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Introduction

• In the last lecture, we introduced Monte-Carlo learning.

• In the next lecture, we will introduce temporal-difference (TD) learning.

• In this lecture, we press the pause button to get us better prepared.

Why?

• The ideas and expressions of TD algorithms are very different from the

algorithms we studied so far.

• Many students who see the TD algorithms the first time many wonder

why these algorithms were designed in the first place and why they work

effectively.

• There is a knowledge gap!
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Introduction

In this lecture,

• We fill the knowledge gap between the previous and upcoming lectures by

introducing basic stochastic approximation (SA) algorithms.

• We will see in the next lecture that the temporal-difference algorithms are

special SA algorithms. As a result, it will be much easier to understand these

algorithms.

• We will also understand the important algorithm of stochastic gradient

descent (SGD).
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Motivating example: mean estimation, again

Revisit the mean estimation problem:

• Consider a random variable X.

• Suppose that we collected a sequence of iid samples {xi}Ni=1.

• Our aim is to estimate E[X].

• The expectation of X can be approximated by

E[X] ≈ x̄ :=
1

N

N∑
i=1

xi.

• This approximation is the basic idea of Monte Carlo estimation.

• We know that x̄→ E[X] as N →∞.

Why do we care about mean estimation so much?

• Many quantities in RL such as action values and gradients are defined as

expectations!
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Motivating example: mean estimation

New question: how to calculate the mean x̄?

E[X] ≈ x̄ :=
1

N

N∑
i=1

xi.

We have two ways.

• The first way, which is trivial, is to collect all the samples then calculate the

average.

• The drawback of such way is that, if the samples are collected one by one

over a period of time, we have to wait until all the samples to be collected.

• The second way can avoid this drawback because it calculates the average

in an incremental and iterative manner.
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Motivating example: mean estimation

In particular, suppose

wk+1 =
1

k

k∑
i=1

xi k = 1, 2, . . .

and hence

wk =
1

k − 1

k−1∑
i=1

xi, k = 2, 3, . . .

Then, wk+1 can be expressed in terms of wk as

wk+1 =
1

k

k∑
i=1

xi =
1

k

(
k−1∑
i=1

xi + xk

)

=
1

k
((k − 1)wk + xk) = wk −

1

k
(wk − xk).

Therefore, we obtain the following iterative algorithm:

wk+1 = wk −
1

k
(wk − xk).
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Motivating example: mean estimation

Verification: we can use

wk+1 = wk −
1

k
(wk − xk).

to calculate the mean x̄ incrementally:

w1 = x1,

w2 = w1 −
1

1
(w1 − x1) = x1,

w3 = w2 −
1

2
(w2 − x2) = x1 −

1

2
(x1 − x2) =

1

2
(x1 + x2),

w4 = w3 −
1

3
(w3 − x3) =

1

3
(x1 + x2 + x3),

...

wk+1 =
1

k

k∑
i=1

xi.
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Motivating example: mean estimation

Remarks about this algorithm:

wk+1 = wk −
1

k
(wk − xk).

• An advantage of this algorithm is that it is incremental. A mean estimate

can be obtained immediately once a sample is received. Then, the mean

estimate can be used for other purposes immediately.

• The mean estimate is not accurate in the beginning due to insufficient

samples (that is wk 6= E[X]). However, it is better than nothing. As more

samples are obtained, the estimate can be improved gradually (that is

wk → E[X] as k →∞).
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Motivating example: mean estimation

Furthermore, consider an algorithm with a more general expression:

wk+1 = wk − αk(wk − xk),

where 1/k is replaced by αk > 0.

• Does this algorithm still converge to the mean E[X]? We will show that the

answer is yes if {αk} satisfy some mild conditions.

• We will also show that this algorithm is a special SA algorithm and also a

special stochastic gradient descent algorithm.

• In the next lecture, we will see that the temporal-difference algorithms have

similar (but more complex) expressions.
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Robbins-Monro algorithm

Stochastic approximation (SA):

• SA refers to a broad class of stochastic iterative algorithms solving root

finding or optimization problems.

• Compared to many other root-finding algorithms such as gradient-based

methods, SA is powerful in the sense that it does not require to know the

expression of the objective function nor its derivative.

Robbins-Monro (RM) algorithm:

• The is a pioneering work in the field of stochastic approximation.

• The famous stochastic gradient descent algorithm is a special form of the

RM algorithm.

• It can be used to analyze the mean estimation algorithms introduced in the

beginning.
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Robbins-Monro algorithm – Problem statement

Problem statement: Suppose we would like to find the root of the equation

g(w) = 0,

where w ∈ R is the variable to be solved and g : R→ R is a function.

• Many problems can be eventually converted to this root finding problem. For

example, suppose J(w) is an objective function to be minimized. Then, the

optimization problem can be converged to

g(w) = ∇wJ(w) = 0

• Note that an equation like g(w) = c with c as a constant can also be

converted to the above equation by rewriting g(w)− c as a new function.
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Robbins-Monro algorithm – Problem statement

How to calculate the root of g(w) = 0?

• Model-based: If the expression of g is known, there are many numerical

algorithms that can solve this problem.

• Model-free: What if the expression of the function g is unknown? For

example, the function is represented by an artificial neuron network.
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Robbins-Monro algorithm – The algorithm

The Robbins-Monro (RM) algorithm that can solve this problem is as follows:

wk+1 = wk − akg̃(wk, ηk), k = 1, 2, 3, . . .

where

• wk is the kth estimate of the root

• g̃(wk, ηk) = g(wk) + ηk is the kth noisy observation

• Why noise here? For example, consider a random sampling x of X.

• ak is a positive coefficient.
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Robbins-Monro algorithm – The algorithm

This algorithm relies on data instead of model:

• Input sequence: {wk}

• Output sequence (noisy): {g̃(wk, ηk)}

2

g(w) +η
w g̃(w, η)

Fig. 1: xx
Philosophy: without model, we need data!

• The function g(w) is viewed as a black box.

• The model here refers to the expression of the function.
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Robbins-Monro algorithm – Illustrative examples

Toy example: manually solve g(w) = w − 10 using the RM algorithm.

Set: w1 = 20, ak ≡ 0.5, ηk = 0 (i.e., no observation error)

w1 = 20 =⇒ g(w1) = 10

w2 = w1 − a1g(w1) = 20− 0.5 ∗ 10 = 15 =⇒ g(w2) = 5

w3 = w2 − a2g(w2) = 15− 0.5 ∗ 5 = 12.5 =⇒ g(w3) = 2.5

...

wk → 10
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Robbins-Monro algorithm – Convergence properties

Why can the RM algorithm find the root of g(w) = 0?

• First present an illustrative example.

• Second give the rigorous convergence analysis.
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Robbins-Monro algorithm – Convergence properties

An illustrative example:

• g(w) = tanh(w − 1)

• The true root of g(w) = 0 is w∗ = 1.

• Parameters: w1 = 3, ak = 1/k, ηk ≡ 0 (no noise for the sake of simplicity)

The RM algorithm in this case is

wk+1 = wk − akg(wk)

since g̃(wk, ηk) = g(wk) when ηk = 0.
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Robbins-Monro algorithm – Convergence properties

Simulation result: wk converges to the true root w∗ = 1.

0.5 1 1.5 2 2.5 3 3.5 4
w

-1

-0.5

0

0.5

1

1.5

g(
w

)
w

1
w

2
w

3
w

4
......

Intuition: wk+1 is closer to w∗ than wk.

• When wk > w∗, we have g(wk) > 0. Then, wk+1 = wk − akg(wk) < wk

and hence wk+1 is closer to w∗ than wk.

• When wk < w∗, we have g(wk) < 0. Then, wk+1 = wk − akg(wk) > wk

and wk+1 is closer to w∗ than wk.
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Robbins-Monro algorithm – Convergence properties

The above analysis is intuitive, but not rigorous. A rigorous convergence result

is given below.

Theorem (Robbins-Monro Theorem)

In the Robbins-Monro algorithm, if

1) 0 < c1 ≤ ∇wg(w) ≤ c2 for all w;

2)
∑∞
k=1 ak =∞ and

∑∞
k=1 a

2
k <∞;

3) E[ηk|Hk] = 0 and E[η2k|Hk] <∞;

where Hk = {wk, wk−1, . . . }, then wk converges with probability 1 (w.p.1) to

the root w∗ satisfying g(w∗) = 0.
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Robbins-Monro algorithm – Convergence properties

Explanation of the three conditions:

• Condition 1: 0 < c1 ≤ ∇wg(w) ≤ c2 for all w

• g should be monotonically increasing,which ensures that the root of g(w) = 0

exists and is unique

• The gradient is bounded from the above.

• This condition is not strict. Consider the example g(w) = ∇wJ(w) = 0. This

condition requires that g(w) is convex.

• Condition 2:
∑∞
k=1 ak =∞ and

∑∞
k=1 a

2
k <∞

•
∑∞
k=1 a

2
k <∞ ensures that ak converges to zero as k →∞.

•
∑∞
k=1 ak =∞ ensures that ak do not converge to zero too fast.

• Condition 3: E[ηk|Hk] = 0 and E[η2k|Hk] <∞
• A special yet common case is that {ηk} is an iid stochastic sequence satisfying

E[ηk] = 0 and E[η2k] <∞. The observation error ηk is not required to be

Gaussian.
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Robbins-Monro algorithm – Convergence properties

Examine Condition 2 more closely:

∞∑
k=1

a2k <∞
∞∑
k=1

ak =∞

• First,
∑∞
k=1 a

2
k <∞ indicates that ak → 0 as k →∞.

• Why is this condition important?

Since

wk+1 − wk = −akg̃(wk, ηk),

- If ak → 0, then akg̃(wk, ηk)→ 0 and hence wk+1 − wk → 0.

- We need the fact that wk+1 − wk → 0 if wk converges eventually.

- If wk → w∗, g(wk)→ 0 and g̃(wk, ηk) is dominant by ηk.
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Robbins-Monro algorithm – Convergence properties

Examine the second condition more closely:

∞∑
k=1

a2k <∞
∞∑
k=1

ak =∞

• Second,
∑∞
k=1 ak =∞ indicates that ak should not converge to zero too

fast.

• Why is this condition important?
Summarizing w2 = w1 − a1g̃(w1, η1), w3 = w2 − a2g̃(w2, η2), . . . ,

wk+1 = wk − ak g̃(wk, ηk) leads to

w1 − w∞ =
∞∑
k=1

ak g̃(wk, ηk).

Suppose w∞ = w∗. If
∑∞
k=1 ak <∞, then

∑∞
k=1 ak g̃(wk, ηk) may be bounded.

Then, if the initial guess w1 is chosen arbitrarily far away from w∗, then the above

equality would be invalid.
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Robbins-Monro algorithm – Convergence properties

What {ak} satisfies the two conditions?
∑∞
k=1 a

2
k <∞,

∑∞
k=1 ak =∞

One typical sequence is

ak =
1

k

• It holds that

lim
n→∞

(
n∑
k=1

1

k
− lnn

)
= κ,

where κ ≈ 0.577 is called the Euler-Mascheroni constant (also called Euler’s

constant).

• It is notable that
∞∑
k=1

1

k2
=
π2

6
<∞.

The limit
∑∞
k=1 1/k2 also has a specific name in the number theory: Basel

problem.
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Robbins-Monro algorithm – Apply to mean estimation

Recall that

wk+1 = wk + αk(xk − wk).

is the mean estimation algorithm introduced at the beginning of this lecture.

• If αk = 1/k, then wk+1 = 1/k
∑k
i=1 xi.

• If αk is not 1/k, the convergence was not analyzed.

Next, we show that this algorithm is a special case of the RM algorithm. Then,

its convergence naturally follows.
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Robbins-Monro algorithm – Apply to mean estimation

1) Consider a function:

g(w)
.
= w − E[X].

Our aim is to solve g(w) = 0. If we can do that, then we can obtain E[X].

- Mean estimation (i.e., finding E[X]) is formulated as a root-finding problem (i.e.,

solving g(w) = 0).

- Question: Do we know the expression of g(w) here?

2) The observation we can get is

g̃(w, x)
.
= w − x,

because we can only obtain samples of X. Note that

g̃(w, η) = w − x = w − x+ E[X]− E[X]

= (w − E[X]) + (E[X]− x) .= g(w) + η,

3) The RM algorithm for solving g(x) = 0 is

wk+1 = wk − αk g̃(wk, ηk) = wk − αk(wk − xk),

which is exactly the mean estimation algorithm.

The convergence naturally follows.
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Dvoretzkys convergence theorem (optional)

Theorem (Dvoretzky’s Theorem)

Consider a stochastic process

wk+1 = (1− αk)wk + βkηk,

where {αk}∞k=1, {βk}∞k=1, {ηk}
∞
k=1 are stochastic sequences. Here αk ≥ 0, βk ≥ 0 for all k.

Then, wk would converge to zero with probability 1 if the following conditions are satisfied:

1)
∑∞

k=1 αk =∞,
∑∞

k=1 α
2
k <∞;

∑∞
k=1 β

2
k <∞ uniformly w.p.1;

2) E[ηk|Hk] = 0 and E[η2k|Hk] ≤ C w.p.1;

where Hk = {wk, wk−1, . . . , ηk−1, . . . , αk−1, . . . , βk−1, . . . }.

• A more general result than the RM theorem.

- It can be used to prove the RM theorem

- It can be used to analyze the mean estimation problem.

- An extension of it can be used to analyze Q-learning and TD learning

algorithms.
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Stochastic gradient descent

Next, we introduce stochastic gradient descent (SGD) algorithms:

• SGD is widely used in the field of machine learning and also in RL.

- SGD is a special RM algorithm.

- The mean estimation algorithm is a special SGD algorithm.

Problem setup: Suppose we aim to solve the following optimization problem:

min
w

J(w) = E[f(w,X)]

• w is the parameter to be optimized.

• X is a random variable. The expectation is with respect to X.

• w and X can be either scalars or vectors. The function f(·) is a scalar.
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Stochastic gradient descent

Method 1: gradient descent (GD)

wk+1 = wk − αk∇wE[f(wk, X)] = wk − αkE[∇wf(wk, X)]

Drawback: Calculating the expectation requires the distribution of X.

Method 2: batch gradient descent (BGD)

E[∇wf(wk, X)] ≈ 1

n

n∑
i=1

∇wf(wk, xi)

Hence

wk+1 = wk − αk
1

n

n∑
i=1

∇wf(wk, xi)

Drawback: it requires many samples in each iteration for each wk.
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Stochastic gradient descent – Algorithm

Method 3: stochastic gradient descent (SGD)

wk+1 = wk − αk∇wf(wk, xk),

• Compared to the gradient descent method:

- Replace the true gradient E[∇wf(wk, X)] by the stochastic gradient

∇wf(wk, xk).

• Compared to the batch gradient descent method:

- let n = 1.
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Stochastic gradient descent – Example and application

We next consider an example:

min
w

J(w) = E[f(w,X)] = E
[

1

2
‖w −X‖2

]
,

where

f(w,X) = ‖w −X‖2/2 ∇wf(w,X) = w −X

Exercises:

• Exercise 1: Show that the optimal solution is w∗ = E[X].

• Exercise 2: Write out the GD algorithm for solving this problem.

• Exercise 3: Write out the SGD algorithm for solving this problem.
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Stochastic gradient descent – Example and application

We next consider an example:

min
w

J(w) = E[f(w,X)] = E
[

1

2
‖w −X‖2

]
,

where

f(w,X) = ‖w −X‖2/2 ∇wf(w,X) = w −X

• Exercise 1: Show that the optimal solution is w∗ = E[X].

• Answer to exercise 1: The optimal solution w∗ must satisfy

∇wJ(w) = 0

which is

∇wE
[

1

2
‖w −X‖2

]
= E

[
∇w

1

2
‖w −X‖2

]
= E [w −X] = 0

Therefore, we formulate the mean estimation problem (i.e., finding E[X]) as

an optimization problem (i.e., optimizing J(w)).
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Stochastic gradient descent – Example and application

We next consider an example:

min
w

J(w) = E[f(w,X)] = E
[

1

2
‖w −X‖2

]
,

where

f(w,X) = ‖w −X‖2/2 ∇wf(w,X) = w −X

• Exercise 2: Write out the GD algorithm for solving this problem.

• Answer to exercise 2: The GD algorithm for solving the above problem is

wk+1 = wk − αk∇wJ(wk)

= wk − αkE[∇wf(wk, X)]

= wk − αkE[wk −X].
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Stochastic gradient descent – Example and application

We next consider an example:

min
w

J(w) = E[f(w,X)] = E
[

1

2
‖w −X‖2

]
,

where

f(w,X) = ‖w −X‖2/2 ∇wf(w,X) = w −X

• Exercise 3: Write out the SGD algorithm for solving this problem.

• Answer to exercise 3: The SGD algorithm for solving the above problem is

wk+1 = wk − αk∇wf(wk, xk) = wk − αk(wk − xk)

- It is the same as the mean estimation algorithm we presented before.

- Therefore, that mean estimation algorithm is a special SGD algorithm.
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Stochastic gradient descent – Convergence

Idea of SGD:
wk+1 = wk−αkE[∇wf(wk, X)]

⇓

wk+1 = wk−αk∇wf(wk, xk)

where the true gradient E[∇wf(wk, X)] is replaced by the stochastic gradient

∇wf(wk, X).

Question: Since

∇wf(wk, xk) 6= E[∇wf(w,X)]

whether wk → w∗ as k →∞ by SGD?

Observation: The stochastic gradient is a noisy measurement of the true

gradient:

∇wf(wk, xk) = E[∇wf(w,X)] +∇wf(wk, xk)− E[∇wf(w,X)]︸ ︷︷ ︸
η

where η is the noise.
Shiyu Zhao 45 / 61



Stochastic gradient descent – Convergence

We next show that SGD is a special RM algorithm. Then, the convergence

naturally follows.

The aim of SGD is to minimize

J(w) = E[f(w,X)]

This problem can be converted to a root-finding problem:

∇wJ(w) = E[∇wf(w,X)] = 0

Let

g(w) = ∇wJ(w) = E[∇wf(w,X)].

Then, the aim of SGD is to find the root of g(w) = 0.
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Stochastic gradient descent – Convergence

What we can measure is

g̃(w, η) = ∇wf(w, x)

= E[∇wf(w,X)]︸ ︷︷ ︸
g(w)

+∇wf(w, x)− E[∇wf(w,X)]︸ ︷︷ ︸
η

.

Then, the RM algorithm for solving g(w) = 0 is

wk+1 = wk − akg̃(wk, ηk) = wk − ak∇wf(wk, xk).

• It is exactly the SGD algorithm.

• Therefore, SGD is a special RM algorithm.
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Stochastic gradient descent – Convergence

Since SGD is a special RM algorithm, its convergence naturally follows.

Theorem (Convergence of SGD)

In the SGD algorithm, if

1) 0 < c1 ≤ ∇2
wf(w,X) ≤ c2;

2)
∑∞
k=1 ak =∞ and

∑∞
k=1 a

2
k <∞;

3) {xk}∞k=1 is iid;

then wk converges to the root of ∇wE[f(w,X)] = 0 with probability 1.

For the proof see the book.
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Stochastic gradient descent – Convergence pattern

Question: Since the stochastic gradient is random and hence the

approximation is inaccurate, whether the convergence of SGD is slow or

random?
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Stochastic gradient descent – Convergence pattern

Example: X ∈ R2 represents a random position in the plane. Its distribution is

uniform in the square area centered at the origin with the side length as 20. The true

mean is E[X] = 0. The mean estimation is based on 100 iid samples {xi}100i=1.
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Observations:

• When the estimate (e.g., the initial guess) is far away from the true value,

the SGD estimate can approach the neighborhood of the true value fast.

• When the estimate is close to the true value, it exhibits certain randomness

but still approaches the true value gradually.
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Stochastic gradient descent – Convergence pattern

Question: Why such a pattern?

Answer: We answer this question by considering the relative error between the

stochastic and batch gradients:

δk
.
=
|∇wf(wk, xk)− E[∇wf(wk, X)]|

|E[∇wf(wk, X)]| .

It can be proven that

δk ≤
∣∣∇wf(wk, xk)− E[∇wf(wk, X)]

∣∣
c|wk − w∗|

.

The proof is given in the next slide. The proof is optional.
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Stochastic gradient descent – Convergence pattern (optional)

Since E[∇wf(w∗, X)] = 0, we have

δk =
|∇wf(wk, xk)− E[∇wf(wk, X)]|
|E[∇wf(wk, X)]− E[∇wf(w∗, X)]|

=
|∇wf(wk, xk)− E[∇wf(wk, X)]|
|E[∇2

wf(w̃k, X)(wk − w∗)]|
.

where the last equality is due to the mean value theorem and w̃k ∈ [wk, w
∗].

Suppose f is strictly convex such that

∇2
wf ≥ c > 0

for all w,X, where c is a positive bound.

Then, the denominator of δk becomes∣∣E[∇2
wf(w̃k, X)(wk − w∗)]

∣∣ =
∣∣E[∇2

wf(w̃k, X)](wk − w∗)
∣∣

=
∣∣E[∇2

wf(w̃k, X)]
∣∣∣∣(wk − w∗)∣∣ ≥ c|wk − w∗|.

Substituting the above inequality to δk gives

δk ≤
∣∣∇wf(wk, xk)− E[∇wf(wk, X)]

∣∣
c|wk − w∗|

.
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Stochastic gradient descent – Convergence pattern

Note that

δk ≤
∣∣ stochastic gradient︷ ︸︸ ︷
∇wf(wk, xk)−

true gradient︷ ︸︸ ︷
E[∇wf(wk, X)]

∣∣
c|wk − w∗|︸ ︷︷ ︸

distance to the optimal solution

.

The above equation suggests an interesting convergence pattern of SGD.

• The upper bound is inversely proportional to |wk − w∗|.
- When |wk − w∗| is large, the relative error δk is small and SGD behaves

like GD.

- When |wk − w∗| is small, the relative error δk may be large (the upper

bound may not be tight). Then, SGD exhibits more randomness in the

neighborhood of w∗.
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BGD, MBGD, and SGD

Suppose we would like to minimize J(w) = E[f(w,X)] given a set of random

samples {xi}ni=1 of X.

The BGD, SGD, MBGD algorithms solving this problem are, respectively,

wk+1 = wk − αk
1

n

n∑
i=1

∇wf(wk, xi), (BGD)

wk+1 = wk − αk
1

m

∑
j∈Ik

∇wf(wk, xj), (MBGD)

wk+1 = wk − αk∇wf(wk, xk). (SGD)

• In the BGD algorithm, all the samples are used in every iteration. When n is large,

(1/n)
∑n
i=1∇wf(wk, xi) is close to the true gradient E[∇wf(wk, X)].

• In the MBGD algorithm, Ik is a subset of {1, . . . , n} with the size as |Ik| = m.

The set Ik is obtained by m times idd samplings.

• In the SGD algorithm, xk is randomly sampled from {xi}ni=1 at time k.
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BGD, MBGD, and SGD

Compare MBGD with BGD and SGD:

• Compared to SGD, MBGD has less randomness because it uses more

samples instead of just one as in SGD.

• Compared to BGD, MBGD does not require to use all the samples in every

iteration, making it more flexible and efficient.

• If m = 1, MBGD becomes SGD.

• If m = n, MBGD does NOT become BGD strictly speaking because MBGD

uses randomly fetched n samples whereas BGD uses all n numbers. In

particular, MBGD may use a value in {xi}ni=1 multiple times whereas BGD

uses each number once.
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BGD, MBGD, and SGD – Illustrative examples

Given some numbers {xi}ni=1, our aim is to calculate the mean x̄ =
∑n
i=1 xi/n.

This problem can be equivalently stated as the following optimization problem:

min
w

J(w) =
1

2n

n∑
i=1

‖w − xi‖2

The three algorithms for solving this problem are, respectively,

wk+1 = wk − αk
1

n

n∑
i=1

(wk − xi) = wk − αk(wk − x̄), (BGD)

wk+1 = wk − αk
1

m

∑
j∈Ik

(wk − xj) = wk − αk
(
wk − x̄(m)

k

)
, (MBGD)

wk+1 = wk − αk(wk − xk), (SGD)

where x̄
(m)
k =

∑
j∈Ik

xj/m.
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BGD, MBGD, and SGD

Let αk = 1/k. Given 100 points, using different mini-batch sizes leads to

different convergence speed.
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Figure: An illustrative example for mean estimation by different GD algorithms.
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Summary

• Mean estimation: compute E[X] using {xk}

wk+1 = wk −
1

k
(wk − xk).

• RM algorithm: solve g(w) = 0 using {g̃(wk, ηk)}

wk+1 = wk − akg̃(wk, ηk)

• SGD algorithm: minimize J(w) = E[f(w,X)] using {∇wf(wk, xk)}

wk+1 = wk − αk∇wf(wk, xk),

These results are useful:

• We will see in the next chapter that the temporal-difference learning

algorithms can be viewed as stochastic approximation algorithms and hence

have similar expressions.

• They are important optimization techniques that can be applied to many

other fields.
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