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Abstract
Reward learning enables the application of rein-
forcement learning (RL) to tasks where reward is
defined by human judgment, building a model of
reward by asking humans questions. Most work
on reward learning has used simulated environ-
ments, but complex information about values is of-
ten expressed in natural language, and we believe
reward learning for language is a key to making
RL practical and safe for real-world tasks. In this
paper, we build on advances in generative pretrain-
ing of language models to apply reward learning
to four natural language tasks: continuing text
with positive sentiment or physically descriptive
language, and summarization tasks on the TL;DR
and CNN/Daily Mail datasets. For stylistic con-
tinuation we achieve good results with only 5,000
comparisons evaluated by humans. For summa-
rization, models trained with 60,000 comparisons
copy whole sentences from the input but skip irrel-
evant preamble; this leads to reasonable ROUGE
scores and very good performance according to
our human labelers, but may be exploiting the fact
that labelers rely on simple heuristics.

1. Introduction
We would like to apply reinforcement learning to complex
tasks defined only by human judgment, where we can only
tell whether a result is good or bad by asking humans. To
do this, we can first use human labels to train a model of
reward, and then optimize that model. While there is a long
history of work learning such models from humans through
interaction, this work has only recently been applied to mod-
ern deep learning, and even then has only been applied to
relatively simple simulated environments (Christiano et al.,
2017; Ibarz et al., 2018; Bahdanau et al., 2018). By contrast,
real world settings in which humans need to specify com-
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plex goals to AI agents are likely to both involve and require
natural language, which is a rich medium for expressing
value-laden concepts. Natural language is particularly im-
portant when an agent must communicate back to a human
to help provide a more accurate supervisory signal (Irving
et al., 2018; Christiano et al., 2018; Leike et al., 2018).

Natural language processing has seen substantial recent ad-
vances. One successful method has been to pretrain a large
generative language model on a corpus of unsupervised data,
then fine-tune the model for supervised NLP tasks (Dai and
Le, 2015; Peters et al., 2018; Radford et al., 2018; Khandel-
wal et al., 2019). This method often substantially outper-
forms training on the supervised datasets from scratch, and
a single pretrained language model often can be fine-tuned
for state of the art performance on many different super-
vised datasets (Howard and Ruder, 2018). In some cases,
fine-tuning is not required: Radford et al. (2019) find that
generatively trained models show reasonable performance
on NLP tasks with no additional training (zero-shot).

There is a long literature applying reinforcement learning to
natural language tasks. Much of this work uses algorithmi-
cally defined reward functions such as BLEU for translation
(Ranzato et al., 2015; Wu et al., 2016), ROUGE for summa-
rization (Ranzato et al., 2015; Paulus et al., 2017; Wu and
Hu, 2018; Gao et al., 2019b), music theory-based rewards
(Jaques et al., 2017), or event detectors for story generation
(Tambwekar et al., 2018). Nguyen et al. (2017) used RL
on BLEU but applied several error models to approximate
human behavior. Wu and Hu (2018) and Cho et al. (2019)
learned models of coherence from existing text and used
them as RL rewards for summarization and long-form gen-
eration, respectively. Gao et al. (2019a) built an interactive
summarization tool by applying reward learning to one ar-
ticle at a time. Experiments using human evaluations as
rewards include Kreutzer et al. (2018) which used off-policy
reward learning for translation, and Jaques et al. (2019)
which applied the modified Q-learning methods of Jaques
et al. (2017) to implicit human preferences in dialog. Yi
et al. (2019) learned rewards from humans to fine-tune dia-
log models, but smoothed the rewards to allow supervised
learning. We refer to Luketina et al. (2019) for a survey of
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RL tasks involving language as a component, and for RL
results using transfer learning from language. RL is not the
only way to incorporate ongoing human feedback: Hancock
et al. (2019) ask humans what a dialogue system should
have said instead, then continue supervised training.

In this paper, we combine the pretraining advances in natural
language processing with human preference learning. We
fine-tune pretrained language models with reinforcement
learning rather than supervised learning, using a reward
model trained from human preferences on text continua-
tions. Following Jaques et al. (2017; 2019), we use a KL
constraint to prevent the fine-tuned model from drifting too
far from the pretrained model. We apply our method to
two types of tasks: continuing text in a way that matches a
target style, either positive sentiment or vividly descriptive,
and summarizing text from the CNN/Daily Mail or TL;DR
datasets (Hermann et al., 2015; Völske et al., 2017). Our
motivation is NLP tasks where supervised data sets are un-
available or insufficient, and where programmatic reward
functions are poor proxies for our true goals.

For stylistic continuation, 5,000 human comparisons (each
choosing the best of 4 continuations) result in the fine-tuned
model being preferred by humans 86% of the time vs. zero-
shot and 77% vs. fine-tuning to a supervised sentiment net-
work. For summarization, we use 60,000 human samples
to train models that can roughly be described as “smart
copiers”: they typically copy whole sentences from the in-
put, but vary what they copy to skip irrelevant initial text.
This copying behavior emerged naturally from the data col-
lection and training process; we did not use any explicit
architectural mechanism for copying as in See et al. (2017);
Gehrmann et al. (2018). One explanation is that copying
is an easy way to be accurate, given that we did not in-
struct labelers to penalize copying but do instruct them to
penalize inaccuracy. It may also reflect the fact that some
labelers check for copying as a fast heuristic to ensure a
summary is accurate. Indeed, human labelers significantly
prefer our models to supervised fine-tuning baselines and
even to human-written reference summaries, but not to a
lead-3 baseline which copies the first three sentences.

For summarization, we continue to collect additional data
and retrain our reward model as the policy improves (online
data collection). We also test offline data collection where
we train the reward model using data from the original
language model only; offline data collection significantly re-
duces the complexity of the training process. For the TL;DR
dataset, human labelers preferred the policy trained with
online data collection 71% of the time, and in qualitative
evaluations the offline model often provides inaccurate sum-
maries. In contrast, for stylistic continuation we found that
offline data collection worked similarly well. This may be
related to the style tasks requiring very little data; Radford

Reward model training

Policy Reward
model

Human
labeler

context continuation (×4) reward (×4) loss

label

Policy training

Policy Reward
modelcontext continuation reward loss

Figure 1: Our training processes for reward model and
policy. In the online case, the processes are interleaved.

et al. (2017) show that generatively trained models can learn
to classify sentiment from very few labeled examples.

In concurrent work, Böhm et al. (2019) also use human
evaluations to learn a reward function for summarization,
and optimize that reward function with RL. Their work
provides a more detailed investigation of the learned policy
and reward function on the CNN/Daily Mail dataset, while
we are interested in exploring learning from human feedback
more generally and at larger computational scale. So we
consider several additional tasks, explore the effects of on-
policy reward model training and more data, and fine-tune
large language models for both reward modeling and RL.

2. Methods
We begin with a vocabulary Σ and a language model ρ
which defines a probability distribution over sequences of
tokens Σn via

ρ(x0 · · ·xn−1) =
∏

0≤k<n

ρ(xk|x0 · · ·xk−1)

We will apply this model to a task with input space X =
Σ≤m, data distribution D over X , and output space Y =
Σn. For example, x ∈ X could be an article of up to
1000 words and y ∈ Y could be a 100-word summary. ρ
defines a probabilistic policy for this task via ρ(y|x) =
ρ(xy)/ρ(x): fixing the beginning of the sample to x and
generating subsequent tokens using ρ.

We initialize a policy π = ρ, and then fine-tune π to perform
the task well using RL. If the task was defined by a reward
function r : X × Y → R, then we could use RL to directly
optimize the expected reward:

Eπ [r] = Ex∼D,y∼π(·|x) [r(x, y)]

However, we want to perform tasks defined by human judg-
ments, where we can only learn about the reward by asking
humans. To do this, we will first use human labels to train a
reward model, and then optimize that reward model.
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Following Christiano et al. (2017), we ask human labelers
to pick which of several values of yi is the best response to
a given input x.1 We ask humans to choose between four
options (y0, y1, y2, y3); considering more options allows a
human to amortize the cost of reading and understanding
the prompt x. Let b ∈ {0, 1, 2, 3} be the option they select.
Having collected a dataset S of (x, y0, y1, y2, y3, b) tuples,
we fit a reward model r : X × Y → R using the loss

loss(r) = E(x,{yi}i,b)∼S

[
log

er(x,yb)∑
i e
r(x,yi)

]
(1)

Since the reward model needs to understand language, we
initialize it as a random linear function of the final em-
bedding output of the language model policy ρ following
Radford et al. (2018) (see section 4.2 for why we initialize
from ρ rather than π). To keep the scale of the reward model
consistent across training, we normalize it so that it has
mean 0 and variance 1 for x ∼ D, y ∼ ρ(·|x).

Now we fine-tune π to optimize the reward model r. To
keep π from moving too far from ρ, we add a penalty with
expectation βKL(π, ρ) (see table 10 for what happens with-
out this). That is, we perform RL on the modified reward

R(x, y) = r(x, y)− β log
π(y|x)

ρ(y|x)
. (2)

We either choose a constant β or vary it dynamically to
achieve a particular value of KL(π, ρ); see section 2.2. This
term has several purposes: it plays the role of an entropy
bonus, it prevents the policy from moving too far from
the range where r is valid, and in the case of our style
continuation tasks it also is an important part of the task
definition: we ask humans to evaluate style, but rely on the
KL term to encourage coherence and topicality.

Our overall training process is:

1. Gather samples (x, y0, y1, y2, y3) via x ∼ D, yi ∼
ρ(·|x). Ask humans to pick the best yi from each.

2. Initialize r to ρ, using random initialization for the
final linear layer of r. Train r on the human samples
using loss (1).

3. Train π via Proximal Policy Optimization (PPO, Schul-
man et al. (2017)) with reward R from (2) on x ∼ D.

4. In the online data collection case, continue to collect
additional samples, and periodically retrain the reward
model r. This is described in section 2.3.

1In early experiments we found that it was hard for humans
to provide consistent fine-grained quantitative distinctions when
asked for an absolute number, and experiments on synthetic tasks
confirmed that comparisons were almost as useful.

2.1. Pretraining details

We use a 774M parameter version of the GPT-2 language
model in Radford et al. (2019) trained on their WebText
dataset and their 50,257 token invertible byte pair encoding
to preserve capitalization and punctuation (Sennrich et al.,
2015). The model is a Transformer with 36 layers, 20 heads,
and embedding size 1280 (Vaswani et al., 2017).

For stylistic continuation tasks we perform supervised fine-
tuning of the language model to the BookCorpus dataset
of Zhu et al. (2015) prior to RL fine-tuning; we train from
scratch on WebText, supervised fine-tune on BookCorpus,
then RL fine-tune to our final task. To improve sample
quality, we use a temperature of T < 1 for all experiments;
we modify the initial language model by dividing logits by
T , so that future sampling and RL with T = 1 corresponds
to a lower temperature for the unmodified pretrained model.

2.2. Fine-tuning details

Starting with the pretrained language model, the reward
model is trained using the Adam optimizer (Kingma and Ba,
2014) with loss (1). The batch size is 8 for style tasks and
32 for summarization, and the learning rate is 1.77× 10−5

for both. We use a single epoch to avoid overfitting to the
small amount of human data, and turn off dropout.

For training the policy π, we use the PPO2 version of Proxi-
mal Policy Optimization from Dhariwal et al. (2017). We
use 2M episodes (x, y pairs), γ = 1, four PPO epochs per
batch with one minibatch each, and default values for the
other parameters. We use batch size 1024 for style tasks and
512 for summarization. We do not use dropout for policy
training. The learning rate was 1.41× 10−5 for style tasks
and 7.07× 10−6 for summarization.

Models trained with different seeds and the same KL penalty
β sometimes end up with quite different values of KL(π, ρ),
making them hard to compare. To fix this, for some experi-
ments we dynamically vary β to target a particular value of
KL(π, ρ) using the log-space proportional controller

et = clip

(
KL(πt, ρ)−KLtarget

KLtarget
,−0.2, 0.2

)
βt+1 = βt(1 +Kβet)

We used Kβ = 0.1.

For supervised fine-tuning baselines, we fine-tune for 1
epoch on the CNN/Daily Mail and TL;DR training sets (for
TL;DR we removed 30K examples to serve as a validation
set). We decayed the learning rate to 0 with a cosine sched-
ule; for the initial value, we swept over 8 log-linearly spaced
options between 10−4 and 3× 10−4. We also experimented
with different dropout rates, and found a rate of 0.1 to work
best. We then chose the model with the best validation loss.
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2.3. Online data collection

If the trained policy π is very different from the zero-shot
policy ρ, the reward model will suffer a large distributional
shift from training on samples from ρ to evaluation on sam-
ples from π. To prevent this, we can collect human data
throughout RL fine-tuning, continuously gathering new data
by sampling from π and retraining the reward model. As
section 3 shows, online data collection was important for
summarization but not for the simpler style tasks.

In the online case, we will choose a function l(n) describing
how many labels we want before beginning the nth PPO
episode. Let Nπ = 2 × 106 be the total number of PPO
episodes, N0

r = l(0) be an initial number of human labels,
and Nr be the total number of human labels. We take

l(n) = N0
r + (Nr −N0

r )
(
1− (1− n/Nπ)2

)
We pause before the nth PPO episode if we have fewer than
l(n) labels. We send another batch of requests to the labelers
if the total requests so far is less than l(n) + 1000, to ensure
they have at least 1000 outstanding queries at any time. We
train the reward model before the first PPO episode, and
then retrain it 19 more times at evenly spaced values of l(n).
Each time we retrain we reinitialize r to a random linear
layer on top of ρ and do a single epoch through the labels
collected so far. The offline case is the limit Nr = N0

r .

To estimate overall progress, we gather validation samples
consisting of x ∼ D; y0, y1 ∼ ρ(·|x); y2, y3 ∼ π(·|x) at
a constant rate; human labels on these give how often π
beats ρ. Since validation samples are only used to evaluate
the current π, we can add them to the training set for r.
In order to estimate inter-labeler agreement, 5% of queries
are answered 5 times by different labelers. Label counts in
section 3 include validation samples and repeated labels.

2.4. Human labeling

We use Scale AI to collect labels. The Scale API accepts
requests of the form (x, y0, y1, y2, y3) and returns selections
b ∈ {0, 1, 2, 3}. We describe the task to Scale through a
combination of instructions (appendix A) and a dataset of
about 100 example comparisons from the authors.

Unlike many tasks in ML, our queries do not have unam-
biguous ground truth, especially for pairs of similar outputs
(which play a large role in our training process, since we
train r on pairs of labels sampled from a single policy π).
This means that there is significant disagreement even be-
tween labelers who have a similar understanding of the task
and are trying to rate consistently. On 4-way comparisons
for sentiment and TL;DR summarization, authors of this
paper agree about 60% of the time (vs. 25% for random
guessing). This low rate of agreement complicates the qual-
ity control process for Scale; the authors agree with Scale

Figure 2: Learning curves for a 124M-parameter model with
mock sentiment reward, targeting a KL of 8 nats. Lines and
shaded areas show mean and range for 5 seeds. Early on the
reward model sometimes speeds up training, a phenomenon
also observed by Christiano et al. (2017).

labelers 38% of the time on sentiment and 46% of the time
on TL;DR summarization. We give further details of the
human data collection and quality evaluation in appendix B.

For final evaluation of two models A and B, we generate
either 2-way comparisons between pairs (a ∼ A, b ∼ B) or
4-way comparisons with quadruples (a0, a1 ∼ A, b0, b1 ∼
B), randomize the order in which samples are presented,
and present these comparisons to Scale. Evaluating the
quality of a model trained by Scale using the same set of
humans from Scale is perilous: it demonstrates that r and
π have succeeded in fitting to the human reward, but does
not show that those human evaluations capture what we
really care about, and our models are incentivized to exploit
idiosyncracies of the labeling process. We include samples
from our models so that readers can judge for themselves.

3. Experiments
In section 3.1.1, we test our approach to RL fine-tuning of
language models by using a mock labeler (a sentiment model
trained on a review classification problem) as a stand-in for
human labels. We show that RL fine-tuning is effective
at optimizing this complex but somewhat artificial reward.
In section 3.1.2, we show that we can optimize language
models from human preferences on stylistic continuation
tasks (sentiment and physical descriptiveness) with very
little data, and that in the sentiment case the results are
preferred to optimizing the review sentiment model. In
section 3.2 we apply RL fine-tuning to summarization on
the CNN/Daily Mail and TL;DR datasets, show that the
resulting models are essentially “smart copiers”, and discuss
these results in the context of other summarization work.

https://scale.com
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Figure 3: Allowing the policy π to move further from the initial policy ρ as measured by KL(π, ρ) achieves higher reward at
the cost of less natural samples. Here we show the optimal KL vs. reward for 124M-parameter mock sentiment (as estimated
by sampling), together with results using PPO. Runs used 2M episodes, except for the top series.

We release code2 for reward modeling and fine-tuning in
the offline data case. Our public version of the code only
works with a smaller 124M parameter model with 12 layers,
12 heads, and embedding size 768. We include fine-tuned
versions of this smaller model, as well as some of the human
labels we collected for our main experiments (note that these
labels were collected from runs using the larger model).

3.1. Stylistic continuation tasks

We first apply our method to stylistic text continuation tasks,
where the policy is presented with an excerpt from the Book-
Corpus dataset (Zhu et al., 2015) and generates a continu-
ation of the text. The reward function evaluates the style
of the concatenated text, either automatically or based on
human judgments. We sample excerpts with lengths of 32
to 64 tokens, and the policy generates 24 additional tokens.
We set the temperature of the pretrained model to T = 0.7
as described in section 2.1.

3.1.1. MOCK SENTIMENT TASK

To study our method in a controlled setting, we first apply it
to optimize a known reward function rs designed to reflect
some of the complexity of human judgments. We construct

2Code at https://github.com/openai/lm-human-preferences.

rs by training a classifier3 on a binarized, balanced subsam-
ple of the Amazon review dataset of McAuley et al. (2015).
The classifier predicts whether a review is positive or nega-
tive, and we define rs(x, y) as the classifier’s log odds that
a review is positive (the input to the final sigmoid layer).

Optimizing rs without constraints would lead the policy
to produce incoherent continuations, but as described in
section 2.2 we include a KL constraint that forces it to stay
close to a language model ρ trained on BookCorpus.

The goal of our method is to optimize a reward function
using only a small number of queries to a human. In this
mock sentiment experiment, we simulate human judgments
by assuming that the “human” always selects the continu-
ation with the higher reward according to rs, and ask how
many queries we need to optimize rs.

Figure 2 shows how rs evolves during training, using either
direct RL access to rs or a limited number of queries to train
a reward model. 20k to 60k queries allow us to optimize rs
nearly as well as using RL to directly optimize rs.

Because we know the reward function, we can also ana-
lytically compute the optimal policy and compare it to our
learned policies. With a constraint on the KL divergence

3The model is a Transformer with 6 layers, 8 attention heads,
and embedding size 512.

https://github.com/openai/lm-human-preferences
https://github.com/openai/lm-human-preferences
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Figure 4: Human evaluations comparing the zero-shot model with offline fine-tuned models using varying amounts of
human data. We report how often the fine-tuned model is preferred by a majority of 3 labelers. We omit error bars because
we lack an estimate of the largest source of variance (randomness across training runs).

Sentiment Descriptiveness

5k offline vs. zero-shot 88% 12% 86% 14%
5k offline vs. mock 77% 23% —
5k offline vs. 20k offline 48% 52% 47% 53%
5k offline vs. 5k online 50% 50% 48% 52%

Table 1: Human evaluations for the sentiment and descriptiveness tasks. We sample 1024 excerpts from the BookCorpus
test set and report how often each model’s continuations were preferred, as judged by a majority of 3 labelers.

KL(π, ρ) between the learned policy π and the language
model ρ, the optimal policy has the form:

πopt(y|x) ∝ ρ(y|x)ers(x,y)/β

We approximate the reward of this policy for given x and
β by sampling a large number of continuations from ρ(y|x)
and reweighting them by ers(x,y)/β . Figure 3 compares the
reward obtained by our policies to the estimated optimal
reward across a range of KL values. There is a signifi-
cant gap from optimality after training the policy on 2M
continuations—the number used in our main experiments—
though it is largely closed with more training. Our policies
continue to receive higher rewards for larger KL divergences,
where we cannot afford to approximate πopt by sampling.

3.1.2. HUMAN EVALUATIONS OF CONTINUATIONS

We apply our method to two continuation tasks defined by
human judgments:

Sentiment: Humans are asked to reward “positive and
happy” continuations.

Descriptiveness: Humans are asked to reward “vividly de-
scriptive” continuations.

The human labelers are presented with a BookCorpus ex-
cerpt and four possible continuations; they are asked to
select the best continuation. Full instructions for labelers
are provided in appendix A (although labelers also learned
from ∼ 50 example comparisons labeled by the authors and
so the instructions do not completely define the task).

To make the labeling task more natural, we select excerpts
that start and end with a period. When sampling continu-
ations that will be presented to humans, we use rejection
sampling to ensure there is a period between tokens 16 and
24 and then truncate at that period.4 During the RL fine-
tuning, we penalize continuations that don’t have such a
period by giving them a fixed reward of −1.

We dynamically adjusted β to obtain a KL divergence of
6 nats for descriptiveness and 10 nats for sentiment (sec-
tion 2.2).

We trained a range of models using different amounts of
feedback, testing both offline data collection where humans

4This is a crude approximation for “end of sentence.” We chose
it because it is easy to integrate into the RL loop, and even a crude
approximation is sufficient for the intended purpose of making the
human evaluation task somewhat easier.
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context Pearl thought to herself that what they were about to do was exactly the sort of thing
that they could do to help the villagers. They were all terrified of these guys.
At the police station the three walked up to the counter behind which was a senior
constable studying some papers.
Continuation 1 Continuation 2 Continuation 3

zero-shot "Hello, I’m Pearl and this is
my friend, Mike," said Pearl.

"May we speak to the police
officer, sir?" asked the one in
charge.

'Hello, can I help you?'
'Yes, we’re the same people
that the people were talking
about.

5k offline
fine-tune

He turned to them with a
smile. "Good afternoon,
ladies. I’m Detective Inspec-
tor Jones.

The constable stood up and
smiled as he saw them, obvi-
ously pleased to see them.

He smiled at them and waved
them in, his eyes twinkling as
he listened to their tales.

Table 2: Three random (T = 0.7) continuations for our sentiment continuation task. Chosen from appendix table 11; see
appendix for more.

context "I do not know if it was Viking related, but it could have been."
"Really?" Ailia said. Is it safe to be traveling here then? Ailia looked behind her to
make sure they weren’t being followed.
Continuation 1 Continuation 2 Continuation 3

zero-shot There were no signs of any-
one.
"It is safe enough," Ailios
said.

"Because I have a friend that
is in the area and he will be
coming with us.

It was hard to see that far. "I
do not like that word.

5k offline
fine-tune

Kaya crouched low, her eyes
wide in the moonlight. Her
body was tense.

She put her hand on the
sword strapped to her back,
and then pulled it out.

She strode out the door
and walked down the street,
her nose wrinkled in disap-
proval.

Table 3: Three random (T = 0.7) continuations for our descriptiveness continuation task. Chosen from appendix table 12;
see appendix for more.

rate only the initial language model’s continuation, and on-
line data collection where humans continuously rate the cur-
rent policy’s continuations (section 2.3). We then compared
these different policies to each other and to the zero-shot
performance of the original language model. The results are
shown in fig. 4 and table 1. Each model comparison is based
on 1024 four-way continuation comparisons, two from each
of the models being compared, each rated by 3 humans.

For these continuation tasks, offline and online data collec-
tion give similar performance. We find that very little human
data is required for fine-tuning: performance with 5k, 10k,
and 20k reward model training samples is similar, degrading
only for less than 5k samples.5 The model trained using the
review sentiment classifier from section 3.1.1 does poorly
relative to models optimized using human preference: in
77% of contexts, labelers preferred the output of the model
trained with real human feedback.

5The descriptiveness policy trained with 2.5k samples per-
formed poorly, but we believe this is due to randomness in RL.

3.2. Summarization

We also applied our method to two summarization tasks:
the CNN/Daily Mail dataset of Hermann et al. (2015)
and the TL;DR dataset of Völske et al. (2017). We sam-
ple articles or Reddit posts, truncate to 500 tokens, add
a "\n\nTL;DR:" suffix (and for CNN/Daily Mail, a
"Article:\n\n" prefix) and let the policy respond with
up to 75 tokens. We set the temperature of the pretrained
model to T = 0.5 for CNN/Daily Mail and T = 0.7 for
TL;DR. To make the task more natural for humans, we en-
sure articles consist of whole sentences by truncating to
the last newline character. When sampling summaries that
will be shown to a human, we use rejection sampling to
ensure there is a newline between tokens 55 and 75 and
truncate at that newline. During RL fine-tuning, we penalize
summaries that don’t have such a newline by giving them a
fixed score of -1. For CNN/Daily Mail we used a fixed KL
coefficient β = 0.1; for TL;DR we used β = 0.03.

For RL fine-tuning, we trained online data collection mod-
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TL;DR CNN/Daily Mail
R-1 R-2 R-L R-AVG R-1 R-2 R-L R-AVG

SOTA 22* 5* 17* 14.7* 41.22 18.68 38.34 32.75

lead-3 17.435 3.243 14.575 11.751 40.379 17.658 36.618 31.552
zero-shot 15.862 2.325 13.518 10.568 28.406 8.321 25.175 20.634
supervised baseline 17.535 3.124 14.969 11.877 39.525 16.992 36.728 31.082
supervised + 60k fine-tune 18.434 3.542 15.457 12.478 40.093 17.611 37.104 31.603
60k fine-tune 16.800 2.884 14.011 11.232 37.385 15.478 33.330 28.731
30k fine-tune 16.410 2.920 13.653 10.994 35.581 13.662 31.734 26.992
15k fine-tune 15.275 2.240 12.872 10.129 38.466 15.960 34.468 29.631
60k offline fine-tune 16.632 2.699 13.984 11.105 33.860 12.850 30.018 25.576

Table 4: ROUGE evaluations of summarization models. For all models (excluding the lead-3 baselines), we sample with
temperature 0.7 for TL;DR and 0.5 for CNN/Daily Mail. We use the CNN/DM test set, but our own validation set for TL;DR.
CNN/Daily Mail SOTA is from Gehrmann et al. (2018). * TL;DR SOTA is from Gehrmann et al. (2019), but the numbers
are not comparable as we lack test set access and the TL;DR leaderboard uses an unofficial implementation of ROUGE.

TL;DR CNN/Daily Mail

60k fine-tuned vs. zero-shot 96% 4% 91% 9%
60k fine-tuned vs. supervised 97% 3% 80% 20%
60k fine-tuned vs. lead-3 45% 55% 40% 60%
60k fine-tuned vs. supervised + 60k fine-tuned 80% 20% 74% 26%
60k fine-tuned vs. 30k fine-tuned 40% 60% 62% 38%
60k fine-tuned vs. 15k fine-tuned 79% 21% 47% 53%
60k fine-tuned vs. 60k offline fine-tuned 64% 36% 65% 35%
60k fine-tuned vs. reference summaries 96% 4% 84% 16%

lead-3 vs. supervised 97% 3% 89% 11%
lead-3 vs. reference summaries 97% 3% 89% 11%
lead-3 vs. supervised + 60k fine-tuned 75% 25% 85% 15%

Table 5: Human evaluation of summarization models. For each pair of models and each dataset, we sample 1024 articles
from the test set, generate a summary from each model, and ask 3 humans to pick the best summary using the same
instructions as in training. The model chosen by a majority of the humans wins on that article. We report the fraction of
articles that each model wins. For all models, we sample with temperature 0.7 for TL;DR and 0.5 for CNN/DM.

els with 15k, 30k, and 60k human labels, and an offline
data collection ablation with 60k labels. We also show
zero-shot performance of the pretrained model, a super-
vised fine-tuned baseline using the same pretrained model
as starting point (section 2.2), and a lead-3 baseline which
copies the first three sentences of the context. We truncate
lead-3 at a period in the same way we truncate generated
summaries, so occasionally it is 2 sentences. Finally, we
combine supervised and RL fine-tuning: performing hu-
man RL fine-tuning starting with the supervised fine-tuned
model. The purely RL fine-tuned models use contexts from
the datasets during training but ignore the reference sum-
maries; the supervised and supervised+RL models use both
contexts and summaries.

We report two sets of numerical results: human evaluations
between pairs of models (table 5) and ROUGE results on the
test set of CNN/Daily Mail and our validation set of TL;DR
(table 4). ROUGE results suggest that online data collection
is important for best performance, in contrast to our stylistic
continuation tasks. At a fixed number of labels, online
tends to be better than offline, with a 3 point R-AVG gain on
CNN/DM at 60k labels.6 On both datasets we see significant
returns to data volume up to 60k human labels (though the
trend is less clear for human evaluation). On both datasets,
supervised + RL fine-tuning is best, and indeed pure RL fine-
tuning is worse than the supervised baseline according to

6That said, different training runs have considerable variation
and it is expensive to run multiple seeds with humans, so it is
possible that this gap is largely noise.
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reference
summary

Solar plane attempting to be first to circumnavigate world without using fuel is stuck in
China. Solar Impulse 2 attempts to prove the power of renewable energy.

zero-shot The plane has been grounded in China for two weeks because of bad weather.
60k fine-tune The Solar Impulse 2, the experimental plane attempting to fly around the world without

using a drop of fuel, has been grounded by the weather in China.

What was supposed to be an overnight pit stop in the southwestern city of
Chongqing has now stretched into a two-and-a-half week stay.

supervised Solar Impulse 2 has been grounded by the weather in China. The plane took off from
Abu Dhabi on March 9. The plane is trying to prove the power of renewable energy.

supervised +
60k fine-tune

Solar Impulse 2 has been grounded in China for two-and-a-half weeks. The plane
is attempting to fly around the world without using a drop of fuel. The team, which
includes Bertrand Piccard, is taking turns flying the single-seater. The plane took off
from Abu Dhabi on March 9 and has successfully flown through Oman.

Table 6: Random (T = 0.5) summaries for our CNN/DM summarization task, on the same context. Samples chosen from
appendix table 16 (see appendix also for context being summarized). The 60k fine-tune model copies from the source article.

ROUGE in all cases (though the supervised baseline uses the
full supervised training dataset, which is much larger than
60k samples). Lead-3 is hard to beat: it is the best model
for R-1 and R-2 on CNN/Daily Mail, and only supervised +
RL fine-tuning beats it otherwise.

But our goal is optimizing reward defined by humans, not
ROUGE. Table 5 shows pairwise comparisons between dif-
ferent model pairs according to human labelers, using 1024
samples with majority vote of 3 labelers per sample. Here
the picture is different, though also significantly noisier. Our
online trained, 60k label model reliably beats both the zero-
shot and supervised baselines, and even beats the combined
supervised + RL fine-tuned model. Online training remains
important, but the situation w.r.t. data volume is less clear
and likely contaminated by noise: the 60k TL;DR model
beats the 30k model only 40% of the time, for example.
More worrisome, the 60k online model beats the human
ground truth 96% of the time for TL;DR and 84% of the
time for CNN/Daily Mail.

What is going on? As we show in the next section, our 60k
RL fine-tuned model is almost entirely extractive (despite
lacking any explicit extractive architectural component): it
mostly copies whole sentences from the context, but varies
which sentences are copied.

3.2.1. WHAT OUR MODELS COPY

Much previous work in summarization has focused on ex-
plicit copying mechanisms, including the pointer network-
based architecture of See et al. (2017) and the two-phase
mask and paraphrase approach of Gehrmann et al. (2018).
The goal is to take advantage of copying (which is of fun-
damental importance to the task of summarization) without
only copying—to be abstractive rather than extractive.

Figures 5 and 6 show the fractions of n-grams and sen-
tences generated by our models which are novel and re-
peated, respectively. From the novelty stats, we see that our
RL fine-tuning consistently causes models to copy more.
In particular, our 60k RL fine-tuned models are almost en-
tirely extractive: they copy whole sentences 71% of the
time for TL;DR and 98% of the time for CNN/Daily Mail.
Applying RL fine-tuning starting from the supervised fine-
tuned model copies much less: 6% and 30% for TL;DR and
CNN/Daily Mail. Although we do not use explicit cover-
age metrics as in See et al. (2017); Gehrmann et al. (2018),
both supervised and RL fine-tuned models do very little
repetition within summaries.

While the purely RL fine-tuned models mostly copy, they
vary where they copy from. Figure 7 illustrates this via the
position of the longest common subsequence between con-
text and summary. To understand when the model chooses
to copy from the exact beginning, we identify common
preambles in articles such that we would expect copying to
be a poor strategy. Table 7 shows that these preambles are
copied much less often than in the immediate beginnings
of other articles, giving evidence that our models are smart
about when to copy. However, we cannot establish that our
reward model is smart beyond rewarding copying, as the
zero-shot model also skips preambles.

Since combining supervised fine-tuning and RL fine-tuning
gives the best ROUGE scores and and is also more abstrac-
tive, why not use it? Unfortunately there is an advantage
to pure copying shown in table 8: it makes it easy for the
model to tell the truth. The models that copy the most, 60k
RL fine-tuned, is 90% and 95% accurate on TL;DR and
CNN/Daily Mail; lifting whole sentences from the article
usually leaves them true. The supervised fine-tuned and
combined supervised+RL fine-tuned models are accurate
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Figure 5: Percent of n-grams and sentences in summaries that do not appear in the source (compare to figure 6 in See et al.
(2017)). n-grams are consecutive sequences of words in a single sentence in a summary, and they count as novel if they do
not appear consecutively in the article. We ignore punctuation and capitalization.

Figure 6: Percent of n-grams and sentences in summaries that appear multiple times in the summary (compare to figure 4 in
See et al. (2017)).

TL;DR CNN/Daily Mail

Figure 7: Variation in where the models copy from, illustrated by the location of the longest common subsequence of
bigrams between context article/post (left) and summary (right) for 256 randomly chosen contexts. Document lengths are
shown in gray, with bigrams highlighted (with color depending on positions in contexts). Here, we picture the 60k fine-tuned
models, which do the most copying.
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TL;DR CNN/Daily Mail
all preamble all preamble

zero-shot 1.3% 0% 10.4% 1.0%
60k fine-tuned 28.3% 0.2% 77.6% 1.4%
supervised 1.5% 0% 9.4% 0%
supervised + 60k fine-tuned 7.9% 0% 16.6% 0%
reference summaries 0.6% 0% 5.1% 0%

total articles 30000 3762 13368 297

Table 7: How often different models copy the first 3 words of the article as the first 3 words of the summary, on the validation
sets. We additionally consider the subset of posts/articles with preambles. On TL;DR, we used posts which begin with one
of ‘hi’, ‘hello’, ‘hey’, ‘ok’, ‘okay’, or ‘so’. For CNN/Daily Mail, we used articles with a colon within the first 3 words, such
as “Winner: Simon Wood took home the TV crown [...]” and “Fully charged: The new scheme will let EE customers pick
up free portable chargers [...]”.

TL;DR CNN/Daily Mail

zero-shot 6/30 6/30
60k fine-tuned 26/30 29/30
supervised 8/30 19/30
supervised + 60k fine-tuned 11/30 20/30

Table 8: Frequency with which generated summaries are accurate, in the sense of only making statements supported by the
context, as judged by the authors on 30 articles from each dataset. The 60k fine-tuned model achieves high accuracy via
copying; the supervised and supervised + 60k fine-tuned models are more abstractive but at significant cost to accuracy.

at most 70% of the time: they paraphrase but paraphrase
badly, often swapping names from the context or mixing
together multiple sentences in invalid ways. Zero-shot is
the most novel, but is accurate only 20% of the time. Sim-
ilarly, Kryściński et al. (2019) found that 30% of samples
from the supervised summarization models they tested con-
tained inconsistencies, and Khandelwal et al. (2019) found
that their pretrained encoder-decoder model “hallucinates
facts...which are topical but never appear in the source”.

There are at least two ways of interpreting these results. The
first is that copying is the easiest way to be accurate. The
labelers were told to penalize inaccuracy and redundancy,
but were not told to penalize copying. The zero-shot model
copies some of the time, and when it copied it was accurate,
so this behavior was reinforced. The result is a model that
“degenerated to copying”, but at least does not lie.

However, this does not explain why both our model and
lead-3 are strongly preferred by the labelers to the human
reference summaries (table 5). This reveals a mismatch
between the notion of quality we wanted our model to learn,
and what the humans labelers actually evaluated. Checking
for copying is very easy, so labelers who check primarily for
copying can work quickly. Since the online data collection
setting made quality control more difficult, we failed to
detect and penalize this behavior.

4. Challenges
We conclude with a few lessons and directions we plan to
consider in future reward learning work.

4.1. Online data collection is hard

Online data collection was necessary to achieve the best
results on summarization. However, fully online data
collection—where each label comes from an up-to-date
version of the policy which has already learned from almost
all previous labels—had major disadvantages:

1. Software complexity: Our online system interleaves
data gathering, reward model training, and RL fine-
tuning. The resulting distributed system was signif-
icantly more complicated than if each task was kept
separate, slowing the software development process.
Moreover, a bug in any one of the tasks would break
the entire training process.

2. Machine learning complexity: Online experiments
were difficult to debug, as it was hard to iterate on one
piece of the ML system at a time. We could often debug
an online job only by switching briefly to offline, such
as by launching a standalone reward model training run,
but then would switch back to online once debugging
was complete (until the next cycle).
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3. Quality control issues: Significant work was required
on Scale’s part to make their data quality mechanisms
work in the low latency, online setting. However, even
after this work it was difficult to maintain high data
quality over a long period of time, and regressions
were often not detected until after (or well after) train-
ing runs were complete. Since evaluation of labeler
performance was online, by the time a worker was de-
tected as poor some of their data might already been
reported back and used for reward model training.

We believe the right middle ground between offline and
online data collection is batched data collection, and plan
to use this setting in future work. Collect a batch of data
from the pretrained policy ρ, train the reward model r on
this batch, then fine-tune the policy π with r frozen. Once
complete, collect another batch of data sampled from π, and
iterate. The latency for each batch can be far longer than
the online case, simplifying quality control. As in the fully
online setting, we can always retrain the reward model from
scratch on all data collected so far; human data is expensive
so the total volume will be low. Removing the interleaved
training of r and π simplifies software architecture and
diagnosis of ML issues, and allows iteration on just one
component (say r in isolation) if problems occur. Li et al.
(2016) reached similar conclusions in a restricted dialogue
setting after validating in simulation that online and batched
trained performed similarly.

Batched data collection is also a well-studied setting for
active learning techniques. Although we use RL to fine-tune
the policy π, the human data is used only for supervised
training of the reward model r. Thus, any method for batch
mode active learning of supervised models applies, using π
as the unlabeled data distribution for r. Examples of such
techniques include selecting batches based on entropy con-
siderations (Guo and Schuurmans, 2008), gradient-based
metrics (Huang et al., 2016; Ash et al., 2019), or by attempt-
ing to distinguish labeled and unlabeled examples (Gissin
and Shalev-Shwartz, 2019).

4.2. Sharing parameters between reward model and
policy causes overfitting

Although the reward model and policy are both initialized
to ρ, we train them as separate networks rather than a single
shared network with multiple heads. We might expect joint
training to be helpful, effectively using RL as an auxiliary
task to improve the reward model’s performance. Joint train-
ing is particularly appealing because it could help the reward
model stay strong enough that the policy cannot exploit it.
Sharing could also improve computational efficiency, by al-
lowing the models to share activations rather than requiring
two separate forward passes.

Despite several attempts, we were not able to make this idea
work. The problem comes from the massive imbalance of
data: we have at most 60k samples for the reward model,
but 2M episodes for the policy. This makes it challenging
to maintain performance on both tasks without performing
many epochs for the reward model and overfitting. We hope
that future work will overcome this challenge.

4.3. Ambiguous tasks make labeling hard

Evaluation of a summary is both subjective and multidimen-
sional. A single human labeler may have a clear notion of
whether a given sample is separately accurate, grammatical,
nonredundant, or covers all important topics; but in our ex-
periments a labeler will often be asked to choose between
samples each of which has some deficiencies. In choos-
ing which of four samples is the best, a labeler must trade
off between different desiderata. This makes consistent la-
beling difficult for honest labelers (including the authors!),
and makes it difficult to quickly detect problematic label-
ers. It also makes the research more difficult to present
and interpret: during our experiments we routinely checked
the performance of models by having authors label results,
since we knew the authors would attempt to do the task hon-
estly, but were epistemically uneasy about reporting these
numbers in the paper (table 8 is the one exception).

One could hope to cope with such “noise” by simply getting
more labels and averaging them, but this does not resolve
all the practical difficulties with ambiguity. When possible,
it seems better to design less ambiguous labeling tasks that
get at the same information. For example, rather than asking
a person to rate or compare summaries, we could ask for
a verbal description of the problems with a summary, or a
suggested correction. If problems don’t exist we are done;
otherwise describing a problem does not require consistently
picking the same most important problem. Even if two
people disagree on the most important problem, they may be
more likely to agree that the other picked some problem, and
more agreement eases data quality control and the overall
experimental process.

4.4. Bugs can optimize for bad behavior

One of our code refactors introduced a bug which flipped
the sign of the reward. Flipping the reward would usually
produce incoherent text, but the same bug also flipped the
sign of the KL penalty. The result was a model which opti-
mized for negative sentiment while still regularizing towards
natural language. Since our instructions told humans to give
very low ratings to continuations with sexually explicit text,
the model quickly learned to output only content of this
form, regardless of how innocuous the starting point was.
This bug was remarkable since the result was not gibberish
but maximally bad output. The authors were asleep during
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the training process, so the problem was noticed only once
training had finished. A mechanism such as Toyota’s Andon
cord could have prevented this, by allowing any labeler to
stop a problematic training process.

5. Conclusion
We have demonstrated RL fine-tuning of language models to
four NLP tasks: stylistic continuation with high sentiment or
physically descriptive language, and summarization on the
CNN/Daily Mail and TL;DR datasets. Rather than building
task-specific techniques, we achieve our results by straight-
forwardly applying reward learning to language generation.
We extend previous reward learning work with pretrained
models and KL regularization to prevent the policy from
diverging too far from natural language.

Our results are mixed. On the continuation tasks we achieve
good results vs. the zero-shot baseline as evaluated by hu-
mans with very few samples: 2.5k for sentiment and 5k
for descriptiveness. However, for both summarization tasks
our policies are only “smart copiers” (extractive rather than
abstractive): they copy from the input text but skip over
irrelevant preamble. The advantage of copying is truthful-
ness: by comparison the zero-shot and supervised models
produce natural, plausible-looking summaries that are often
lies. We believe the limiting factor in our experiments is
data quality, in particular exacerbated by the online data
collection setting, and plan to ameliorate this with batched
data collection in future.

We believe the application of human reward learning to
natural language tasks is important both from a capability
and safety perspective. On the capability side, purely super-
vised training is insufficient to correct mistakes that arise
when sampling from trained policies, and RL training to
programmatic reward functions such as BLEU or ROUGE
is insufficient: Paulus et al. (2017) conclude that "optimiz-
ing for single discrete evaluation metric[s] such as ROUGE
with RL can be detrimental to the model quality." Interac-
tive tasks such as dialogue are particularly relevant: it is
difficult to define the goal of a dialogue without the human
participant, and the length of dialogue makes it more likely
that supervised learned models will go off distribution. In
the supervised case NLP models are trained using human
data; if we want RL fine-tuning we need human data too.

On the AI safety side, interactive communication between
humans and ML models is a requirement for scalable re-
ward learning methods such as amplification, debate, and
recursive reward modeling (Christiano et al., 2018; Irving
et al., 2018; Leike et al., 2018), and natural language is how
humans communicate complex ideas. Although language
models are unlikely to be ready for these tasks in their full
generality, Perez et al. (2019) demonstrates that debate al-

ready improves generalization for question-answering when
debaters quote from a source text. Using direct human
preferences for language tasks is a step in the direction
of scalable reward learning for language, and we believe
further steps are possible.
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Fine-Tuning Language Models from Human Preferences

A. Instructions for labelers
A.1. Sentiment

You will see snippets of text followed by several possi-
ble ways the text could be continued. Choose the most
positive and happy continuation:

• Consider all of the moods of the characters, the
mood of the narrator, and the mood implied by the
events and descriptions.

• If a continuation contains sexually explicit or other-
wise offensive content, treat it as strongly negative.
Do not choose it even if it expresses a positive
attitude.

A.2. Descriptiveness

You will see snippets of text followed by several possi-
ble ways the text could be continued. Choose the most
vividly descriptive continuation:

• Evaluate both on the quantity and on the vivid-
ness of physical details described.

• The best continuations are full of details that give
a strong sense of what the scene looks, sounds, or
smells like.

• Count only physical details, not details about ab-
stract facts.

A.3. Summarization: TL;DR

You will see some text followed by several summaries.
Please read the text and select the best summary.
A summary is good if it:

• Is useful and a good summary in general

• Accurately states the important points of the text

• Makes sense on its own

A summary is bad if it:

• Includes information that doesn’t appear in the text

A.4. Summarization: CNN/DM

You will see an article followed by several summaries.
Please read the article and select the best summary.
A summary is good if it:

• Is useful and a good summary in general

• Accurately states the important points of the article

• Makes sense on its own

A summary is bad if it:

• Includes information that doesn’t appear in the
article

• Includes quotations that don’t appear verbatim in
the article

B. Human labeling details
Our quality assurance process was handled by Scale AI,
though Scale made significant changes to their usual quality
systems in order to deal with subjective tasks and provide
very fast turnaround. Since we initially believed online data
collection would be crucial, even the offline experiments
were collected with this fast turnaround requirement. In the
future we plan to use a more relaxed latency requirement.

The first step of data collection involves teaching the task
to a small number of trusted Scale labelers by giving them
a description of the task (appendix A). Scale uses these la-
belers to collect a large number of benchmark data points
where several trusted labelers agree (out of a large set of
unlabeled data points from ρ). During full data collection,
Scale serves these benchmark data points to freelance work-
ers alongside real unlabeled data for training (the two types
of data are indistinguishable when π = ρ, though they do
become distinguishable during training), maintaining a con-
fidence model for the performance of each labeler on the
benchmark distribution. The probability of getting a bench-
mark vs. a real sample varies dynamically on factors such as
confidence in the labeler to correctly label a certain category.
Freelancers who fail to perform well on benchmark tasks
are filtered out. Additionally, Scale makes ad-hoc improve-
ments to quality control over time, sometimes validating
quality by comparing to a small number of gold-standard
labels from the authors.

We evaluated the data quality after the fact on two of the
tasks. During all data collection, 5% of queries were an-
swered by 5 distinct labelers. We sampled 100 of these
queries (restricting to ones generated from ρ) and had two
authors label each one. Based on this data, we estimated the
rate of agreement between authors and Scale labelers, pairs
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P (agreement) Sentiment TL;DR
Between random responses 25% 25%
Between labelers 38±2% 46±2%
Between an author & a labeler 44±5% 38±5%
Between authors 62±5% 61±5%

Table 9: Agreement probabilities for two tasks, i.e. the
probability of both individuals choosing the same sample as
best, out of 4.

of labelers, and pairs of authors. As table 9 shows, the data
contained a significant amount of signal but did not match
the quality of data which was hand-labeled by the authors.

An earlier version asked labelers for 1-10 ratings; in the best
case this provides more information per label, but it was
difficult to gauge labeler performance. Normalization was
required since two good labelers would often differ by a
(noisy) monotonic transform. If many scores concentrated
on a few values (say 7 and 8) simple strategies could fool
the filtering process. Absolute scores also tended to drift
over the training process, as labelers would adjust to the
new distribution of samples from the changing policy.

Finding high-quality workers involves human answering
quality control questions which are not used in our experi-
ments, and throwing away data from low-quality workers.
So the total human cost of experiments is somewhat higher
than the number of labels we actually use (which is what we
report). For a short training run this can easily dominate the
actual label requirements, though it can be amortized across
several tasks by identifying consistently good workers. For
our longer training runs the additional number of labels was
modest. (None of these details are exposed to customers.)

C. Samples
Samples from our models are shown in the following tables:

• Mock sentiment continuation without a KL penalty:
table 10

• Sentiment continuation: table 11

• Descriptiveness continuation: table 12

• TL;DR summarization: tables 13 to 15

• CNN/Daily Mail summarization: tables 16 to 18



Fine-Tuning Language Models from Human Preferences

Samples without a KL penalty

context And she would always love him for that. And for many other reasons. He had given
her so much and she
Continuation 1 Continuation 2

zero-shot had no idea how to release that gift, but she
knew

had been unable to give it back.

"You
no penalty /
bonus

! These These These sound flowed instantly
easily easily easily easily!

! These These These sound flowed instantly
easily easily easily easily!

entropy
bonus

initially initiallyprisingly easilyprisingly
Liam! Love this ride instantly tightly

’ equally particularlyprisinglyprisingly
Liam Liam! Love this ride instantly

context Palmer rolled her eyes. "Don’t give me that. You didn’t come here, wearing that
Continuation 1 Continuation 2

zero-shot corset and corset and a blasted corset. If old-fashioned, sexy little dress. You came
here to

no penalty /
bonus

! These These These sound flowed instantly
easily easily easily easily!

! These These These sound flowed instantly
easily easily easily easily!

entropy
bonus

initially relativelyprisingly instantlypris-
ingly Liam Liam! Love this ride instantly

overwhelmingly Loganprisingly Liam in-
stantly surprisingly! Love this ride instantly
tightly

context Is it conceivable that - I don’t know - he somehow wasn’t on the aircraft that exploded?
Like maybe he
Continuation 1 Continuation 2

zero-shot simply didn’t hear me coming or he was
just coming out

was just on the ground."

"Yes, at
no penalty /
bonus

! These These These sound flowed instantly
easily easily easily easily!

! These These These sound flowed instantly
easily easily easily easily!

entropy
bonus

prisinglyprisingly instantly Liam instantly
overwhelmingly! Love this ride instantly
tightly

instantly initially overwhelmingly Chloe!
Love this ride instantly instantly instantly
tightly

Table 10: Samples from a model fine-tuned to mock sentiment without a KL penalty. Without regularization towards natural
language, the results are gibberish even if we include an entropy bonus (targeting 30 nats). Both policies reach a mean score
of around +8.0 according to the mock sentiment model (i.e. 99.97% positive).
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Samples for positive-sentiment continuation task

context "He also doesn’t have a backbone," Quinn continued as they walked. "Last year, I had
a great story about Paul Gibson, who is now the chairman of the board of supervisors.
Continuation 1 Continuation 2 Continuation 3

zero-shot He was running for the
supreme court and his cam-
paign was violent. There was
an incident at a press confer-
ence.

For weeks, I went around the
county, telling everyone how
amazing he was and how
much I admired him.

He was one of the first teach-
ers to lead by example. It
was incredibly inspiring to
see.

mock I was really impressed with
how he handled the board,
and I thought it was a great
story.

He was a real hero to the peo-
ple in town. He was a real
hero.

But he just sat around and
watched. I love that story.
You should read it again.

5k offline
fine-tune

Paul Gibson is a very intelli-
gent man. He’s a good heart
man. He has a good sense of
humor.

Paul is a very nice guy, a true
gentleman, and we all know
he’s a really cute guy.

He was a good man, with a
great smile, a great sense of
humor, a great family.

context Pearl thought to herself that what they were about to do was exactly the sort of thing
that they could do to help the villagers. They were all terrified of these guys.
At the police station the three walked up to the counter behind which was a senior
constable studying some papers.
Continuation 1 Continuation 2 Continuation 3

zero-shot "Hello, I’m Pearl and this is
my friend, Mike," said Pearl.

"May we speak to the police
officer, sir?" asked the one in
charge.

'Hello, can I help you?'
'Yes, we’re the same people
that the people were talking
about.

mock "I’m Detective Sergeant
Lewis, this is Detective
Sergeant Jones and this is
Detective Sergeant Porter.

He looked up at the three
with a friendly smile.
"Good day, gentlemen.

"We have a friend who is in
trouble. He was kidnapped
by these guys," the boy said.

5k offline
fine-tune

He turned to them with a
smile. "Good afternoon,
ladies. I’m Detective Inspec-
tor Jones.

The constable stood up and
smiled as he saw them, obvi-
ously pleased to see them.

He smiled at them and waved
them in, his eyes twinkling as
he listened to their tales.

context The room was warm and welcoming, with two hearths that burned vigorously. The
Vikings pushed her to the floor at Gunnar’s feet. Ailia looked up at Gunnar and rose to
her feet as calmly as possible.
Continuation 1 Continuation 2 Continuation 3

zero-shot "I will not fight."
"You will fight for us," Gun-
nar said.

"I’ll give you one last chance
to tell me where that is,"
Bjorn said.

"I’m sorry. I didn’t mean
to. . . "
"Give me your hand." Gun-
nar told her.

mock "I love this. I love this whole
room. I’m going to enjoy it.

"I am very pleased to meet
you, and let me assure you,
you will not regret this.

"Bravely done, Gunnar.
Thank you." Ailia smiled at
him.

5k offline
fine-tune

Gunnar smiled at Ailia and
waited for her to smile back.
She was smiling, she knew.

"You’ve been a true friend
to my son, Gunnar. Thank
you." She smiled.

Gunnar was smiling at her
and his pretty, blue eyes were
filled with contentment.

Table 11: Continuations for our positive-sentiment continuation task, with contexts randomly sampled from BookCorpus test
set. Random samples from pretrained, mock sentiment, and 5k offline descriptiveness models, using temperature T = 0.7.
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Samples for descriptiveness continuation task

context "I do not know if it was Viking related, but it could have been."
"Really?" Ailia said. Is it safe to be traveling here then? Ailia looked behind her to
make sure they weren’t being followed.
Continuation 1 Continuation 2 Continuation 3

zero-shot There were no signs of any-
one.
"It is safe enough," Ailios
said.

"Because I have a friend that
is in the area and he will be
coming with us.

It was hard to see that far. "I
do not like that word.

5k offline
fine-tune

Kaya crouched low, her eyes
wide in the moonlight. Her
body was tense.

She put her hand on the
sword strapped to her back,
and then pulled it out.

She strode out the door
and walked down the street,
her nose wrinkled in disap-
proval.

context "They took me to a cellar. An’ it were full of girls, it were, all sewin’. At first I thought
it weren’t too bad. I don’t mind work, really I don’t. Mama said I was a good ’elper.
Continuation 1 Continuation 2 Continuation 3

zero-shot But the girls keep on sneakin’
in ’em. An’ one day, one of
em found me.

But in the end, it weren’t any-
thing like she’d promised me.
Some of them were worse’n
me.

I was just lucky to get this
job. But as I stayed there, I
started to see things.

5k offline
fine-tune

But..." The girl hiccupped,
then pressed her lips together
and shook her head.

But then..." His voice trailed
off and he shook his head, his
eyes going distant, somber.

She said I could keep my
eyes open and my head clear
and make a good target.

context She forced herself up and shifted closer to him until she was kneeling behind him.
Following her instincts, she laid a splayed hand on his bare back. He tensed beneath
her touch. Quietly, Tara found her words. "I will never lie to you again, Max.
Continuation 1 Continuation 2 Continuation 3

zero-shot I love you."

He turned to her, his
face a mask of pain.

You have to know that."

"I know you will never
lie to me again.

Whatever happens, I’ll tell
you the truth."

"I’m sorry.
5k offline
fine-tune

I promise."

His hands curled around her
forearms, his fingers digging
deep into her flesh.

I swear it."

He exhaled heavily and
hugged her close, pressing
his lips to her forehead.

I love you."

Max leaned his head
back and closed his eyes.
His breathing changed.

Table 12: Continuations for our descriptiveness continuation task, with contexts randomly sampled from BookCorpus test
set. Random samples from pretrained and 5k offline descriptiveness models, using temperature T = 0.7.
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Samples for TL;DR summarization task (part 1)

context post Okay, this was actually going to go into a comment on youtube, but Emma said she
wanted more traffic on reddit.

I am a musician myself, have been for many years now. While Emma’s mu-
sic is not the most complicated technical death metal stuff out there, I love it dearly.
Her music actually moves me. No matter what she plays, be it a cover or original stuff,
her music *touches* me on a deep personal level. And I have absolutely no clue why. I
think it’s a combination of her voice, her lyrics and the overall sound design of her
songs and covers.

But this isn’t always a good thing, I feel. I can’t listen to her music for hours
on end. Only always a few songs, nothing more. Her music destroys me emotionally.
Okay, that’s a bit harsh, but she can get me, a (nearly) adult on the verge of tears.
I’ve gone through some shit in my life, who hasn’t, and I feel like her music can
actually get some of it out. I am incredibly thankful that she makes her music the way
she makes it. I can honestly say that Emma Blackery is my favourite artist. Keep in
mind that I listen to a lot of music, from crossover thrash metal over 80’s pop, berlin
polygenre to classic/romantic music.

I am also very jealous of her ability. I play quite a few instruments myself
(guitar, piano, bass, drums, synth, saxophone, percussion) and aim to study audio engi-
neering. I can definitely say that music is my literal life and mean it. I’ve released my
first full length album at age 20. Yet I am very jealous that she is as good as she is and
I really wanna know what her secret is. I love and hate her music, does that make sense?

Her music definitely makes me think, and that’s what art is all about, right?
Anyway, I’m gonna continue working on my cover of The Promise and try to figure
out what it is she’s doing. Thank you for reading this far.

reference
summary

Emma music gud yes very love magic

zero-shot I’m a musician myself, have been for many years now. And Emma Blackery is my
favourite artist.

60k fine-tune I am a musician myself, have been for many years now. While Emma’s music is not the
most technical death metal stuff out there, I love it dearly. Her music actually moves
me. No matter what she plays, be it a cover or original stuff, her music *touches* me
on a deep personal level.

supervised I’m jealous of Emma Blackery’s music and I have no clue why.
supervised +
60k fine-tune

Emma Blackery is my favourite artist, and I love her music to death. I wish I could
listen to her music all the time. However, I feel like her music destroys me emotionally.
I feel like I need to enjoy her music for the human part of it, and not the technical part.
She’s my favourite artist.

Table 13: Random (T = 0.7) summaries for our TL;DR summarization task, with contexts randomly sampled from TL;DR
validation set.
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Samples for TL;DR summarization task (part 2)

context post It really does. I did the first 5 seasons in a couple months, and ultimately I enjoyed
them. The first three seasons cover just about all the really good stuff. Russell
Edgington was, to me, the best supporting character in the show. He was everything
that I valued about the show, which is to say, campy, violent, overly-gory fun. I
went back to the show a little over a year later, and while S6 was tolerable with a
few fun bits, S7 totally eroded. Tara’s plot goes full retard in the last season, people
die for the sake of drama and convenience or leave with no real reverence for their
history. Suddenly no one can make a good decision, and there was a needless romance
bait-and-switch that ruined what I felt the show was moving towards.

What’s terrible is that once you’ve done six seasons it’s hard to walk away,
but each episode of seven stings more than the last. You don’t get that weird
half-hollow/half-warm feeling you should when you finish a series of books or a long
TV show. Outside of Pam and Erik, I didn’t give two fucks about any character by the
end.

reference
summary

Seasons one through three were a blast. Four was pretty meh, five and six weren’t too
bad, seven sucked massively.

zero-shot I finished S6 and still feel like I’m in the same place as I was with S5.

Favorite Episodes:

S1: "Tough Love"

S2: "Crossover"

S3: "The Party"
60k fine-tune I did the first 5 seasons in a couple months, and ultimately I enjoyed them. The first

three seasons cover just about all the really good stuff. Russell Edgington was, to me,
the best supporting character in the show. He was everything that I valued about the
show, which is to say, campy, violent, overly-gory fun

supervised 10/10 would watch again
supervised +
60k fine-tune

The first two seasons of the show were enjoyable. The show’s progress in the last
three seasons is frustrating because it’s so similar to the first three seasons, and it’s so
one-sided that there’s no reason to keep going. But the show’s greatest strength has
always been its great writing, and it’s giving me that same feeling again.

Table 14: Random (T = 0.7) summaries for our TL;DR summarization task, with contexts randomly sampled from TL;DR
validation set.
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Samples for TL;DR summarization task (part 3)

context post > you should be happy, lots of votes were counted twice in precincts that went to
Clinton in a landslide, if they recount them by hand she will lose more votes, and
probably a lot...

You are assuming you understand what the problem here is and what the end
result on the election was. The article does not state where the problem lies.

E.g. The machine shows a tally of 120 votes having been processed on it.
The actual reported vote tally to the election board was 100 votes. The 20 vote
differential on the machine is due to 20 times a ballot needing to be re-scanned due to
error. No double-counting of votes occurs but there is also a delta between what the
machine says was recorded vs what was reported.

In this case the final reported vote tallies may have been factually correct but
there is no way to validate them against the machine record.

To understand the problem an analysis and deconstruction of the machines
and the election night events must be undertaken. Find out the cause of the problem, if
the problem caused votes to be over/under counted, or if the problem was solely with
machine data that was not used for tabulation of results.

reference
summary

neither you nor I have any idea what the actual problem is so there is no basis for
saying the problem favors either candidate at this time, or if either candidate would
even be affected.

zero-shot Election officials did not count ballots in a timely manner, by hand, to meet the
threshold of getting votes counted on election night.

Voters were not eligible to vote on election night and were not aware of the
problems.

The election officials did not realize that their system was broken until very
late in the night.

60k fine-tune The machine shows a tally of 120 votes having been processed on it. The actual
reported vote tally to the election board was 100 votes. The 20 vote differential on
the machine is due to 20 times a ballot needing to be re-scanned due to error. No
double-counting of votes occurs but there is also a delta between what the machine
says

supervised Stop assuming the election was completely free of double-counting before you even
begin to discuss the actual results. For any result to be close, it must be based on the
total vote totals reported to the election board and not just the machine results. The
election board did not report the machine results to the election board.

supervised +
60k fine-tune

The reported vote tallies may have been factually correct but there is no way to validate
them against the machine record. The machine may have actually been accurate and the
machine may have been faulty in other ways. The election may have been considered
fair but the machine may not have been. The results are still in dispute.

Table 15: Random (T = 0.7) summaries for our TL;DR summarization task, with contexts randomly sampled from TL;DR
validation set.
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Samples for CNN/DM summarization task (part 1)

context arti-
cle

Google launched a new U.S. wireless service today that switches between Wi-Fi and
cellular networks

Google is already the world’s most popular phone software provider, and a
pay-TV operator - and now it wants to be your mobile network carrier.

The company has unveiled a U.S. wireless service that switches between Wi-
Fi and cellular networks to curb data use and keep phone bills low.

The service, called 'Project Fi,' debuted today, about two months after Google
revealed its plans to expand its ever-growing empire into providing wireless
connections for smartphones.

Google is selling the basic phone service for $20 a month and will only charge
customers for the amount of cellular data that they use each month, instead of a flat rate.

Each gigabyte of data will cost $10 a month. That means a customer could
sign up for a plan offering three gigabytes of data and get $20 back if only one gigabyte
was used in a month.

[...Truncated...]

Rather than building its own network, Google is leasing space on cellular
towers built by Sprint and T-Mobile, which are hoping the deals will boost their profits
without costing them too many customers tempted to defect to Project Fi.

reference
summary

Project Fi will be hosted through Sprint Corp and T-Mobile’s networks. It costs $20
for basic service and unused data is paid back to customer. The invitation-only service
will work only on Nexus 6 phones in the US. Numbers will live in the cloud so users
can talk on any connected tablet.

zero-shot Project Fi is a new smartphone service that switches between Wi-Fi and cellular
networks to curb data use and keep phone bills low. The service is available for an
introductory price of $20 a month and will only charge customers for the amount of
cellular data that they use each month.

60k fine-tune Google is already the world’s most popular phone software provider, and a pay-TV
operator - and now it wants to be your mobile network carrier.

The company has unveiled a U.S. wireless service that switches between Wi-
Fi and cellular networks to curb data use and keep phone bills low.

supervised Google launched a new U.S. wireless service today. Called 'Project Fi,' it switches
between Wi-Fi and cellular networks. The service, called 'Project Fi,' debuted today.
About two months after Google announced its plans to expand its ever-growing empire
into providing wireless connections for smartphones.

supervised +
60k fine-tune

Google launched a new U.S. wireless service today that switches between Wi-Fi and
cellular networks. The service, called 'Project Fi,' debuted today, about two months after
Google revealed its plans to expand its ever-growing empire into providing wireless
connections for smartphones.

Table 16: Random (T = 0.5) summaries for our CNN/DM summarization task, with contexts (shown truncated) randomly
sampled from CNN/DM test set.
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Samples for CNN/DM summarization task (part 2)

context arti-
cle

With the date of their hugely anticipated bout less than a month away, Floyd
Mayweather and Manny Pacquiao’s training intensity has hit gruelling levels ahead of
the clash in Las Vegas.

Mayweather is as renowned for showing off his extravagant lifestyle as he is
for going undefeated in his professional career.

But the latest pictures released from his training camp, appearing to show
him hanging a weight from his head, displays the extreme level he hits in order to be as
fit as possible for his fights.

Manny Pacquiao (right) poses alongside actor Mark Wahlberg, who visited
the Filipino at training

Floyd Mayweather released two pictures from his training camp appearing
hold a weight from his head

Mayweather (left) takes on Pacquiao in a £160million mega-fight in Las Ve-
gas on May 2

Mayweather (left) appeared to take his training intensity to a new height be-
fore his meeting with Pacquiao

As for Pacquiao, he had a famous visitor check up on his preparations for
May 2.

[...Truncated...]

Pacquiao and Mayweather’s clash will be a reported £160million mega-fight,
with Pacquiao seeking to inflict a first ever defeat upon Mayweather.

The 36-year-old Pacquiao also uploaded a picture to his Twitter page away
from training with his daughter.

reference
summary

Manny Pacquiao took time out from training to meet Mark Wahlberg. Floyd May-
weather shared a picture of him holding a weight with his head. The due meet in Las
Vegas in a £160million encounter on May 2.

zero-shot Mayweather and Pacquiao are going to clash in Las Vegas on May 2.
60k fine-tune With the date of their hugely anticipated bout less than a month away, Floyd

Mayweather and Manny Pacquiao’s training intensity has hit gruelling levels ahead of
the clash in Las Vegas.

Mayweather is as renowned for showing off his extravagant lifestyle as he is
for going undefeated in his professional career.

supervised Floyd Mayweather and Manny Pacquiao will fight in Las Vegas on May 2. Pacquiao
has a visitor check up on his preparations for the bout. Mayweather released pictures
of his training camp to social media.

supervised +
60k fine-tune

Floyd Mayweather and Manny Pacquiao will fight in Las Vegas on May 2. Mayweather
released two pictures from his training camp appearing hold a weight from his head.
The 36-year-old boxer is as renowned for showing off his extravagant lifestyle as he is
for going undefeated in his professional career.

Table 17: Random (T = 0.5) summaries for our CNN/DM summarization task, with contexts (shown truncated) randomly
sampled from CNN/DM test set.
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Samples for CNN/DM summarization task (part 3)

context arti-
cle

The Solar Impulse 2, the experimental plane attempting to fly around the world without
using a drop of fuel, has been grounded by the weather in China.

What was supposed to be an overnight pit stop in the southwestern city of
Chongqing has now stretched into a two-and-a-half week stay.

It’s an unexpected layover that is testing the patience of the pilots and more
than 60 team members, just a quarter of the way along a journey that will cover some
35,000 kilometers (21,748 miles) over five months.

"You can believe that your will can influence the weather," says pilot Bertrand Piccard,
who comes from a long family line of explorers. But "then you’ll be really disappointed
because it doesn’t work.

"Or you just know that it’s an adventure you do with the forces of nature."

Piccard, along with Andre Borschberg, a Swiss engineer, are taking turns fly-
ing the single-seater aircraft, which took off from Abu Dhabi on March 9 and has
successfully flown through Oman, India, and Myanmar.

There is much at stake.

[...Truncated...]

"Our boss is the sun," says Solar Impulse spokeswoman Claudia Durgnat.

Durgnat says there may be a tiny window ahead, with the next possible depar-
ture from Chongqing on Tuesday. "It’s not good before, and the days after don’t look
very clear."

reference
summary

Solar plane attempting to be first to circumnavigate world without using fuel is stuck in
China. Solar Impulse 2 attempts to prove the power of renewable energy.

zero-shot The plane has been grounded in China for two weeks because of bad weather.
60k fine-tune The Solar Impulse 2, the experimental plane attempting to fly around the world without

using a drop of fuel, has been grounded by the weather in China.

What was supposed to be an overnight pit stop in the southwestern city of
Chongqing has now stretched into a two-and-a-half week stay.

supervised Solar Impulse 2 has been grounded by the weather in China. The plane took off from
Abu Dhabi on March 9. The plane is trying to prove the power of renewable energy.

supervised +
60k fine-tune

Solar Impulse 2 has been grounded in China for two-and-a-half weeks. The plane
is attempting to fly around the world without using a drop of fuel. The team, which
includes Bertrand Piccard, is taking turns flying the single-seater. The plane took off
from Abu Dhabi on March 9 and has successfully flown through Oman.

Table 18: Random (T = 0.5) summaries for our CNN/DM summarization task, with contexts (shown truncated) randomly
sampled from CNN/DM test set.
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