
Lecture 8: Value Function Methods

Shiyu Zhao

Department of Artificial Intelligence

Westlake University

Outline

Chapter 2:
Bellman Equation

Chapter 3:
Bellman Optimality

Equation

Chapter 4:
Value Iteration &
Policy Iteration

Chapter 5:
Monte Carlo

Methods

Chapter 7:
Temporal-Difference

Methods

Chapter 8:
Value Function

Methods

Chapter 9:
Policy Gradient

Methods

Chapter 10:
Actor-Critic

Methods

Chapter 6:
Stochastic

Approximation

with model
to

without model

tabular representation
to

function representation

Fundamental tools

Algorithms/Methods

Chapter 1:
Basic Concepts

policy-based
plus

value-based

Shiyu Zhao 1 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 2 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 3 / 69

Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

• For example, state value:

State s1 s2 · · · sn

Value vπ(s1) vπ(s2) · · · vπ(sn)

• For example, action value:

a1 a2 a3 a4 a5

s1 qπ(s1, a1) qπ(s1, a2) qπ(s1, a3) qπ(s1, a4) qπ(s1, a5)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s9 qπ(s9, a1) qπ(s9, a2) qπ(s9, a3) qπ(s9, a4) qπ(s9, a5)

• Advantage: intuitive and easy to analyze

• Disadvantage: difficult to handle large or continuous state or action spaces.

Two aspects: 1) storage; 2) generalization ability

Shiyu Zhao 4 / 69

Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

• For example, state value:

State s1 s2 · · · sn

Value vπ(s1) vπ(s2) · · · vπ(sn)

• For example, action value:

a1 a2 a3 a4 a5

s1 qπ(s1, a1) qπ(s1, a2) qπ(s1, a3) qπ(s1, a4) qπ(s1, a5)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s9 qπ(s9, a1) qπ(s9, a2) qπ(s9, a3) qπ(s9, a4) qπ(s9, a5)

• Advantage: intuitive and easy to analyze

• Disadvantage: difficult to handle large or continuous state or action spaces.

Two aspects: 1) storage; 2) generalization ability

Shiyu Zhao 4 / 69

Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

• For example, state value:

State s1 s2 · · · sn

Value vπ(s1) vπ(s2) · · · vπ(sn)

• For example, action value:

a1 a2 a3 a4 a5

s1 qπ(s1, a1) qπ(s1, a2) qπ(s1, a3) qπ(s1, a4) qπ(s1, a5)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s9 qπ(s9, a1) qπ(s9, a2) qπ(s9, a3) qπ(s9, a4) qπ(s9, a5)

• Advantage: intuitive and easy to analyze

• Disadvantage: difficult to handle large or continuous state or action spaces.

Two aspects: 1) storage; 2) generalization ability

Shiyu Zhao 4 / 69

Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

• For example, state value:

State s1 s2 · · · sn

Value vπ(s1) vπ(s2) · · · vπ(sn)

• For example, action value:

a1 a2 a3 a4 a5

s1 qπ(s1, a1) qπ(s1, a2) qπ(s1, a3) qπ(s1, a4) qπ(s1, a5)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s9 qπ(s9, a1) qπ(s9, a2) qπ(s9, a3) qπ(s9, a4) qπ(s9, a5)

• Advantage: intuitive and easy to analyze

• Disadvantage: difficult to handle large or continuous state or action spaces.

Two aspects: 1) storage; 2) generalization ability

Shiyu Zhao 4 / 69

Motivating examples: from table to function

So far in this book, state and action values are represented by tables.

• For example, state value:

State s1 s2 · · · sn

Value vπ(s1) vπ(s2) · · · vπ(sn)

• For example, action value:

a1 a2 a3 a4 a5

s1 qπ(s1, a1) qπ(s1, a2) qπ(s1, a3) qπ(s1, a4) qπ(s1, a5)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s9 qπ(s9, a1) qπ(s9, a2) qπ(s9, a3) qπ(s9, a4) qπ(s9, a5)

• Advantage: intuitive and easy to analyze

• Disadvantage: difficult to handle large or continuous state or action spaces.

Two aspects: 1) storage; 2) generalization ability

Shiyu Zhao 4 / 69

Motivating examples: from table to function

Consider an example:

• There are n states: s1, . . . , sn.

• The state values are vπ(s1), . . . , vπ(sn), where π is a given policy.

• n is very large!

• We hope to use a simple curve to approximate these values.

Shiyu Zhao 5 / 69

Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

1

s

v̂(s)

s1 s2 s3 s4 · · · sn

v̂(s) = as+ b

Suppose the equation of the straight line is

v̂(s, w) = as+ b = [s, 1]︸︷︷︸
φT (s)

[
a

b

]
︸ ︷︷ ︸

w

= φT (s)w

w is the parameter vector; φ(s) the feature vector of s; v̂(s, w) is linear in w.

Shiyu Zhao 6 / 69

Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

1

s

v̂(s)

s1 s2 s3 s4 · · · sn

v̂(s) = as+ b

Suppose the equation of the straight line is

v̂(s, w) = as+ b = [s, 1]︸︷︷︸
φT (s)

[
a

b

]
︸ ︷︷ ︸

w

= φT (s)w

w is the parameter vector; φ(s) the feature vector of s; v̂(s, w) is linear in w.

Shiyu Zhao 6 / 69

Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

1

s

v̂(s)

s1 s2 s3 s4 · · · sn

v̂(s) = as+ b

Suppose the equation of the straight line is

v̂(s, w) = as+ b = [s, 1]︸︷︷︸
φT (s)

[
a

b

]
︸ ︷︷ ︸

w

= φT (s)w

w is the parameter vector; φ(s) the feature vector of s; v̂(s, w) is linear in w.

Shiyu Zhao 6 / 69

Motivating examples: from table to function

For example, we can use a simple straight line to fit the dots.

1

s

v̂(s)

s1 s2 s3 s4 · · · sn

v̂(s) = as+ b

Suppose the equation of the straight line is

v̂(s, w) = as+ b = [s, 1]︸︷︷︸
φT (s)

[
a

b

]
︸ ︷︷ ︸

w

= φT (s)w

w is the parameter vector; φ(s) the feature vector of s; v̂(s, w) is linear in w.

Shiyu Zhao 6 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 1: How to retrieve the value of a state

• When the values are represented by a table, we can directly read the value in

the table.

• When the values are represented by a function, we need to input the state

index s into the function and calculate the function value.

w

function

s v̂(s, w)

For example, s→ φ(s)→ φT (s)w = v̂(s, w)

- Benefit: storage. We do not need to store |S| state values. We only need

to store a lower-dimensional w.

Shiyu Zhao 7 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

• When the values are represented by a table, we can directly rewrite the value

in the table.

• When the values are represented by a function, we must update w to change

the values indirectly.

- How to update w will be addressed in detail later.

Shiyu Zhao 8 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

• When the values are represented by a table, we can directly rewrite the value

in the table.

• When the values are represented by a function, we must update w to change

the values indirectly.

- How to update w will be addressed in detail later.

Shiyu Zhao 8 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

• When the values are represented by a table, we can directly rewrite the value

in the table.

• When the values are represented by a function, we must update w to change

the values indirectly.

- How to update w will be addressed in detail later.

Shiyu Zhao 8 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

• When the values are represented by a table, we can directly rewrite the value

in the table.

• When the values are represented by a function, we must update w to change

the values indirectly.

- How to update w will be addressed in detail later.

Shiyu Zhao 8 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

1

s

v̂(s)

s1 s2 s3

update v̂(s3)update v̂(s3)

s

v̂(s)

s1 s2 s3

(a) Tabular method

1

s

v̂(s)

s1 s2 s3

update w for s3update w for s3

s

v̂(s)

s1 s2 s3

(b) Function method

Benefit: generalization ability. When we update v̂(s, w) by changing w, the

values of the neighboring states are also changed.

Shiyu Zhao 9 / 69

Motivating examples: from table to function

Difference between the tabular and function methods:

Difference 2: How to update the value of a state

1

s

v̂(s)

s1 s2 s3

update v̂(s3)update v̂(s3)

s

v̂(s)

s1 s2 s3

(a) Tabular method

1

s

v̂(s)

s1 s2 s3

update w for s3update w for s3

s

v̂(s)

s1 s2 s3

(b) Function method

Benefit: generalization ability. When we update v̂(s, w) by changing w, the

values of the neighboring states are also changed.

Shiyu Zhao 9 / 69

Motivating examples: from table to function

The benefits are not free. It comes with a cost: the state values can not be

represented accurately. This is why this method is called approximation.

We can fit the points more precisely using high-order curves:

v̂(s, w) = as2 + bs+ c = [s2, s, 1]︸ ︷︷ ︸
φT (s)

 a

b

c


︸ ︷︷ ︸

w

= φT (s)w.

In this case,

• The dimensions of w and φ(s) increase; the values may be fitted more

accurately.

• Although v̂(s, w) is nonlinear in s, it is linear in w. The nonlinearity is

contained in φ(s).

Shiyu Zhao 10 / 69

Motivating examples: from table to function

The benefits are not free. It comes with a cost: the state values can not be

represented accurately. This is why this method is called approximation.

We can fit the points more precisely using high-order curves:

v̂(s, w) = as2 + bs+ c = [s2, s, 1]︸ ︷︷ ︸
φT (s)

 a

b

c


︸ ︷︷ ︸

w

= φT (s)w.

In this case,

• The dimensions of w and φ(s) increase; the values may be fitted more

accurately.

• Although v̂(s, w) is nonlinear in s, it is linear in w. The nonlinearity is

contained in φ(s).

Shiyu Zhao 10 / 69

Motivating examples: from table to function

The benefits are not free. It comes with a cost: the state values can not be

represented accurately. This is why this method is called approximation.

We can fit the points more precisely using high-order curves:

v̂(s, w) = as2 + bs+ c = [s2, s, 1]︸ ︷︷ ︸
φT (s)

 a

b

c


︸ ︷︷ ︸

w

= φT (s)w.

In this case,

• The dimensions of w and φ(s) increase; the values may be fitted more

accurately.

• Although v̂(s, w) is nonlinear in s, it is linear in w. The nonlinearity is

contained in φ(s).

Shiyu Zhao 10 / 69

Motivating examples: from table to function

The benefits are not free. It comes with a cost: the state values can not be

represented accurately. This is why this method is called approximation.

We can fit the points more precisely using high-order curves:

v̂(s, w) = as2 + bs+ c = [s2, s, 1]︸ ︷︷ ︸
φT (s)

 a

b

c


︸ ︷︷ ︸

w

= φT (s)w.

In this case,

• The dimensions of w and φ(s) increase; the values may be fitted more

accurately.

• Although v̂(s, w) is nonlinear in s, it is linear in w. The nonlinearity is

contained in φ(s).

Shiyu Zhao 10 / 69

Motivating examples: from table to function

Quick summary:

• Idea: Approximate the state and action values using parameterized

functions: v̂(s, w) ≈ vπ(s) where w ∈ Rm is the parameter vector.

• Key difference: How to retrieve and change the value of v(s)

• Advantages:

1) Storage: The dimension of w may be much smaller than |S|.
2) Generalization: When a state s is visited, the parameter w is updated

so that the values of some other unvisited states can also be updated.

Shiyu Zhao 11 / 69

Motivating examples: from table to function

Quick summary:

• Idea: Approximate the state and action values using parameterized

functions: v̂(s, w) ≈ vπ(s) where w ∈ Rm is the parameter vector.

• Key difference: How to retrieve and change the value of v(s)

• Advantages:

1) Storage: The dimension of w may be much smaller than |S|.
2) Generalization: When a state s is visited, the parameter w is updated

so that the values of some other unvisited states can also be updated.

Shiyu Zhao 11 / 69

Motivating examples: from table to function

Quick summary:

• Idea: Approximate the state and action values using parameterized

functions: v̂(s, w) ≈ vπ(s) where w ∈ Rm is the parameter vector.

• Key difference: How to retrieve and change the value of v(s)

• Advantages:

1) Storage: The dimension of w may be much smaller than |S|.
2) Generalization: When a state s is visited, the parameter w is updated

so that the values of some other unvisited states can also be updated.

Shiyu Zhao 11 / 69

Motivating examples: from table to function

Quick summary:

• Idea: Approximate the state and action values using parameterized

functions: v̂(s, w) ≈ vπ(s) where w ∈ Rm is the parameter vector.

• Key difference: How to retrieve and change the value of v(s)

• Advantages:

1) Storage: The dimension of w may be much smaller than |S|.
2) Generalization: When a state s is visited, the parameter w is updated

so that the values of some other unvisited states can also be updated.

Shiyu Zhao 11 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 12 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 13 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

Introduce in a more formal way:

• Let vπ(s) and v̂(s, w) be the true state value and the estimated state value,

respectively.

• Our goal is to find an optimal w so that v̂(s, w) can best approximate vπ(s)

for every s.

• This is a policy evaluation problem. Later we will extend to policy

improvement.

To find the optimal w, we need two steps.

• The first step is to define an objective function.

• The second step is to derive algorithms for optimizing the objective function.

Shiyu Zhao 14 / 69

Objective function

The objective function is

J(w) = E[(vπ(S)− v̂(S,w))2].

• Our goal is to find the best w that can minimize J(w).

• The expectation is with respect to the random variable S ∈ S.

What is the probability distribution of S?

- This is new. We have not discussed the probability distribution of states

so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 / 69

Objective function

The objective function is

J(w) = E[(vπ(S)− v̂(S,w))2].

• Our goal is to find the best w that can minimize J(w).

• The expectation is with respect to the random variable S ∈ S.

What is the probability distribution of S?

- This is new. We have not discussed the probability distribution of states

so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 / 69

Objective function

The objective function is

J(w) = E[(vπ(S)− v̂(S,w))2].

• Our goal is to find the best w that can minimize J(w).

• The expectation is with respect to the random variable S ∈ S.

What is the probability distribution of S?

- This is new. We have not discussed the probability distribution of states

so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 / 69

Objective function

The objective function is

J(w) = E[(vπ(S)− v̂(S,w))2].

• Our goal is to find the best w that can minimize J(w).

• The expectation is with respect to the random variable S ∈ S.

What is the probability distribution of S?

- This is new. We have not discussed the probability distribution of states

so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 / 69

Objective function

The objective function is

J(w) = E[(vπ(S)− v̂(S,w))2].

• Our goal is to find the best w that can minimize J(w).

• The expectation is with respect to the random variable S ∈ S.

What is the probability distribution of S?

- This is new. We have not discussed the probability distribution of states

so far.

- There are several ways to define the probability distribution of S.

Shiyu Zhao 15 / 69

Objective function

The first way is to use a uniform distribution.

• That is to treat all the states to be equally important by setting the

probability of each state as 1/|S|.

• In this case, the objective function becomes

J(w) = E[(vπ(S)− v̂(S,w))2] =
1

|S|
∑
s∈S

(vπ(s)− v̂(s, w))2.

• Drawback:

- The states may not be equally important. For example, some states may

be rarely visited by a policy. Hence, this way does not consider the real

dynamics of the Markov process under the given policy.

Shiyu Zhao 16 / 69

Objective function

The first way is to use a uniform distribution.

• That is to treat all the states to be equally important by setting the

probability of each state as 1/|S|.

• In this case, the objective function becomes

J(w) = E[(vπ(S)− v̂(S,w))2] =
1

|S|
∑
s∈S

(vπ(s)− v̂(s, w))2.

• Drawback:

- The states may not be equally important. For example, some states may

be rarely visited by a policy. Hence, this way does not consider the real

dynamics of the Markov process under the given policy.

Shiyu Zhao 16 / 69

Objective function

The first way is to use a uniform distribution.

• That is to treat all the states to be equally important by setting the

probability of each state as 1/|S|.

• In this case, the objective function becomes

J(w) = E[(vπ(S)− v̂(S,w))2] =
1

|S|
∑
s∈S

(vπ(s)− v̂(s, w))2.

• Drawback:

- The states may not be equally important. For example, some states may

be rarely visited by a policy. Hence, this way does not consider the real

dynamics of the Markov process under the given policy.

Shiyu Zhao 16 / 69

Objective function

The first way is to use a uniform distribution.

• That is to treat all the states to be equally important by setting the

probability of each state as 1/|S|.

• In this case, the objective function becomes

J(w) = E[(vπ(S)− v̂(S,w))2] =
1

|S|
∑
s∈S

(vπ(s)− v̂(s, w))2.

• Drawback:

- The states may not be equally important. For example, some states may

be rarely visited by a policy. Hence, this way does not consider the real

dynamics of the Markov process under the given policy.

Shiyu Zhao 16 / 69

Objective function

The second way is to use the stationary distribution.

• Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

• Let {dπ(s)}s∈S denote the stationary distribution of the Markov process

under policy π. By definition, dπ(s) ≥ 0 and
∑
s∈S dπ(s) = 1.

• The objective function can be rewritten as

J(w) = E[(vπ(S)− v̂(S,w))2] =
∑
s∈S

dπ(s)(vπ(s)− v̂(s, w))2.

This function is a weighted squared error.

• Since more frequently visited states have higher values of dπ(s), their weights

in the objective function are also higher than those rarely visited states.

Shiyu Zhao 17 / 69

Objective function

The second way is to use the stationary distribution.

• Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

• Let {dπ(s)}s∈S denote the stationary distribution of the Markov process

under policy π. By definition, dπ(s) ≥ 0 and
∑
s∈S dπ(s) = 1.

• The objective function can be rewritten as

J(w) = E[(vπ(S)− v̂(S,w))2] =
∑
s∈S

dπ(s)(vπ(s)− v̂(s, w))2.

This function is a weighted squared error.

• Since more frequently visited states have higher values of dπ(s), their weights

in the objective function are also higher than those rarely visited states.

Shiyu Zhao 17 / 69

Objective function

The second way is to use the stationary distribution.

• Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

• Let {dπ(s)}s∈S denote the stationary distribution of the Markov process

under policy π. By definition, dπ(s) ≥ 0 and
∑
s∈S dπ(s) = 1.

• The objective function can be rewritten as

J(w) = E[(vπ(S)− v̂(S,w))2] =
∑
s∈S

dπ(s)(vπ(s)− v̂(s, w))2.

This function is a weighted squared error.

• Since more frequently visited states have higher values of dπ(s), their weights

in the objective function are also higher than those rarely visited states.

Shiyu Zhao 17 / 69

Objective function

The second way is to use the stationary distribution.

• Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

• Let {dπ(s)}s∈S denote the stationary distribution of the Markov process

under policy π. By definition, dπ(s) ≥ 0 and
∑
s∈S dπ(s) = 1.

• The objective function can be rewritten as

J(w) = E[(vπ(S)− v̂(S,w))2] =
∑
s∈S

dπ(s)(vπ(s)− v̂(s, w))2.

This function is a weighted squared error.

• Since more frequently visited states have higher values of dπ(s), their weights

in the objective function are also higher than those rarely visited states.

Shiyu Zhao 17 / 69

Objective function

The second way is to use the stationary distribution.

• Stationary distribution is an important concept that will be frequently used

in this course. It describes the long-run behavior of a Markov process.

• Let {dπ(s)}s∈S denote the stationary distribution of the Markov process

under policy π. By definition, dπ(s) ≥ 0 and
∑
s∈S dπ(s) = 1.

• The objective function can be rewritten as

J(w) = E[(vπ(S)− v̂(S,w))2] =
∑
s∈S

dπ(s)(vπ(s)− v̂(s, w))2.

This function is a weighted squared error.

• Since more frequently visited states have higher values of dπ(s), their weights

in the objective function are also higher than those rarely visited states.

Shiyu Zhao 17 / 69

Objective function – Stationary distribution

More explanation about stationary distribution:

• Distribution: Distribution of the state

• Stationary: Long-run behavior

• Summary: after the agent runs a long time following a policy, the probability

that the agent is at any state can be described by this distribution.

Remarks:

• Stationary distribution is also called steady-state distribution, or limiting

distribution.

• It is critical to understand the value function method.

• It is also important for the policy gradient method in the next lecture.

Shiyu Zhao 18 / 69

Objective function – Stationary distribution

More explanation about stationary distribution:

• Distribution: Distribution of the state

• Stationary: Long-run behavior

• Summary: after the agent runs a long time following a policy, the probability

that the agent is at any state can be described by this distribution.

Remarks:

• Stationary distribution is also called steady-state distribution, or limiting

distribution.

• It is critical to understand the value function method.

• It is also important for the policy gradient method in the next lecture.

Shiyu Zhao 18 / 69

Objective function – Stationary distribution

More explanation about stationary distribution:

• Distribution: Distribution of the state

• Stationary: Long-run behavior

• Summary: after the agent runs a long time following a policy, the probability

that the agent is at any state can be described by this distribution.

Remarks:

• Stationary distribution is also called steady-state distribution, or limiting

distribution.

• It is critical to understand the value function method.

• It is also important for the policy gradient method in the next lecture.

Shiyu Zhao 18 / 69

Objective function – Stationary distribution

More explanation about stationary distribution:

• Distribution: Distribution of the state

• Stationary: Long-run behavior

• Summary: after the agent runs a long time following a policy, the probability

that the agent is at any state can be described by this distribution.

Remarks:

• Stationary distribution is also called steady-state distribution, or limiting

distribution.

• It is critical to understand the value function method.

• It is also important for the policy gradient method in the next lecture.

Shiyu Zhao 18 / 69

Objective function - Stationary distribution

Illustrative example:

• Given a policy shown in the figure.

• Let nπ(s) denote the number of times that s has been visited in a very long

episode generated by π.

• Then, dπ(s) can be approximated by

dπ(s) ≈
nπ(s)∑

s′∈S nπ(s
′)

1 2

1

2

0 200 400 600 800 1000
Step index

0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

of
 e

ac
h

st
at

e
vi

si
te

d

s
1

s
2

s
3

s
4

Figure: Long-run behavior of an ε-greedy policy with ε = 0.5.

Shiyu Zhao 19 / 69

Objective function - Stationary distribution

Illustrative example:

• Given a policy shown in the figure.

• Let nπ(s) denote the number of times that s has been visited in a very long

episode generated by π.

• Then, dπ(s) can be approximated by

dπ(s) ≈
nπ(s)∑

s′∈S nπ(s
′)

1 2

1

2

0 200 400 600 800 1000
Step index

0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

of
 e

ac
h

st
at

e
vi

si
te

d

s
1

s
2

s
3

s
4

Figure: Long-run behavior of an ε-greedy policy with ε = 0.5.

Shiyu Zhao 19 / 69

Objective function - Stationary distribution

Illustrative example:

• Given a policy shown in the figure.

• Let nπ(s) denote the number of times that s has been visited in a very long

episode generated by π.

• Then, dπ(s) can be approximated by

dπ(s) ≈
nπ(s)∑

s′∈S nπ(s
′)

1 2

1

2

0 200 400 600 800 1000
Step index

0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

of
 e

ac
h

st
at

e
vi

si
te

d

s
1

s
2

s
3

s
4

Figure: Long-run behavior of an ε-greedy policy with ε = 0.5.

Shiyu Zhao 19 / 69

Objective function - Stationary distribution

The converged values can be predicted because they are the entries of dπ:

dTπ = dTπPπ

For this example, we have Pπ as

Pπ =


0.3 0.1 0.6 0

0.1 0.3 0 0.6

0.1 0 0.3 0.6

0 0.1 0.1 0.8

 .
It can be calculated that the left eigenvector for the eigenvalue of one is

dπ =
[
0.0345, 0.1084, 0.1330, 0.7241

]T
A comprehensive introduction can be found in my book.

Shiyu Zhao 20 / 69

Objective function - Stationary distribution

The converged values can be predicted because they are the entries of dπ:

dTπ = dTπPπ

For this example, we have Pπ as

Pπ =


0.3 0.1 0.6 0

0.1 0.3 0 0.6

0.1 0 0.3 0.6

0 0.1 0.1 0.8

 .
It can be calculated that the left eigenvector for the eigenvalue of one is

dπ =
[
0.0345, 0.1084, 0.1330, 0.7241

]T
A comprehensive introduction can be found in my book.

Shiyu Zhao 20 / 69

Objective function - Stationary distribution

The converged values can be predicted because they are the entries of dπ:

dTπ = dTπPπ

For this example, we have Pπ as

Pπ =


0.3 0.1 0.6 0

0.1 0.3 0 0.6

0.1 0 0.3 0.6

0 0.1 0.1 0.8

 .
It can be calculated that the left eigenvector for the eigenvalue of one is

dπ =
[
0.0345, 0.1084, 0.1330, 0.7241

]T
A comprehensive introduction can be found in my book.

Shiyu Zhao 20 / 69

Objective function - Stationary distribution

The converged values can be predicted because they are the entries of dπ:

dTπ = dTπPπ

For this example, we have Pπ as

Pπ =


0.3 0.1 0.6 0

0.1 0.3 0 0.6

0.1 0 0.3 0.6

0 0.1 0.1 0.8

 .
It can be calculated that the left eigenvector for the eigenvalue of one is

dπ =
[
0.0345, 0.1084, 0.1330, 0.7241

]T
A comprehensive introduction can be found in my book.

Shiyu Zhao 20 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 21 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

While we have the objective function, the next step is to optimize it.

• To minimize the objective function J(w), we can use the gradient-descent

algorithm:

wk+1 = wk − αk∇wJ(wk)

The true gradient is

∇wJ(w) = ∇wE[(vπ(S)− v̂(S,w))2]

= E[∇w(vπ(S)− v̂(S,w))2]

= 2E[(vπ(S)− v̂(S,w))(−∇wv̂(S,w))]

= −2E[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

The true gradient above involves the calculation of an expectation.

Shiyu Zhao 22 / 69

Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

wk+1 = wk + αkE[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

⇓

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

where st is a sample of S. Here, 2αt is merged to αt.

• The samples are expected to satisfy the stationary distribution. In practice,

they may not satisfy.

• This algorithm is not implementable because it requires the true state value

vπ, which is the unknown to be estimated.

• We can replace vπ(st) with an approximation so that the algorithm is

implementable.

Shiyu Zhao 23 / 69

Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

wk+1 = wk + αkE[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

⇓

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

where st is a sample of S. Here, 2αt is merged to αt.

• The samples are expected to satisfy the stationary distribution. In practice,

they may not satisfy.

• This algorithm is not implementable because it requires the true state value

vπ, which is the unknown to be estimated.

• We can replace vπ(st) with an approximation so that the algorithm is

implementable.

Shiyu Zhao 23 / 69

Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

wk+1 = wk + αkE[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

⇓

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

where st is a sample of S. Here, 2αt is merged to αt.

• The samples are expected to satisfy the stationary distribution. In practice,

they may not satisfy.

• This algorithm is not implementable because it requires the true state value

vπ, which is the unknown to be estimated.

• We can replace vπ(st) with an approximation so that the algorithm is

implementable.

Shiyu Zhao 23 / 69

Optimization algorithms

We can use the stochastic gradient to replace the true gradient:

wk+1 = wk + αkE[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

⇓

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

where st is a sample of S. Here, 2αt is merged to αt.

• The samples are expected to satisfy the stationary distribution. In practice,

they may not satisfy.

• This algorithm is not implementable because it requires the true state value

vπ, which is the unknown to be estimated.

• We can replace vπ(st) with an approximation so that the algorithm is

implementable.

Shiyu Zhao 23 / 69

Optimization algorithms

In particular,

• First, Monte Carlo learning with function approximation

Let gt be the discounted return starting from st in the episode. Then, gt can

be used to approximate vπ(st). The algorithm becomes

wt+1 = wt + αt(gt − v̂(st, wt))∇wv̂(st, wt).

• Second, TD learning with function approximation

By the spirit of TD learning, rt+1 + γv̂(st+1, wt) can be viewed as an

approximation of vπ(st). Then, the algorithm becomes

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt).

Shiyu Zhao 24 / 69

Optimization algorithms

In particular,

• First, Monte Carlo learning with function approximation

Let gt be the discounted return starting from st in the episode. Then, gt can

be used to approximate vπ(st). The algorithm becomes

wt+1 = wt + αt(gt − v̂(st, wt))∇wv̂(st, wt).

• Second, TD learning with function approximation

By the spirit of TD learning, rt+1 + γv̂(st+1, wt) can be viewed as an

approximation of vπ(st). Then, the algorithm becomes

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt).

Shiyu Zhao 24 / 69

Optimization algorithms

In particular,

• First, Monte Carlo learning with function approximation

Let gt be the discounted return starting from st in the episode. Then, gt can

be used to approximate vπ(st). The algorithm becomes

wt+1 = wt + αt(gt − v̂(st, wt))∇wv̂(st, wt).

• Second, TD learning with function approximation

By the spirit of TD learning, rt+1 + γv̂(st+1, wt) can be viewed as an

approximation of vπ(st). Then, the algorithm becomes

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt).

Shiyu Zhao 24 / 69

Optimization algorithms

In particular,

• First, Monte Carlo learning with function approximation

Let gt be the discounted return starting from st in the episode. Then, gt can

be used to approximate vπ(st). The algorithm becomes

wt+1 = wt + αt(gt − v̂(st, wt))∇wv̂(st, wt).

• Second, TD learning with function approximation

By the spirit of TD learning, rt+1 + γv̂(st+1, wt) can be viewed as an

approximation of vπ(st). Then, the algorithm becomes

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt).

Shiyu Zhao 24 / 69

Optimization algorithms

In particular,

• First, Monte Carlo learning with function approximation

Let gt be the discounted return starting from st in the episode. Then, gt can

be used to approximate vπ(st). The algorithm becomes

wt+1 = wt + αt(gt − v̂(st, wt))∇wv̂(st, wt).

• Second, TD learning with function approximation

By the spirit of TD learning, rt+1 + γv̂(st+1, wt) can be viewed as an

approximation of vπ(st). Then, the algorithm becomes

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt).

Shiyu Zhao 24 / 69

Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function v̂(s, w) that is differentiable in w. Initial parameter w0.

Goal: Learn the true state values of a given policy π.

For each episode {(st, rt+1, st+1)}t generated by π, do

For each sample (st, rt+1, st+1), do

In the general case,

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇w v̂(st, wt)

In the linear case,

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st)

It can only estimate the state values of a given policy, but it is important to

understand other algorithms introduced later.

Shiyu Zhao 25 / 69

Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function v̂(s, w) that is differentiable in w. Initial parameter w0.

Goal: Learn the true state values of a given policy π.

For each episode {(st, rt+1, st+1)}t generated by π, do

For each sample (st, rt+1, st+1), do

In the general case,

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇w v̂(st, wt)
In the linear case,

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st)

It can only estimate the state values of a given policy, but it is important to

understand other algorithms introduced later.

Shiyu Zhao 25 / 69

Optimization algorithms

Pseudocode: TD learning of state values with function approximation

Initialization: A function v̂(s, w) that is differentiable in w. Initial parameter w0.

Goal: Learn the true state values of a given policy π.

For each episode {(st, rt+1, st+1)}t generated by π, do

For each sample (st, rt+1, st+1), do

In the general case,

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇w v̂(st, wt)
In the linear case,

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st)

It can only estimate the state values of a given policy, but it is important to

understand other algorithms introduced later.

Shiyu Zhao 25 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 26 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Selection of function approximators

An important question that has not been answered: How to select the function

v̂(s, w)?

• The first approach, which was widely used before, is to use a linear function

v̂(s, w) = φT (s)w

Here, φ(s) is the feature vector, which can be a polynomial basis, Fourier

basis, ... (see my book for details). We have seen in the motivating example

and will see again in the illustrative examples later.

• The second approach, which is widely used nowadays, is to use a neural

network as a nonlinear function approximator.

- For example, the input is s, the output is v̂(s, w), and the parameter is w.

Shiyu Zhao 27 / 69

Linear function approximation

In the linear case where v̂(s, w) = φT (s)w, we have

∇wv̂(s, w) = φ(s).

Substituting the gradient into the TD algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

yields

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

which is the algorithm of TD learning with linear function approximation.

It is called TD-Linear in our course.

Shiyu Zhao 28 / 69

Linear function approximation

In the linear case where v̂(s, w) = φT (s)w, we have

∇wv̂(s, w) = φ(s).

Substituting the gradient into the TD algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

yields

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

which is the algorithm of TD learning with linear function approximation.

It is called TD-Linear in our course.

Shiyu Zhao 28 / 69

Linear function approximation

In the linear case where v̂(s, w) = φT (s)w, we have

∇wv̂(s, w) = φ(s).

Substituting the gradient into the TD algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

yields

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

which is the algorithm of TD learning with linear function approximation.

It is called TD-Linear in our course.

Shiyu Zhao 28 / 69

Linear function approximation

In the linear case where v̂(s, w) = φT (s)w, we have

∇wv̂(s, w) = φ(s).

Substituting the gradient into the TD algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

yields

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

which is the algorithm of TD learning with linear function approximation.

It is called TD-Linear in our course.

Shiyu Zhao 28 / 69

Linear function approximation

In the linear case where v̂(s, w) = φT (s)w, we have

∇wv̂(s, w) = φ(s).

Substituting the gradient into the TD algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

yields

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

which is the algorithm of TD learning with linear function approximation.

It is called TD-Linear in our course.

Shiyu Zhao 28 / 69

Linear function approximation

• Disadvantages of linear function methods:

- Difficult to select appropriate feature vectors.

• Advantages of linear function methods:

- The theoretical properties of the TD algorithm in the linear case can be

much better understood than in the nonlinear case.

- Linear function approximation is still powerful in the sense that the tabular

representation is a special case of linear function representation.

Shiyu Zhao 29 / 69

Linear function approximation

• Disadvantages of linear function methods:

- Difficult to select appropriate feature vectors.

• Advantages of linear function methods:

- The theoretical properties of the TD algorithm in the linear case can be

much better understood than in the nonlinear case.

- Linear function approximation is still powerful in the sense that the tabular

representation is a special case of linear function representation.

Shiyu Zhao 29 / 69

Linear function approximation

• Disadvantages of linear function methods:

- Difficult to select appropriate feature vectors.

• Advantages of linear function methods:

- The theoretical properties of the TD algorithm in the linear case can be

much better understood than in the nonlinear case.

- Linear function approximation is still powerful in the sense that the tabular

representation is a special case of linear function representation.

Shiyu Zhao 29 / 69

Linear function approximation

We next show that tabular representation is a special case of linear function

representation. Hence, the tabular and function representations are unified!

• Consider a special feature vector for state s:

φ(s) = es ∈ R|S|,

where es is a vector with the sth entry as 1 and the others as 0.

• In this case,

v̂(s, w) = φT (s)w = eTs w = w(s),

where w(s) is the sth entry of w.

Shiyu Zhao 30 / 69

Linear function approximation

We next show that tabular representation is a special case of linear function

representation. Hence, the tabular and function representations are unified!

• Consider a special feature vector for state s:

φ(s) = es ∈ R|S|,

where es is a vector with the sth entry as 1 and the others as 0.

• In this case,

v̂(s, w) = φT (s)w = eTs w = w(s),

where w(s) is the sth entry of w.

Shiyu Zhao 30 / 69

Linear function approximation

We next show that tabular representation is a special case of linear function

representation. Hence, the tabular and function representations are unified!

• Consider a special feature vector for state s:

φ(s) = es ∈ R|S|,

where es is a vector with the sth entry as 1 and the others as 0.

• In this case,

v̂(s, w) = φT (s)w = eTs w = w(s),

where w(s) is the sth entry of w.

Shiyu Zhao 30 / 69

Linear function approximation

Recall that the TD-Linear algorithm is

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

• When φ(st) = es, the above algorithm becomes

wt+1 = wt + αt (rt+1 + γwt(st+1)− wt(st)) est .

This is a vector equation that merely updates the stth entry of wt.

• Multiplying eTst on both sides of the equation gives

wt+1(st) = wt(st) + αt (rt+1 + γwt(st+1)− wt(st)) ,

which is exactly the tabular TD algorithm (which is called TD-Table here).

Summary: TD-Linear becomes TD-Table if we select a special feature vector.

Shiyu Zhao 31 / 69

Linear function approximation

Recall that the TD-Linear algorithm is

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

• When φ(st) = es, the above algorithm becomes

wt+1 = wt + αt (rt+1 + γwt(st+1)− wt(st)) est .

This is a vector equation that merely updates the stth entry of wt.

• Multiplying eTst on both sides of the equation gives

wt+1(st) = wt(st) + αt (rt+1 + γwt(st+1)− wt(st)) ,

which is exactly the tabular TD algorithm (which is called TD-Table here).

Summary: TD-Linear becomes TD-Table if we select a special feature vector.

Shiyu Zhao 31 / 69

Linear function approximation

Recall that the TD-Linear algorithm is

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

• When φ(st) = es, the above algorithm becomes

wt+1 = wt + αt (rt+1 + γwt(st+1)− wt(st)) est .

This is a vector equation that merely updates the stth entry of wt.

• Multiplying eTst on both sides of the equation gives

wt+1(st) = wt(st) + αt (rt+1 + γwt(st+1)− wt(st)) ,

which is exactly the tabular TD algorithm (which is called TD-Table here).

Summary: TD-Linear becomes TD-Table if we select a special feature vector.

Shiyu Zhao 31 / 69

Linear function approximation

Recall that the TD-Linear algorithm is

wt+1 = wt + αt
[
rt+1 + γφT (st+1)wt − φT (st)wt

]
φ(st),

• When φ(st) = es, the above algorithm becomes

wt+1 = wt + αt (rt+1 + γwt(st+1)− wt(st)) est .

This is a vector equation that merely updates the stth entry of wt.

• Multiplying eTst on both sides of the equation gives

wt+1(st) = wt(st) + αt (rt+1 + γwt(st+1)− wt(st)) ,

which is exactly the tabular TD algorithm (which is called TD-Table here).

Summary: TD-Linear becomes TD-Table if we select a special feature vector.

Shiyu Zhao 31 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 32 / 69

Illustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

1

2

3

4

5

• Given a policy: π(a|s) = 0.2 for any s, a

• Our aim is to estimate the state values of this policy (policy evaluation

problem).

• There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

• Set rforbidden = rboundary = −1, rtarget = 1, and γ = 0.9.

Shiyu Zhao 33 / 69

Illustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

1

2

3

4

5

• Given a policy: π(a|s) = 0.2 for any s, a

• Our aim is to estimate the state values of this policy (policy evaluation

problem).

• There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

• Set rforbidden = rboundary = −1, rtarget = 1, and γ = 0.9.

Shiyu Zhao 33 / 69

Illustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

1

2

3

4

5

• Given a policy: π(a|s) = 0.2 for any s, a

• Our aim is to estimate the state values of this policy (policy evaluation

problem).

• There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

• Set rforbidden = rboundary = −1, rtarget = 1, and γ = 0.9.

Shiyu Zhao 33 / 69

Illustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

1

2

3

4

5

• Given a policy: π(a|s) = 0.2 for any s, a

• Our aim is to estimate the state values of this policy (policy evaluation

problem).

• There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

• Set rforbidden = rboundary = −1, rtarget = 1, and γ = 0.9.

Shiyu Zhao 33 / 69

Illustrative examples

Consider a 5x5 grid-world example:

1 2 3 4 5

1

2

3

4

5

• Given a policy: π(a|s) = 0.2 for any s, a

• Our aim is to estimate the state values of this policy (policy evaluation

problem).

• There are 25 state values in total. We next show that we can use less than

25 parameters to approximate 25 state values.

• Set rforbidden = rboundary = −1, rtarget = 1, and γ = 0.9.

Shiyu Zhao 33 / 69

Illustrative examples

Ground truth:

• The true state values and the 3D visualization

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

-3.8 -3.8 -3.6 -3.1 -3.2

-3.8 -3.8 -3.8 -3.1 -2.9

-3.6 -3.9 -3.4 -3.2 -2.9

-3.9 -3.6 -3.4 -2.9 -3.2

-4.5 -4.2 -3.4 -3.4 -3.5

Experience samples:

• 500 episodes were generated following the given policy.

• Each episode has 500 steps and starts from a randomly selected state-action

pair following a uniform distribution.

Shiyu Zhao 34 / 69

Illustrative examples

Ground truth:

• The true state values and the 3D visualization

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

-3.8 -3.8 -3.6 -3.1 -3.2

-3.8 -3.8 -3.8 -3.1 -2.9

-3.6 -3.9 -3.4 -3.2 -2.9

-3.9 -3.6 -3.4 -2.9 -3.2

-4.5 -4.2 -3.4 -3.4 -3.5

Experience samples:

• 500 episodes were generated following the given policy.

• Each episode has 500 steps and starts from a randomly selected state-action

pair following a uniform distribution.

Shiyu Zhao 34 / 69

Illustrative examples

Ground truth:

• The true state values and the 3D visualization

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

-3.8 -3.8 -3.6 -3.1 -3.2

-3.8 -3.8 -3.8 -3.1 -2.9

-3.6 -3.9 -3.4 -3.2 -2.9

-3.9 -3.6 -3.4 -2.9 -3.2

-4.5 -4.2 -3.4 -3.4 -3.5

Experience samples:

• 500 episodes were generated following the given policy.

• Each episode has 500 steps and starts from a randomly selected state-action

pair following a uniform distribution.

Shiyu Zhao 34 / 69

Illustrative examples

TD-Table:

• For comparison, the results by the tabular TD algorithm (called TD-Table

here):

0 100 200 300 400 500
Episode index

0

1

2

3

4

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Table: =0.005

Shiyu Zhao 35 / 69

Illustrative examples

TD-Linear:

• How to apply the TD-Linear algorithm?

- Feature vector selection:

φ(s) =

 1

x

y

 ∈ R3.

- In this case, the approximated state value is

v̂(s, w) = φT (s)w = [1, x, y]

 w1

w2

w3

 = w1 + w2x+ w3y.

Remark: φ(s) can also be defined as φ(s) = [x, y, 1]T , where the order of

the elements does not matter.

Shiyu Zhao 36 / 69

Illustrative examples

TD-Linear:

• How to apply the TD-Linear algorithm?

- Feature vector selection:

φ(s) =

 1

x

y

 ∈ R3.

- In this case, the approximated state value is

v̂(s, w) = φT (s)w = [1, x, y]

 w1

w2

w3

 = w1 + w2x+ w3y.

Remark: φ(s) can also be defined as φ(s) = [x, y, 1]T , where the order of

the elements does not matter.

Shiyu Zhao 36 / 69

Illustrative examples

TD-Linear:

• How to apply the TD-Linear algorithm?

- Feature vector selection:

φ(s) =

 1

x

y

 ∈ R3.

- In this case, the approximated state value is

v̂(s, w) = φT (s)w = [1, x, y]

 w1

w2

w3

 = w1 + w2x+ w3y.

Remark: φ(s) can also be defined as φ(s) = [x, y, 1]T , where the order of

the elements does not matter.

Shiyu Zhao 36 / 69

Illustrative examples

TD-Linear:

• How to apply the TD-Linear algorithm?

- Feature vector selection:

φ(s) =

 1

x

y

 ∈ R3.

- In this case, the approximated state value is

v̂(s, w) = φT (s)w = [1, x, y]

 w1

w2

w3

 = w1 + w2x+ w3y.

Remark: φ(s) can also be defined as φ(s) = [x, y, 1]T , where the order of

the elements does not matter.

Shiyu Zhao 36 / 69

Illustrative examples

TD-Linear:

• Results by the TD-Linear algorithm:

0 100 200 300 400 500
Episode index

0

1

2

3

4

5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

• The trend is right, but there are errors due to limited approximation ability!

• We are trying to use a plane to approximate a non-plane surface!

Shiyu Zhao 37 / 69

Illustrative examples

TD-Linear:

• Results by the TD-Linear algorithm:

0 100 200 300 400 500
Episode index

0

1

2

3

4

5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

• The trend is right, but there are errors due to limited approximation ability!

• We are trying to use a plane to approximate a non-plane surface!

Shiyu Zhao 37 / 69

Illustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

• For example, we can consider

φ(s) = [1, x, y, x2, y2, xy]T ∈ R6.

In this case,

v̂(s, w) = φT (s)w = w1 + w2x+ w3y + w4x
2 + w5y

2 + w6xy

which corresponds to a quadratic surface.

• We can further increase the dimension of the feature vector:

φ(s) = [1, x, y, x2, y2, xy, x3, y3, x2y, xy2]T ∈ R10.

Shiyu Zhao 38 / 69

Illustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

• For example, we can consider

φ(s) = [1, x, y, x2, y2, xy]T ∈ R6.

In this case,

v̂(s, w) = φT (s)w = w1 + w2x+ w3y + w4x
2 + w5y

2 + w6xy

which corresponds to a quadratic surface.

• We can further increase the dimension of the feature vector:

φ(s) = [1, x, y, x2, y2, xy, x3, y3, x2y, xy2]T ∈ R10.

Shiyu Zhao 38 / 69

Illustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

• For example, we can consider

φ(s) = [1, x, y, x2, y2, xy]T ∈ R6.

In this case,

v̂(s, w) = φT (s)w = w1 + w2x+ w3y + w4x
2 + w5y

2 + w6xy

which corresponds to a quadratic surface.

• We can further increase the dimension of the feature vector:

φ(s) = [1, x, y, x2, y2, xy, x3, y3, x2y, xy2]T ∈ R10.

Shiyu Zhao 38 / 69

Illustrative examples

To enhance the approximation ability, we can use high-order feature vectors

and hence more parameters.

• For example, we can consider

φ(s) = [1, x, y, x2, y2, xy]T ∈ R6.

In this case,

v̂(s, w) = φT (s)w = w1 + w2x+ w3y + w4x
2 + w5y

2 + w6xy

which corresponds to a quadratic surface.

• We can further increase the dimension of the feature vector:

φ(s) = [1, x, y, x2, y2, xy, x3, y3, x2y, xy2]T ∈ R10.

Shiyu Zhao 38 / 69

Illustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

0 100 200 300 400 500
Episode index

0

1

2

3

4

5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R6

0 100 200 300 400 500
Episode index

0

0.5

1

1.5

2

2.5

3

3.5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R10

More examples and features are given in the book.

Shiyu Zhao 39 / 69

Illustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

0 100 200 300 400 500
Episode index

0

1

2

3

4

5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R6

0 100 200 300 400 500
Episode index

0

0.5

1

1.5

2

2.5

3

3.5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R10

More examples and features are given in the book.

Shiyu Zhao 39 / 69

Illustrative examples

Results by the TD-Linear algorithm with higher-order feature vectors:

0 100 200 300 400 500
Episode index

0

1

2

3

4

5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R6

0 100 200 300 400 500
Episode index

0

0.5

1

1.5

2

2.5

3

3.5

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

) TD-Linear: =0.0005

The above figure: φ(s) ∈ R10

More examples and features are given in the book.

Shiyu Zhao 39 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 40 / 69

Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.

Shiyu Zhao 41 / 69

Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.

Shiyu Zhao 41 / 69

Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.

Shiyu Zhao 41 / 69

Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.

Shiyu Zhao 41 / 69

Summary of the story

Up to now, we finished the story of TD learning with value function

approximation.

1) This story started from the objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

The objective function suggests that it is a policy evaluation problem.

2) The gradient-descent algorithm is

wt+1 = wt + αt(vπ(st)− v̂(st, wt))∇wv̂(st, wt)

3) The true value function, which is unknown, in the algorithm is replaced by

an approximation, leading to the algorithm:

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

Although this story is very helpful to understand the basic idea, it is not

mathematically rigorous.

Shiyu Zhao 41 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 42 / 69

Theoretical analysis (optional)

• The algorithm

wt+1 = wt + αt [rt+1 + γv̂(st+1, wt)− v̂(st, wt)]∇wv̂(st, wt)

does not minimize the following objective function:

J(w) = E[(vπ(S)− v̂(S,w))2]

Shiyu Zhao 43 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Theoretical analysis (optional)

Different objective functions:

• Objective function 1: True value error

JE(w) = E[(vπ(S)− v̂(S,w))2] = ‖v̂(w)− vπ‖2D

• Objective function 2: Bellman error

JBE(w) = ‖v̂(w)− (rπ + γPπ v̂(w))‖2D
.
= ‖v̂(w)− Tπ(v̂(w))‖2D,

where Tπ(x)
.
= rπ + γPπx

• Objective function 3: Projected Bellman error

JPBE(w) = ‖v̂(w)−MTπ(v̂(w))‖2D,

where M is a projection matrix.

- The TD-Linear algorithm minimizes the projected Bellman error.

More details are omitted here. Interested readers can check my book.

Shiyu Zhao 44 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 45 / 69

Sarsa with function approximation

So far, we merely considered state value estimation. That is

v̂(s) ≈ vπ(s), s ∈ S

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt).

This is the same as the algorithm we introduced previously in this lecture

except that v̂ is replaced by q̂.

Shiyu Zhao 46 / 69

Sarsa with function approximation

So far, we merely considered state value estimation. That is

v̂(s) ≈ vπ(s), s ∈ S

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt).

This is the same as the algorithm we introduced previously in this lecture

except that v̂ is replaced by q̂.

Shiyu Zhao 46 / 69

Sarsa with function approximation

So far, we merely considered state value estimation. That is

v̂(s) ≈ vπ(s), s ∈ S

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt).

This is the same as the algorithm we introduced previously in this lecture

except that v̂ is replaced by q̂.

Shiyu Zhao 46 / 69

Sarsa with function approximation

So far, we merely considered state value estimation. That is

v̂(s) ≈ vπ(s), s ∈ S

To search for optimal policies, we need to estimate action values.

The Sarsa algorithm with value function approximation is

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt).

This is the same as the algorithm we introduced previously in this lecture

except that v̂ is replaced by q̂.

Shiyu Zhao 46 / 69

Sarsa with function approximation

To search for optimal policies, we can combine policy evaluation and policy

improvement.

Pseudocode: Sarsa with function approximation

Initialization: Initial parameter w0. Initial policy π0. αt = α > 0 for all t. ε ∈ (0, 1).

Goal: Learn an optimal policy to lead the agent to the target state from an initial state s0.

For each episode, do

Generate a0 at s0 following π0(s0)

If st (t = 0, 1, 2, . . .) is not the target state, do

Collect the experience sample (rt+1, st+1, at+1) given (st, at): generate

rt+1, st+1 by interacting with the environment; generate at+1 following πt(st+1).

Update q-value (update parameter):

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

Update policy:

πt+1(a|st) = 1− ε
|A(st)|

(|A(st)| − 1) if a = argmaxa∈A(st)
q̂(st, a, wt+1)

πt+1(a|st) = ε
|A(st)|

otherwise

st ← st+1, at ← at+1

Shiyu Zhao 47 / 69

Sarsa with function approximation

To search for optimal policies, we can combine policy evaluation and policy

improvement.

Pseudocode: Sarsa with function approximation

Initialization: Initial parameter w0. Initial policy π0. αt = α > 0 for all t. ε ∈ (0, 1).

Goal: Learn an optimal policy to lead the agent to the target state from an initial state s0.

For each episode, do

Generate a0 at s0 following π0(s0)

If st (t = 0, 1, 2, . . .) is not the target state, do

Collect the experience sample (rt+1, st+1, at+1) given (st, at): generate

rt+1, st+1 by interacting with the environment; generate at+1 following πt(st+1).

Update q-value (update parameter):

wt+1 = wt + αt
[
rt+1 + γq̂(st+1, at+1, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

Update policy:

πt+1(a|st) = 1− ε
|A(st)|

(|A(st)| − 1) if a = argmaxa∈A(st)
q̂(st, a, wt+1)

πt+1(a|st) = ε
|A(st)|

otherwise

st ← st+1, at ← at+1

Shiyu Zhao 47 / 69

Sarsa with function approximation

Illustrative example:

• Sarsa with linear function approximation: q̂(s, a, w) = φT (s, a)w

• γ = 0.9, ε = 0.1, rboundary = rforbidden = −10, rtarget = 1, α = 0.001.

0 100 200 300 400 500

-1000

-500

0

T
ot

al
 r

ew
ar

d

0 100 200 300 400 500
Episode index

0

500

E
pi

so
de

 le
ng

th

1 2 3 4 5

1

2

3

4

5

For details, please see the book.

Shiyu Zhao 48 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 49 / 69

Q-learning with function approximation

Similar to Sarsa, tabular Q-learning can also be extended to the case of value

function approximation.

The q-value update rule is

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt),

which is the same as Sarsa except that q̂(st+1, at+1, wt) is replaced by

maxa∈A(st+1) q̂(st+1, a, wt).

Shiyu Zhao 50 / 69

Q-learning with function approximation

Similar to Sarsa, tabular Q-learning can also be extended to the case of value

function approximation.

The q-value update rule is

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt),

which is the same as Sarsa except that q̂(st+1, at+1, wt) is replaced by

maxa∈A(st+1) q̂(st+1, a, wt).

Shiyu Zhao 50 / 69

Q-learning with function approximation

Pseudocode: Q-learning with function approximation (on-policy version)

Initialization: Initial parameter w0. Initial policy π0. αt = α > 0 for all t. ε ∈ (0, 1).

Goal: Learn an optimal path to lead the agent to the target state from an initial state s0.

For each episode, do

If st (t = 0, 1, 2, . . .) is not the target state, do

Collect the experience sample (at, rt+1, st+1) given st: generate at following

πt(st); generate rt+1, st+1 by interacting with the environment.

Update value (update parameter):

wt+1 = wt + αt
[
rt+1 + γmaxa∈A(st+1) q̂(st+1, a, wt) −

q̂(st, at, wt)
]
∇w q̂(st, at, wt)

Update policy:

πt+1(a|st) = 1− ε
|A(st)|

(|A(st)| − 1) if a = argmaxa∈A(st)
q̂(st, a, wt+1)

πt+1(a|st) = ε
|A(st)|

otherwise

Shiyu Zhao 51 / 69

Q-learning with function approximation

Illustrative example:

• Q-learning with linear function approximation: q̂(s, a, w) = φT (s, a)w

• γ = 0.9, ε = 0.1, rboundary = rforbidden = −10, rtarget = 1, α = 0.001.

0 100 200 300 400 500
-4000

-2000

0

T
ot

al
 r

ew
ar

d

0 100 200 300 400 500
Episode index

0

1000

E
pi

so
de

 le
ng

th

1 2 3 4 5

1

2

3

4

5

Shiyu Zhao 52 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 53 / 69

Deep Q-learning

Deep Q-learning or deep Q-network (DQN):

• One of the earliest and most successful algorithms that introduce deep neural

networks into RL.

• The role of neural networks is to be a nonlinear function approximator.

• Different from the following algorithm:

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

because of the way of training a network.

Shiyu Zhao 54 / 69

Deep Q-learning

Deep Q-learning or deep Q-network (DQN):

• One of the earliest and most successful algorithms that introduce deep neural

networks into RL.

• The role of neural networks is to be a nonlinear function approximator.

• Different from the following algorithm:

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

because of the way of training a network.

Shiyu Zhao 54 / 69

Deep Q-learning

Deep Q-learning or deep Q-network (DQN):

• One of the earliest and most successful algorithms that introduce deep neural

networks into RL.

• The role of neural networks is to be a nonlinear function approximator.

• Different from the following algorithm:

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

because of the way of training a network.

Shiyu Zhao 54 / 69

Deep Q-learning

Deep Q-learning or deep Q-network (DQN):

• One of the earliest and most successful algorithms that introduce deep neural

networks into RL.

• The role of neural networks is to be a nonlinear function approximator.

• Different from the following algorithm:

wt+1 = wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

because of the way of training a network.

Shiyu Zhao 54 / 69

Deep Q-learning

Deep Q-learning aims to minimize the objective function/loss function:

wt+1 =wt + αt
[
rt+1 + γ max

a∈A(st+1)
q̂(st+1, a, wt)− q̂(st, at, wt)

]
∇w q̂(st, at, wt)

⇓

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

where (S,A,R, S′) are random variables.

Shiyu Zhao 55 / 69

Deep Q-learning

How to minimize the objective function? Gradient-descent!

• How to calculate the gradient of the objective function? Tricky!

• That is because, in this objective function

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]
,

the parameter w not only appears in q̂(S,A,w) but also in

y
.
= R+ γ max

a∈A(S′)
q̂(S′, a, w)

• Since the optimal a depends on w,

∇wy 6= γ max
a∈A(S′)

∇w q̂(S′, a, w)

• To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.

Shiyu Zhao 56 / 69

Deep Q-learning

How to minimize the objective function? Gradient-descent!

• How to calculate the gradient of the objective function? Tricky!

• That is because, in this objective function

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]
,

the parameter w not only appears in q̂(S,A,w) but also in

y
.
= R+ γ max

a∈A(S′)
q̂(S′, a, w)

• Since the optimal a depends on w,

∇wy 6= γ max
a∈A(S′)

∇w q̂(S′, a, w)

• To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.

Shiyu Zhao 56 / 69

Deep Q-learning

How to minimize the objective function? Gradient-descent!

• How to calculate the gradient of the objective function? Tricky!

• That is because, in this objective function

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]
,

the parameter w not only appears in q̂(S,A,w) but also in

y
.
= R+ γ max

a∈A(S′)
q̂(S′, a, w)

• Since the optimal a depends on w,

∇wy 6= γ max
a∈A(S′)

∇w q̂(S′, a, w)

• To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.

Shiyu Zhao 56 / 69

Deep Q-learning

How to minimize the objective function? Gradient-descent!

• How to calculate the gradient of the objective function? Tricky!

• That is because, in this objective function

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]
,

the parameter w not only appears in q̂(S,A,w) but also in

y
.
= R+ γ max

a∈A(S′)
q̂(S′, a, w)

• Since the optimal a depends on w,

∇wy 6= γ max
a∈A(S′)

∇w q̂(S′, a, w)

• To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.

Shiyu Zhao 56 / 69

Deep Q-learning

How to minimize the objective function? Gradient-descent!

• How to calculate the gradient of the objective function? Tricky!

• That is because, in this objective function

J(w) = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]
,

the parameter w not only appears in q̂(S,A,w) but also in

y
.
= R+ γ max

a∈A(S′)
q̂(S′, a, w)

• Since the optimal a depends on w,

∇wy 6= γ max
a∈A(S′)

∇w q̂(S′, a, w)

• To solve this problem, we can assume that w in y is fixed (at least for a

while) when we calculate the gradient.

Shiyu Zhao 56 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning

To do that, we can introduce two networks.

• One is a main network representing q̂(s, a, w)

• The other is a target network q̂(s, a, wT).

The objective function in this case degenerates to

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)2
]
,

where wT is the target network parameter.

When wT is fixed, the gradient of J can be easily obtained as

∇wJ = E
[(
R+ γ max

a∈A(S′)
q̂(S′, a, wT)− q̂(S,A,w)

)
∇w q̂(S,A,w)

]
.

• The basic idea of deep Q-learning is to use the gradient-descent algorithm to

minimize the objective function.

• However, such an optimization process evolves some important techniques

that deserve special attention.

Shiyu Zhao 57 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Two networks

Technique 1: Two networks, a main network and a target network.

Why is it used?

• The mathematical reason has been explained when we calculate the gradient.

Implementation details:

• Let w and wT denote the parameters of the main and target networks,

respectively. They are set to be the same initially.

• In every iteration, we draw a mini-batch of samples {(s, a, r, s′)} from the

replay buffer (will be explained later).

• For every (s, a, r, s′), we can calculate the desired output as

yT
.
= r + γ max

a∈A(s′)
q̂(s′, a, wT)

Therefore, we obtain a mini-batch of data:

{(s, a, yT)}

• Use {(s, a, yT)} to train the network so as to minimize (yT − q̂(s, a, w))2.

Shiyu Zhao 58 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Technique 2: Experience replay

Question: What is experience replay?

Answer:

• After we have collected some experience samples, we do NOT use these

samples in the order they were collected.

• Instead, we store them in a set, called replay buffer B .
= {(s, a, r, s′)}

• Every time we train the neural network, we can draw a mini-batch of random

samples from the replay buffer.

• The draw of samples, or called experience replay, should follow a uniform

distribution.

Shiyu Zhao 59 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Question: Why is experience replay necessary in deep Q-learning? Why does

the replay must follow a uniform distribution?

Answer: The answers lie in the objective function.

J = E

[(
R+ γ max

a∈A(S′)
q̂(S′, a, w)− q̂(S,A,w)

)2
]

• R ∼ p(R|S,A), S′ ∼ p(S′|S,A): R and S are determined by the system

model.

• (S,A) ∼ d: (S,A) is an index and treated as a single random variable

• The distribution of the state-action pair (S,A) is assumed to be uniform.

- Why uniform distribution? Because no prior knowledge.

- Can we use stationary distribution like before? No, since no policy is given.

Shiyu Zhao 60 / 69

Deep Q-learning - Experience replay

Answer (continued):

• However, the samples are not uniformly collected because they are generated

consequently by certain policies.

• To break the correlation between consequent samples, we can use the

experience replay technique by uniformly drawing samples from the replay

buffer.

• This is the mathematical reason why experience replay is necessary and why

the experience replay must be uniform.

Shiyu Zhao 61 / 69

Deep Q-learning - Experience replay

Answer (continued):

• However, the samples are not uniformly collected because they are generated

consequently by certain policies.

• To break the correlation between consequent samples, we can use the

experience replay technique by uniformly drawing samples from the replay

buffer.

• This is the mathematical reason why experience replay is necessary and why

the experience replay must be uniform.

Shiyu Zhao 61 / 69

Deep Q-learning - Experience replay

Answer (continued):

• However, the samples are not uniformly collected because they are generated

consequently by certain policies.

• To break the correlation between consequent samples, we can use the

experience replay technique by uniformly drawing samples from the replay

buffer.

• This is the mathematical reason why experience replay is necessary and why

the experience replay must be uniform.

Shiyu Zhao 61 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning - Experience replay

Revisit the tabular case:

• Question: Why does not tabular Q-learning require experience replay?

- Answer: Because it does not require any distribution of S or A.

• Question: Why does Deep Q-learning involve distributions?

- Answer: Because we need to define a scalar objective function

J(w) = E[∗], where E is for all (S,A).

- The tabular case aims to solve a set of equations for all (s, a) (Bellman

optimality equation), whereas the deep case aims to optimize a scalar

objective function.

• Question: Can we use experience replay in tabular Q-learning?

- Answer: Yes, we can. And more sample efficient (why?)

Shiyu Zhao 62 / 69

Deep Q-learning

Pseudocode: Deep Q-learning (off-policy version)

Initialization: A main network and a target network with the same initial parameter.

Goal: Learn an optimal target network to approximate the optimal action values from the

experience samples generated by a given behavior policy πb.

Store the experience samples generated by πb in a replay buffer B = {(s, a, r, s′)}
For each iteration, do

Uniformly draw a mini-batch of samples from B
For each sample (s, a, r, s′), calculate the target value as yT = r +

γmaxa∈A(s′) q̂(s
′, a, wT), where wT is the parameter of the target network

Update the main network to minimize (yT − q̂(s, a, w))2 using the mini-batch of

samples

Set wT = w every C iterations

Remarks:

• Why no policy update?

• The network input and output are different from the DQN paper.

Shiyu Zhao 63 / 69

Deep Q-learning

Pseudocode: Deep Q-learning (off-policy version)

Initialization: A main network and a target network with the same initial parameter.

Goal: Learn an optimal target network to approximate the optimal action values from the

experience samples generated by a given behavior policy πb.

Store the experience samples generated by πb in a replay buffer B = {(s, a, r, s′)}
For each iteration, do

Uniformly draw a mini-batch of samples from B
For each sample (s, a, r, s′), calculate the target value as yT = r +

γmaxa∈A(s′) q̂(s
′, a, wT), where wT is the parameter of the target network

Update the main network to minimize (yT − q̂(s, a, w))2 using the mini-batch of

samples

Set wT = w every C iterations

Remarks:

• Why no policy update?

• The network input and output are different from the DQN paper.

Shiyu Zhao 63 / 69

Deep Q-learning

Pseudocode: Deep Q-learning (off-policy version)

Initialization: A main network and a target network with the same initial parameter.

Goal: Learn an optimal target network to approximate the optimal action values from the

experience samples generated by a given behavior policy πb.

Store the experience samples generated by πb in a replay buffer B = {(s, a, r, s′)}
For each iteration, do

Uniformly draw a mini-batch of samples from B
For each sample (s, a, r, s′), calculate the target value as yT = r +

γmaxa∈A(s′) q̂(s
′, a, wT), where wT is the parameter of the target network

Update the main network to minimize (yT − q̂(s, a, w))2 using the mini-batch of

samples

Set wT = w every C iterations

Remarks:

• Why no policy update?

• The network input and output are different from the DQN paper.

Shiyu Zhao 63 / 69

Deep Q-learning

Illustrative example:

• We need to learn optimal action values for every state-action pair.

• Once the optimal action values are obtained, the optimal greedy policy can

be obtained immediately.

Shiyu Zhao 64 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

Setup:

• One single episode is used to train the network.

• This episode is generated by an exploratory behavior policy shown in Fig. (a).

• The episode only has 1,000 steps! The tabular Q-learning requires 100,000

steps.

• A shallow neural network with one single hidden layer is used as a nonlinear

approximator of q̂(s, a, w). The hidden layer has 100 neurons.

See details in the book.

Shiyu Zhao 65 / 69

Deep Q-learning

1 2 3 4 5

1

2

3

4

5

The behavior policy. An episode of 1,000 steps.

1 2 3 4 5

1

2

3

4

5

The obtained policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

0

2

4

6

8

10

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state estimation error converges to zero.

Shiyu Zhao 66 / 69

Deep Q-learning

1 2 3 4 5

1

2

3

4

5

The behavior policy. An episode of 1,000 steps.

1 2 3 4 5

1

2

3

4

5

The obtained policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

0

2

4

6

8

10

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state estimation error converges to zero.

Shiyu Zhao 66 / 69

Deep Q-learning

1 2 3 4 5

1

2

3

4

5

The behavior policy. An episode of 1,000 steps.

1 2 3 4 5

1

2

3

4

5

The obtained policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

0

2

4

6

8

10

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state estimation error converges to zero.

Shiyu Zhao 66 / 69

Deep Q-learning

1 2 3 4 5

1

2

3

4

5

The behavior policy. An episode of 1,000 steps.

1 2 3 4 5

1

2

3

4

5

The obtained policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

0

2

4

6

8

10

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state estimation error converges to zero.

Shiyu Zhao 66 / 69

Deep Q-learning

1 2 3 4 5

1

2

3

4

5

The behavior policy. An episode of 1,000 steps.

1 2 3 4 5

1

2

3

4

5

The obtained policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

0

2

4

6

8

10

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state estimation error converges to zero.

Shiyu Zhao 66 / 69

Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data

1 2 3 4 5

1

2

3

4

5

The behavior policy.

1 2 3 4 5

1

2

3

4

5

An episode of 100 steps.

1 2 3 4 5

1

2

3

4

5

The final policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

6

7

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

4

5

6

7

8

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state error does not converge to zero.

Shiyu Zhao 67 / 69

Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data

1 2 3 4 5

1

2

3

4

5

The behavior policy.

1 2 3 4 5

1

2

3

4

5

An episode of 100 steps.

1 2 3 4 5

1

2

3

4

5

The final policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

6

7

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

4

5

6

7

8

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state error does not converge to zero.

Shiyu Zhao 67 / 69

Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data

1 2 3 4 5

1

2

3

4

5

The behavior policy.

1 2 3 4 5

1

2

3

4

5

An episode of 100 steps.

1 2 3 4 5

1

2

3

4

5

The final policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

6

7

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

4

5

6

7

8

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state error does not converge to zero.

Shiyu Zhao 67 / 69

Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data

1 2 3 4 5

1

2

3

4

5

The behavior policy.

1 2 3 4 5

1

2

3

4

5

An episode of 100 steps.

1 2 3 4 5

1

2

3

4

5

The final policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

6

7

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

4

5

6

7

8

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state error does not converge to zero.

Shiyu Zhao 67 / 69

Deep Q-learning

What if we only use a single episode of 100 steps? Insufficient data

1 2 3 4 5

1

2

3

4

5

The behavior policy.

1 2 3 4 5

1

2

3

4

5

An episode of 100 steps.

1 2 3 4 5

1

2

3

4

5

The final policy.

0 200 400 600 800 1000
Iteration index

0

1

2

3

4

5

6

7

T
D

 e
rr

or
 /

lo
ss

 fu
nc

tio
n

The TD error converges to zero.

0 200 400 600 800 1000
Iteration index

4

5

6

7

8

S
ta

te
 v

al
ue

 e
rr

or
 (

R
M

S
E

)

The state error does not converge to zero.

Shiyu Zhao 67 / 69

Outline

1 Motivating examples: from table to function

2 Algorithm for state value estimation

Objective function

Optimization algorithms

Selection of function approximators

Illustrative examples

Summary of the story

Theoretical analysis (optional)

3 Sarsa with function approximation

4 Q-learning with function approximation

5 Deep Q-learning

6 Summary

Shiyu Zhao 68 / 69

Summary

This lecture introduces the method of value function approximation.

• First, understand the basic idea.

• Second, understand the basic algorithms.

Shiyu Zhao 69 / 69

	Motivating examples: from table to function
	Algorithm for state value estimation
	Objective function
	Optimization algorithms
	Selection of function approximators
	Illustrative examples
	Summary of the story
	Theoretical analysis (optional)

	Sarsa with function approximation
	Q-learning with function approximation
	Deep Q-learning
	Summary

