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Abstract
We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-
strate its robust performance on a wide variety
of tasks: learning simulated robotic swimming,
hopping, and walking gaits; and playing Atari
games using images of the screen as input. De-
spite its approximations that deviate from the
theory, TRPO tends to give monotonic improve-
ment, with little tuning of hyperparameters.

1 Introduction
Most algorithms for policy optimization can be classified
into three broad categories: (1) policy iteration methods,
which alternate between estimating the value function un-
der the current policy and improving the policy (Bertsekas,
2005); (2) policy gradient methods, which use an estima-
tor of the gradient of the expected return (total reward) ob-
tained from sample trajectories (Peters & Schaal, 2008a)
(and which, as we later discuss, have a close connection to
policy iteration); and (3) derivative-free optimization meth-
ods, such as the cross-entropy method (CEM) and covari-
ance matrix adaptation (CMA), which treat the return as a
black box function to be optimized in terms of the policy
parameters (Szita & Lörincz, 2006).

General derivative-free stochastic optimization methods
such as CEM and CMA are preferred on many prob-
lems, because they achieve good results while being sim-
ple to understand and implement. For example, while
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Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al., 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popović, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
gradient-based optimization algorithms enjoy much better
sample complexity guarantees than gradient-free methods
(Nemirovski, 2005). Continuous gradient-based optimiza-
tion has been very successful at learning function approxi-
mators for supervised learning tasks with huge numbers of
parameters, and extending their success to reinforcement
learning would allow for efficient training of complex and
powerful policies.

In this article, we first prove that minimizing a certain sur-
rogate objective function guarantees policy improvement
with non-trivial step sizes. Then we make a series of ap-
proximations to the theoretically-justified algorithm, yield-
ing a practical algorithm, which we call trust region pol-
icy optimization (TRPO). We describe two variants of this
algorithm: first, the single-path method, which can be ap-
plied in the model-free setting; second, the vine method,
which requires the system to be restored to particular states,
which is typically only possible in simulation. These al-
gorithms are scalable and can optimize nonlinear policies
with tens of thousands of parameters, which have previ-
ously posed a major challenge for model-free policy search
(Deisenroth et al., 2013). In our experiments, we show that
the same TRPO methods can learn complex policies for
swimming, hopping, and walking, as well as playing Atari
games directly from raw images.

2 Preliminaries
Consider an infinite-horizon discounted Markov decision
process (MDP), defined by the tuple (S,A, P, r, ρ0, γ),
where S is a finite set of states, A is a finite set of actions,
P : S × A × S → R is the transition probability distri-
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bution, r : S → R is the reward function, ρ0 : S → R is
the distribution of the initial state s0, and γ ∈ (0, 1) is the
discount factor.

Let π denote a stochastic policy π : S × A → [0, 1], and
let η(π) denote its expected discounted reward:

η(π) = Es0,a0,...

[ ∞∑
t=0

γtr(st)

]
, where

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at).

We will use the following standard definitions of the state-
action value function Qπ , the value function Vπ , and the
advantage function Aπ:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l)

]
,

Vπ(st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l)

]
,

Aπ(s, a) = Qπ(s, a)− Vπ(s), where
at ∼ π(at|st), st+1 ∼ P (st+1|st, at) for t ≥ 0.

The following useful identity expresses the expected return
of another policy π̃ in terms of the advantage over π, accu-
mulated over timesteps (see Kakade & Langford (2002) or
Appendix A for proof):

η(π̃) = η(π) + Es0,a0,···∼π̃

[ ∞∑
t=0

γtAπ(st, at)

]
(1)

where the notation Es0,a0,···∼π̃ [. . . ] indicates that actions
are sampled at ∼ π̃(·|st). Let ρπ be the (unnormalized)
discounted visitation frequencies

ρπ(s)=P (s0 = s)+γP (s1 = s)+γ2P (s2 = s)+. . . ,

where s0 ∼ ρ0 and the actions are chosen according to π.
We can rewrite Equation (1) with a sum over states instead
of timesteps:

η(π̃) = η(π) +

∞∑
t=0

∑
s

P (st = s|π̃)
∑
a

π̃(a|s)γtAπ(s, a)

= η(π) +
∑
s

∞∑
t=0

γtP (st = s|π̃)
∑
a

π̃(a|s)Aπ(s, a)

= η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a). (2)

This equation implies that any policy update π → π̃ that
has a nonnegative expected advantage at every state s,
i.e.,

∑
a π̃(a|s)Aπ(s, a) ≥ 0, is guaranteed to increase

the policy performance η, or leave it constant in the case
that the expected advantage is zero everywhere. This im-
plies the classic result that the update performed by ex-
act policy iteration, which uses the deterministic policy

π̃(s) = arg maxaAπ(s, a), improves the policy if there is
at least one state-action pair with a positive advantage value
and nonzero state visitation probability, otherwise the algo-
rithm has converged to the optimal policy. However, in the
approximate setting, it will typically be unavoidable, due
to estimation and approximation error, that there will be
some states s for which the expected advantage is negative,
that is,

∑
a π̃(a|s)Aπ(s, a) < 0. The complex dependency

of ρπ̃(s) on π̃ makes Equation (2) difficult to optimize di-
rectly. Instead, we introduce the following local approxi-
mation to η:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a). (3)

Note that Lπ uses the visitation frequency ρπ rather than
ρπ̃ , ignoring changes in state visitation density due to
changes in the policy. However, if we have a parameter-
ized policy πθ, where πθ(a|s) is a differentiable function
of the parameter vector θ, then Lπ matches η to first order
(see Kakade & Langford (2002)). That is, for any parame-
ter value θ0,

Lπθ0 (πθ0) = η(πθ0),

∇θLπθ0 (πθ)
∣∣
θ=θ0

= ∇θη(πθ)
∣∣
θ=θ0

. (4)

Equation (4) implies that a sufficiently small step πθ0 → π̃
that improves Lπθold will also improve η, but does not give
us any guidance on how big of a step to take.

To address this issue, Kakade & Langford (2002) proposed
a policy updating scheme called conservative policy iter-
ation, for which they could provide explicit lower bounds
on the improvement of η. To define the conservative pol-
icy iteration update, let πold denote the current policy, and
let π′ = arg maxπ′ Lπold

(π′). The new policy πnew was
defined to be the following mixture:

πnew(a|s) = (1− α)πold(a|s) + απ′(a|s). (5)

Kakade and Langford derived the following lower bound:

η(πnew)≥Lπold
(πnew)− 2εγ

(1− γ)2
α2

where ε = max
s

∣∣Ea∼π′(a|s) [Aπ(s, a)]
∣∣. (6)

(We have modified it to make it slightly weaker but sim-
pler.) Note, however, that so far this bound only applies
to mixture policies generated by Equation (5). This policy
class is unwieldy and restrictive in practice, and it is desir-
able for a practical policy update scheme to be applicable
to all general stochastic policy classes.

3 Monotonic Improvement Guarantee for
General Stochastic Policies

Equation (6), which applies to conservative policy iteration,
implies that a policy update that improves the right-hand
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side is guaranteed to improve the true performance η. Our
principal theoretical result is that the policy improvement
bound in Equation (6) can be extended to general stochas-
tic policies, rather than just mixture polices, by replacing α
with a distance measure between π and π̃, and changing the
constant ε appropriately. Since mixture policies are rarely
used in practice, this result is crucial for extending the im-
provement guarantee to practical problems. The particular
distance measure we use is the total variation divergence,
which is defined by DTV (p ‖ q) = 1

2

∑
i|pi − qi| for dis-

crete probability distributions p, q.1 Define Dmax
TV (π, π̃) as

Dmax
TV (π, π̃) = max

s
DTV (π(·|s) ‖ π̃(·|s)). (7)

Theorem 1. Let α = Dmax
TV (πold, πnew). Then the follow-

ing bound holds:

η(πnew) ≥ Lπold
(πnew)− 4εγ

(1− γ)2
α2

where ε = max
s,a
|Aπ(s, a)| (8)

We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than α can be coupled, so that they are
equal with probability 1 − α. The second proof uses per-
turbation theory.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): DTV (p ‖ q)2 ≤ DKL(p ‖ q). Let
Dmax

KL (π, π̃) = maxsDKL(π(·|s) ‖ π̃(·|s)). The follow-
ing bound then follows directly from Theorem 1:

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃),

where C =
4εγ

(1− γ)2
. (9)

Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (9). Note that for now, we assume exact evaluation of
the advantage values Aπ .

It follows from Equation (9) that Algorithm 1 is guaranteed
to generate a monotonically improving sequence of policies
η(π0) ≤ η(π1) ≤ η(π2) ≤ . . . . To see this, let Mi(π) =
Lπi(π)− CDmax

KL (πi, π). Then

η(πi+1) ≥Mi(πi+1) by Equation (9)
η(πi) = Mi(πi), therefore,
η(πi+1)− η(πi) ≥Mi(πi+1)−M(πi). (10)

Thus, by maximizing Mi at each iteration, we guarantee
that the true objective η is non-decreasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.

Algorithm 1 Policy iteration algorithm guaranteeing non-
decreasing expected return η

Initialize π0.
for i = 0, 1, 2, . . . until convergence do

Compute all advantage values Aπi(s, a).
Solve the constrained optimization problem

πi+1 = arg max
π

[Lπi(π)− CDmax
KL (πi, π)]

where C = 4εγ/(1− γ)2

and Lπi(π)=η(πi)+
∑
s

ρπi(s)
∑
a

π(a|s)Aπi(s, a)

end for

is a type of minorization-maximization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, Mi is the surrogate function that
minorizes η with equality at πi. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of π
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.

Since we consider parameterized policies πθ(a|s) with pa-
rameter vector θ, we will overload our previous notation
to use functions of θ rather than π, e.g. η(θ) := η(πθ),
Lθ(θ̃) := Lπθ (πθ̃), andDKL(θ ‖ θ̃) := DKL(πθ ‖ πθ̃). We
will use θold to denote the previous policy parameters that
we want to improve upon.

The preceding section showed that η(θ) ≥ Lθold(θ) −
CDmax

KL (θold, θ), with equality at θ = θold. Thus, by per-
forming the following maximization, we are guaranteed to
improve the true objective η:

maximize
θ

[Lθold(θ)− CDmax
KL (θold, θ)] .

In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy
and the old policy, i.e., a trust region constraint:

maximize
θ

Lθold(θ) (11)

subject to Dmax
KL (θold, θ) ≤ δ.
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This problem imposes a constraint that the KL divergence
is bounded at every point in the state space. While it is
motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use
a heuristic approximation which considers the average KL
divergence:

D
ρ

KL(θ1, θ2) := Es∼ρ [DKL(πθ1(·|s) ‖ πθ2(·|s))] .
We therefore propose solving the following optimization
problem to generate a policy update:

maximize
θ

Lθold(θ) (12)

subject to D
ρθold
KL (θold, θ) ≤ δ.

Similar policy updates have been proposed in prior work
(Bagnell & Schneider, 2003; Peters & Schaal, 2008b; Pe-
ters et al., 2010), and we compare our approach to prior
methods in Section 7 and in the experiments in Section 8.
Our experiments also show that this type of constrained
update has similar empirical performance to the maximum
KL divergence constraint in Equation (11).

5 Sample-Based Estimation of the Objective
and Constraint

The previous section proposed a constrained optimization
problem on the policy parameters (Equation (12)), which
optimizes an estimate of the expected total reward η sub-
ject to a constraint on the change in the policy at each up-
date. This section describes how the objective and con-
straint functions can be approximated using Monte Carlo
simulation.

We seek to solve the following optimization problem, ob-
tained by expanding Lθold in Equation (12):

maximize
θ

∑
s

ρθold(s)
∑
a

πθ(a|s)Aθold(s, a)

subject to D
ρθold
KL (θold, θ) ≤ δ. (13)

We first replace
∑
s ρθold(s) [. . . ] in the objective by the ex-

pectation 1
1−γEs∼ρθold [. . . ]. Next, we replace the advan-

tage values Aθold by the Q-values Qθold in Equation (13),
which only changes the objective by a constant. Last, we
replace the sum over the actions by an importance sampling
estimator. Using q to denote the sampling distribution, the
contribution of a single sn to the loss function is∑
a

πθ(a|sn)Aθold(sn, a) = Ea∼q
[
πθ(a|sn)

q(a|sn)
Aθold(sn, a)

]
.

Our optimization problem in Equation (13) is exactly
equivalent to the following one, written in terms of expec-
tations:

maximize
θ

Es∼ρθold ,a∼q
[
πθ(a|s)
q(a|s)

Qθold(s, a)

]
(14)

subject to Es∼ρθold [DKL(πθold(·|s) ‖ πθ(·|s))] ≤ δ.

all state-action
pairs used in 
objective

trajectories

s ann

ρ
0

1

a2

sn

rollout set

two rollouts 
using CRN

sampling
trajectories

ρ
0

Figure 1. Left: illustration of single path procedure. Here, we
generate a set of trajectories via simulation of the policy and in-
corporate all state-action pairs (sn, an) into the objective. Right:
illustration of vine procedure. We generate a set of “trunk” tra-
jectories, and then generate “branch” rollouts from a subset of the
reached states. For each of these states sn, we perform multiple
actions (a1 and a2 here) and perform a rollout after each action,
using common random numbers (CRN) to reduce the variance.

All that remains is to replace the expectations by sample
averages and replace the Q value by an empirical estimate.
The following sections describe two different schemes for
performing this estimation.

The first sampling scheme, which we call single path, is
the one that is typically used for policy gradient estima-
tion (Bartlett & Baxter, 2011), and is based on sampling
individual trajectories. The second scheme, which we call
vine, involves constructing a rollout set and then perform-
ing multiple actions from each state in the rollout set. This
method has mostly been explored in the context of policy it-
eration methods (Lagoudakis & Parr, 2003; Gabillon et al.,
2013).

5.1 Single Path

In this estimation procedure, we collect a sequence of
states by sampling s0 ∼ ρ0 and then simulating the pol-
icy πθold for some number of timesteps to generate a trajec-
tory s0, a0, s1, a1, . . . , sT−1, aT−1, sT . Hence, q(a|s) =
πθold(a|s). Qθold(s, a) is computed at each state-action
pair (st, at) by taking the discounted sum of future rewards
along the trajectory.

5.2 Vine

In this estimation procedure, we first sample s0 ∼ ρ0 and
simulate the policy πθi to generate a number of trajecto-
ries. We then choose a subset of N states along these tra-
jectories, denoted s1, s2, . . . , sN , which we call the “roll-
out set”. For each state sn in the rollout set, we sample
K actions according to an,k ∼ q(·|sn). Any choice of
q(·|sn) with a support that includes the support of πθi(·|sn)
will produce a consistent estimator. In practice, we found
that q(·|sn) = πθi(·|sn) works well on continuous prob-
lems, such as robotic locomotion, while the uniform dis-
tribution works well on discrete tasks, such as the Atari
games, where it can sometimes achieve better exploration.

For each action an,k sampled at each state sn, we esti-
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mate Q̂θi(sn, an,k) by performing a rollout (i.e., a short
trajectory) starting with state sn and action an,k. We can
greatly reduce the variance of the Q-value differences be-
tween rollouts by using the same random number sequence
for the noise in each of theK rollouts, i.e., common random
numbers. See (Bertsekas, 2005) for additional discussion
on Monte Carlo estimation of Q-values and (Ng & Jordan,
2000) for a discussion of common random numbers in re-
inforcement learning.

In small, finite action spaces, we can generate a rollout for
every possible action from a given state. The contribution
to Lθold from a single state sn is as follows:

Ln(θ) =

K∑
k=1

πθ(ak|sn)Q̂(sn, ak), (15)

where the action space is A = {a1, a2, . . . , aK}. In large
or continuous state spaces, we can construct an estima-
tor of the surrogate objective using importance sampling.
The self-normalized estimator (Owen (2013), Chapter 9)
of Lθold obtained at a single state sn is

Ln(θ) =

∑K
k=1

πθ(an,k|sn)
πθold (an,k|sn)

Q̂(sn, an,k)∑K
k=1

πθ(an,k|sn)
πθold (an,k|sn)

, (16)

assuming that we performed K actions
an,1, an,2, . . . , an,K from state sn. This self-normalized
estimator removes the need to use a baseline for the
Q-values (note that the gradient is unchanged by adding a
constant to the Q-values). Averaging over sn ∼ ρ(π), we
obtain an estimator for Lθold , as well as its gradient.

The vine and single path methods are illustrated in Figure 1.
We use the term vine, since the trajectories used for sam-
pling can be likened to the stems of vines, which branch at
various points (the rollout set) into several short offshoots
(the rollout trajectories).

The benefit of the vine method over the single path method
that is our local estimate of the objective has much lower
variance given the same number of Q-value samples in the
surrogate objective. That is, the vine method gives much
better estimates of the advantage values. The downside of
the vine method is that we must perform far more calls to
the simulator for each of these advantage estimates. Fur-
thermore, the vine method requires us to generate multiple
trajectories from each state in the rollout set, which limits
this algorithm to settings where the system can be reset to
an arbitrary state. In contrast, the single path algorithm re-
quires no state resets and can be directly implemented on a
physical system (Peters & Schaal, 2008b).

6 Practical Algorithm
Here we present two practical policy optimization algo-
rithm based on the ideas above, which use either the single
path or vine sampling scheme from the preceding section.
The algorithms repeatedly perform the following steps:

1. Use the single path or vine procedures to collect a set
of state-action pairs along with Monte Carlo estimates
of their Q-values.

2. By averaging over samples, construct the estimated
objective and constraint in Equation (14).

3. Approximately solve this constrained optimization
problem to update the policy’s parameter vector θ.
We use the conjugate gradient algorithm followed by
a line search, which is altogether only slightly more
expensive than computing the gradient itself. See Ap-
pendix C for details.

With regard to (3), we construct the Fisher informa-
tion matrix (FIM) by analytically computing the Hessian
of the KL divergence, rather than using the covariance
matrix of the gradients. That is, we estimate Aij as
1
N

∑N
n=1

∂2

∂θi∂θj
DKL(πθold(·|sn) ‖ πθ(·|sn)), rather than

1
N

∑N
n=1

∂
∂θi

log πθ(an|sn) ∂
∂θj

log πθ(an|sn). The ana-
lytic estimator integrates over the action at each state sn,
and does not depend on the action an that was sampled.
As described in Appendix C, this analytic estimator has
computational benefits in the large-scale setting, since it
removes the need to store a dense Hessian or all policy gra-
dients from a batch of trajectories. The rate of improvement
in the policy is similar to the empirical FIM, as shown in
the experiments.

Let us briefly summarize the relationship between the the-
ory from Section 3 and the practical algorithm we have de-
scribed:

• The theory justifies optimizing a surrogate objective
with a penalty on KL divergence. However, the
large penalty coefficientC leads to prohibitively small
steps, so we would like to decrease this coefficient.
Empirically, it is hard to robustly choose the penalty
coefficient, so we use a hard constraint instead of a
penalty, with parameter δ (the bound on KL diver-
gence).

• The constraint on Dmax
KL (θold, θ) is hard for numerical

optimization and estimation, so instead we constrain
DKL(θold, θ).

• Our theory ignores estimation error for the advantage
function. Kakade & Langford (2002) consider this er-
ror in their derivation, and the same arguments would
hold in the setting of this paper, but we omit them for
simplicity.

7 Connections with Prior Work
As mentioned in Section 4, our derivation results in a pol-
icy update that is related to several prior methods, provid-
ing a unifying perspective on a number of policy update
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schemes. The natural policy gradient (Kakade, 2002) can
be obtained as a special case of the update in Equation (12)
by using a linear approximation to L and a quadratic ap-
proximation to the DKL constraint, resulting in the follow-
ing problem:

maximize
θ

[
∇θLθold(θ)

∣∣
θ=θold

· (θ − θold)
]

(17)

subject to
1

2
(θold − θ)TA(θold)(θold − θ) ≤ δ,

where A(θold)ij =

∂

∂θi

∂

∂θj
Es∼ρπ [DKL(π(·|s, θold) ‖ π(·|s, θ))]

∣∣
θ=θold

.

The update is θnew = θold + 1
λA(θold)−1∇θL(θ)

∣∣
θ=θold

,
where the stepsize 1

λ is typically treated as an algorithm
parameter. This differs from our approach, which en-
forces the constraint at each update. Though this difference
might seem subtle, our experiments demonstrate that it sig-
nificantly improves the algorithm’s performance on larger
problems.

We can also obtain the standard policy gradient update by
using an `2 constraint or penalty:

maximize
θ

[
∇θLθold(θ)

∣∣
θ=θold

· (θ − θold)
]

(18)

subject to
1

2
‖θ − θold‖2 ≤ δ.

The policy iteration update can also be obtained by solving
the unconstrained problem maximizeπ Lπold

(π), using L
as defined in Equation (3).

Several other methods employ an update similar to Equa-
tion (12). Relative entropy policy search (REPS) (Peters
et al., 2010) constrains the state-action marginals p(s, a),
while TRPO constrains the conditionals p(a|s). Unlike
REPS, our approach does not require a costly nonlinear op-
timization in the inner loop. Levine and Abbeel (2014) also
use a KL divergence constraint, but its purpose is to encour-
age the policy not to stray from regions where the estimated
dynamics model is valid, while we do not attempt to esti-
mate the system dynamics explicitly. Pirotta et al. (2013)
also build on and generalize Kakade and Langford’s results,
and they derive different algorithms from the ones here.

8 Experiments
We designed our experiments to investigate the following
questions:

1. What are the performance characteristics of the single
path and vine sampling procedures?

2. TRPO is related to prior methods (e.g. natural policy
gradient) but makes several changes, most notably by
using a fixed KL divergence rather than a fixed penalty
coefficient. How does this affect the performance of
the algorithm?

Figure 2. 2D robot models used for locomotion experiments.
From left to right: swimmer, hopper, walker. The hopper and
walker present a particular challenge, due to underactuation and
contact discontinuities.
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Figure 3. Neural networks used for the locomotion task (top) and
for playing Atari games (bottom).

3. Can TRPO be used to solve challenging large-scale
problems? How does TRPO compare with other
methods when applied to large-scale problems, with
regard to final performance, computation time, and
sample complexity?

To answer (1) and (2), we compare the performance of
the single path and vine variants of TRPO, several ablated
variants, and a number of prior policy optimization algo-
rithms. With regard to (3), we show that both the single
path and vine algorithm can obtain high-quality locomo-
tion controllers from scratch, which is considered to be a
hard problem. We also show that these algorithms produce
competitive results when learning policies for playing Atari
games from images using convolutional neural networks
with tens of thousands of parameters.

8.1 Simulated Robotic Locomotion

We conducted the robotic locomotion experiments using
the MuJoCo simulator (Todorov et al., 2012). The three
simulated robots are shown in Figure 2. The states of the
robots are their generalized positions and velocities, and the
controls are joint torques. Underactuation, high dimension-
ality, and non-smooth dynamics due to contacts make these
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tasks very challenging. The following models are included
in our evaluation:

1. Swimmer. 10-dimensional state space, linear reward
for forward progress and a quadratic penalty on joint
effort to produce the reward r(x, u) = vx−10−5‖u‖2.
The swimmer can propel itself forward by making an
undulating motion.

2. Hopper. 12-dimensional state space, same reward as
the swimmer, with a bonus of +1 for being in a non-
terminal state. We ended the episodes when the hop-
per fell over, which was defined by thresholds on the
torso height and angle.

3. Walker. 18-dimensional state space. For the walker,
we added a penalty for strong impacts of the feet
against the ground to encourage a smooth walk rather
than a hopping gait.

We used δ = 0.01 for all experiments. See Table 2 in the
Appendix for more details on the experimental setup and
parameters used. We used neural networks to represent the
policy, with the architecture shown in Figure 3, and further
details provided in Appendix D. To establish a standard
baseline, we also included the classic cart-pole balancing
problem, based on the formulation from Barto et al. (1983),
using a linear policy with six parameters that is easy to opti-
mize with derivative-free black-box optimization methods.

The following algorithms were considered in the compari-
son: single path TRPO; vine TRPO; cross-entropy method
(CEM), a gradient-free method (Szita & Lörincz, 2006);
covariance matrix adaption (CMA), another gradient-free
method (Hansen & Ostermeier, 1996); natural gradi-
ent, the classic natural policy gradient algorithm (Kakade,
2002), which differs from single path by the use of a fixed
penalty coefficient (Lagrange multiplier) instead of the KL
divergence constraint; empirical FIM, identical to single
path, except that the FIM is estimated using the covariance
matrix of the gradients rather than the analytic estimate;
max KL, which was only tractable on the cart-pole problem,
and uses the maximum KL divergence in Equation (11),
rather than the average divergence, allowing us to evaluate
the quality of this approximation. The parameters used in
the experiments are provided in Appendix E. For the natu-
ral gradient method, we swept through the possible values
of the stepsize in factors of three, and took the best value
according to the final performance.

Learning curves showing the total reward averaged across
five runs of each algorithm are shown in Figure 4. Single
path and vine TRPO solved all of the problems, yielding
the best solutions. Natural gradient performed well on the
two easier problems, but was unable to generate hopping
and walking gaits that made forward progress. These re-
sults provide empirical evidence that constraining the KL
divergence is a more robust way to choose step sizes and
make fast, consistent progress, compared to using a fixed
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Figure 4. Learning curves for locomotion tasks, averaged across
five runs of each algorithm with random initializations. Note that
for the hopper and walker, a score of −1 is achievable without any
forward velocity, indicating a policy that simply learned balanced
standing, but not walking.

penalty. CEM and CMA are derivative-free algorithms,
hence their sample complexity scales unfavorably with the
number of parameters, and they performed poorly on the
larger problems. The max KL method learned somewhat
more slowly than our final method, due to the more restric-
tive form of the constraint, but overall the result suggests
that the average KL divergence constraint has a similar ef-
fect as the theorecally justified maximum KL divergence.
Videos of the policies learned by TRPO may be viewed on
the project website: http://sites.google.com/
site/trpopaper/.

Note that TRPO learned all of the gaits with general-
purpose policies and simple reward functions, using min-
imal prior knowledge. This is in contrast with most prior
methods for learning locomotion, which typically rely on
hand-architected policy classes that explicitly encode no-
tions of balance and stepping (Tedrake et al., 2004; Geng
et al., 2006; Wampler & Popović, 2009).

8.2 Playing Games from Images

To evaluate TRPO on a partially observed task with com-
plex observations, we trained policies for playing Atari
games, using raw images as input. The games require
learning a variety of behaviors, such as dodging bullets and
hitting balls with paddles. Aside from the high dimension-
ality, challenging elements of these games include delayed
rewards (no immediate penalty is incurred when a life is
lost in Breakout or Space Invaders); complex sequences of
behavior (Q*bert requires a character to hop on 21 differ-
ent platforms); and non-stationary image statistics (Enduro
involves a changing and flickering background).

We tested our algorithms on the same seven games reported
on in (Mnih et al., 2013) and (Guo et al., 2014), which are

http://sites.google.com/site/trpopaper/
http://sites.google.com/site/trpopaper/
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B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders

Random 354 1.2 0 −20.4 157 110 179
Human (Mnih et al., 2013) 7456 31.0 368 −3.0 18900 28010 3690

Deep Q Learning (Mnih et al., 2013) 4092 168.0 470 20.0 1952 1705 581

UCC-I (Guo et al., 2014) 5702 380 741 21 20025 2995 692

TRPO - single path 1425.2 10.8 534.6 20.9 1973.5 1908.6 568.4
TRPO - vine 859.5 34.2 430.8 20.9 7732.5 788.4 450.2

Table 1. Performance comparison for vision-based RL algorithms on the Atari domain. Our algorithms (bottom rows) were run once
on each task, with the same architecture and parameters. Performance varies substantially from run to run (with different random
initializations of the policy), but we could not obtain error statistics due to time constraints.

made available through the Arcade Learning Environment
(Bellemare et al., 2013) The images were preprocessed fol-
lowing the protocol in Mnih et al (2013), and the policy was
represented by the convolutional neural network shown in
Figure 3, with two convolutional layers with 16 channels
and stride 2, followed by one fully-connected layer with 20
units, yielding 33,500 parameters.

The results of the vine and single path algorithms are sum-
marized in Table 1, which also includes an expert human
performance and two recent methods: deep Q-learning
(Mnih et al., 2013), and a combination of Monte-Carlo Tree
Search with supervised training (Guo et al., 2014), called
UCC-I. The 500 iterations of our algorithm took about 30
hours (with slight variation between games) on a 16-core
computer. While our method only outperformed the prior
methods on some of the games, it consistently achieved rea-
sonable scores. Unlike the prior methods, our approach
was not designed specifically for this task. The ability to
apply the same policy search method to methods as di-
verse as robotic locomotion and image-based game playing
demonstrates the generality of TRPO.

9 Discussion
We proposed and analyzed trust region methods for opti-
mizing stochastic control policies. We proved monotonic
improvement for an algorithm that repeatedly optimizes
a local approximation to the expected return of the pol-
icy with a KL divergence penalty, and we showed that an
approximation to this method that incorporates a KL di-
vergence constraint achieves good empirical results on a
range of challenging policy learning tasks, outperforming
prior methods. Our analysis also provides a perspective
that unifies policy gradient and policy iteration methods,
and shows them to be special limiting cases of an algo-
rithm that optimizes a certain objective subject to a trust
region constraint.

In the domain of robotic locomotion, we successfully
learned controllers for swimming, walking and hopping in
a physics simulator, using general purpose neural networks
and minimally informative rewards. To our knowledge,
no prior work has learned controllers from scratch for all
of these tasks, using a generic policy search method and
non-engineered, general-purpose policy representations. In

the game-playing domain, we learned convolutional neu-
ral network policies that used raw images as inputs. This
requires optimizing extremely high-dimensional policies,
and only two prior methods report successful results on this
task.

Since the method we proposed is scalable and has strong
theoretical foundations, we hope that it will serve as a
jumping-off point for future work on training large, rich
function approximators for a range of challenging prob-
lems. At the intersection of the two experimental domains
we explored, there is the possibility of learning robotic con-
trol policies that use vision and raw sensory data as in-
put, providing a unified scheme for training robotic con-
trollers that perform both perception and control. The use
of more sophisticated policies, including recurrent policies
with hidden state, could further make it possible to roll state
estimation and control into the same policy in the partially-
observed setting. By combining our method with model
learning, it would also be possible to substantially reduce
its sample complexity, making it applicable to real-world
settings where samples are expensive.
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A Proof of Policy Improvement Bound
This proof (of Theorem 1) uses techniques from the proof of Theorem 4.1 in (Kakade & Langford, 2002), adapting them
to the more general setting considered in this paper. An informal overview is as follows. Our proof relies on the notion
of coupling, where we jointly define the policies π and π′ so that they choose the same action with high probability
= (1 − α). Surrogate loss Lπ(π̃) accounts for the the advantage of π̃ the first time that it disagrees with π, but not
subsequent disagreements. Hence, the error in Lπ is due to two or more disagreements between π and π̃, hence, we get an
O(α2) correction term, where α is the probability of disagreement.

We start out with a lemma from Kakade & Langford (2002) that shows that the difference in policy performance η(π̃)−η(π)
can be decomposed as a sum of per-timestep advantages.
Lemma 1. Given two policies π, π̃,

η(π̃) = η(π)+Eτ∼π̃

[ ∞∑
t=0

γtAπ(st, at)

]
(19)

This expectation is taken over trajectories τ := (s0, a0, s1, a0, . . . ), and the notation Eτ∼π̃ [. . . ] indicates that actions are
sampled from π̃ to generate τ .

Proof. First note that Aπ(s, a) = Es′∼P (s′|s,a) [r(s) + γVπ(s′)− Vπ(s)]. Therefore,

Eτ |π̃

[ ∞∑
t=0

γtAπ(st, at)

]
(20)

= Eτ |π̃

[ ∞∑
t=0

γt(r(st) + γVπ(st+1)− Vπ(st))

]
(21)

= Eτ |π̃

[
−Vπ(s0) +

∞∑
t=0

γtr(st)

]
(22)

= −Es0 [Vπ(s0)] + Eτ |π̃

[ ∞∑
t=0

γtr(st)

]
(23)

= −η(π) + η(π̃) (24)

Rearranging, the result follows.

Define Ā(s) to be the expected advantage of π̃ over π at state s:

Ā(s) = Ea∼π̃(·|s) [Aπ(s, a)] . (25)

Now Lemma 1 can be written as follows:

η(π̃) = η(π) + Eτ∼π̃

[ ∞∑
t=0

γtĀ(st)

]
(26)

Note that Lπ can be written as

Lπ(π̃) = η(π) + Eτ∼π

[ ∞∑
t=0

γtĀ(st)

]
(27)

The difference in these equations is whether the states are sampled using π or π̃. To bound the difference between η(π̃) and
Lπ(π̃), we will bound the difference arising from each timestep. To do this, we first need to introduce a measure of how
much π and π̃ agree. Specifically, we’ll couple the policies, so that they define a joint distribution over pairs of actions.
Definition 1. (π, π̃) is an α-coupled policy pair if it defines a joint distribution (a, ã)|s, such that P (a 6= ã|s) ≤ α for all
s. π and π̃ will denote the marginal distributions of a and ã, respectively.
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Computationally, α-coupling means that if we randomly choose a seed for our random number generator, and then we
sample from each of π and π̃ after setting that seed, the results will agree for at least fraction 1− α of seeds.

Lemma 2. Given that π, π̃ are α-coupled policies, for all s,∣∣Ā(s)
∣∣ ≤ 2αmax

s,a
|Aπ(s, a)| (28)

Proof.

Ā(s) = Eã∼π̃ [Aπ(s, ã)] = E(a,ã)∼(π,π̃) [Aπ(s, ã)−Aπ(s, a)] since Ea∼π [Aπ(s, a)] = 0 (29)

= P (a 6= ã|s)E(a,ã)∼(π,π̃)|a6=ã [Aπ(s, ã)−Aπ(s, a)] (30)

|Ā(s)| ≤ α · 2 max
s,a
|Aπ(s, a)| (31)

Lemma 3. Let (π, π̃) be an α-coupled policy pair. Then∣∣Est∼π̃ [Ā(st)
]
− Est∼π

[
Ā(st)

]∣∣ ≤ 2αmax
s
Ā(s) ≤ 4α(1− (1− α)t) max

s
|Aπ(s, a)| (32)

Proof. Given the coupled policy pair (π, π̃), we can also obtain a coupling over the trajectory distributions produced by
π and π̃, respectively. Namely, we have pairs of trajectories τ, τ̃ , where τ is obtained by taking actions from π, and τ̃ is
obtained by taking actions from π̃, where the same random seed is used to generate both trajectories. We will consider
the advantage of π̃ over π at timestep t, and decompose this expectation based on whether π agrees with π̃ at all timesteps
i < t.

Let nt denote the number of times that ai 6= ãi for i < t, i.e., the number of times that π and π̃ disagree before timestep t.

Est∼π̃
[
Ā(st)

]
= P (nt = 0)Est∼π̃|nt=0

[
Ā(st)

]
+ P (nt > 0)Est∼π̃|nt>0

[
Ā(st)

]
(33)

The expectation decomposes similarly for actions are sampled using π:

Est∼π
[
Ā(st)

]
= P (nt = 0)Est∼π|nt=0

[
Ā(st)

]
+ P (nt > 0)Est∼π|nt>0

[
Ā(st)

]
(34)

Note that the nt = 0 terms are equal:

Est∼π̃|nt=0

[
Ā(st)

]
= Est∼π|nt=0

[
Ā(st)

]
, (35)

because nt = 0 indicates that π and π̃ agreed on all timesteps less than t. Subtracting Equations (33) and (34), we get

Est∼π̃
[
Ā(st)

]
− Est∼π

[
Ā(st)

]
= P (nt > 0)

(
Est∼π̃|nt>0

[
Ā(st)

]
− Est∼π|nt>0

[
Ā(st)

])
(36)

By definition of α, P (π, π̃ agree at timestep i) ≥ 1− α, so P (nt = 0) ≥ (1− α)t, and

P (nt > 0) ≤ 1− (1− α)t (37)

Next, note that∣∣Est∼π̃|nt>0

[
Ā(st)

]
− Est∼π|nt>0

[
Ā(st)

]∣∣ ≤ ∣∣Est∼π̃|nt>0

[
Ā(st)

]∣∣+
∣∣Est∼π|nt>0

[
Ā(st)

]∣∣ (38)

≤ 4αmax
s,a
|Aπ(s, a)| (39)

Where the second inequality follows from Lemma 3.

Plugging Equation (37) and Equation (39) into Equation (36), we get∣∣Est∼π̃ [Ā(st)
]
− Est∼π

[
Ā(st)

]∣∣ ≤ 4α(1− (1− α)t) max
s,a
|Aπ(s, a)| (40)
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The preceding Lemma bounds the difference in expected advantage at each timestep t. We can sum over time to bound the
difference between η(π̃) and Lπ(π̃). Subtracting Equation (26) and Equation (27), and defining ε = maxs,a |Aπ(s, a)|,

|η(π̃)− Lπ(π̃)| =
∞∑
t=0

γt
∣∣Eτ∼π̃ [Ā(st)

]
− Eτ∼π

[
Ā(st)

]∣∣ (41)

≤
∞∑
t=0

γt · 4εα(1− (1− α)t) (42)

= 4εα

(
1

1− γ
− 1

1− γ(1− α)

)
(43)

=
4α2γε

(1− γ)(1− γ(1− α))
(44)

≤ 4α2γε

(1− γ)2
(45)

Last, to replace α by the total variation divergence, we need to use the correspondence between TV divergence and coupled
random variables:

Suppose pX and pY are distributions with DTV (pX ‖ pY ) = α. Then there exists a joint distribution (X,Y )
whose marginals are pX , pY , for which X = Y with probability 1− α.

See (Levin et al., 2009), Proposition 4.7.

It follows that if we have two policies π and π̃ such that maxsDTV (π(·|s) ‖ π̃(·|s)) ≤ α, then we can define an α-coupled
policy pair (π, π̃) with appropriate marginals. Taking α = maxsDTV (π(·|s) ‖ π̃(·|s)) ≤ α in Equation (45), Theorem 1
follows.

B Perturbation Theory Proof of Policy Improvement Bound
We also provide an alternative proof of Theorem 1 using perturbation theory.

Proof. LetG = (1+γPπ+(γPπ)2+. . . ) = (1−γPπ)−1, and similarly Let G̃ = (1+γPπ̃+(γPπ̃)2+. . . ) = (1−γPπ̃)−1.
We will use the convention that ρ (a density on state space) is a vector and r (a reward function on state space) is a dual
vector (i.e., linear functional on vectors), thus rρ is a scalar meaning the expected reward under density ρ. Note that
η(π) = rGρ0, and η(π̃) = cG̃ρ0. Let ∆ = Pπ̃ − Pπ . We want to bound η(π̃)− η(π) = r(G̃−G)ρ0. We start with some
standard perturbation theory manipulations.

G−1 − G̃−1 = (1− γPπ)− (1− γPπ̃)

= γ∆. (46)

Left multiply by G and right multiply by G̃.

G̃−G = γG∆G̃

G̃ = G+ γG∆G̃ (47)

Substituting the right-hand side into G̃ gives

G̃ = G+ γG∆G+ γ2G∆G∆G̃ (48)

So we have

η(π̃)− η(π) = r(G̃−G)ρ = γrG∆Gρ0 + γ2rG∆G∆G̃ρ0 (49)

Let us first consider the leading term γrG∆Gρ0. Note that rG = v, i.e., the infinite-horizon state-value function. Also
note that Gρ0 = ρπ . Thus we can write γcG∆Gρ0 = γv∆ρπ . We will show that this expression equals the expected
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advantage Lπ(π̃)− Lπ(π).

Lπ(π̃)− Lπ(π) =
∑
s

ρπ(s)
∑
a

(π̃(a|s)− π(a|s))Aπ(s, a)

=
∑
s

ρπ(s)
∑
a

(
πθ(a|s)− πθ̃(a|s)

) [
r(s) +

∑
s′

p(s′|s, a)γv(s′)− v(s)

]
=
∑
s

ρπ(s)
∑
s′

∑
a

(π(a|s)− π̃(a|s)) p(s′|s, a)γv(s′)

=
∑
s

ρπ(s)
∑
s′

(pπ(s′|s)− pπ̃(s′|s))γv(s′)

= γv∆ρπ (50)

Next let us bound the O(∆2) term γ2rG∆G∆G̃ρ. First we consider the product γrG∆ = γv∆. Consider the component
s of this dual vector.

|(γv∆)s| =

∣∣∣∣∣∑
a

(π̃(s, a)− π(s, a))Qπ(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∑
a

(π̃(s, a)− π(s, a))Aπ(s, a)

∣∣∣∣∣
≤
∑
a

|π̃(s, a)− π(s, a)| ·max
a
|Aπ(s, a)|

≤ 2αε (51)

where the last line used the definition of the total-variation divergence, and the definition of ε = maxs,a |Aπ(s, a)|. We
bound the other portion G∆G̃ρ using the `1 operator norm

‖A‖1 = sup
ρ

{
‖Aρ‖1
‖ρ‖1

}
(52)

where we have that ‖G‖1 = ‖G̃‖1 = 1/(1− γ) and ‖∆‖1 = 2α. That gives

‖G∆G̃ρ‖1 ≤ ‖G‖1‖∆‖1‖G̃‖1‖ρ‖1

=
1

1− γ
· 2α · 1

1− γ
· 1 (53)

So we have that

γ2
∣∣∣rG∆G∆G̃ρ

∣∣∣ ≤ γ‖γrG∆‖∞‖G∆G̃ρ‖1

≤ γ‖v∆‖∞‖G∆G̃ρ‖1

≤ γ · 2αε · 2α

(1− γ)2

=
4γε

(1− γ)2
α2 (54)

C Efficiently Solving the Trust-Region Constrained Optimization Problem
This section describes how to efficiently approximately solve the following constrained optimization problem, which we
must solve at each iteration of TRPO:

maximizeL(θ) subject to DKL(θold, θ) ≤ δ. (55)
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The method we will describe involves two steps: (1) compute a search direction, using a linear approximation to objective
and quadratic approximation to the constraint; and (2) perform a line search in that direction, ensuring that we improve the
nonlinear objective while satisfying the nonlinear constraint.

The search direction is computed by approximately solving the equation Ax = g, where A is the Fisher information
matrix, i.e., the quadratic approximation to the KL divergence constraint: DKL(θold, θ) ≈ 1

2 (θ−θold)TA(θ−θold), where
Aij = ∂

∂θi
∂
∂θj

DKL(θold, θ). In large-scale problems, it is prohibitively costly (with respect to computation and memory) to
form the full matrix A (or A−1). However, the conjugate gradient algorithm allows us to approximately solve the equation
Ax = b without forming this full matrix, when we merely have access to a function that computes matrix-vector products
y → Ay. Appendix C.1 describes the most efficient way to compute matrix-vector products with the Fisher information
matrix. For additional exposition on the use of Hessian-vector products for optimizing neural network objectives, see
(Martens & Sutskever, 2012) and (Pascanu & Bengio, 2013).

Having computed the search direction s ≈ A−1g, we next need to compute the maximal step length β such that θ + βs
will satisfy the KL divergence constraint. To do this, let δ = DKL ≈ 1

2 (βs)TA(βs) = 1
2β

2sTAs. From this, we obtain
β =

√
2δ/sTAs, where δ is the desired KL divergence. The term sTAs can be computed through a single Hessian vector

product, and it is also an intermediate result produced by the conjugate gradient algorithm.

Last, we use a line search to ensure improvement of the surrogate objective and satisfaction of the KL divergence constraint,
both of which are nonlinear in the parameter vector θ (and thus depart from the linear and quadratic approximations used
to compute the step). We perform the line search on the objective Lθold(θ) − X [DKL(θold, θ) ≤ δ], where X [. . . ] equals
zero when its argument is true and +∞ when it is false. Starting with the maximal value of the step length β computed
in the previous paragraph, we shrink β exponentially until the objective improves. Without this line search, the algorithm
occasionally computes large steps that cause a catastrophic degradation of performance.

C.1 Computing the Fisher-Vector Product

Here we will describe how to compute the matrix-vector product between the averaged Fisher information matrix and
arbitrary vectors. This matrix-vector product enables us to perform the conjugate gradient algorithm. Suppose that the
parameterized policy maps from the input x to “distribution parameter” vector µθ(x), which parameterizes the distribution
π(u|x). Now the KL divergence for a given input x can be written as follows:

DKL(πθold(·|x) ‖ πθ(·|x)) = kl(µθ(x), µold) (56)

where kl is the KL divergence between the distributions corresponding to the two mean parameter vectors. Differentiating
kl twice with respect to θ, we obtain

∂µa(x)

∂θi

∂µb(x)

∂θj
kl′′ab(µθ(x), µold) +

∂2µa(x)

∂θi∂θj
kl′a(µθ(x), µold) (57)

where the primes (′) indicate differentiation with respect to the first argument, and there is an implied summation over
indices a, b. The second term vanishes, leaving just the first term. Let J := ∂µa(x)

∂θi
(the Jacobian), then the Fisher

information matrix can be written in matrix form as JTMJ , where M = kl′′ab(µθ(x), µold) is the Fisher information
matrix of the distribution in terms of the mean parameter µ (as opposed to the parameter θ). This has a simple form for
most parameterized distributions of interest.

The Fisher-vector product can now be written as a function y → JTMJy. Multiplication by JT and J can be performed by
most automatic differentiation and neural network packages (multiplication by JT is the well-known backprop operation),
and the operation for multiplication byM can be derived for the distribution of interest. Note that this Fisher-vector product
is straightforward to average over a set of datapoints, i.e., inputs x to µ.

One could alternatively use a generic method for calculating Hessian-vector products using reverse mode automatic differ-
entiation ((Wright & Nocedal, 1999), chapter 8), computing the Hessian of DKL with respect to θ. This method would be
slightly less efficient as it does not exploit the fact that the second derivatives of µ(x) (i.e., the second term in Equation (57))
can be ignored, but may be substantially easier to implement.

We have described a procedure for computing the Fisher-vector product y → Ay, where the Fisher information matrix is
averaged over a set of inputs to the function µ. Computing the Fisher-vector product is typically about as expensive as
computing the gradient of an objective that depends on µ(x) (Wright & Nocedal, 1999). Furthermore, we need to compute



Trust Region Policy Optimization

k of these Fisher-vector products per gradient, where k is the number of iterations of the conjugate gradient algorithm we
perform. We found k = 10 to be quite effective, and using higher k did not result in faster policy improvement. Hence, a
naı̈ve implementation would spend more than 90% of the computational effort on these Fisher-vector products. However,
we can greatly reduce this burden by subsampling the data for the computation of Fisher-vector product. Since the Fisher
information matrix merely acts as a metric, it can be computed on a subset of the data without severely degrading the
quality of the final step. Hence, we can compute it on 10% of the data, and the total cost of Hessian-vector products will
be about the same as computing the gradient. With this optimization, the computation of a natural gradient step A−1g does
not incur a significant extra computational cost beyond computing the gradient g.

D Approximating Factored Policies with Neural Networks
The policy, which is a conditional probability distribution πθ(a|s), can be parameterized with a neural network. This
neural network maps (deterministically) from the state vector s to a vector µ, which specifies a distribution over action
space. Then we can compute the likelihood p(a|µ) and sample a ∼ p(a|µ).

For our experiments with continuous state and action spaces, we used a Gaussian distribution, where the covariance matrix
was diagonal and independent of the state. A neural network with several fully-connected (dense) layers maps from the
input features to the mean of a Gaussian distribution. A separate set of parameters specifies the log standard deviation of
each element. More concretely, the parameters include a set of weights and biases for the neural network computing the
mean, {Wi, bi}Li=1, and a vector r (log standard deviation) with the same dimension as a. Then, the policy is defined by

the normal distribution N
(

mean = NeuralNet
(
s; {Wi, bi}Li=1

)
, stdev = exp(r)

)
. Here, µ = [mean, stdev].

For the experiments with discrete actions (Atari), we use a factored discrete action space, where each factor is parameter-
ized as a categorical distribution. That is, the action consists of a tuple (a1, a2, . . . , aK) of integers ak ∈ {1, 2, . . . , Nk},
and each of these components is assumed to have a categorical distribution, which is specified by a vector µk =
[p1, p2, . . . , pNk ]. Hence, µ is defined to be the concatenation of the factors’ parameters: µ = [µ1, µ2, . . . , µK ] and
has dimension dimµ =

∑K
k=1Nk. The components of µ are computed by taking applying a neural network to the input s

and then applying the softmax operator to each slice, yielding normalized probabilities for each factor.

E Experiment Parameters

Swimmer Hopper Walker
State space dim. 10 12 20
Control space dim. 2 3 6
Total num. policy params 364 4806 8206
Sim. steps per iter. 50K 1M 1M
Policy iter. 200 200 200
Stepsize (DKL) 0.01 0.01 0.01
Hidden layer size 30 50 50
Discount (γ) 0.99 0.99 0.99
Vine: rollout length 50 100 100
Vine: rollouts per state 4 4 4
Vine: Q-values per batch 500 2500 2500
Vine: num. rollouts for sampling 16 16 16
Vine: len. rollouts for sampling 1000 1000 1000
Vine: computation time (minutes) 2 14 40
SP: num. path 50 1000 10000
SP: path len. 1000 1000 1000
SP: computation time 5 35 100

Table 2. Parameters for continuous control tasks, vine and single path (SP) algorithms.
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All games
Total num. policy params 33500
Vine: Sim. steps per iter. 400K
SP: Sim. steps per iter. 100K
Policy iter. 500
Stepsize (DKL) 0.01
Discount (γ) 0.99
Vine: rollouts per state ≈ 4
Vine: computation time ≈ 30 hrs
SP: computation time ≈ 30 hrs

Table 3. Parameters used for Atari domain.

F Learning Curves for the Atari Domain
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Figure 5. Learning curves for the Atari domain. For historical reasons, the plots show cost = negative reward.
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