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Motivating examples: from table to function
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Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

e For example, state value:

State S So Sn
Value vr(s1) vr(s2) Ve (Sn)
e For example, action value:
ai ag as aq as
s1 | an(s1,a1) | an(s1,a2) | an(s1,a3) | ar(s1,a4) | an(s1,a5)
s9 | an(s9,a1) | an(s9,a2) | an(s9,a3) | gn(s9,a4) | qr(sg9,as)

e Advantage: intuitive and easy to analyze

e Disadvantage: difficult to handle large or continuous state or action spaces
Two aspects: 1) storage; 2) generalization ability
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Motivating examples: from table to function

Consider an example:
e There are n states: s1,...,Sn.
e The state values are vx(s1),...,vx(Sn), where 7 is a given policy.

e 1 is very large!

We hope to use a simple curve to approximate these values.

Shiyu Zhao 5/69



Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

o(s) =as+b

Shiyu Zhao 6/69



Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

o(s) =as+b

Suppose the equation of the straight line is

(s, w) =as+b

Shiyu Zhao



Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

o(s) =as+b

Suppose the equation of the straight line is

(s, w) =as+b=[s,1] “ =¢" (s)w
~— | b
¢ (8) =

Shiyu Zhao



Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

o(s) =as+b

Suppose the equation of the straight line is

(s, w) =as+b=[s,1] “ =¢" (s)w
~— | b
¢ (8) =

w is the parameter vector; ¢(s) the feature vector of s; 9(s,w) is linear in w.
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Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

e When the values are represented by a table, we can directly read the value in
the table.

e When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

s (s, w)
= w s

function

For example, s — ¢(s) — ¢ (s)w = (s, w)
- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.
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Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

e When the values are represented by a table, we can directly rewrite the value

in the table.

e When the values are represented by a function, we must update w to change

the values indirectly.

- How to update w will be addressed in detail later.
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Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

o(s) B(s) .

update 9(s3)

ST Sy S3 s \ s1 S2 3 s

(a) Tabular method

update w for s3 /

_—) | TeRe-he--i-

S| Sy 83 s | S| Sy 83 s

(b) Function method
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Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

o(s) B(s) .

update 9(s3)

(a) Tabular method

update w for s3 /

_—) | TeRe-he--i-

S1 8o 83 s | S1 So 83 s
(b) Function method

Benefit: generalization ability. When we update 9(s, w) by changing w, the
values of the neighboring states are also changed.
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The benefits are not free. It comes with a cost: the state values can not be
represented accurately. This is why this method is called approximation.
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Motivating examples: from table to function

The benefits are not free. It comes with a cost: the state values can not be
represented accurately. This is why this method is called approximation.

We can fit the points more precisely using high-order curves:

a
o(s,w)=as’+bs+c=[s°s1]| b | =¢" (s)w.
——
¢T(s) L €

w
In this case,

e The dimensions of w and ¢(s) increase; the values may be fitted more
accurately.

e Although 9(s,w) is nonlinear in s, it is linear in w. The nonlinearity is
contained in ¢(s).
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Motivating examples: from table to function

Quick summary:
e Idea: Approximate the state and action values using parameterized
functions: 9(s,w) = vx(s) where w € R™ is the parameter vector.
e Key difference: How to retrieve and change the value of v(s)
e Advantages:
1) Storage: The dimension of w may be much smaller than |S|.

2) Generalization: When a state s is visited, the parameter w is updated
so that the values of some other unvisited states can also be updated.
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Objective function

Introduce in a more formal way:

e Let vr(s) and 0(s,w) be the true state value and the estimated state value,

respectively.

e Our goal is to find an optimal w so that ©(s,w) can best approximate v~ (s)

for every s.

e This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.
e The first step is to define an objective function.

e The second step is to derive algorithms for optimizing the objective function.
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Objective function

The objective function is

J(w) = E[(vx(S) — 9(S,w))?].
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Objective function

The objective function is
J(w) = E[(vx(S) — 9(S, w))’]-

e Our goal is to find the best w that can minimize J(w).

e The expectation is with respect to the random variable S € S.
What is the probability distribution of S7
- This is new. We have not discussed the probability distribution of states
so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 /69



Objective function

The first way is to use a uniform distribution.
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Objective function

The first way is to use a uniform distribution.

e That is to treat all the states to be equally important by setting the
probability of each state as 1/|S].

e In this case, the objective function becomes
" 1 .
J(w) = E[(vx(S) — (S, w))*] = 5] > (wn(s) = o(s,w))*.
seS
e Drawback:

- The states may not be equally important. For example, some states may
be rarely visited by a policy. Hence, this way does not consider the real
dynamics of the Markov process under the given policy.
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Objective function

The second way is to use the stationary distribution.

e Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

e Let {d(s)}ses denote the stationary distribution of the Markov process
under policy 7. By definition, d-(s) >0 and > _sdr(s) = 1.

e The objective function can be rewritten as
J(w) = E[(vx(S) = 0(S,w))*] = Y _ dr(s) (vn(s) — 0(s,w))*.
sES
This function is a weighted squared error.

e Since more frequently visited states have higher values of d(s), their weights

in the objective function are also higher than those rarely visited states.
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Objective function — Stationary distribution

More explanation about stationary distribution:
e Distribution: Distribution of the state
e Stationary: Long-run behavior

e Summary: after the agent runs a long time following a policy, the probability
that the agent is at any state can be described by this distribution.

Remarks:

e Stationary distribution is also called steady-state distribution, or limiting

distribution.
e |t is critical to understand the value function method.

e |t is also important for the policy gradient method in the next lecture.
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Objective function - Stationary distribution

Illustrative example:

e Given a policy shown in the figure.
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episode generated by .
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Objective function - Stationary distribution

Illustrative example:

e Given a policy shown in the figure.

e Let n,(s) denote the number of times that s has been visited in a very long
episode generated by .

e Then, d(s) can be approximated by

0.8

0.6

Percentage of each state visited
o
=

0 200 400 600 800 1000
Step index

Figure: Long-run behavior of an e-greedy policy with e = 0.5.
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Objective function - Stationary distribution

The converged values can be predicted because they are the entries of d:

df = dLP:
For this example, we have P, as
0.3 0.1 06 0O
01 03 0 0.6

01 0 03 06
0 01 01 08

Pr=
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The converged values can be predicted because they are the entries of d:

df = dLP:
For this example, we have P, as
0.3 0.1 06 0O
01 03 0 0.6

01 0 03 06
0 01 01 08

Pr=

It can be calculated that the left eigenvector for the eigenvalue of one is

T
dr ::[0.0345,0.1084,0.1330,0.7241]
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Objective function - Stationary distribution

The converged values can be predicted because they are the entries of d:
df = df Pr
For this example, we have P, as

03 01 06 O
01 03 0 0.6
01 0 03 06
0 01 01 08

Pr=

It can be calculated that the left eigenvector for the eigenvalue of one is

T
dr ::[0.0345,0.1084,0.1330,0.7241]

A comprehensive introduction can be found in my book.
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m Optimization algorithms
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Optimization algorithms

While we have the objective function, the next step is to optimize it.

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:

Shiyu Zhao 22 /69



Optimization algorithms

While we have the objective function, the next step is to optimize it.

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:

Wht1 = Wk — gV J (W)

Shiyu Zhao 22 /69



Optimization algorithms

While we have the objective function, the next step is to optimize it.

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:
Wht1 = Wk — gV J (W)
The true gradient is

Vwd(w) = VuE[(vr(S) — (S, w))’]

Shiyu Zhao 22 /69



Optimization algorithms

While we have the objective function, the next step is to optimize it.

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:
Wht1 = Wk — gV J (W)
The true gradient is

Vwd(w) = VuE[(vr(S) — (S, w))’]
= B[V (v (S) — (S, w))?]

Shiyu Zhao 22 /69



Optimization algorithms

While we have the objective function, the next step is to optimize it.

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:
Wht1 = Wk — gV J (W)
The true gradient is

Vwd(w) = VuE[(vr(S) — (S, w))’]
= B[V (v (S) — (S, w))?]
= 2E[(v(S) — 9(S, w))(— Vuwd(S, w))]

Shiyu Zhao 22 /69



Optimization algorithms

While we have the objective function, the next step is to optimize it
e To minimize the objective function J(w), we can use the gradient-descent

algorithm:
Wg+1 = Wk — akaJ(wk)

The true gradient is
Vil (w) = VuE[(vx(S) — (S, w))’]
E[V w(vw(S) (S, ))2]
= 2E[(vx(S5) —
—2E[(vx(S) — f;(S,w))Vu,f)(S, w)]
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Optimization algorithms

While we have the objective function, the next step is to optimize it

e To minimize the objective function J(w), we can use the gradient-descent

algorithm:
Wht1 = Wk — gV J (W)

The true gradient is
Vil (w) = VuE[(vx(S) — (S, w))’]
E[V w(vw(S) (S, ))2]
= 2E[(vx(S5) —
—2E[(vx(S) — f;(S,w))Vu,f)(S, w)]

The true gradient above involves the calculation of an expectation

22 /69
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Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

Wit1 = Wi + axE[(vx(S) — 9(S, w)) Vw0 (S, w)]
U

Wit1 = we + (Ve (se) — D(s¢, we))Vwd(Se, we)

where s; is a sample of S. Here, 2a; is merged to .
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Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

Wit1 = Wi + axE[(vx(S) — 9(S, w)) Vw0 (S, w)]
U

Wit1 = we + (Ve (se) — D(s¢, we))Vwd(Se, we)

where s; is a sample of S. Here, 2a; is merged to .

e The samples are expected to satisfy the stationary distribution. In practice,
they may not satisfy.

e This algorithm is not implementable because it requires the true state value

v, Which is the unknown to be estimated.

e We can replace v, (s¢) with an approximation so that the algorithm is
implementable.
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In particular,
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Optimization algorithms

In particular,

e First, Monte Carlo learning with function approximation
Let g: be the discounted return starting from s; in the episode. Then, g: can

be used to approximate v, (st). The algorithm becomes

W1 = Wi + e (ge — 0(s¢, )V 0(Se, we).

e Second, TD learning with function approximation
By the spirit of TD learning, r¢++1 + Y0(St+1,w:) can be viewed as an
approximation of v (s¢). Then, the algorithm becomes

Wil = Wt + O [Tt+1 aF ’Y’LAI(St+1,IUt) — @(st,wt)] Vwﬁ(st, wt).
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Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function 9(s, w) that is differentiable in w. Initial parameter wy.

Goal: Learn the true state values of a given policy 7.

For each episode {(s¢,Tt+1, St+1)}¢ generated by 7, do
For each sample (s¢, 7441, S¢+1), do
In the general case,
Wi1 = Wi + ot [Te41 + YO(St41, we) — 0(st, we)] Va0(se, wy)
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Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function 9(s, w) that is differentiable in w. Initial parameter wy.
Goal: Learn the true state values of a given policy 7.

For each episode {(s¢,Tt+1, St+1)}¢ generated by 7, do
For each sample (s¢, 7441, S¢+1), do
In the general case,
Wi1 = Wi + ot [Te41 + YO(St41, we) — 0(st, we)] Va0(se, wy)
In the linear case,
wip1 = we + o [reg1 + 70T (ser1)we — T (se)we] d(se)
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Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function 9(s, w) that is differentiable in w. Initial parameter wy.
Goal: Learn the true state values of a given policy 7.

For each episode {(s¢,Tt+1, St+1)}¢ generated by 7, do
For each sample (s¢, 7441, S¢+1), do
In the general case,
Wi1 = Wi + ot [Te41 + YO(St41, we) — 0(st, we)] Va0(se, wy)
In the linear case,
wip1 = we + o [reg1 + 70T (ser1)we — T (se)we] d(se)

It can only estimate the state values of a given policy, but it is important to
understand other algorithms introduced later.
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Algorithm for state value estimation

m Selection of function approximators
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Selection of function approximators

An important question that has not been answered: How to select the function

(s, w)?
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and will see again in the illustrative examples later.
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Selection of function approximators

An important question that has not been answered: How to select the function
(s, w)?

e The first approach, which was widely used before, is to use a linear function
i(s,w) = " (s)w

Here, ¢(s) is the feature vector, which can be a polynomial basis, Fourier
basis, ... (see my book for details). We have seen in the motivating example
and will see again in the illustrative examples later.

e The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is ©(s, w), and the parameter is w.
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Linear function approximation

In the linear case where 9(s,w) = ¢ (s)w, we have
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Vwd(s,w) = ¢(s).
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Linear function approximation

In the linear case where 9(s,w) = ¢ (s)w, we have
Vuwb(s,w) = ¢(s).
Substituting the gradient into the TD algorithm
W1 = Wt + 0 [Te1 + YO(St41, we) — 0V(Se, wt)] Vaw0(Se, we)

yields

Shiyu Zhao 28 /69



Linear function approximation

In the linear case where 9(s,w) = ¢ (s)w, we have
Vuwb(s,w) = ¢(s).
Substituting the gradient into the TD algorithm
W1 = Wt + 0 [Te1 + YO(St41, we) — 0V(Se, wt)] Vaw0(Se, we)
yields

Wi+1 = Wt + ot [Tt+1 aF ’V(/>T(St+1)wt - ¢T(5t)wt] é(st),
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Linear function approximation

In the linear case where 9(s,w) = ¢ (s)w, we have
V(s w) = ¢(s).
Substituting the gradient into the TD algorithm
Wit1 = W + 0 [Tep1 + Y0(Se41, we) — (8¢, we)] Vawd(se, we)
yields
T T
Wi4+1 = W + Qi [Tt+1 + v (St41)ws — @ (Sz)’wt]qb(st),

which is the algorithm of TD learning with linear function approximation.
It is called TD-Linear in our course.
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Linear function approximation

e Disadvantages of linear function methods:

- Difficult to select appropriate feature vectors.
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- Difficult to select appropriate feature vectors.

e Advantages of linear function methods:

- The theoretical properties of the TD algorithm in the linear case can be
much better understood than in the nonlinear case.
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Linear function approximation

e Disadvantages of linear function methods:

- Difficult to select appropriate feature vectors.

e Advantages of linear function methods:
- The theoretical properties of the TD algorithm in the linear case can be
much better understood than in the nonlinear case.

- Linear function approximation is still powerful in the sense that the tabular

representation is a special case of linear function representation.
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Linear function approximation

We next show that tabular representation is a special case of linear function

representation. Hence, the tabular and function representations are unified!
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We next show that tabular representation is a special case of linear function

representation. Hence, the tabular and function representations are unified!

e Consider a special feature vector for state s:
¢(s) = es € RI°!,

where e, is a vector with the sth entry as 1 and the others as 0.
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Linear function approximation

We next show that tabular representation is a special case of linear function
representation. Hence, the tabular and function representations are unified!
e Consider a special feature vector for state s:

¢(s) = es € RI°!,

where e, is a vector with the sth entry as 1 and the others as 0.

e In this case,

8(s,w) = ¢7 (s)w = eFw = w(s),

where w(s) is the sth entry of w.
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Linear function approximation

Recall that the TD-Linear algorithm is

W41 = Wt + ot [Tt+1 + 'quT(sf,H)wt - ¢T(.9t)11;t]¢(st),
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Linear function approximation

Recall that the TD-Linear algorithm is
T 7
W41 = Wt + ot [Tt+1 +v¢" (St+1)we — ¢ (sf,)wt]¢(sf,),
e When ¢(s¢) = es, the above algorithm becomes
Wep1 = Wi + i (Te41 + ywi(Se+1) — wi(se)) €s, -

This is a vector equation that merely updates the s:th entry of w.
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Linear function approximation

Recall that the TD-Linear algorithm is
T 7
W41 = Wt + ot [Tt+1 +v¢" (St+1)we — ¢ (sf,)wt]¢(sf,),
e When ¢(s¢) = es, the above algorithm becomes
Wep1 = Wi + i (Te41 + ywi(Se+1) — wi(se)) €s, -

This is a vector equation that merely updates the s:th entry of w.

T
St

e Multiplying e;, on both sides of the equation gives
wt+1(5t) = wt(St) + o (Tt+1 ol ’th(st+1) - wt(St)) 5

which is exactly the tabular TD algorithm (which is called TD-Table here).
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Linear function approximation

Recall that the TD-Linear algorithm is
T 7
W1 = Wy + e [Teg1 + 79 (se41)we — ¢ (se)we] P(s),
e When ¢(s¢) = es, the above algorithm becomes
Wep1 = Wi + i (Te41 + ywi(Se+1) — wi(se)) €s, -

This is a vector equation that merely updates the s:th entry of w.

T
St

e Multiplying e;, on both sides of the equation gives
wt+1(5t) = wt(St) + o (Tt+1 ol ’th(st+1) - wt(St)) 5

which is exactly the tabular TD algorithm (which is called TD-Table here).

Summary: TD-Linear becomes TD-Table if we select a special feature vector.
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[llustrative examples

Consider a 5x5 grid-world example:
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e Given a policy: m(als) = 0.2 for any s,a

e Our aim is to estimate the state values of this policy (policy evaluation
problem).

Shiyu Zhao 33/69



[llustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

4|+ ]+ ]+
+ 4| ]
S =S I T
4  EIEZE:
IS ENE

e Given a policy: m(als) = 0.2 for any s,a
e Our aim is to estimate the state values of this policy (policy evaluation
problem).

e There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.
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[llustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

4|+ ]+ ]+
+ 4| ]
S =S I T
4  EIEZE:
IS ENE

Given a policy: 7(a|s) = 0.2 for any s, a
e Our aim is to estimate the state values of this policy (policy evaluation
problem).

There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

Set Tforbidden = T'boundary = =1, Ttarget — 1, and W= 0.9.
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[llustrative examples

Ground truth:

e The true state values and the 3D visualization

44+ 4+ |+ |+ 1| -38 | -38|-36|-31]-32
2| 4 [ 4 | 4 2| -38 | -38 | -38 | -3.1 | 2.9
s 4+ | + [ + | + 3| -36 | -39 | -84 | 3.2 | 29
414+ + |+ |+ 4/ -39 | 36 | -84 | 29 | -32
s| 4+ B 4+ | 4+ | + 5| -45 | -42 | -34 | -34 | 35
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[llustrative examples

Ground truth:

e The true state values and the 3D visualization

1 2 3 4 5 1 2 3 4 5 True state value

44+ 4+ |+ |+ 1| 38| -38|-36|-31]-32

2
2| 4 (BSR4 | 4 2| 38 [ -38 | 38| -31 | 29 5
sl 4 | 4+ P 4|+ 3 36| -39 | 34| 32| 29 .
414+ + |+ |+ 4/ -39 | 36 | -84 | 29 | -32 ‘ 2

4

s| 4+ B 4 | 4+ | + 5| -45 | 42 | -34 | 34| 35 mw,:
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[llustrative examples

Ground truth:

e The true state values and the 3D visualization

True state value

44+ 4+ |+ |+ 1| -38 | -38|-36|-31]-32

2| 4 (BSR4 | 4 2| 38 [ -38 | 38 | -3.1 | 29 5

sl + | + [ 4+ | + 3| -36 | -39 |34 32| -29 .

414+ + |+ |+ 4 -39 | -86 | -84 | 29 | 3.2 ‘ ?

s| + B |+ |+ 5| -45 [ 42 | 34 | -34 | 35 mw: l‘

Experience samples:
e 500 episodes were generated following the given policy.

e Each episode has 500 steps and starts from a randomly selected state-action

pair following a uniform distribution.
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[llustrative examples

TD-Table:
e For comparison, the results by the tabular TD algorithm (called TD-Table
here):
4
TO-Table _
o
@
S 3t
3
s |\
s2p  \
g7\
g AN
o1
il
2]
0
0 100 200 300 400 500

Episode index
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[llustrative examples

TD-Linear:

e How to apply the TD-Linear algorithm?
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- Feature vector selection:
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[llustrative examples

TD-Linear:

e How to apply the TD-Linear algorithm?

- Feature vector selection:

- In this case, the approximated state value is

w1

IA)(S,UJ) = ¢T(S)w = [LIay] w2 = w1 + w2 + w3y.
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[llustrative examples

TD-Linear:

e How to apply the TD-Linear algorithm?

- Feature vector selection:

- In this case, the approximated state value is

w1
IA)(S,UJ) = ¢T(S)w = [LIay] w2 = w1 + w2 + w3y.

w3

Remark: ¢(s) can also be defined as ¢(s) = [x, %, 1]7, where the order of
the elements does not matter.
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[llustrative examples

TD-Linear:
e Results by the TD-Linear algorithm:

True state value

TD-Linear

row
column column

Shiyu Zhao

State value error (RMSE)

=

w

o

——TD-Linear: 2=0.0005]

100 200 300 400 500
Episode index
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[llustrative examples

e Results by the TD-Linear

algorithm:

TD-Linear

column

~ =

State value error (RMSE)

o

——TD-Linear: 2=0.0005]

°

100 200 300 400 500
Episode index

e The trend is right, but there are errors due to limited approximation ability!

e We are trying to use a plane to approximate a non-plane surface!



[llustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.
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and hence more parameters.

e For example, we can consider

o(s) = [1,z,y,2°, 4, zy]" € R®,
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[llustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

e For example, we can consider
o(s) = [L,z,y,2°, v, 2y]" € R®.
In this case,
o(s,w) = ¢ (s)w = w1 + wax + w3y + waz”® + wsy® + wezy

which corresponds to a quadratic surface.
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[llustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

e For example, we can consider
o(s) = [L,z,y,2°, v, 2y]" € R®.
In this case,
o(s,w) = ¢ (s)w = w1 + wax + w3y + waz”® + wsy® + wezy

which corresponds to a quadratic surface.

e We can further increase the dimension of the feature vector:

o(s) = [1,z,y,2%, v, zy, 2%, 4%, 2%y, 2y®]" € R'.
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[llustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

TO-Linear

——TD-Linear: 4=0.0005

\

v . 5 \\§_¥

State value error (RMSE)

0 100 200 300 400 500
Episode index

The above figure: ¢(s) € RS
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[llustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

TO-Linear 5
@
w \
‘ 24‘
z |
53f|
s |
gZ \
s < 3
! p @
2 g1p \
&l \\g_g
:
0 100 200 300 400 500

Episode index

The above figure: ¢(s) € RS

TO-Linear s
—
w3
g f
Zoasf
2 2|

. 5 [\
15f |

3 E \

1 ° 1
g
Hos

. . ° 0

ow 2 o 100 200 300 400 500
d column Episode index

The above figure: ¢(s) € R1C
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[llustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

TO-Linear 5
@
w \
? 24‘
z |
53f|
s ||
Sat|
; - =R
! S @
2 g1p \
&l \\g_g
‘
0 100 200 300 400 500

Episode index

The above figure: ¢(s) € RS

TO-Linear 35
—
@ 3
g f
Zoasf
2 2|

. 5 [\
FEEI A

3 E \

1 ° 1
g
Hos

. . ° 0

ow 2 o 100 200 300 400 500
d column Episode index

The above figure: ¢(s) € R0

More examples and features are given in the book.
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m Summary of the story
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Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.
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The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is
W1 = Wi + @z (vr(st) — 0(8¢, we)) Vwd(Se, we)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:
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Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:
J(w) = E[(vx(S) — (S, w))?]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is
W1 = Wi + @z (vr(st) — 0(8¢, we)) Vwd(Se, we)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:
Wit1 = Wi + g [Tep1 + Y0(Se41, we) — O(se, we)] Vawd(se, we)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.
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Algorithm for state value estimation

m Theoretical analysis (optional)
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Theoretical analysis (optional)

e The algorithm
Wiy1 = Wi + ¢ [Tep1 + YO(Se41, we) — O(Se, we)] VwO(Se, we)
does not minimize the following objective function:

J(w) = E[(v2(5) — 9(S, w))’]
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Theoretical analysis (optional)

Different objective functions:
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e Objective function 1: True value error

Je(w) = E[(vx(S) = (S, w))*] = [[0(w) — vx| D
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Theoretical analysis (optional)

Different objective functions:

e Objective function 1: True value error
I (w) = E[(vx(S) — (S, w))*] = [|6(w) — vx||D
e Objective function 2: Bellman error
Jep(w) = [|0(w) = (rx + YPed(w))|p = [|19(w) — Tr(d(w))| D,

where T (z) = rx + vPrx
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where M is a projection matrix.
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Theoretical analysis (optional)

Different objective functions:

e Objective function 1: True value error
I (w) = E[(vx(S) — (S, w))*] = [|6(w) — vx||D
e Objective function 2: Bellman error
Jep(w) = [|0(w) = (rx + YPed(w))|p = [|19(w) — Tr(d(w))| D,

where T (z) = rx + vPrx

o Objective function 3: Projected Bellman error
JppE(w) = [[8(w) — MTx(8(w))||b,

where M is a projection matrix.
- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.
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Sarsa with function approximation
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Sarsa with function approximation

So far, we merely considered state value estimation. That is
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Sarsa with function approximation

So far, we merely considered state value estimation. That is

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is

W1 = Wy + [7‘/,+1 + vG(St+1, at+1,w) — G(st, ar, UM,)} Vwq(se, ar, wy).
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Sarsa with function approximation

So far, we merely considered state value estimation. That is

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is
W1 = Wi + o [7’f,+1 + vG(St+1, at+1,w) — G(st, ar, w,,)} Vwq(st, a, we).

This is the same as the algorithm we introduced previously in this lecture

except that v is replaced by g.
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Sarsa with function approximation

To search for optimal policies, we can combine policy evaluation and policy

improvement.
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Sarsa with function approximation

To search for optimal policies, we can combine policy evaluation and policy

improvement.

Pseudocode: Sarsa with function approximation

Initialization: Initial parameter wq. Initial policy mo. oy = o > 0 for all t. € € (0, 1).
Goal: Learn an optimal policy to lead the agent to the target state from an initial state sg.
For each episode, do
Generate ag at sg following 7o (s0)
If s (t =0,1,2,...) is not the target state, do
Collect the experience sample (7¢41,S¢+1,a¢+1) given (s¢,at): generate
T't4+1, St+1 by interacting with the environment; generate a1 following 7¢(s¢41).
Update g-value (update parameter):
Wep1 = Wt + ot |Teg1 +YG(St41, ar1, we) — (8¢, ag, wt)] Vwi(st,at, we)
Update policy:
miri(alst) =1 — 5 (MA(se)| — 1) if a = argmaxae.a(sy) (565 @, wig)
miy1(alsy) = m otherwise
St <= St4+1, At < At41
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Sarsa with function approximation

Illustrative example:

e Sarsa with linear function approximation: (s, a,w) = ¢% (s, a)w

o V= 0.9, e=0.1, Tboundary = Tforbidden = —10, Ttarget = 1, o = 0.001.
0 1 2 3 4 5
g f ,Wr“r-%ihwwv yﬂ,« = T )
& -500 I
g
& -1000 o 1 ! 1 I
0 100 200 300 400 500
3 l [:> ‘I
£ 500
2
Q£ il @ +— (.
8
: ot ) !
& o Uinllatpih b s o
0 100 200 300 400 500
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For details, please see the book.
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Similar to Sarsa, tabular Q-learning can also be extended to the case of value

function approximation.
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Q-learning with function approximation

Similar to Sarsa, tabular Q-learning can also be extended to the case of value

function approximation.

The g-value update rule is

Wil = Wt + {I’/,+1 +~v max  §(St+1,a,wt) — 4(St, at, ut)] Vwi(st,at,wt),
a€A(s¢41)

which is the same as Sarsa except that G(s¢+1, at+1,w:) is replaced by

MaXue A(syyq) §(8t+1, @, We).
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Q-learning with function approximation

Pseudocode: Q-learning with function approximation (on-policy version)

Initialization: Initial parameter wq. Initial policy mo. ay = o > 0 for all t. € € (0, 1).
Goal: Learn an optimal path to lead the agent to the target state from an initial state sq.
For each episode, do
If s (t =0,1,2,...) is not the target state, do

Collect the experience sample (a¢, 7141, St+1) given s;: generate a; following

¢ (s¢); generate 7441, s¢41 by interacting with the environment.

Update value (update parameter):

W41 = wr +  a {Tt+l + YMaXae A(syyq) G(st41,a,wy) —

Q(St,ahwt)] Vw(st,at, ws)

Update policy:

mit1(alsy) =1 — ﬁﬂ/\(stﬂ — 1) if a = argmax,e a(sy) 4(5t, @ Wet1)
miy1(alse) = TA] Otherwise
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Q-learning with function approximation

Illustrative example:

e Q-learning with linear function approximation: §(s,a,w) = ¢ (s, a)w

e = Ogv €= Oly Tboundary = Tforbidden = —10, Ttarget = lv a = 0.001.
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Deep Q-learning or deep Q-network (DQN):
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Deep Q-learning

Deep Q-learning or deep Q-network (DQN):

e One of the earliest and most successful algorithms that introduce deep neural
networks into RL.

e The role of neural networks is to be a nonlinear function approximator.

e Different from the following algorithm:
Wil = Wt + Q¢ {Twl +v max §(st+1,a,wt) — é(St,duwt)] Vwd(st, at, wt)
a€A(s¢41)

because of the way of training a network.
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Deep Q-learning

Deep Q-learning aims to minimize the objective function/loss function:
Wit1 =Wt + it [7’t+| +v max §(Se+1,a,we) — G(St, at, wf)] Vwq(st, at, ws)
a€A(st41)

4

J(w) =E

2
(R+~,/ max §(S’, a,w) — (j(S,A,lU)) :|

a€A(S’)

where (S, A, R, S") are random variables.
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How to minimize the objective function? Gradient-descent!
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How to minimize the objective function? Gradient-descent!
e How to calculate the gradient of the objective function? Tricky!

e That is because, in this objective function

J(w) =

2
(R‘FW e q(s’, aw)—Q(SAw)) ]

the parameter w not only appears in §(S, A, w) but also in

=R S’
Y + v g q(S’, a, w)

Shiyu Zhao 56 /69



Deep Q-learning

How to minimize the objective function? Gradient-descent!
e How to calculate the gradient of the objective function? Tricky!

e That is because, in this objective function

J(w) =

2
(R‘FW e q(s’, aw)—Q(SAw)) ]

the parameter w not only appears in §(S, A, w) but also in

=R S’
Y + v g q(S’, a, w)

e Since the optimal a depends on w,

Vwy #~ max Vd(S', a,w)
a€A(S")
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Deep Q-learning

How to minimize the objective function? Gradient-descent!
e How to calculate the gradient of the objective function? Tricky!

e That is because, in this objective function

Iw) = | (Rt g a(5'0.) — (5. 4, w>)2],

€A(S")

the parameter w not only appears in §(S, A, w) but also in

=R S’
Y + v g q(S’, a, w)

e Since the optimal a depends on w,

Vwy #~ max Vd(S', a,w)
a€A(S")

e To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.
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To do that, we can introduce two networks.
e One is a main network representing §(s, a, w)
e The other is a target network ¢(s, a, wr).

The objective function in this case degenerates to

J =

2
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where wr is the target network parameter.
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Deep Q-learning

To do that, we can introduce two networks.
e One is a main network representing §(s, a, w)
e The other is a target network ¢(s, a, wr).

The objective function in this case degenerates to

J =

2
(R—!—’y g}ﬁ);/ q(S’, a,wr) —4(s, A w)) ] ,

where wr is the target network parameter.

When wr is fixed, the gradient of J can be easily obtained as

Vwd =E |:(R+'y rrJlL‘a(Lx/ §(S’, a,wr) — §(S, A, w)) VVLU(?(S.,A,’U)):| .
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Deep Q-learning

To do that, we can introduce two networks.
e One is a main network representing §(s, a, w)
e The other is a target network ¢(s, a, wr).

The objective function in this case degenerates to

J =

2
) — §(S, A
(R+7 me, q(S', a,wr) — 4(S, ,w)> ]

where wr is the target network parameter.

When wr is fixed, the gradient of J can be easily obtained as

VoJ =E {(R—i—’y rria(tx q(S’, a,wr) — (j(S,A.,w)) Vw(j(S.,A,w)} .

e The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.
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Deep Q-learning

To do that, we can introduce two networks.
e One is a main network representing §(s, a, w)
e The other is a target network ¢(s, a, wr).

The objective function in this case degenerates to

J =

2
R S, r) — (S, A, ,
( o pe 4(S", a, wr) — 4(S, w)) ]
where wr is the target network parameter.

When wr is fixed, the gradient of J can be easily obtained as

VoJ =E {(R—i—’y rria(tx q(S’, a,wr) — (j(S,A.,w)) Vw(j(S.,A,w)} .

e The basic idea of deep Q-learning is to use the gradient-descent algorithm to
minimize the objective function.

e However, such an optimization process evolves some important techniques
that deserve special attention.
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Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.
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Technique 1: Two networks, a main network and a target network.
Why is it used?

e The mathematical reason has been explained when we calculate the gradient.
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Implementation details:
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e In every iteration, we draw a mini-batch of samples {(s,a,r,s’)} from the
replay buffer (will be explained later).

Shiyu Zhao 58 /69



Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.
Why is it used?

e The mathematical reason has been explained when we calculate the gradient.
Implementation details:

e Let w and wr denote the parameters of the main and target networks,
respectively. They are set to be the same initially.

e In every iteration, we draw a mini-batch of samples {(s,a,r,s’)} from the
replay buffer (will be explained later).

e For every (s,a,r,s’), we can calculate the desired output as

=r+v max §(s,a,w
yr ’YaE.A(s’)q( T)

Therefore, we obtain a mini-batch of data:

{(57 a, yT)}
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Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.
Why is it used?

e The mathematical reason has been explained when we calculate the gradient.
Implementation details:

e Let w and wr denote the parameters of the main and target networks,
respectively. They are set to be the same initially.

e In every iteration, we draw a mini-batch of samples {(s,a,r,s’)} from the
replay buffer (will be explained later).

e For every (s,a,r,s’), we can calculate the desired output as

=r+v max §(s,a,w
yr ’YaE.A(s’)q( T)

Therefore, we obtain a mini-batch of data:
{(57 a7 yT)}

e Use {(s,a,yr)} to train the network so as to minimize (yr — 4(s, a,w))?.

Shiyu Zhao 58 /69



Deep Q-learning - Experience replay

Technique 2: Experience replay
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e After we have collected some experience samples, we do NOT use these

samples in the order they were collected.
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Deep Q-learning - Experience replay

Technique 2: Experience replay
Question: What is experience replay?
Answer:

e After we have collected some experience samples, we do NOT use these

samples in the order they were collected.
e Instead, we store them in a set, called replay buffer B = {(s,a,r,s’)}

e Every time we train the neural network, we can draw a mini-batch of random
samples from the replay buffer.
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Deep Q-learning - Experience replay

Technique 2: Experience replay
Question: What is experience replay?

Answer:

e After we have collected some experience samples, we do NOT use these

samples in the order they were collected.
e Instead, we store them in a set, called replay buffer B = {(s,a,r,s’)}

e Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

e The draw of samples, or called experience replay, should follow a uniform

distribution.
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Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does
the replay must follow a uniform distribution?
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Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does
the replay must follow a uniform distribution?
Answer: The answers lie in the objective function.

J =
€A(S")

<R+'y max (S’ a,w) — (S,A,w))2]
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J =
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R~ p(R|S,A),S" ~p(S’|S,A): R and S are determined by the system
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(S, A) ~d: (S,A) is an index and treated as a single random variable

The distribution of the state-action pair (S, A) is assumed to be uniform.
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Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does
the replay must follow a uniform distribution?
Answer: The answers lie in the objective function.

J =

<R+v e (', a,w) — 4(S, A w)f]

R~ p(R|S,A),S" ~p(S’|S,A): R and S are determined by the system
model.

(S, A) ~d: (S,A) is an index and treated as a single random variable

The distribution of the state-action pair (S, A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.
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Deep Q-learning - Experience replay

Answer (continued):

e However, the samples are not uniformly collected because they are generated

consequently by certain policies.
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Deep Q-learning - Experience replay

Answer (continued):

e However, the samples are not uniformly collected because they are generated
consequently by certain policies.

e To break the correlation between consequent samples, we can use the
experience replay technique by uniformly drawing samples from the replay

buffer.
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Deep Q-learning - Experience replay

Answer (continued):

e However, the samples are not uniformly collected because they are generated
consequently by certain policies.

e To break the correlation between consequent samples, we can use the
experience replay technique by uniformly drawing samples from the replay
buffer.

e This is the mathematical reason why experience replay is necessary and why

the experience replay must be uniform.
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Deep Q-learning - Experience replay

Revisit the tabular case:

e Question: Why does not tabular Q-learning require experience replay?
- Answer: Because it does not require any distribution of S or A.

e Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function
J(w) = E[«], where E is for all (S, A).

- The tabular case aims to solve a set of equations for all (s,a) (Bellman
optimality equation), whereas the deep case aims to optimize a scalar

objective function.
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- Answer: Because we need to define a scalar objective function
J(w) = E[«], where E is for all (S, A).

- The tabular case aims to solve a set of equations for all (s,a) (Bellman
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Deep Q-learning - Experience replay

Revisit the tabular case:

e Question: Why does not tabular Q-learning require experience replay?
- Answer: Because it does not require any distribution of S or A.

e Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function
J(w) = E[«], where E is for all (S, A).

- The tabular case aims to solve a set of equations for all (s,a) (Bellman
optimality equation), whereas the deep case aims to optimize a scalar
objective function.

e Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)
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Deep Q-learning

Pseudocode: Deep Q-learning (off-policy version)

Initialization: A main network and a target network with the same initial parameter.
Goal: Learn an optimal target network to approximate the optimal action values from the

experience samples generated by a given behavior policy 7.

Store the experience samples generated by ;, in a replay buffer B = {(s,a,r,s’)}

For each iteration, do
Uniformly draw a mini-batch of samples from B
For each sample (s,a,r,s’), calculate the target value as yr = r +
Y Max,e (sl G(s’, a,wr), where wr is the parameter of the target network
Update the main network to minimize (yr — §(s, a, w))? using the mini-batch of
samples

Set wpr = w every C iterations
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For each iteration, do
Uniformly draw a mini-batch of samples from B
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Set wpr = w every C iterations

Remarks:

e Why no policy update?
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Deep Q-learning

Pseudocode: Deep Q-learning (off-policy version)

Initialization: A main network and a target network with the same initial parameter.
Goal: Learn an optimal target network to approximate the optimal action values from the

experience samples generated by a given behavior policy 7.

Store the experience samples generated by ;, in a replay buffer B = {(s,a,r,s’)}

For each iteration, do
Uniformly draw a mini-batch of samples from B
For each sample (s,a,r,s’), calculate the target value as yr = r +
Y Max,e (sl G(s’, a,wr), where wr is the parameter of the target network
Update the main network to minimize (yr — §(s, a, w))? using the mini-batch of
samples

Set wpr = w every C iterations

Remarks:

Shiyu Zhao

Why no policy update?
The network input and output are different from the DQN paper.
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Deep Q-learning

[llustrative example:
e We need to learn optimal action values for every state-action pair.

e Once the optimal action values are obtained, the optimal greedy policy can

be obtained immediately.
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Deep Q-learning

Setup:
e One single episode is used to train the network.

This episode is generated by an exploratory behavior policy shown in Fig. (a).

e The episode only has 1,000 steps! The tabular Q-learning requires 100,000
steps.

A shallow neural network with one single hidden layer is used as a nonlinear

approximator of §(s,a,w). The hidden layer has 100 neurons.

See details in the book.
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Deep Q-learning
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The TD error converges to zero. The state estimation error converges to zero.
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Deep Q-learning
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The TD error converges to zero. The state estimation error converges to zero.
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Deep Q-learning
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Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data
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@ Summary
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This lecture introduces the method of value function approximation.
e First, understand the basic idea.

e Second, understand the basic algorithms.
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