
Appendix A

Preliminaries for Probability Theory

Reinforcement learning heavily relies on probability theory. We next summarize some

concepts and results frequently used in this book.

� Random variable: The term “variable” indicates that a random variable can take

values from a set of numbers. The term “random” indicates that taking a value must

follow a probability distribution.

A random variable is usually denoted by a capital letter. Its value is usually denoted

by a lowercase letter. For example, X is a random variable, and x is a value that X

can take.

This book mainly considers the case where a random variable can only take a finite

number of values. A random variable can be a scalar or a vector.

Like normal variables, random variables have normal mathematical operations such

as summation, product, and absolute value. For example, if X, Y are two random

variables, we can calculate X + Y , X + 1, and XY .

� A stochastic sequence is a sequence of random variables.

One scenario we often encounter is collecting a stochastic sampling sequence {xi}ni=1

of a random variable X. For example, consider the task of tossing a die n times.

Let xi be a random variable representing the value obtained for the ith toss. Then,

{x1, x2, . . . , xn} is a stochastic process.

It may be confusing to beginners why xi is a random variable instead of a deterministic

value. In fact, if the sampling sequence is {1,6,3,5,...}, then this sequence is not a

stochastic sequence because all the elements are already determined. However, if we

use a variable xi to represent the values that can possibly be sampled, it is a random

variable since xi can take any value in {1, . . . , 6}. Although xi is a lowercase letter, it

still represents a random variable.

� Probability : The notation p(X = x) or pX(x) describes the probability of the random

variable X taking the value x. When the context is clear, p(X = x) is often written

as p(x) for short.
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� Joint probability : The notation p(X = x, Y = y) or p(x, y) describes the probability

of the random variable X taking the value x and Y taking the value y. One useful

identity is as follows: ∑
y

p(x, y) = p(x).

� Conditional probability : The notation p(X = x|A = a) describes the probability of the

random variable X taking the value x given that the random variable A has already

taken the value a. We often write p(X = x|A = a) as p(x|a) for short.

It holds that

p(x, a) = p(x|a)p(a)

and

p(x|a) =
p(x, a)

p(a)
.

Since p(x) =
∑

a p(x, a), we have

p(x) =
∑
a

p(x, a) =
∑
a

p(x|a)p(a),

which is called the law of total probability.

� Independence: Two random variables are independent if the sampling value of one

random variable does not affect the other. Mathematically, X and Y are independent

if

p(x, y) = p(x)p(y).

Since p(x, y) = p(x|y)p(y), the above equation implies

p(x|y) = p(x).

� Conditional independence: Let X,A,B be three random variables. X is said to be

conditionally independent of A given B if

p(X = x|A = a,B = b) = p(X = x|B = b).

In the context of reinforcement learning, consider three consecutive states: st, st+1, st+2.

Since they are obtained consecutively, st+2 is dependent on st+1 and also st. However,

if st+1 is already given, then st+2 is conditionally independent of st. That is

p(st+2|st+1, st) = p(st+2|st+1).

This is also the memoryless property of Markov processes.

� Law of total probability : The law of total probability was already mentioned when we
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introduced the concept of conditional probability. Due to its importance, we list it

again below:

p(x) =
∑
y

p(x, y)

and

p(x|a) =
∑
y

p(x, y|a).

� Chain rule of conditional probability and joint probability. By the definition of con-

ditional probability, we have

p(a, b) = p(a|b)p(b).

This can be extended to

p(a, b, c) = p(a|b, c)p(b, c) = p(a|b, c)p(b|c)p(c),

and hence p(a, b, c)/p(c) = p(a, b|c) = p(a|b, c)p(b|c). The fact that p(a, b|c) =

p(a|b, c)p(b|c) implies the following property:

p(x|a) =
∑
b

p(x, b|a) =
∑
b

p(x|b, a)p(b|a).

� Expectation/expected value/mean: Suppose that X is a random variable and the prob-

ability of taking the value x is p(x). The expectation, expected value, or mean of X

is defined as

E[X] =
∑
x

p(x)x.

The linearity property of expectation is

E[X + Y ] = E[X] + E[Y ],

E[aX] = aE[X].

The second equation above can be trivially proven by definition. The first equation

is proven below:

E[X + Y ] =
∑
x

∑
y

(x+ y)p(X = x, Y = y)

=
∑
x

x
∑
y

p(x, y) +
∑
y

y
∑
x

p(x, y)

=
∑
x

xp(x) +
∑
y

yp(y)

= E[X] + E[Y ].
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Due to the linearity of expectation, we have the following useful fact:

E

[∑
i

aiXi

]
=
∑
i

aiE[Xi].

Similarly, it can be proven that

E[AX] = AE[X],

where A ∈ Rn×n is a deterministic matrix and X ∈ Rn is a random vector.

� Conditional expectation: The definition of conditional expectation is

E[X|A = a] =
∑
x

xp(x|a).

Similar to the law of total probability, we have the law of total expectation:

E[X] =
∑
a

E[X|A = a]p(a).

The proof is as follows. By the definition of expectation, it holds that

∑
a

E[X|A = a]p(a) =
∑
a

[∑
x

p(x|a)x

]
p(a)

=
∑
x

∑
a

p(x|a)p(a)x

=
∑
x

[∑
a

p(x|a)p(a)

]
x

=
∑
x

p(x)x

= E[X].

The law of total expectation is frequently used in reinforcement learning.

Similarly, conditional expectation satisfies

E[X|A = a] =
∑
b

E[X|A = a,B = b]p(b|a).

This equation is useful in the derivation of the Bellman equation. A hint of its proof

is the chain rule: p(x|a, b)p(b|a) = p(x, b|a).

Finally, it is worth noting that E[X|A = a] is different from E[X|A]. The former is

a value, whereas the latter is a random variable. In fact, E[X|A] is a function of the

random variable A. We need rigorous probability theory to define E[X|A].
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� Gradient of expectation: Let f(X, β) be a scalar function of a random variable X and

a deterministic parameter vector β. Then,

∇βE[f(X, β)] = E[∇βf(X, β)].

Proof: Since E[f(X, β)] =
∑

x f(x, a)p(x), we have∇βE[f(X, β)] = ∇β

∑
x f(x, a)p(x) =∑

x∇βf(x, a)p(x) = E[∇βf(X, β)].

� Variance, covariance, covariance matrix : For a single random variable X, its variance

is defined as var(X) = E[(X−X̄)2], where X̄ = E[X]. For two random variables X, Y ,

their covariance is defined as cov(X, Y ) = E[(X − X̄)(Y − Ȳ )]. For a random vector

X = [X1, . . . , Xn]T , the covariance matrix of X is defined as var(X)
.
= Σ = E[(X −

X̄)(X − X̄)T ] ∈ Rn×n. The ijth entry of Σ is [Σ]ij = E[[X − X̄]i[X − X̄]j] = E[(Xi −
X̄i)(Xj − X̄j)] = cov(Xi, Xj). One trivial property is var(a) = 0 if a is deterministic.

Moreover, it can be verified that var(AX + a) = var(AX) = Avar(X)AT = AΣAT .

Some useful facts are summarized below.

- Fact: E[(X − X̄)(Y − Ȳ )] = E[XY ]− X̄Ȳ = E[XY ]− E[X]E[Y ].

Proof: E[(X − X̄)(Y − Ȳ )] = E[XY − XȲ − X̄Y + X̄Ȳ ] = E[XY ] − E[X]Ȳ −
X̄E[Y ] + X̄Ȳ = E[XY ]−E[X]E[Y ]−E[X]E[Y ] +E[X]E[Y ] = E[XY ]−E[X]E[Y ].

- Fact: E[XY ] = E[X]E[Y ] if X, Y are independent.

Proof: E[XY ] =
∑

x

∑
y p(x, y)xy =

∑
x

∑
y p(x)p(y)xy =

∑
x p(x)x

∑
y p(y)y =

E[X]E[Y ].

- Fact: cov(X, Y ) = 0 if X, Y are independent.

Proof: WhenX, Y are independent, cov(X, Y ) = E[XY ]−E[X]E[Y ] = E[X]E[Y ]−
E[X]E[Y ] = 0.
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Appendix B

Measure-Theoretic Probability

Theory

We now briefly introduce measure-theoretic probability theory, which is also called rig-

orous probability theory. We only present basic notions and results. Comprehensive

introductions can be found in [96–98]. Moreover, measure-theoretic probability theory

requires some basic knowledge of measure theory, which is not covered here. Interested

readers may refer to [99].

The reader may wonder if it is necessary to understand measure-theoretic probability

theory before studying reinforcement learning. The answer is yes if the reader is interested

in rigorously analyzing the convergence of stochastic sequences. For example, we often

encounter the notion of almost sure convergence in Chapter 6 and Chapter 7. This notion

is taken from measure-theoretic probability theory. If the reader is not interested in the

convergence of stochastic sequences, it is okay to skip this part.

Probability triples

A probability triple is fundamental for establishing measure-theoretic probability theory.

It is also called a probability space or probability measure space. A probability triple

consists of three ingredients.

� Ω: This is a set called the sample space (or outcome space). Any element (or point)

in Ω, denoted as ω, is called an outcome. This set contains all the possible outcomes

of a random sampling process.

Example: When playing a game of dice, we have six possible outcomes {1, 2, 3, 4, 5, 6}.
Hence, Ω = {1, 2, 3, 4, 5, 6}.

� F : This is a set called the event space. In particular, it is a σ-algebra (or σ-field) of

Ω. The definition of a σ-algebra is given in Box B.1. An element in F , denoted as

A, is called an event. An elementary event refers to a single outcome in the sample

space. An event may be an elementary event or a combination of multiple elementary

events.
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Example: Consider the game of dice. An example of an elementary event is “the num-

ber you get is i”, where i ∈ {1, . . . , 6}. An example of a nonelementary event is “the

number you get is greater than 3”. We care about such an event in practice because,

for example, we can win the game if this event occurs. This event is mathematically

expressed as A = {ω ∈ Ω : ω > 3}. Since Ω = {1, 2, 3, 4, 5, 6} in this case, we have

A = {4, 5, 6}.
� P: This is a probability measure, which is a mapping from F to [0, 1]. Any A ∈ F is

a set that contains some points in Ω. Then, P(A) is the measure of this set.

Example: If A = Ω, which contains all ω values, then P(A) = 1; if A = ∅, then

P(A) = 0. In the game of dice, consider the event “the number you get is greater

than 3”. In this case, A = {ω ∈ Ω : ω > 3}, and Ω = {1, 2, 3, 4, 5, 6}. Then, we have

A = {4, 5, 6} and hence P(A) = 1/2. That is, the probability of us rolling a number

greater than 3 is 1/2.

Box B.1: Definition of a σ-algebra

An algebra of Ω is a set of some subsets of Ω that satisfy certain conditions. A

σ-algebra is a specific and important type of algebra. In particular, denote F as a

σ-algebra. Then, it must satisfy the following conditions.

� F contains ∅ and Ω;

� F is closed under complements;

� F is closed under countable unions and intersections.

The σ-algebras of a given Ω are not unique. F may contain all the subsets of

Ω, and it may also merely contain some of them as long as it satisfies the above

three conditions (see the examples below). Moreover, the three conditions are not

independent. For example, if F contains Ω and is closed under complements, then it

naturally contains ∅. More information can be found in [96–98].

� Example: When playing the dice game, we have Ω = {1, 2, 3, 4, 5, 6}. Then,

F = {Ω, ∅, {1, 2, 3}, {4, 5, 6}} is a σ-algebra. The above three conditions can be

easily verified. There are also other σ-algebras such as {Ω, ∅, {1, 2, 3, 4, 5}, {6}}.
Moreover, for any Ω with finite elements, the collection of all the subsets of Ω is

a σ-algebra.

Random variables

Based on the notion of probability triples, we can formally define random variables. They

are called variables, but they are actually functions that map from Ω to R. In particular,
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a random variable assigns each outcome in Ω a numerical value, and hence it is a function:

X(ω) : Ω→ R.

Not all mappings from Ω to R are random variables. The formal definition of a random

variable is as follows. A function X : Ω→ R is a random variable if

A = {ω ∈ Ω|X(ω) ≤ x} ∈ F

for all x ∈ R. This definition indicates that X is a random variable only if X(ω) ≤ x is

an event in F . More information can be found in [96, Section 3.1].

Expectation of random variables

The definition of the expectation of general random variables is sophisticated. Here, we

only consider the special yet important case of simple random variables. In particular,

a random variable is simple if X(ω) only takes a finite number of values. Let X be the

set of all the possible values that X can take. A simple random variable is a function:

X(w) : Ω→ X . It can be defined in a closed form as

X(ω)
.
=
∑
x∈X

x1Ax(ω),

where

Ax = {ω ∈ Ω|X(ω) = x} .= X−1(x)

and

1Ax(ω)
.
=

{
1, ω ∈ Ax,
0, otherwise.

(B.1)

Here, 1Ax(ω) is an indicator function 1Ax(ω) : Ω → {0, 1}. If ω is mapped to x, the

indicator function equals one; otherwise, it equals zero. It is possible that multiple ω’s

in Ω map to the same value in X , but a single ω cannot be mapped to multiple values in

X .

With the above preparation, the expectation of a simple random variable is defined

as

E[X]
.
=
∑
x∈X

xP(Ax), (B.2)

where

Ax = {ω ∈ Ω|X(ω) = x}.

The definition in (B.2) is similar to but more formal than the definition of expectation

in the nonmeasure-theoretic case: E[X] =
∑

x∈X xp(x).

As a demonstrative example, we next calculate the expectation of the indicator func-
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tion in (B.1). It is notable that the indicator function is also a random variable that

maps Ω to {0, 1} [96, Proposition 3.1.5]. As a result, we can calculate its expectation. In

particular, consider the indicator function 1A where A denotes any event. We have

E[1A] = P(A).

To prove that, we have

E[1A] =
∑

z∈{0,1}
zP(1A = z)

= 0 · P(1A = 0) + 1 · P(1A = 1)

= P(1A = 1)

= P(A).

More properties of indicator functions can be found in [100, Chapter 24].

Conditional expectation as a random variable

While the expectation in (B.2) maps random variables to a specific value, we next intro-

duce a conditional expectation that maps random variables to another random variable.

Suppose that X, Y, Z are all random variables. Consider three cases. First, a condi-

tional expectation like E[X|Y = 2] or E[X|Y = 5] is specific number. Second, E[X|Y = y],

where y is a variable, is a function of y. Third, E[X|Y ], where Y is a random variable,

is a function of Y and hence also a random variable. Since E[X|Y ] is also a random

variable, we can calculate, for example, its expectation.

We next examine the third case closely since it frequently emerges in the convergence

analyses of stochastic sequences. The rigorous definition is not covered here and can be

found in [96, Chapter 13]. We merely present some useful properties [101].

Lemma B.1 (Basic properties). Let X, Y, Z be random variables. The following proper-

ties hold.

(a) E[a|Y ] = a, where a is a given number.

(b) E[aX + bZ|Y ] = aE[X|Y ] + bE[Z|Y ].

(c) E[X|Y ] = E[X] if X, Y are independent.

(d) E[Xf(Y )|Y ] = f(Y )E[X|Y ].

(e) E[f(Y )|Y ] = f(Y ).

(f) E[X|Y, f(Y )] = E[X|Y ].

(g) If X ≥ 0, then E[X|Y ] ≥ 0.

(h) If X ≥ Z, then E[X|Y ] ≥ E[Z|Y ].

246



Proof. We only prove some properties. The others can be proven similarly.

To prove E[a|Y ] = a as in (a), we can show that E[a|Y = y] = a is valid for any y

that Y can possibly take. This is clearly true, and the proof is complete.

To prove the property in (d), we can show that E[Xf(Y )|Y = y] = f(Y = y)E[X|Y =

y] for any y. This is valid because E[Xf(Y )|Y = y] =
∑

x xf(y)p(x|y) = f(y)
∑

x xp(x|y) =

f(y)E[X|Y = y].

Since E[X|Y ] is a random variable, we can calculate its expectation. The related

properties are presented below. These properties are useful for analyzing the convergence

of stochastic sequences.

Lemma B.2. Let X, Y, Z be random variables. The following properties hold.

(a) E
[
E[X|Y ]

]
= E[X].

(b) E
[
E[X|Y, Z]

]
= E[X].

(c) E
[
E[X|Y ]|Y

]
= E[X|Y ].

Proof. To prove the property in (a), we need to show that E
[
E[X|Y = y]

]
= E[X] for

any y that Y can possibly take. To that end, considering that E[X|Y ] is a function of Y ,

we denote it as f(Y ) = E[X|Y ]. Then,

E
[
E[X|Y ]

]
= E

[
f(Y )

]
=
∑
y

f(Y = y)p(y)

=
∑
y

E[X|Y = y]p(y)

=
∑
y

(∑
x

xp(x|y)

)
p(y)

=
∑
x

x
∑
y

p(x|y)p(y)

=
∑
x

x
∑
y

p(x, y)

=
∑
x

xp(x)

= E[X].

The proof of the property in (b) is similar. In particular, we have

E
[
E[X|Y, Z]

]
=
∑
y,z

E[X|y, z]p(y, z) =
∑
y,z

∑
x

xp(x|y, z)p(y, z) =
∑
x

xp(x) = E[X].

The proof of the property in (c) follows immediately from property (e) in Lemma B.1.

That is because E[X|Y ] is a function of Y . We denote this function as f(Y ). It then

follows that E[E[X|Y ]|Y ] = E[f(Y )|Y ] = f(Y ) = E[X|Y ].
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Definitions of stochastic convergence

One main reason why we care about measure-theoretic probability theory is that it can

rigorously describe the convergence properties of stochastic sequences.

Consider the stochastic sequence {Xk} .= {X1, X2, . . . , Xk, . . . }. Each element in this

sequence is a random variable defined on a triple (Ω,F ,P). When we say {Xk} converges

to a random variable X, we should be careful since there are different types of convergence

as shown below.

� Sure convergence:

Definition: {Xk} converges surely (or everywhere or pointwise) to X if

lim
k→∞

Xk(ω) = X(ω), for all ω ∈ Ω.

It means that limk→∞Xk(ω) = X(ω) is valid for all points in Ω. This definition can

be equivalently stated as

A = Ω where A =
{
ω ∈ Ω : lim

k→∞
Xk(ω) = X(ω)

}
.

� Almost sure convergence:

Definition: {Xk} converges almost surely (or almost everywhere or with probability 1

or w.p.1 ) to X if

P(A) = 1 where A =
{
ω ∈ Ω : lim

k→∞
Xk(ω) = X(ω)

}
. (B.3)

It means that limk→∞Xk(ω) = X(ω) is valid for almost all points in Ω. The points,

for which this limit is invalid, form a set of zero measure. For the sake of simplicity,

(B.3) is often written as

P
(

lim
k→∞

Xk = X
)

= 1.

Almost sure convergence can be denoted as Xk
a.s.−−→ X.

� Convergence in probability:

Definition: {Xk} converges in probability to X if for any ε > 0,

lim
k→∞

P(Ak) = 0 where Ak = {ω ∈ Ω : |Xk(ω)−X(ω)| > ε} . (B.4)

For simplicity, (B.4) can be written as

lim
k→∞

P(|Xk −X| > ε) = 0.
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The difference between convergence in probability and (almost) sure convergence is

as follows. Both sure convergence and almost sure convergence first evaluate the

convergence of every point in Ω and then check the measure of these points that

converge. By contrast, convergence in probability first checks the points that satisfy

|Xk −X| > ε and then evaluates if the measure will converge to zero as k →∞.

� Convergence in mean:

Definition: {Xk} converges in the r-th mean (or in the Lr norm) to X if

lim
k→∞

E[|Xk −X|r] = 0.

The most frequently used cases are r = 1 and r = 2. It is worth mentioning that

convergence in mean is not equivalent to limk→∞ E[Xk −X] = 0 or limk→∞ E[Xk] =

E[X], which indicates that E[Xk] converges but the variance may not.

� Convergence in distribution:

Definition: The cumulative distribution function of Xk is defined as P(Xk ≤ a) where

a ∈ R. Then, {Xk} converges to X in distribution if the cumulative distribution

function converges:

lim
k→∞

P(Xk ≤ a) = P(X ≤ a), for all a ∈ R.

A compact expression is

lim
k→∞

P(Ak) = P(A),

where

Ak
.
= {ω ∈ Ω : Xk(ω) ≤ a} , A

.
= {ω ∈ Ω : X(ω) ≤ a} .

The relationships between the above types of convergence are given below:

almost sure convergence ⇒ convergence in probability ⇒ convergence in distribution

convergence in mean ⇒ convergence in probability ⇒ convergence in distribution

Almost sure convergence and convergence in mean do not imply each other. More infor-

mation can be found in [102].
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Appendix C

Convergence of Sequences

We next introduce some results about the convergence of deterministic and stochastic se-

quences. These results are useful for analyzing the convergence of reinforcement learning

algorithms such as those in Chapters 6 and 7.

We first consider deterministic sequences and then stochastic sequences.

C.1 Convergence of deterministic sequences

Convergence of monotonic sequences

Consider a sequence {xk} .
= {x1, x2, . . . , xk, . . . } where xk ∈ R. Suppose that this se-

quence is deterministic in the sense that xk is not a random variable.

One of the most well-known convergence results is that a nonincreasing sequence with

a lower bound converges. The following is a formal statement of this result.

Theorem C.1 (Convergence of monotonic sequences). If the sequence {xk} is nonin-

creasing and bounded from below:

� Nonincreasing: xk+1 ≤ xk for all k;

� Lower bound: xk ≥ α for all k;

then xk converges to a limit, which is the infimum of {xk}, as k →∞.

Similarly, if {xk} is nondecreasing and bounded from above, then the sequence is

convergent.

Convergence of nonmonotonic sequences

We next analyze the convergence of nonmonotonic sequences.
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C.1. Convergence of deterministic sequences

To analyze the convergence of nonmonotonic sequences, we introduce the following

useful operator [103]. For any z ∈ R, define

z+ .
=

{
z, if z ≥ 0,

0, if z < 0,

z−
.
=

{
z, if z ≤ 0,

0, if z > 0.

It is obvious that z+ ≥ 0 and z− ≤ 0 for any z. Moreover, it holds that

z = z+ + z−

for all z ∈ R.

To analyze the convergence of {xk}, we rewrite xk as

xk = xk − xk−1 + xk−1 − xk−2 + · · · − x2 + x2 − x1 + x1

=
k−1∑
i=1

(xi+1 − xi) + x1

.
= Sk + x1, (C.1)

where Sk
.
=
∑k−1

i=1 (xi+1 − xi). Note that Sk can be decomposed as

Sk =
k−1∑
i=1

(xi+1 − xi) = S+
k + S−k ,

where

S+
k =

k−1∑
i=1

(xi+1 − xi)+ ≥ 0, S−k =
k−1∑
i=1

(xi+1 − xi)− ≤ 0.

Some useful properties of S+
k and S−k are given below.

� {S+
k ≥ 0} is a nondecreasing sequence since S+

k+1 ≥ S+
k for all k.

� {S−k ≤ 0} is a nonincreasing sequence since S−k+1 ≤ S−k for all k.

� If S+
k is bounded from above, then S−k is bounded from below. This is because

S−k ≥ −S+
k − x1 due to the fact that S−k + S+

k + x1 = xk ≥ 0.

With the above preparation, we can show the following result.

Theorem C.2 (Convergence of nonmonotonic sequences). For any nonnegative sequence
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C.1. Convergence of deterministic sequences

{xk ≥ 0}, if

∞∑
k=1

(xk+1 − xk)+ <∞, (C.2)

then {xk} converges as k →∞.

Proof. First, the condition
∑∞

k=1(xk+1−xk)+ <∞ indicates that S+
k =

∑k−1
i=1 (xi+1−

xi)
+ is bounded from above for all k. Since {S+

k } is nondecreasing, the convergence

of {S+
k } immediately follows from Theorem C.1. Suppose that S+

k converges to S+
∗ .

Second, the boundedness of S+
k implies that S−k is bounded from below since

S−k ≥ −S+
k − x1. Since {S−k } is nonincreasing, the convergence of {S−k } immediately

follows from Theorem C.1. Suppose that S−k converges to S−∗ .

Finally, since xk = S+
k + S−k + x1, as shown in (C.1), the convergence of S+

k and

S−k implies that {xk} converges to S+
∗ + S−∗ + x1.

Theorem C.2 is more general than Theorem C.1 because it allows xk to increase as

long as the increase is damped as in (C.2). In the monotonic case, Theorem C.2 still

applies. In particular, if xk+1 ≤ xk, then
∑∞

k=1(xk+1 − xk)+ = 0. In this case, (C.2) is

still satisfied and the convergence follows.

We next consider a special yet importance case. Suppose that {xk ≥ 0} is a nonneg-

ative sequence satisfying

xk+1 ≤ xk + ηk.

When ηk = 0, we have xk+1 ≤ xk, meaning that the sequence is monotonic. When ηk ≥ 0,

the sequence is not monotonic because xk+1 may be greater than xk. Nevertheless, we can

still ensure the convergence of the sequence under some mild conditions. The following

result is an immediate corollary of Theorem C.2.

Corollary C.1. For any nonnegative sequence {xk ≥ 0}, if

xk+1 ≤ xk + ηk

and {ηk ≥ 0} satisfies
∞∑
k=1

ηk <∞,

then {xk ≥ 0} converges.
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C.2. Convergence of stochastic sequences

Proof. Since xk+1 ≤ xk + ηk, we have (xk+1 − xk)+ ≤ ηk for all k. Then, we have

∞∑
k=1

(xk+1 − xk)+ ≤
∞∑
k=1

ηk <∞.

As a result, (C.2) is satisfied and the convergence follows from Theorem C.2.

C.2 Convergence of stochastic sequences

We now consider stochastic sequences. While various definitions of stochastic sequences

have been given in Appendix B, how to determine the convergence of a given stochastic

sequence has not yet been discussed. We next present an important class of stochastic

sequences called martingales. If a sequence can be classified as a martingale (or one of

its variants), then the convergence of the sequence immediately follows.

Convergence of martingale sequences

� Definition: A stochastic sequence {Xk}∞k=1 is called a martingale if E[|Xk|] <∞ and

E[Xk+1|X1, . . . , Xk] = Xk (C.3)

almost surely for all k.

Here, E[Xk+1|X1, . . . , Xk] is a random variable rather than a deterministic value. The

term “almost surely” in the second condition is due to the definition of such expecta-

tions. In addition, E[Xk+1|X1, . . . , Xk] is often written as E[Xk+1|Hk] for short where

Hk = {X1, . . . , Xk} represents the “history” of the sequence. Hk has a specific name

called a filtration. More information can be found in [96, Chapter 14] and [104].

� Example: An example that can demonstrate martingales is random walk, which is a

stochastic process describing the position of a point that moves randomly. Specifically,

let Xk denote the position of the point at time step k. Starting from Xk, the expecta-

tion of the next position Xk+1 equals Xk if the mean of the one-step displacement is

zero. In this case, we have E[Xk+1|X1, . . . , Xk] = Xk and hence {Xk} is a martingale.

A basic property of martingales is that

E[Xk+1] = E[Xk]

for all k and hence

E[Xk] = E[Xk−1] = · · · = E[X2] = E[X1].
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This result can be obtained by calculating the expectation on both sides of (C.3)

based on property (b) in Lemma B.2.

While the expectation of a martingale is constant, we next extend martingales to

submartingales and supermartingales, whose expectations vary monotonically.

� Definition: A stochastic sequence {Xk} is called a submartingale if it satisfies E[|Xk|] <
∞ and

E[Xk+1|X1, . . . , Xk] ≥ Xk (C.4)

for all k.

Taking the expectation on both sides of (C.4) yields E[Xk+1] ≥ E[Xk]. In particular,

the left-hand side leads to E[E[Xk+1|X1, . . . , Xk]] = E[Xk+1] due to property (b) in

Lemma B.2. By induction, we have

E[Xk] ≥ E[Xk−1] ≥ · · · ≥ E[X2] ≥ E[X1].

Therefore, the expectation of a submartingale is nondecreasing.

It may be worth mentioning that, for two random variables X and Y , X ≤ Y means

X(ω) ≤ Y (ω) for all ω ∈ Ω. It does not mean the maximum of X is less than the

minimum of Y .

� Definition: A stochastic sequence {Xk} is called a supermartingale if it satisfies

E[|Xk|] <∞ and

E[Xk+1|X1, . . . , Xk] ≤ Xk (C.5)

for all k.

Taking expectation on both sides of (C.5) gives E[Xk+1] ≤ E[Xk]. By induction, we

have

E[Xk] ≤ E[Xk−1] ≤ · · · ≤ E[X2] ≤ E[X1].

Therefore, the expectation of a supmartingale is nonincreasing.

The names “submartingale” and “supmartingale” are standard, but it may not be easy

for beginners to distinguish them. Some tricks can be employed to do so. For example,

since “supermartingale” has a letter “p” that points down, its expectation decreases;

since submartingale has a letter “b” that points up, its expectation increases [104].

A supermartingale or submartingale is comparable to a deterministic monotonic se-

quence. While the convergence result for monotonic sequences has been given in Theo-

rem C.1, we provide a similar convergence result for martingales as follows.
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C.2. Convergence of stochastic sequences

Theorem C.3 (Martingale convergence theorem). If {Xk} is a submartingale (or super-

martingale), then there is a finite random variable X such that Xk → X almost surely.

The proof is omitted. A comprehensive introduction to martingales can be found in

[96, Chapter 14] and [104].

Convergence of quasimartingale sequences

We next introduce quasimartingales, which can be viewed as a generalization of martin-

gales since their expectations are not monotonic. They are comparable to nonmonotonic

deterministic sequences. The rigorous definition and convergence results of quasimartin-

gales are nontrivial. We merely list some useful results.

The event Ak is defined as Ak
.
= {ω ∈ Ω : E[Xk+1 − Xk|Hk] ≥ 0}, where Hk =

{X1, . . . , Xk}. Intuitively, Ak indicates that Xk+1 is greater than Xk in expectation.

Let 1Ak be an indicator function:

1Ak =

{
1, E[Xk+1 −Xk|Hk] ≥ 0,

0, E[Xk+1 −Xk|Hk] < 0.

The indicator function has a property that

1 = 1A + 1Ac

for any event A where Ac denotes the complementary event of A. As a result, it holds

for any random variable that

X = 1AX + 1AcX.

Although quasimartingales do not have monotonic expectations, their convergence is

still ensured under some mild conditions as shown below.

Theorem C.4 (Quasimartingale convergence theorem). For a nonnegative stochastic

sequence {Xk ≥ 0}, if
∞∑
k=1

E[(Xk+1 −Xk)1Ak ] <∞,

then
∑∞

k=1 E[(Xk+1 − Xk)1Ack ] > −∞ and there is a finite random variable such that

Xk → X almost surely as k →∞.

Theorem C.4 can be viewed as an analogy of Theorem C.2, which is for nonmono-

tonic deterministic sequences. The proof of this theorem can be found in [105, Proposi-

tion 9.5]. Note that Xk here is required to be nonnegative. As a result, the boundedness

of
∑∞

k=1 E[(Xk+1 −Xk)1Ak ] implies the boundedness of
∑∞

k=1 E[(Xk+1 −Xk)1Ack ].
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Summary and comparison

We finally summarize and compare the results for deterministic and stochastic sequences.

� Deterministic sequences:

- Monotonic sequences: As shown in Theorem C.1, if a sequence is monotonic and

bounded, then it converges.

- Nonmonotonic sequences: As shown in Theorem C.2, given a nonnegative se-

quence, even if it is nonmonotonic, it can still converge as long as its variation is

damped in the sense that
∑∞

k=1(xk+1 − xk)+ <∞.

� Stochastic sequences:

- Supermartingale/submartingale sequences: As shown in Theorem C.3, the expec-

tation of a supermartingale or submartingale is monotonic. If a sequence is a

supermartingale or submartingale, then the sequence converges almost surely.

- Quasimartingale sequences: As shown in Theorem C.4, even if a sequence’s expec-

tation is nonmonotonic, it can still converge as long as its variation is damped in

the sense that
∑∞

k=1 E[(Xk+1 −Xk)1E[Xk+1−Xk|Hk]>0] <∞.

The above properties are summarized in Table C.1.

Variants of martingales Monotonicity of E[Xk]

Martingale Constant: E[Xk+1] = E[Xk]

Submartingale Increasing: E[Xk+1] ≥ E[Xk]

Supermartingale Decreasing: E[Xk+1] ≤ E[Xk]

Quasimartingale Non-monotonic

Table C.1: Summary of the monotonicity of different variants of martingales.
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Appendix D

Preliminaries for Gradient Descent

We next present some preliminaries for the gradient descent method, which is one of the

most frequently used optimization methods. The gradient descent method is also the

foundation for the stochastic gradient descent method introduced in Chapter 6.

Convexity

� Definitions:

- Convex set: Suppose that D is a subset of Rn. This set is convex if z
.
= cx+ (1−

c)y ∈ D for any x, y ∈ D and any c ∈ [0, 1].

- Convex function: Suppose f : D → R where D is convex. Then, the function f(x)

is convex if

f(cx+ (1− x)y) ≤ cf(x) + (1− c)f(y)

for any x, y ∈ D and c ∈ [0, 1].

� Convex conditions:

- First-order condition: Consider a function f : D → R where D is convex. Then, f

is convex if [106, 3.1.3]

f(y)− f(x) ≥ ∇f(x)T (y − x), for all x, y ∈ D. (D.1)

When x is a scalar, ∇f(x) represents the slope of the tangent line of f(x) at x.

The geometric interpretation of (D.1) is that the point (y, f(y)) is always located

above the tangent line.

- Second-order condition: Consider a function f : D → R where D is convex. Then,

f is convex if

∇2f(x) � 0, for all x ∈ D,

where ∇2f(x) is the Hessian matrix.
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� Degree of convexity:

Given a convex function, it is often of interest how strong its convexity is. The Hessian

matrix is a useful tool for describing the degree of convexity. If ∇2f(x) is close to rank

deficiency at a point, then the function is flat around that point and hence weakly

convex. Otherwise, if the minimum singular value of ∇2f(x) is positive and large,

the function is curly around that point and hence strongly convex. The degree of

convexity influences the step size selection in gradient descent algorithms.

The lower and upper bounds of ∇2f(x) play an important role in characterizing the

function convexity.

- Lower bound of ∇2f(x): A function is called strongly convex or strictly convex if

∇2f(x) � `In, where ` > 0 for all x.

- Upper bound of ∇2f(x): If ∇2f(x) is bounded from above so that ∇2f(x) � LIn,

then the change in the first-order derivative ∇f(x) cannot be arbitrarily fast;

equivalently, the function cannot be arbitrarily convex at a point.

The upper bound can be implied by a Lipschitz condition of ∇f(x), as shown

below.

Lemma D.1. Suppose that f is a convex function. If ∇f(x) is Lipschitz contin-

uous with a constant L so that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x, y,

then ∇2f(x) � LIn for all x. Here, ‖ · ‖ denotes the Euclidean norm.

Gradient descent algorithms

Consider the following optimization problem:

min
x
f(x)

where x ∈ D ⊆ Rn and f : D → R. The gradient descent algorithm is

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, . . . (D.2)

where αk is a positive coefficient that may be fixed or time-varying. Here, αk is called

the step size or learning rate. Some remarks about (D.2) are given below.

� Direction of change: ∇f(xk) is a vector that points in the direction along which f(xk)

increases the fastest. Hence, the term −αk∇f(xk) changes xk in the direction along

which f(xk) decreases the fastest.

� Magnitude of change: The magnitude of the change −αk∇f(xk) is jointly determined

by the step size αk and the magnitude of ∇f(xk).
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- Magnitude of ∇f(xk):

When xk is close to the optimum x∗ where ∇f(x∗) = 0, the magnitude ‖∇f(xk)‖
is small. In this case, the update process of xk is slow, which is reasonable because

we do not want to update x too aggressively and miss the optimum.

When xk is far from the optimum, the magnitude of ∇f(xk) may be large, and

hence the update process of xk is fast. This is also reasonable because we hope

that the estimate can approach the optimum as quickly as possible.

- Step size αk:

If αk is small, the magnitude of −αk∇f(xk) is small, and hence the convergence

process is slow. If αk is too large, the update process of xk is aggressive, which

leads to either fast convergence or divergence.

How to select αk? The selection of αk should depend on the degree of convexity

of f(xk). If the function is curly around the optimum (the degree of convexity is

strong), then the step size αk should be small to guarantee convergence. If the

function is flat around the optimum (the degree of convexity is weak), then the

step size could be large so that xk can quickly approach the optimum. The above

intuition will be verified in the following convergence analysis.

Convergence analysis

We next present a proof of the convergence of the gradient descent algorithm in (D.2).

That is to show xk converges to the optimum x∗ where ∇f(x∗) = 0. First of all, we make

some assumptions.

� Assumption 1: f(x) is strongly convex such that

∇2f(x) � `I,

where ` > 0.

� Assumption 2: ∇f(x) is Lipschitz continuous with a constant L. This assumption

implies the following inequality according to Lemma D.1:

∇2f(x) � LIn.

The convergence proof is given below.

Proof. For any xk+1 and xk, it follows from [106, Section 9.1.2] that

f(xk+1) = f(xk) +∇f(xk)
T (xk+1 − xk) +

1

2
(xk+1 − xk)T∇2f(zk)(xk+1 − xk), (D.3)
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where zk is a convex combination of xk and xk+1. Since it is assumed that ∇2f(zk) � LIn,

we have ‖∇2f(zk)‖ ≤ L. (D.3) implies

f(xk+1) ≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

1

2
‖∇2f(zk)‖‖xk+1 − xk‖2

≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
‖xk+1 − xk‖2.

Substituting xk+1 = xk − αk∇f(xk) into the above inequality yields

f(xk+1) ≤ f(xk) +∇f(xk)
T (−αk∇f(xk)) +

L

2
‖αk∇f(xk)‖2

= f(xk)− αk‖∇f(xk)‖2 +
α2
kL

2
‖∇f(xk)‖2

= f(xk)− αk
(

1− αkL

2

)
︸ ︷︷ ︸

ηk

‖∇f(xk)‖2. (D.4)

We next show that if we select

0 < αk <
2

L
, (D.5)

then the sequence {f(xk)}∞k=1 converges to f(x∗) where ∇f(x∗) = 0. First, (D.5) implies

that ηk > 0. Then, (D.4) implies that f(xk+1) ≤ f(xk). Therefore, {f(xk)} is a nonin-

creasing sequence. Second, since f(xk) is always bounded from below by f(x∗), we know

that {f(xk)} converges as k → ∞ according to the monotone convergence theorem in

Theorem C.1. Suppose that the limit of the sequence is f ∗. Then, taking the limit on

both sides of (D.4) gives

lim
k→∞

f(xk+1) ≤ lim
k→∞

f(xk)− lim
k→∞

ηk‖∇f(xk)‖2

⇔ f ∗ ≤ f ∗ − lim
k→∞

ηk‖∇f(xk)‖2

⇔ 0 ≤ − lim
k→∞

ηk‖∇f(xk)‖2.

Since ηk‖∇f(xk)‖2 ≥ 0, the above inequality implies that limk→∞ ηk‖∇f(xk)‖2 = 0. As

a result, x converges to x∗ where ∇f(x∗) = 0. The proof is complete. The above proof is

inspired by [107].

The inequality in (D.5) provides valuable insights into how αk should be selected. If

the function is flat (L is small), the step size can be large; otherwise, if the function

is strongly convex (L is large), then the step size must be sufficiently small to ensure

convergence. There are also many other ways to prove the convergence such as the

contraction mapping theorem [108, Lemma 3]. A comprehensive introduction to convex

optimization can be found in [106].
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