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Value iteration algorithm

. How to solve the Bellman optimality equation?

v = f(v) = max
π

(rπ + γPπv)

. The contraction mapping theorem suggests an iterative algorithm:

vk+1 = f(vk) = max
π

(rπ + γPπvk), k = 1, 2, 3 . . .

where v0 can be arbitrary. This algorithm can eventually find the optimal state

value and an optimal policy.

. This algorithm is called value iteration!

. We next study the implementation of this algorithm.
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Value iteration algorithm

The algorithm (matrix-vector form)

vk+1 = f(vk) = max
π

(rπ + γPπvk), k = 1, 2, 3 . . .

can be decomposed to two steps.

• Step 1: policy update. This step is to solve

πk+1 = argmax
π

(rπ + γPπvk)

where vk is given.

• Step 2: value update.

vk+1 = rπk+1 + γPπk+1vk

Question: is vk a state value? No, because it is not ensured that vk satisfies a

Bellman equation.
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Value iteration algorithm

. Next, we need to study the elementwise form in order to implement the

algorithm.

• Matrix-vector form is useful for theoretical analysis.

• Elementwise form is useful for implementation.

Shiyu Zhao 6 / 37



Value iteration algorithm - Elementwise form

. Step 1: Policy update

The elementwise form of

πk+1 = argmax
π

(rπ + γPπvk)

is

πk+1(s) = argmax
π

∑
a

π(a|s)

∑
r

p(r|s, a)r + γ
∑
s′
p(s
′|s, a)vk(s′)


︸ ︷︷ ︸

qk(s,a)

, s ∈ S

The optimal policy solving the above optimization problem is

πk+1(a|s) =

{
1 a = a∗k(s)

0 a 6= a∗k(s)

where a∗k(s) = argmaxa qk(a, s). πk+1 is called a greedy policy, since it

simply selects the greatest q-value.
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Value iteration algorithm - Elementwise form

. Step 2: Value update

The elementwise form of

vk+1 = rπk+1 + γPπk+1vk

is

vk+1(s) =
∑
a

πk+1(a|s)

(∑
r

p(r|s, a)r + γ
∑
s′

p(s′|s, a)vk(s′)

)
︸ ︷︷ ︸

qk(s,a)

, s ∈ S

Since πk+1 is greedy, the above equation is simply

vk+1(s) = max
a

qk(a, s)
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Value iteration algorithm - Pseudocode

. Procedure summary:

vk(s)→ qk(s, a)→ greedy policy πk+1(a|s)→ new value vk+1 = max
a

qk(s, a)

Pseudocode: Value iteration algorithm

Initialization: The probability model p(r|s, a) and p(s′|s, a) for all (s, a) are known. Initial

guess v0.

Aim: Search the optimal state value and an optimal policy solving the Bellman optimality

equation.

While vk has not converged in the sense that ‖vk−vk−1‖ is greater than a predefined small

threshold, for the kth iteration, do

For every state s ∈ S, do

For every action a ∈ A(s), do

q-value: qk(s, a) =
∑
r p(r|s, a)r + γ

∑
s′ p(s

′|s, a)vk(s′)
Maximum action value: a∗k(s) = argmaxa qk(a, s)

Policy update: πk+1(a|s) = 1 if a = a∗k, and πk+1(a|s) = 0 otherwise

Value update: vk+1(s) = maxa qk(a, s)

Shiyu Zhao 9 / 37



Value iteration algorithm - Example

. The reward setting is rboundary = rforbidden = −1, rtarget = 1. The discount

rate is γ = 0.9.

s1 s2

s3 s4

s1 s2

s3 s4

s1 s2

s3 s4

(a) (b) (c)

q-table: The expression of q(s, a).

q-value a1 a2 a3 a4 a5

s1 −1 + γv(s1) −1 + γv(s2) 0 + γv(s3) −1 + γv(s1) 0 + γv(s1)

s2 −1 + γv(s2) −1 + γv(s2) 1 + γv(s4) 0 + γv(s1) −1 + γv(s2)

s3 0 + γv(s1) 1 + γv(s4) −1 + γv(s3) −1 + γv(s3) 0 + γv(s3)

s4 −1 + γv(s2) −1 + γv(s4) −1 + γv(s4) 0 + γv(s3) 1 + γv(s4)
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Value iteration algorithm - Example

• k = 0: let v0(s1) = v0(s2) = v0(s3) = v0(s4) = 0

q-value a1 a2 a3 a4 a5

s1 −1 −1 0 −1 0

s2 −1 −1 1 0 −1

s3 0 1 −1 −1 0

s4 −1 −1 −1 0 1

Step 1: Policy update:

π1(a5|s1) = 1, π1(a3|s2) = 1, π1(a2|s3) = 1, π1(a5|s4) = 1

Step 2: Value update:

v1(s1) = 0, v1(s2) = 1, v1(s3) = 1, v1(s4) = 1.

This policy is visualized in Figure (b).
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Value iteration algorithm - Example

• k = 1: since v1(s1) = 0, v1(s2) = 1, v1(s3) = 1, v1(s4) = 1, we have

q-table a1 a2 a3 a4 a5

s1 −1 + γ0 −1 + γ1 0 + γ1 −1 + γ0 0 + γ0

s2 −1 + γ1 −1 + γ1 1 + γ1 0 + γ0 −1 + γ1

s3 0 + γ0 1 + γ1 −1 + γ1 −1 + γ1 0 + γ1

s4 −1 + γ1 −1 + γ1 −1 + γ1 0 + γ1 1 + γ1

Step 1: Policy update:

π2(a3|s1) = 1, π2(a3|s2) = 1, π2(a2|s3) = 1, π2(a5|s4) = 1.

Step 2: Value update:

v2(s1) = γ1, v2(s2) = 1 + γ1, v2(s3) = 1 + γ1, v2(s4) = 1 + γ1.

This policy is visualized in Figure (c).

The policy is already optimal!!

• k = 2, 3, . . . . Stop when ‖vk − vk+1‖ is smaller than a predefined threshold.
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Policy iteration algorithm

. Algorithm description:

Given a random initial policy π0,

• Step 1: policy evaluation (PE)

This step is to calculate the state value of πk:

vπk = rπk + γPπkvπk

Note that vπk is a state value function.

• Step 2: policy improvement (PI)

πk+1 = argmax
π

(rπ + γPπvπk )

The maximization is componentwise!

Similar to the value iteration algorithm? Be patient. We will compare them

later.
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Policy iteration algorithm

. The algorithm leads to a sequence

π0
PE−−→ vπ0

PI−−→ π1
PE−−→ vπ1

PI−−→ π2
PE−−→ vπ2

PI−−→ . . .

PE=policy evaluation, PI=policy improvement

. Questions:

• Q1: In the policy evaluation step, how to get the state value vπk by solving

the Bellman equation?

• Q2: In the policy improvement step, why is the new policy πk+1 better than

πk?

• Q3: Why such an iterative algorithm can finally reach an optimal policy?

• Q4: What is the relationship between this policy iteration algorithm and the

previous value iteration algorithm?
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Policy iteration algorithm

. Q1: In the policy evaluation step, how to get the state value vπk by

solving the Bellman equation?

vπk = rπk + γPπkvπk

• Closed-form solution:

vπk = (I − γPπk )
−1rπk

• Iterative solution:

v(j+1)
πk = rπk + γPπkv

(j)
πk , j = 0, 1, 2, ...

Already studied in the lecture about Bellman equation.

. Policy iteration is an iterative algorithm with another iterative algorithm

embedded in the policy evaluation step!
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Policy iteration algorithm

. Q2: In the policy improvement step, why is the new policy πk+1 better

than πk?

Lemma (Policy Improvement)

If πk+1 = argmaxπ(rπ + γPπvπk ), then vπk+1 ≥ vπk for any k.

See the proof in the book.
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Policy iteration algorithm

. Q3: Why can such an iterative algorithm finally reach an optimal policy?

Since every iteration would improve the policy, we know

vπ0 ≤ vπ1 ≤ vπ2 ≤ · · · ≤ vπk ≤ · · · ≤ v
∗.

As a result, vπk keeps increasing and will converge.

Still need to prove what value it converges to.

Theorem (Convergence of Policy Iteration)

The state value sequence {vπk}
∞
k=0 generated by the policy iteration algorithm

converges to the optimal state value v∗. As a result, the policy sequence

{πk}∞k=0 converges to an optimal policy.

The proof is given in my book.
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Policy iteration algorithm

. Q4: What is the relationship between policy iteration and value

iteration?

Will be explained in detail later.
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Policy iteration algorithm - Elementwise form

Step 1: Policy evaluation

. Matrix-vector form: v
(j+1)
πk = rπk + γPπkv

(j)
πk , j = 0, 1, 2, . . .

. Elementwise form:

v(j+1)
πk (s) =

∑
a

πk(a|s)

(∑
r

p(r|s, a)r + γ
∑
s′

p(s′|s, a)v(j)πk (s
′)

)
, s ∈ S

Stop when j is sufficiently large or ‖v(j+1)
πk − v(j)πk ‖ is sufficiently small.
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Policy iteration algorithm - Elementwise form

Step 2: Policy improvement

. Matrix-vector form: πk+1 = argmaxπ(rπ + γPπvπk )

. Elementwise form

πk+1(s) = argmax
π

∑
a

π(a|s)

∑
r

p(r|s, a)r + γ
∑
s′
p(s
′|s, a)vπk (s

′
)


︸ ︷︷ ︸

qπk
(s,a)

, s ∈ S.

Here, qπk (s, a) is the action value under policy πk. Let

a∗k(s) = argmax
a

qπk (a, s)

Then, the greedy policy is

πk+1(a|s) =

{
1 a = a∗k(s),

0 a 6= a∗k(s).
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Policy iteration algorithm - Implementation

Pseudocode: Policy iteration algorithm

Initialization: The probability model p(r|s, a) and p(s′|s, a) for all (s, a) are known. Initial

guess π0.

Aim: Search for the optimal state value and an optimal policy.

While vπk has not converged, for the kth iteration, do

Policy evaluation:

Initialization: an arbitrary initial guess v(0)πk
While v(j)πk

has not converged, for the jth iteration, do

For every state s ∈ S, do

v(j+1)
πk

(s) =
∑
a πk(a|s)

[∑
r p(r|s, a)r + γ

∑
s′ p(s

′|s, a)v(j)πk (s
′)
]

Policy improvement:

For every state s ∈ S, do

For every action a ∈ A, do

qπk (s, a) =
∑
r p(r|s, a)r + γ

∑
s′ p(s

′|s, a)vπk (s
′)

a∗k(s) = argmaxa qπk (s, a)

πk+1(a|s) = 1 if a = a∗k, and πk+1(a|s) = 0 otherwise
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Policy iteration algorithm - Simple example

s1 s2 s1 s2

(b) optimal policy(a) initial policy

. The reward setting is rboundary = −1 and rtarget = 1. The discount rate is

γ = 0.9.

. Actions: a`, a0, ar represent go left, stay unchanged, and go right.

. Aim: use policy iteration to find out the optimal policy.
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Policy iteration algorithm - Simple example

. Iteration k = 0: Step 1: policy evaluation

π0 is selected as the policy in Figure (a). The Bellman equation is

vπ0(s1) = −1 + γvπ0(s1),

vπ0(s2) = 0 + γvπ0(s1).

• Solve the equations directly:

vπ0(s1) = −10, vπ0(s2) = −9.

• Solve the equations iteratively. Select the initial guess as

v
(0)
π0 (s1) = v

(0)
π0 (s2) = 0:{

v(1)π0 (s1) = −1 + γv(0)π0 (s1) = −1,
v(1)π0

(s2) = 0 + γv(0)π0
(s1) = 0,{

v(2)π0
(s1) = −1 + γv(1)π0

(s1) = −1.9,
v(2)π0 (s2) = 0 + γv(1)π0 (s1) = −0.9,{
v(3)π0

(s1) = −1 + γv(2)π0
(s1) = −2.71,

v(3)π0
(s2) = 0 + γv(2)π0

(s1) = −1.71,

. . .
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Policy iteration algorithm - Simple example

. Iteration k = 0: Step 2: policy improvement
The expression of qπk (s, a):

qπk (s, a) a` a0 ar

s1 −1 + γvπk (s1) 0 + γvπk (s1) 1 + γvπk (s2)

s2 0 + γvπk (s1) 1 + γvπk (s2) −1 + γvπk (s2)

Substituting vπ0(s1) = −10, vπ0(s2) = −9 and γ = 0.9 gives

qπ0(s, a) a` a0 ar

s1 −10 −9 −7.1
s2 −9 −7.1 −9.1

By seeking the greatest value of qπ0 , the improved policy is:

π1(ar|s1) = 1, π1(a0|s2) = 1.

This policy is optimal after one iteration! In your programming, should

continue until the stopping criterion is satisfied.
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Policy iteration algorithm - Simple example

Excise! Set the left cell as the target area.

Now you know another powerful algorithm searching for optimal policies! Now

let’s apply it and see what we can find.
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Policy iteration algorithm - Complicated example

. Setting: rboundary = −1, rforbidden = −10, rtarget = 1, γ = 0.9.

. Let’s check out the intermediate policies and state values.
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Policy iteration algorithm - Complicated example

. Interesting pattern of the policies and state values

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

0.0 0.0 0.0 0.0 0.0

0.0 -100.0 -100.0 0.0 0.0

0.0 0.0 -100.0 0.0 0.0

0.0 -100.0 10.0 -100.0 0.0

0.0 -100.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 9.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

π4 and vπ4

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

0.0 0.0 0.0 0.0 0.0

0.0 -100.0 -100.0 0.0 0.0

0.0 0.0 -100.0 0.0 0.0

0.0 -100.0 10.0 -100.0 0.0

0.0 -100.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 9.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 4.3 4.8 4.3

0.0 0.0 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

π5 and vπ5
...

...
1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

0.0 0.0 0.0 0.0 0.0

0.0 -100.0 -100.0 0.0 0.0

0.0 0.0 -100.0 0.0 0.0

0.0 -100.0 10.0 -100.0 0.0

0.0 -100.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 9.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 4.3 4.8 4.3

0.0 0.0 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 3.9 4.3 4.8 5.3

0.0 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

0.0 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

2.8 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

π9 and vπ9

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

0.0 0.0 0.0 0.0 0.0

0.0 -100.0 -100.0 0.0 0.0

0.0 0.0 -100.0 0.0 0.0

0.0 -100.0 10.0 -100.0 0.0

0.0 -100.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 0.0

0.0 9.0 10.0 9.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.0 0.0 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 0.0 4.3 4.8 4.3

0.0 0.0 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

0.0 3.9 4.3 4.8 5.3

0.0 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

0.0 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

0.0 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

2.8 0.0 10.0 5.9 6.6

0.0 10.0 10.0 10.0 7.3

0.0 9.0 10.0 9.0 8.1

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

2.8 2.5 10.0 5.9 6.6

2.5 10.0 10.0 10.0 7.3

2.3 9.0 10.0 9.0 8.1

π10 and vπ10
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Outline

1 Value iteration algorithm

2 Policy iteration algorithm

3 Truncated policy iteration algorithm
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Compare value iteration and policy iteration

Policy iteration: start from π0

• Policy evaluation (PE):

vπk = rπk + γPπkvπk

• Policy improvement (PI):

πk+1 = argmax
π

(rπ + γPπvπk )

Value iteration: start from v0

• Policy update (PU):

πk+1 = argmax
π

(rπ + γPπvk)

• Value update (VU):

vk+1 = rπk+1 + γPπk+1vk
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Compare value iteration and policy iteration

. The two algorithms are very similar:

Policy iteration: π0
PE−−→vπ0

PI−−→ π1
PE−−→ vπ1

PI−−→ π2
PE−−→ vπ2

PI−−→ . . .

Value iteration: u0
PU−−→ π′1

V U−−→ u1
PU−−→ π′2

V U−−→ u2
PU−−→ . . .

PE=policy evaluation. PI=policy improvement.

PU=policy update. VU=value update.
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Compare value iteration and policy iteration

. Let’s compare the steps carefully:

Policy iteration algorithm Value iteration algorithm Comments

1) Policy: π0 N/A

2) Value: vπ0 = rπ0 + γPπ0vπ0 v0
.
= vπ0

3) Policy: π1 = argmaxπ(rπ + γPπvπ0 ) π1 = argmaxπ(rπ + γPπv0) The two policies are the

same

4) Value: vπ1 = rπ1 + γPπ1vπ1 v1 = rπ1 + γPπ1v0 vπ1 ≥ v1 since vπ1 ≥
vπ0

5) Policy: π2 = argmaxπ(rπ + γPπvπ1 ) π′2 = argmaxπ(rπ + γPπv1)

.

.

.
.
.
.

.

.

.
.
.
.

• They start from the same initial condition.

• The first three steps are the same.

• The fourth step becomes different:

• In policy iteration, solving vπ1 = rπ1 + γPπ1vπ1 requires an iterative

algorithm (an infinite number of iterations)

• In value iteration, v1 = rπ1 + γPπ1v0 is a one-step iteration
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Compare value iteration and policy iteration

Consider the step of solving vπ1 = rπ1 + γPπ1vπ1 :

v
(0)
π1 = v0

value iteration← v1 ←−v(1)π1 = rπ1 + γPπ1v
(0)
π1

v
(2)
π1 = rπ1 + γPπ1v

(1)
π1

...

truncated policy iteration← v̄1 ←−v(j)π1 = rπ1 + γPπ1v
(j−1)
π1

...

policy iteration← vπ1 ←−v
(∞)
π1 = rπ1 + γPπ1v

(∞)
π1

• The value iteration algorithm computes once.

• The policy iteration algorithm computes an infinite number of iterations.

• The truncated policy iteration algorithm computes a finite number of

iterations (say j). The rest iterations from j to ∞ are truncated.
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Truncated policy iteration - Pseudocode

Pseudocode: Truncated policy iteration algorithm

Initialization: The probability model p(r|s, a) and p(s′|s, a) for all (s, a) are known. Initial guess π0.

Aim: Search for the optimal state value and an optimal policy.

While vk has not converged, for the kth iteration, do

Policy evaluation:

Initialization: select the initial guess as v
(0)
k

= vk−1. The maximum iteration is set to be jtruncate.

While j < jtruncate, do

For every state s ∈ S, do

v
(j+1)
k

(s) =
∑
a πk(a|s)

[∑
r p(r|s, a)r + γ

∑
s′ p(s

′|s, a)v(j)
k

(s′)
]

Set vk = v
(jtruncate)
k

Policy improvement:

For every state s ∈ S, do

For every action a ∈ A(s), do

qk(s, a) =
∑
r p(r|s, a)r + γ

∑
s′ p(s

′|s, a)vk(s′)
a∗k(s) = argmaxa qk(s, a)

πk+1(a|s) = 1 if a = a∗k , and πk+1(a|s) = 0 otherwise
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Truncated policy iteration - Convergence

. Will the truncation undermine convergence?

Proposition (Value Improvement)

Consider the iterative algorithm for solving the policy evaluation step:

v(j+1)
πk = rπk + γPπkv

(j)
πk , j = 0, 1, 2, ...

If the initial guess is selected as v
(0)
πk = vπk−1 , it holds that

v(j+1)
πk ≥ v(j)πk

for every j = 0, 1, 2, . . . .

For the proof, see the book.
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Truncated policy iteration - Convergence

k

v*

v
k

v
k

Policy iteration
Value iteration
Truncated policy iteration
Optimal state value

Figure: Illustration of the relationship among value iteration, policy iteration, and truncated
policy iteration.

The convergence proof of PI is based on that of VI. Since VI converges, we

know PI converges.
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Summary

. Value iteration: it is the iterative algorithm solving the Bellman optimality

equation: given an initial value v0,

vk+1 = maxπ(rπ + γPπvk)

m{
Policy update: πk+1 = argmaxπ(rπ + γPπvk)

Value update: vk+1 = rπk+1 + γPπk+1vk

. Policy iteration: given an initial policy π0,{
Policy evaluation: vπk = rπk + γPπkvπk

Policy improvement: πk+1 = argmaxπ(rπ + γPπvπk )

. Truncated policy iteration
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