
Lecture 9: Policy Gradient Methods

Shiyu Zhao

Department of Artificial Intelligence

Westlake University



Outline

Chapter 2:
Bellman Equation

Chapter 3:
Bellman Optimality 

Equation

Chapter 4:
Value Iteration & 
Policy Iteration

Chapter 5: 
Monte Carlo 

Methods

Chapter 7:
Temporal-Difference 

Methods

Chapter 8:
Value Function 

Methods

Chapter 9:
Policy Gradient 

Methods

Chapter 10:
Actor-Critic 

Methods

Chapter 6:
Stochastic 

Approximation

with model
to

without model

tabular representation
to

function representation

Fundamental tools

Algorithms/Methods

Chapter 1:
Basic Concepts

policy-based
plus

value-based

Shiyu Zhao 1 / 42



Introduction

In this lecture, we will move

• from value-based methods to policy-based methods

• from value function methods to policy function methods (or called policy

gradient methods)
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Basic idea of policy gradient

Previously, policies have been represented by tables:

• The action probabilities of all states are stored in a table π(a|s). Each entry

of the table is indexed by a state and an action.

a1 a2 a3 a4 a5

s1 π(a1|s1) π(a2|s1) π(a3|s1) π(a4|s1) π(a5|s1)
.
.
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.

.

.

.

.

.

.

.

.

.

.

.

s9 π(a1|s9) π(a2|s9) π(a3|s9) π(a4|s9) π(a5|s9)
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Basic idea of policy gradient

Now, policies can be represented by parameterized functions:

π(a|s, θ)

where θ ∈ Rm is a parameter vector.

• The function can be, for example, a neural network, whose input is s, output

is the probability to take each action, and parameter is θ.

• Advantage: when the state space is large, the tabular representation will be

of low efficiency in terms of storage and generalization.

• The function representation is also sometimes written as π(a, s, θ), πθ(a|s),

or πθ(a, s).
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Basic idea of policy gradient

Differences between tabular and function representations:

• First, how to define optimal policies?

- In the tabular case, a policy π is optimal if it can maximize every state

value.

- In the function case, a policy π is optimal if it can maximize certain scalar

metrics.
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Basic idea of policy gradient

Differences between tabular and function representations:

• Second, how to access the probability of an action?

- In the tabular case, the probability of taking a at s can be directly

accessed by looking up the tabular policy.

- In the function case, we need to calculate the value of π(a|s, θ) given the

function structure and the parameter.
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Basic idea of policy gradient

Differences between tabular and function representations:

• Third, how to update policies?

- In the tabular case, a policy π can be updated by directly changing the

entries in the table.

- In the function case, a policy π cannot be updated in this way anymore.

Instead, it can only be updated by changing the parameter θ.
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Basic idea of policy gradient

The basic idea of the policy gradient is simple:

• First, metrics (or objective functions) to define optimal policies: J(θ), which

can define optimal policies.

• Second, gradient-based optimization algorithms to search for optimal policies:

θt+1 = θt + α∇θJ(θt)

Although the idea is simple, the complication emerges when we try to answer

the following questions.

• What appropriate metrics should be used?

• How to calculate the gradients of the metrics?

These questions will be answered in detail in this lecture.

Shiyu Zhao 10 / 42



Outline

1 Basic idea of policy gradient

2 Metrics to define optimal policies

Metric 1: Average value

Metric 2: Average reward

Summary of the two metrics

3 Gradients of the metrics

4 Gradient-ascent algorithm

5 Summary

Shiyu Zhao 11 / 42



Outline

1 Basic idea of policy gradient

2 Metrics to define optimal policies

Metric 1: Average value

Metric 2: Average reward

Summary of the two metrics

3 Gradients of the metrics

4 Gradient-ascent algorithm

5 Summary

Shiyu Zhao 12 / 42



Metric 1: average value

The first metric is the average state value or simply called average value:

v̄π =
∑
s∈S

d(s)vπ(s)

• v̄π is a weighted average of the state values.

• d(s) ≥ 0 is the weight for state s.

Since
∑
s∈S d(s) = 1, we can interpret d(s) as a probability distribution. Then,

the metric can be written as

v̄π = ES∼d[vπ(S)]
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Metric 1: average value

How to select the distribution d? There are two cases.

Case 1: d is independent of the policy π.

• This case is relatively simple because the gradient of the metric is easier to

calculate: ∇θ v̄π = dT∇θvπ
• In this case, we specifically denote d as d0 and v̄π as v̄0π.

How to select d0?

• One trivial way is to treat all the states equally important and hence select

d0(s) = 1/|S|.

• Another important case is that we are only interested in a specific state s0.

For example, the episodes in some tasks always start from the same state s0.

Then, we only care about the long-term return starting from s0. In this case,

d0(s0) = 1, d0(s 6= s0) = 0

In this case, v̄π = vπ(s0)
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Metric 1: average value

How to select the distribution d? There are two cases.

Case 2: d depends on the policy π.

• A common way is to select d as dπ(s), which is the stationary distribution

under π. Details of stationary distribution can be found in the last lecture

and the book.

• The interpretation of selecting dπ is as follows.

- dπ reflects the long-run behavior of the Markov decision process under a

given policy π.

- If one state is frequently visited in the long run, it is more important and

deserves more weight.

- If a state is hardly visited, then we give it less weight.
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Metric 1: average value

An important equivalent expression:

You will see the following metric often in the literature:

J(θ) = lim
n→∞

E

[
n∑
t=0

γtRt+1

]
= E

[
∞∑
t=0

γtRt+1

]
.

Question: What is its relationship to the metric we introduced just now?

Answer: They are the same. That is because

J(θ) = E

[
∞∑
t=0

γtRt+1

]
=
∑
s∈S

d(s)E

[
∞∑
t=0

γtRt+1|S0 = s

]
=
∑
s∈S

d(s)vπ(s)

= v̄π
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Metric 2: average reward

The second metric is average one-step reward or simply average reward:

r̄π
.
=
∑
s∈S

dπ(s)rπ(s) = E[rπ(S)],

where S ∼ dπ,

rπ(s) =
∑
a∈A

π(a|s)r(s, a)

r(s, a) = E[R|s, a] =
∑
r

rp(r|s, a)

Remarks:

• r̄π is simply a weighted average of immediate rewards.

• rπ(s) is the average immediate reward that can be obtained from s.

• dπ is the stationary distribution.
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Metric 2: average reward

An important equivalent expression:

• Suppose an agent follows a given policy and generate a trajectory with the

rewards as (R1, R2, . . . ).

• The average single-step reward along this trajectory is

lim
n→∞

1

n
E
[
R1 +R2 + · · ·+Rn|S0 = s0

]
= lim
n→∞

1

n
E

[
n−1∑
t=0

Rt+1|S0 = s0

]

where s0 is the starting state of the trajectory.
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Metrics to define optimal policies - Remarks

An important fact is that

lim
n→∞

1

n
E

[
n−1∑
t=0

Rt+1|S0 = s0

]
= lim
n→∞

1

n
E

[
n−1∑
t=0

Rt+1

]
=
∑
s

dπ(s)rπ(s)

= r̄π

Remarks:

• Highlight: the starting state s0 does not matter.

• The derivation of the equation is nontrivial and can be found in my book.
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Summary of the two metrics

Metric Expression 1 Expression 2 Expression 3

v̄π
∑
s∈S d(s)vπ(s) ES∼d[vπ(S)] limn→∞ E

[∑n
t=0 γ

tRt+1

]
r̄π

∑
s∈S dπ(s)rπ(s) ES∼dπ [rπ(S)] limn→∞

1
n
E
[∑n−1

t=0 Rt+1

]
Table: Summary of the different but equivalent expressions of v̄π and r̄π .
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Summary of the two metrics

Remark 1 about the metrics:

• All these metrics are functions of π.

• Since π is parameterized by θ, these metrics are functions of θ.

• In other words, different values of θ can generate different metric values.

Therefore, we can search for the optimal values of θ to maximize these metrics.

This is the basic idea of policy gradient methods.
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Summary of the two metrics

Remark 2 about the metrics:

• One complication is that the metrics can be defined in either the discounted

case where γ ∈ (0, 1) or the undiscounted case where γ = 1.

• The undiscounted case is nontrivial.

• We only consider the discounted case so far in this book. For details about

the undiscounted case, see the book.
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Summary of the two metrics

Remark 3 about the metrics:

• What is the relationship between r̄π and v̄π?

• The two metrics are equivalent (not equal) to each other. Specifically, in the

discounted case where γ < 1, it holds that

r̄π = (1− γ)v̄π.

Therefore, they can be maximized simultaneously. See the proof in the book.
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Gradients of the metrics

Given a metric, we next

• derive its gradient

• and then, apply gradient-based methods to optimize the metric.

The gradient calculation is one of the most complicated parts of policy gradient

methods! That is because

• first, we need to distinguish different metrics v̄π, r̄π, v̄0π

• second, we need to distinguish discounted and undiscounted cases.
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Gradients of the metrics

I simply give the expression of the gradient without proof:

∇θJ(θ) =
∑
s∈S

η(s)
∑
a∈A

∇θπ(a|s, θ)qπ(s, a)

The above is a unified expression of many cases:

• J(θ) can be v̄π, r̄π, or v̄0π.

• “=” may denote strict equality, approximation, or proportional to.

• η is a distribution or weight of the states.

The derivation of this expression is very complex.

Details are not given here. Interested readers can read my book.

For most readers, it is sufficient to know this expression.
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Gradients of the metrics

A compact and important expression of the gradient:

∇θJ(θ) =
∑
s∈S

η(s)
∑
a∈A

∇θπ(a|s, θ)qπ(s, a)

= ES∼η,A∼π
[
∇θ lnπ(A|S, θ)qπ(S,A)

]
First, why is this expression useful?

• Because we can use samples to approximate the gradient:

∇θJ ≈ ∇θ lnπ(a|s, θ)qπ(s, a)

where s, a are samples. This is the idea of stochastic gradient descent.
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Gradients of the metrics

A compact and important expression of the gradient:

∇θJ(θ) =
∑
s∈S

η(s)
∑
a∈A

∇θπ(a|s, θ)qπ(s, a)

= ES∼η,A∼π
[
∇θ lnπ(A|S, θ)qπ(S,A)

]
Second, how to prove the above equation?

Proof: Consider the function lnπ where ln is the natural logarithm. It is easy

to see that

∇θ lnπ(a|s, θ) =
∇θπ(a|s, θ)
π(a|s, θ)

and hence

∇θπ(a|s, θ) = π(a|s, θ)∇θ lnπ(a|s, θ).
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Gradients of the metrics

A compact and important expression of the gradient:

∇θJ(θ) =
∑
s∈S

η(s)
∑
a∈A

∇θπ(a|s, θ)qπ(s, a)

= ES∼η,A∼π
[
∇θ lnπ(A|S, θ)qπ(S,A)

]
Proof (continued): Then, we have

∇θJ =
∑
s

η(s)
∑
a

∇θπ(a|s, θ)qπ(s, a)

=
∑
s

η(s)
∑
a

π(a|s, θ)∇θ lnπ(a|s, θ)qπ(s, a)

= ES∼η

[∑
a

π(a|S, θ)∇θ lnπ(a|S, θ)qπ(S, a)

]
= ES∼η,A∼π

[
∇θ lnπ(A|S, θ)qπ(S,A)

]
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Gradients of the metrics

Remarks: It is required by lnπ(a|s, θ) that for any s, a, θ

π(a|s, θ) > 0

• This can be achieved by using softmax functions that can normalize the

entries in a vector from (−∞,+∞) to (0, 1).

- For example, for any vector x = [x1, . . . , xn]T ,

zi =
exi∑n
j=1 e

xj

where zi ∈ (0, 1) and
∑n
i=1 zi = 1.

• Specifically, the policy function has the form of

π(a|s, θ) =
eh(s,a,θ)∑

a′∈A e
h(s,a′,θ)

where h(s, a, θ) is another function to be learned.
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Gradients of the metrics

Remarks:

• Such a form based on the softmax function can be realized by a neural

network whose input is s and parameter is θ. The network has |A| outputs,

each of which corresponds to π(a|s, θ) for an action a. The activation

function of the output layer should be softmax.

• Since π(a|s, θ) > 0 for all a, the parameterized policy is stochastic and hence

exploratory.

- There also exist deterministic policy gradient (DPG) methods. We will

study in the next lecture.
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Gradient-ascent algorithm

Now, we present the first policy gradient algorithm to find optimal policies!

1) The gradient-ascent algorithm maximizing J(θ) is

θt+1 = θt + α∇θJ(θt)

= θt + αE
[
∇θ lnπ(A|S, θt)qπ(S,A)

]
2) Since the true gradient is unknown, we can replace it by a stochastic one:

θt+1 = θt + α∇θ lnπ(at|st, θt)qπ(st, at)

3) Furthermore, since qπ is unknown, it can be replaced by an estimate:

θt+1 = θt + α∇θ lnπ(at|st, θt)qt(st, at)
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Gradient-ascent algorithm

• If qπ(st, at) is estimated by Monte Carlo estimation, the algorithm has a

specifics name, REINFORCE.

• REINFORCE is one of earliest and simplest policy gradient algorithms.

• Many other policy gradient algorithms such as the actor-critic methods can

be obtained by extending REINFORCE (next lecture).

Pseudocode: Policy Gradient by Monte Carlo (REINFORCE)

Initialization: Initial parameter θ; γ ∈ (0, 1); α > 0.

Goal: Learn an optimal policy to maximize J(θ).

For each episode, do

Generate an episode {s0, a0, r1, . . . , sT−1, aT−1, rT } following π(θ).

For t = 0, 1, . . . , T − 1:

Value update: qt(st, at) =
∑T
k=t+1 γ

k−t−1rk
Policy update: θ ← θ + α∇θ lnπ(at|st, θ)qt(st, at)
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Gradient-ascent algorithm

Remark 1: How to do sampling?

ES∼η,A∼π
[
∇θ lnπ(A|S, θt)qπ(S,A)

]
−→ ∇θ lnπ(a|s, θt)qπ(s, a)

• How to sample S?

- S ∼ η, where the distribution η is a long-run behavior under π.

- In practice, people usually do not care about it.

• How to sample A?

- A ∼ π(A|S, θ). Hence, at should be sampled following π(θt) at st.

- Therefore, policy gradient methods are on-policy.
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Gradient-ascent algorithm

Remark 2: How to interpret this algorithm?

Since

∇θ lnπ(at|st, θt) =
∇θπ(at|st, θt)
π(at|st, θt)

the algorithm can be rewritten as

θt+1 = θt + α∇θ lnπ(at|st, θt)qt(st, at)

= θt + α

(
qt(st, at)

π(at|st, θt)

)
︸ ︷︷ ︸

βt

∇θπ(at|st, θt).

Therefore, we have the important expression of the algorithm:

θt+1 = θt + αβt∇θπ(at|st, θt)
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Gradient-ascent algorithm

The interpretation of

θt+1 = θt + αβt∇θπ(at|st, θt)

is as follows. Suppose that α is sufficiently small.

Interpretation:

• If βt > 0, the probability of choosing (st, at) is increased:

π(at|st, θt+1) > π(at|st, θt)

• If βt < 0, the probability of choosing (st, at) is lower:

π(at|st, θt+1) < π(at|st, θt)

Math: When θt+1 − θt is sufficiently small, the definition of differential implies

π(at|st, θt+1) ≈ π(at|st, θt) + (∇θπ(at|st, θt))T (θt+1 − θt)

= π(at|st, θt) + αβt(∇θπ(at|st, θt))T (∇θπ(at|st, θt))

= π(at|st, θt) + αβt‖∇θπ(at|st, θt)‖2
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Gradient-ascent algorithm

θt+1 = θt + α

(
qt(st, at)

π(at|st, θt)

)
︸ ︷︷ ︸

βt

∇θπ(at|st, θt)

Interpretation (continued): βt can balance exploration and exploitation.

The reason is as follows.

• First, βt is proportional to qt(st, at).

greater qt(st, at) =⇒ greater βt =⇒ greater π(at|st, θt+1)

Therefore, the algorithm intends to exploit actions with greater values.

• Second, βt is inversely proportional to π(at|st, θt) (when qt(st, at) > 0).

smaller π(at|st, θt) =⇒ greater βt =⇒ greater π(at|st, θt+1)

Therefore, the algorithm intends to explore actions that have low

probabilities.
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Summary

Contents of this lecture:

• Metrics for optimality

• Gradients of the metrics

• Gradient-ascent algorithm

• A special case: REINFORCE

Next lecture: Actor-critic
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