine this part’s
importance. Their final result is thus

pθ, ξ(xt−1|xt, y) ∼ N
(
µ̂θ(xt, t) + s β̃t∇x log pξ(y|x)|x=µ̂(xt,t); β̃tI

)
. (43)

3.2.2 Using classifier guidance for text

The description above is general, in the sense that we only require a probabilistic classifier pξ(y|x) and
did not make hard requirements about how the classifier is learned, or what the classes actually mean.
In this subsection we will briefly discuss how to use the classifier-guided setup for text prompting. Of
course, if we let the classifier denote captions, and think that there for each image is one and only
one caption that is correct, then we can in principle learn a classifier over this (extremely huge) set
of classes, and use Equation (43) to guide the object generation towards an image that is relevant for
the desired text. This is the goal of [Nichol et al., 2022]. However, to avoid the challenges of learning
the classifier, the authors use CLIP [Radford et al., 2021].

Very briefly, CLIP utilised a data-set of 400 million (image, text)-pairs to learn two learn a multi-
modal embedding space by jointly training an image encoder fimg(·) and a text encoder ftxt(·). These
two models are learned so that the cosine similarity between an image x and caption y, fimg(x)

⊤ftxt(y)
is maximised if y is the caption for the image x.

With this in hand, [Nichol et al., 2022] propose to adapt the classifier-guidance in Equation (43)
using fimg(xt)

⊤ftxt(y) as a proxy for log pξ(y|x), giving the mean of the distribution pθ, ξ(xt−1|xt, y)
as

µ̂θ(xt, t) + s β̃t∇x

(
fimg(x)

⊤ftxt(y)
)
|x=xt

.

A final comment needed here is that the original clip model trained fimg(·) on actual images, while
our use-case is to analyse noisy images xt, t > 0. Naturally, [Nichol et al., 2022] were therefore able
to improve their results by retraining the image embeddings using noisy images, i.e., learn an image
embedder fimg(xt, t) that receives a noisy image (xt) and the noise level (indirectly, via t) and produces
an embedding in the same multi-modal embedding space.

3.3 Classifier-free guidance

In an attempt to do text-guiding without requiring the “external” classifier pξ(y|x) (or the CLIP
embedding models fimg(·) and ftxt(·)), [Ho and Salimans, 2021] proposed a way to train a diffusion-
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model without the reliance on external models.
The starting-point is the estimator for ϵ̂θ(xt, t) as learned in Equation (32). The idea is now to

instead learn a conditional model, ϵ̂θ(xt, y, t), that now also receives an image caption (or in practice
a semantic embedding of the captions; it has been shown by [Saharia et al., 2022] that pre-trained
language-model can be used to embed the textual content without loss in image generation quality)
as its an additional input y. This means that the model is learned from (image, text)-pairs. Every
now and then, i.e., randomly and with a fixed probability, the textual information is suppressed in the
input, leading the model to also learn ϵ̂θ(xt,y← ∅, t).

At the time of image generation, the system starts by generating the embedding of the prompt,
resulting in the embedding y. Then, the guided ϵ-estimator is defined as

ϵ̃θ(xt,y, t) = ϵ̂θ(xt,y, t) + s · (ϵ̂θ(xt,y, t)− ϵ̂θ(xt, ∅, t)) ,

where s is a hyper-parameter used to determine the strength of the guiding. [Ho and Salimans, 2021]
show that if the ϵ̂-model is exact, then

∇xt log p(y|xt) ∝ ϵ̂θ(xt,y, t)− ϵ̂θ(xt, ∅, t). (44)

Looking at the terms in Equation (44), we can thus see that the idea is to approximate the gradient
of the score function by ϵ̂θ(xt,y, t)− ϵ̂θ(xt, ∅, t), and add a correction to the estimated ϵ̂θ(xt,y, t) in
that direction. Finally, ϵ̃θ(xt,y, t) can now take the role of ϵ̂θ(xt, t) in the reversed sampler (being
either DDMP and DDIM).

4 Current trends

We end these lecture notes by making some quick comments about directions of ongoing research, with
examples of relevant works. A major trend in the use of diffusion models at the time of writing is to
further improve text-based image-generation, also extending to both 3D synthesis [Poole et al., 2022]
as well as generation of video [Xing et al., 2023]. Diffusion models are also used to generate structured
datatypes, like text sequences [Gong et al., 2023] and protein folding [Wu et al., 2022], and has also
been used for solving reinforcement learning problems [Ajay et al., 2023]. Furthermore, there is an
ongoing development of new theoretical results. One interesting strand of work is related to Bayesian
Flow Networks [Graves et al., 2023], that are able to generate samples both form from continuous and
discrete variables.

A Mathematical tricks

A.1 Monte Carlo estimation

In this subsection we will briefly discuss Monte Carlo methods for estimating an expectation via
sampling. This is an often used trick to get away from calculating difficult integrals to find expected
values. Assume we have a function fθ(x) for which we want to calculate the expected value, over a
random variable X following some distribution pθ. When the required calculations cannot be done
analytically, the standard approach is to use a sample average, also known as the Monte Carlo (or
simply MC) estimator:

EX∼pθ
[ fθ(X) ] =

∫

x

fθ(x) · pθ(x) dx ≈
1

M

M∑

m=1

fθ
(
x(m)

)
, (45)

where {x(1), . . . ,x(M)} are M independent samples we have drawn from the distribution pθ. This
estimator is powerful because we only need to be able to generate the samples {x(1), . . . ,x(M)}, and we
can use the MC technique almost3 without any assumptions about the function fθ or the distribution
pθ. Let us use µ̂M = 1

M

∑M
m=1 fθ

(
x(m)

)
as a notational shortcut for the sample mean based on M

3None of the functions considered here are problematic, so we will not discuss the assumptions underlying the MC
estimator.
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samples. Since this estimator is generated by sampling, it is a random variable. It can easily be shown
that

EX∼pθ
[µ̂M ] = EX∼pθ

[ fθ(X) ] , VX∼pθ
[µ̂M ] =

1

M
VX∼pθ

[ fθ(X) ] .

Hence, the Monte Carlo estimator is unbiased (meaning that it has the correct value in expecta-
tion). Furthermore, if the variance VX∼pθ

[ fθ(X) ] is finite, it follows that the estimator’s variance
monotonically decreases towards zero when we increase the sampling effort (that is, as M →∞).

A.2 The reparameterisation trick

A key concept in probabilistic AI, which will be useful for evaluating the loss function when training
our diffusion model, relies on the so-called reparameterisation trick [Kingma and Welling, 2014]. The
starting point for understanding this very useful idea is the approximation of an expected value, see
Appendix A.1. Next, assume that the expected value is part of a loss function and that we want to
optimise the loss with respect to the parameters θ. We then need the gradient of the expectation we
just approximated:

∇θ EX∼pθ
[ fθ(X) ] = ∇θ

∫

x

pθ(x) · fθ(x) dx =

∫

x

pθ(x) ·∇θ fθ(x) dx

︸ ︷︷ ︸
Suitable for MC

+

∫

x

fθ(x) ·∇θ pθ(x) dx

︸ ︷︷ ︸
NOT suitable for MC

. (46)

Notice that while we can use the MC estimate from Equation (45) to approximate the first integral
on the right-hand-side in Equation (46) by simply evaluating ∇θ fθ

(
x(m)

)
for each sample x(m), the

MC estimate cannot be used to approximate the second integral. This is because neither ∇θ pθ(x) nor
fθ(x) will in general be probability densities. The second integral is therefore not an expectation, and
thus it makes no sense to approximate it by a sample average.

Here comes the trick: Assume that the distribution for X has a special form, namely that there
exists a random variable Y following some distribution p, and a differentiable function g(y,θ) so that
g(Y,θ) is distributed as pθ. This is a mouthful, but the requirement is that while Y ∼ p comes from
a distribution that is not parameterised by θ, we can still find the function g so that g(Y,θ) has
the same distribution as X, i.e., g(Y,θ) ∼ pθ. This means that we can replace the expectation over
X ∼ pθ with an expectation over Y ∼ p:

∇θ EX∼pθ
[ fθ(X) ] = ∇θ EY∼p [ fθ (g(Y,θ)) ] (47)

= EY∼p [∇θ fθ (g(Y,θ)) ] (48)

≈ 1

M

M∑

m=1

∇θ fθ
(
g(y(m),θ)

)
. (49)

Here, Equation (47) is a simple change of variables, Equation (48) holds because the distribution of
Y does not depend on θ and we can therefore interchange the expectation and the gradient, and
Equation (49) simply uses Monte Carlo sampling to approximate the expectation in Equation (48),
as we did in Equation (45). Note that we need to use the chain rule for derivatives to calculate
∇θ fθ

(
g(y(m),θ)

)
. In applications, we typically select a low value of M for doing these calculations,

sometimes as low as M = 10 or even M = 1, so that the approximation of the gradient can be
calculated quickly.

Example: To see how this works, consider a situation where pθ(x) = N (θ1, θ
2
2), and let f(x) = x2/2

so that f ′(x) = x. We are interested in ∇θ EX∼pθ
[ fθ(X) ]. Due to the simple structure of this problem,

we can in fact find the solution analytically: EX∼pθ

[
1
2X

2
]
= 1

2 ·(θ21+θ22), hence∇θ EX∼pθ
[ fθ(X) ] = θ.

Nevertheless, let us also consider how the result can be obtained using the reparameterization trick.
Define g(y,θ) = θ1 + θ2 · y, and let Y be a random variable with p(y) = N (0, 1). The properties of
the Gaussian distribution ensures that g(Y,θ) ∼ N (θ1, θ

2
2), which is equal to pθ. We can now use the

reparameterisation trick to approximate ∇θ EX∼pθ
[ fθ(X) ]. Explicitly, we find

∇θ EX∼pθ
[ fθ(X) ] ≈ 1

M

M∑

m=1

∇θ f (θ1 + θ2 · y) =
1

M

M∑

m=1

[
θ1 + θ2 · y(m)

y(m) ·
(
θ1 + θ2 · y(m)

)
]
,
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where we used that f(θ1 + θ2 · y) = 1
2 (θ1 + θ2 · y)2, and therefore

∇θ f(θ1 + θ2 · y) =
[ ∂
∂θ1

f(θ1 + θ2 · y)
∂

∂θ2
f(θ1 + θ2 · y)

]
=

[
2 · 12 (θ1 + θ2 · y) · ∂

∂θ1
(θ1 + θ2 · y)

2 · 12 (θ1 + θ2 · y) · ∂
∂θ2

(θ1 + θ2 · y)

]
=

[
(θ1 + θ2 · y) · 1
(θ1 + θ2 · y) · y

]
.

Since Y ∼ N (0, 1) we know that E[Y ] = 0 and E[Y 2] = 1, hence the reparameterization-trick will
produce the right result in the limit:

1

M

M∑

m=1

[
θ1 + θ2 · y(m)

θ1 · y(m) + θ2 · y2(m)

]
M→∞−−−−→

[
θ1 + θ2 · E[Y ]

θ1 · E[Y ] + θ2 · E[Y 2]

]
=

[
θ1 + 0 · θ2

0 · θ1 + 1 · θ2

]
=

[
θ1
θ2

]
= θ.

In this simple example we could thus calculate the exact value, and found that ∇θ EX∼pθ
[ fθ(X) ] = θ.

We were also able to show that the same result was obtained by the reparameterisation trick in the
limit when M →∞. This concludes the demonstration.
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