
Chapter 2

State Values and Bellman Equation

Chapter 2:
Bellman Equation

Chapter 3:
Bellman Optimality

Equation

Chapter 4:
Value Iteration &
Policy Iteration

Chapter 5:
Monte Carlo

Methods

Chapter 7:
Temporal-Difference

Methods

Chapter 8:
Value Function

Methods

Chapter 9:
Policy Gradient

Methods

Chapter 10:
Actor-Critic

Methods

Chapter 6:
Stochastic

Approximation

with model
to

without model

tabular representation
to

function representation

Fundamental tools

Algorithms/Methods

Chapter 1:
Basic Concepts

policy-based
plus

value-based

Figure 2.1: Where we are in this book.

This chapter introduces a core concept and an important tool. The core concept

is the state value, which is defined as the average reward that an agent can obtain if

it follows a given policy. The greater the state value is, the better the corresponding

policy is. State values can be used as a metric to evaluate whether a policy is good or

not. While state values are important, how can we analyze them? The answer is the

Bellman equation, which is an important tool for analyzing state values. In a nutshell,

the Bellman equation describes the relationships between the values of all states. By

solving the Bellman equation, we can obtain the state values. This process is called

policy evaluation, which is a fundamental concept in reinforcement learning. Finally, this

15

2.1. Motivating example 1: Why are returns important?

chapter introduces another important concept called the action value.

2.1 Motivating example 1: Why are returns impor-

tant?

The previous chapter introduced the concept of returns. In fact, returns play a funda-

mental role in reinforcement learning since they can evaluate whether a policy is good or

not. This is demonstrated by the following examples.

r = 0 r = 1

r = 1
r = 1

s1 s2

s3 s4

r = −1
r = 1

r = 1
r = 1

s1 s2

s3 s4

p = 0.5
r = −1

r = 0
p = 0.5

r = 1

r = 1
r = 1

s1 s2

s3 s4

Figure 2.2: Examples for demonstrating the importance of returns. The three examples have different
policies for s1.

Consider the three policies shown in Figure 2.2. It can be seen that the three policies

are different at s1. Which is the best and which is the worst? Intuitively, the leftmost

policy is the best because the agent starting from s1 can avoid the forbidden area. The

middle policy is intuitively worse because the agent starting from s1 moves to the forbid-

den area. The rightmost policy is in between the others because it has a probability of

0.5 to go to the forbidden area.

While the above analysis is based on intuition, a question that immediately follows is

whether we can use mathematics to describe such intuition. The answer is yes and relies

on the return concept. In particular, suppose that the agent starts from s1.

� Following the first policy, the trajectory is s1 → s3 → s4 → s4 · · · . The corresponding

discounted return is

return1 = 0 + γ1 + γ21 + . . .

= γ(1 + γ + γ2 + . . .)

=
γ

1− γ ,

where γ ∈ (0, 1) is the discount rate.

� Following the second policy, the trajectory is s1 → s2 → s4 → s4 · · · . The discounted

16

2.2. Motivating example 2: How to calculate returns?

return is

return2 = −1 + γ1 + γ21 + . . .

= −1 + γ(1 + γ + γ2 + . . .)

= −1 +
γ

1− γ .

� Following the third policy, two trajectories can possibly be obtained. One is s1 →
s3 → s4 → s4 · · · , and the other is s1 → s2 → s4 → s4 · · · . The probability of either

of the two trajectories is 0.5. Then, the average return that can be obtained starting

from s1 is

return3 = 0.5

(
−1 +

γ

1− γ

)
+ 0.5

(
γ

1− γ

)
= −0.5 +

γ

1− γ .

By comparing the returns of the three policies, we notice that

return1 > return3 > return2 (2.1)

for any value of γ. Inequality (2.1) suggests that the first policy is the best because its

return is the greatest, and the second policy is the worst because its return is the smallest.

This mathematical conclusion is consistent with the aforementioned intuition: the first

policy is the best since it can avoid entering the forbidden area, and the second policy is

the worst because it leads to the forbidden area.

The above examples demonstrate that returns can be used to evaluate policies: a

policy is better if the return obtained by following that policy is greater. Finally, it is

notable that return3 does not strictly comply with the definition of returns because it is

more like an expected value. It will become clear later that return3 is actually a state

value.

2.2 Motivating example 2: How to calculate returns?

While we have demonstrated the importance of returns, a question that immediately

follows is how to calculate the returns when following a given policy.

There are two ways to calculate returns.

� The first is simply by definition: a return equals the discounted sum of all the rewards

collected along a trajectory. Consider the example in Figure 2.3. Let vi denote the

return obtained by starting from si for i = 1, 2, 3, 4. Then, the returns obtained when

17

2.2. Motivating example 2: How to calculate returns?

r1

r2

r4

r3

s1 s2

s4 s3

Figure 2.3: An example for demonstrating how to calculate returns. There are no target or forbidden
cells in this example.

starting from the four states in Figure 2.3 can be calculated as

v1 = r1 + γr2 + γ2r3 + . . . ,

v2 = r2 + γr3 + γ2r4 + . . . ,

v3 = r3 + γr4 + γ2r1 + . . . ,

v4 = r4 + γr1 + γ2r2 +

(2.2)

� The second way, which is more important, is based on the idea of bootstrapping. By

observing the expressions of the returns in (2.2), we can rewrite them as

v1 = r1 + γ(r2 + γr3 + . . .) = r1 + γv2,

v2 = r2 + γ(r3 + γr4 + . . .) = r2 + γv3,

v3 = r3 + γ(r4 + γr1 + . . .) = r3 + γv4,

v4 = r4 + γ(r1 + γr2 + . . .) = r4 + γv1.

(2.3)

The above equations indicate an interesting phenomenon that the values of the returns

rely on each other. More specifically, v1 relies on v2, v2 relies on v3, v3 relies on v4,

and v4 relies on v1. This reflects the idea of bootstrapping, which is to obtain the

values of some quantities from themselves.

At first glance, bootstrapping is an endless loop because the calculation of an unknown

value relies on another unknown value. In fact, bootstrapping is easier to understand

if we view it from a mathematical perspective. In particular, the equations in (2.3)

can be reformed into a linear matrix-vector equation:
v1

v2

v3

v4


︸ ︷︷ ︸

v

=


r1

r2

r3

r4

+


γv2

γv3

γv4

γv1

 =


r1

r2

r3

r4


︸ ︷︷ ︸

r

+γ


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


︸ ︷︷ ︸

P


v1

v2

v3

v4


︸ ︷︷ ︸

v

,

18

2.3. State values

which can be written compactly as

v = r + γPv.

Thus, the value of v can be calculated easily as v = (I − γP)−1r, where I is the

identity matrix with appropriate dimensions. One may ask whether I − γP is always

invertible. The answer is yes and explained in Section 2.7.1.

In fact, (2.3) is the Bellman equation for this simple example. Although it is simple,

(2.3) demonstrates the core idea of the Bellman equation: the return obtained by starting

from one state depends on those obtained when starting from other states. The idea of

bootstrapping and the Bellman equation for general scenarios will be formalized in the

following sections.

2.3 State values

We mentioned that returns can be used to evaluate policies. However, they are inappli-

cable to stochastic systems because starting from one state may lead to different returns.

Motivated by this problem, we introduce the concept of state value in this section.

First, we need to introduce some necessary notations. Consider a sequence of time

steps t = 0, 1, 2, At time t, the agent is in state St, and the action taken following a

policy π is At. The next state is St+1, and the immediate reward obtained is Rt+1. This

process can be expressed concisely as

St
At−→ St+1, Rt+1.

Note that St, St+1, At, Rt+1 are all random variables. Moreover, St, St+1 ∈ S, At ∈ A(St),

and Rt+1 ∈ R(St, At).

Starting from t, we can obtain a state-action-reward trajectory:

St
At−→ St+1, Rt+1

At+1−−−→ St+2, Rt+2
At+2−−−→ St+3, Rt+3

By definition, the discounted return along the trajectory is

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . . ,

where γ ∈ (0, 1) is the discount rate. Note thatGt is a random variable sinceRt+1, Rt+2, . . .

are all random variables.

Since Gt is a random variable, we can calculate its expected value (also called the

expectation or mean):

vπ(s)
.
= E[Gt|St = s].

19

2.4. Bellman equation

Here, vπ(s) is called the state-value function or simply the state value of s. Some impor-

tant remarks are given below.

� vπ(s) depends on s. This is because its definition is a conditional expectation with

the condition that the agent starts from St = s.

� vπ(s) depends on π. This is because the trajectories are generated by following the

policy π. For a different policy, the state value may be different.

� vπ(s) does not depend on t. If the agent moves in the state space, t represents the

current time step. The value of vπ(s) is determined once the policy is given.

The relationship between state values and returns is further clarified as follows. When

both the policy and the system model are deterministic, starting from a state always leads

to the same trajectory. In this case, the return obtained starting from a state is equal

to the value of that state. By contrast, when either the policy or the system model is

stochastic, starting from the same state may generate different trajectories. In this case,

the returns of different trajectories are different, and the state value is the mean of these

returns.

Although returns can be used to evaluate policies as shown in Section 2.1, it is more

formal to use state values to evaluate policies: policies that generate greater state values

are better. Therefore, state values constitute a core concept in reinforcement learning.

While state values are important, a question that immediately follows is how to calculate

them. This question is answered in the next section.

2.4 Bellman equation

We now introduce the Bellman equation, a mathematical tool for analyzing state val-

ues. In a nutshell, the Bellman equation is a set of linear equations that describe the

relationships between the values of all the states.

We next derive the Bellman equation. First, note that Gt can be rewritten as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + . . .)

= Rt+1 + γGt+1,

where Gt+1 = Rt+2 + γRt+3 + This equation establishes the relationship between Gt

and Gt+1. Then, the state value can be written as

vπ(s) = E[Gt|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1|St = s] + γE[Gt+1|St = s]. (2.4)

20

2.4. Bellman equation

The two terms in (2.4) are analyzed below.

� The first term, E[Rt+1|St = s], is the expectation of the immediate rewards. By using

the law of total expectation (Appendix A), it can be calculated as

E[Rt+1|St = s] =
∑
a∈A

π(a|s)E[Rt+1|St = s, At = a]

=
∑
a∈A

π(a|s)
∑
r∈R

p(r|s, a)r. (2.5)

Here, A and R are the sets of possible actions and rewards, respectively. It should be

noted that A may be different for different states. In this case, A should be written as

A(s). Similarly, R may also depend on (s, a). We drop the dependence on s or (s, a)

for the sake of simplicity in this book. Nevertheless, the conclusions are still valid in

the presence of dependence.

� The second term, E[Gt+1|St = s], is the expectation of the future rewards. It can be

calculated as

E[Gt+1|St = s] =
∑
s′∈S

E[Gt+1|St = s, St+1 = s′]p(s′|s)

=
∑
s′∈S

E[Gt+1|St+1 = s′]p(s′|s) (due to the Markov property)

=
∑
s′∈S

vπ(s′)p(s′|s)

=
∑
s′∈S

vπ(s′)
∑
a∈A

p(s′|s, a)π(a|s). (2.6)

The above derivation uses the fact that E[Gt+1|St = s, St+1 = s′] = E[Gt+1|St+1 = s′],

which is due to the Markov property that the future rewards depend merely on the

present state rather than the previous ones.

Substituting (2.5)-(2.6) into (2.4) yields

vπ(s) = E[Rt+1|St = s] + γE[Gt+1|St = s],

=
∑
a∈A

π(a|s)
∑
r∈R

p(r|s, a)r︸ ︷︷ ︸
mean of immediate rewards

+ γ
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)vπ(s′)︸ ︷︷ ︸
mean of future rewards

=
∑
a∈A

π(a|s)
[∑
r∈R

p(r|s, a)r + γ
∑
s′∈S

p(s′|s, a)vπ(s′)

]
, for all s ∈ S. (2.7)

This equation is the Bellman equation, which characterizes the relationships of state

values. It is a fundamental tool for designing and analyzing reinforcement learning algo-

rithms.

21

2.5. Examples for illustrating the Bellman equation

The Bellman equation seems complex at first glance. In fact, it has a clear structure.

Some remarks are given below.

� vπ(s) and vπ(s′) are unknown state values to be calculated. It may be confusing to

beginners how to calculate the unknown vπ(s) given that it relies on another unknown

vπ(s′). It must be noted that the Bellman equation refers to a set of linear equations for

all states rather than a single equation. If we put these equations together, it becomes

clear how to calculate all the state values. Details will be given in Section 2.7.

� π(a|s) is a given policy. Since state values can be used to evaluate a policy, solving

the state values from the Bellman equation is a policy evaluation process, which is an

important process in many reinforcement learning algorithms, as we will see later in

the book.

� p(r|s, a) and p(s′|s, a) represent the system model. We will first show how to calculate

the state values with this model in Section 2.7, and then show how to do that without

the model by using model-free algorithms later in this book.

In addition to the expression in (2.7), readers may also encounter other expressions

of the Bellman equation in the literature. We next introduce two equivalent expressions.

First, it follows from the law of total probability that

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a),

p(r|s, a) =
∑
s′∈S

p(s′, r|s, a).

Then, equation (2.7) can be rewritten as

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvπ(s′)] .

This is the expression used in [3].

Second, the reward r may depend solely on the next state s′ in some problems. As a

result, we can write the reward as r(s′) and hence p(r(s′)|s, a) = p(s′|s, a), substituting

which into (2.7) gives

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s′) + γvπ(s′)] .

2.5 Examples for illustrating the Bellman equation

We next use two examples to demonstrate how to write out the Bellman equation and

calculate the state values step by step. Readers are advised to carefully go through the

examples to gain a better understanding of the Bellman equation.

22

2.5. Examples for illustrating the Bellman equation

r = 0 r = 1

r = 1
r = 1

s1 s2

s3 s4

Figure 2.4: An example for demonstrating the Bellman equation. The policy in this example is deter-
ministic.

� Consider the first example shown in Figure 2.4, where the policy is deterministic. We

next write out the Bellman equation and then solve the state values from it.

First, consider state s1. Under the policy, the probabilities of taking the actions

are π(a = a3|s1) = 1 and π(a 6= a3|s1) = 0. The state transition probabilities

are p(s′ = s3|s1, a3) = 1 and p(s′ 6= s3|s1, a3) = 0. The reward probabilities are

p(r = 0|s1, a3) = 1 and p(r 6= 0|s1, a3) = 0. Substituting these values into (2.7) gives

vπ(s1) = 0 + γvπ(s3).

Interestingly, although the expression of the Bellman equation in (2.7) seems complex,

the expression for this specific state is very simple.

Similarly, it can be obtained that

vπ(s2) = 1 + γvπ(s4),

vπ(s3) = 1 + γvπ(s4),

vπ(s4) = 1 + γvπ(s4).

We can solve the state values from these equations. Since the equations are simple, we

can manually solve them. More complicated equations can be solved by the algorithms

presented in Section 2.7. Here, the state values can be solved as

vπ(s4) =
1

1− γ ,

vπ(s3) =
1

1− γ ,

vπ(s2) =
1

1− γ ,

vπ(s1) =
γ

1− γ .

23

2.5. Examples for illustrating the Bellman equation

Furthermore, if we set γ = 0.9, then

vπ(s4) =
1

1− 0.9
= 10,

vπ(s3) =
1

1− 0.9
= 10,

vπ(s2) =
1

1− 0.9
= 10,

vπ(s1) =
0.9

1− 0.9
= 9.

p = 0.5
r = −1

r = 0
p = 0.5

r = 1

r = 1
r = 1

s1 s2

s3 s4

Figure 2.5: An example for demonstrating the Bellman equation. The policy in this example is stochastic.

� Consider the second example shown in Figure 2.5, where the policy is stochastic. We

next write out the Bellman equation and then solve the state values from it.

In state s1, the probabilities of going right and down equal 0.5. Mathematically, we

have π(a = a2|s1) = 0.5 and π(a = a3|s1) = 0.5. The state transition probability

is deterministic since p(s′ = s3|s1, a3) = 1 and p(s′ = s2|s1, a2) = 1. The reward

probability is also deterministic since p(r = 0|s1, a3) = 1 and p(r = −1|s1, a2) = 1.

Substituting these values into (2.7) gives

vπ(s1) = 0.5[0 + γvπ(s3)] + 0.5[−1 + γvπ(s2)].

Similarly, it can be obtained that

vπ(s2) = 1 + γvπ(s4),

vπ(s3) = 1 + γvπ(s4),

vπ(s4) = 1 + γvπ(s4).

The state values can be solved from the above equations. Since the equations are

24

2.6. Matrix-vector form of the Bellman equation

simple, we can solve the state values manually and obtain

vπ(s4) =
1

1− γ ,

vπ(s3) =
1

1− γ ,

vπ(s2) =
1

1− γ ,

vπ(s1) = 0.5[0 + γvπ(s3)] + 0.5[−1 + γvπ(s2)],

= −0.5 +
γ

1− γ .

Furthermore, if we set γ = 0.9, then

vπ(s4) = 10,

vπ(s3) = 10,

vπ(s2) = 10,

vπ(s1) = −0.5 + 9 = 8.5.

If we compare the state values of the two policies in the above examples, it can be

seen that

vπ1(si) ≥ vπ2(si), i = 1, 2, 3, 4,

which indicates that the policy in Figure 2.4 is better because it has greater state values.

This mathematical conclusion is consistent with the intuition that the first policy is better

because it can avoid entering the forbidden area when the agent starts from s1. As a

result, the above two examples demonstrate that state values can be used to evaluate

policies.

2.6 Matrix-vector form of the Bellman equation

The Bellman equation in (2.7) is in an elementwise form. Since it is valid for every state,

we can combine all these equations and write them concisely in a matrix-vector form,

which will be frequently used to analyze the Bellman equation.

To derive the matrix-vector form, we first rewrite the Bellman equation in (2.7) as

vπ(s) = rπ(s) + γ
∑
s′∈S

pπ(s′|s)vπ(s′), (2.8)

25

2.6. Matrix-vector form of the Bellman equation

where

rπ(s)
.
=
∑
a∈A

π(a|s)
∑
r∈R

p(r|s, a)r,

pπ(s′|s) .
=
∑
a∈A

π(a|s)p(s′|s, a).

Here, rπ(s) denotes the mean of the immediate rewards, and pπ(s′|s) is the probability

of transitioning from s to s′ under policy π.

Suppose that the states are indexed as si with i = 1, . . . , n, where n = |S|. For state

si, (2.8) can be written as

vπ(si) = rπ(si) + γ
∑
sj∈S

pπ(sj|si)vπ(sj). (2.9)

Let vπ = [vπ(s1), . . . , vπ(sn)]T ∈ Rn, rπ = [rπ(s1), . . . , rπ(sn)]T ∈ Rn, and Pπ ∈ Rn×n with

[Pπ]ij = pπ(sj|si). Then, (2.9) can be written in the following matrix-vector form:

vπ = rπ + γPπvπ, (2.10)

where vπ is the unknown to be solved, and rπ, Pπ are known.

The matrix Pπ has some interesting properties. First, it is a nonnegative matrix,

meaning that all its elements are equal to or greater than zero. This property is denoted

as Pπ ≥ 0, where 0 denotes a zero matrix with appropriate dimensions. In this book, ≥
or ≤ represents an elementwise comparison operation. Second, Pπ is a stochastic matrix,

meaning that the sum of the values in every row is equal to one. This property is denoted

as Pπ1 = 1, where 1 = [1, . . . , 1]T has appropriate dimensions.

Consider the example shown in Figure 2.6. The matrix-vector form of the Bellman

equation is
vπ(s1)

vπ(s2)

vπ(s3)

vπ(s4)


︸ ︷︷ ︸

vπ

=


rπ(s1)

rπ(s2)

rπ(s3)

rπ(s4)


︸ ︷︷ ︸

rπ

+γ


pπ(s1|s1) pπ(s2|s1) pπ(s3|s1) pπ(s4|s1)

pπ(s1|s2) pπ(s2|s2) pπ(s3|s2) pπ(s4|s2)

pπ(s1|s3) pπ(s2|s3) pπ(s3|s3) pπ(s4|s3)

pπ(s1|s4) pπ(s2|s4) pπ(s3|s4) pπ(s4|s4)


︸ ︷︷ ︸

Pπ


vπ(s1)

vπ(s2)

vπ(s3)

vπ(s4)


︸ ︷︷ ︸

vπ

.

Substituting the specific values into the above equation gives
vπ(s1)

vπ(s2)

vπ(s3)

vπ(s4)

 =


0.5(0) + 0.5(−1)

1

1

1

+ γ


0 0.5 0.5 0

0 0 0 1

0 0 0 1

0 0 0 1



vπ(s1)

vπ(s2)

vπ(s3)

vπ(s4)

 .

26

2.7. Solving state values from the Bellman equation

It can be seen that Pπ satisfies Pπ1 = 1.

p = 0.5
r = −1

r = 0
p = 0.5

r = 1

r = 1
r = 1

s1 s2

s3 s4

Figure 2.6: An example for demonstrating the matrix-vector form of the Bellman equation.

2.7 Solving state values from the Bellman equation

Calculating the state values of a given policy is a fundamental problem in reinforcement

learning. This problem is often referred to as policy evaluation. In this section, we present

two methods for calculating state values from the Bellman equation.

2.7.1 Closed-form solution

Since vπ = rπ + γPπvπ is a simple linear equation, its closed-form solution can be easily

obtained as

vπ = (I − γPπ)−1rπ.

Some properties of (I − γPπ)−1 are given below.

� I − γPπ is invertible. The proof is as follows. According to the Gershgorin circle

theorem [4], every eigenvalue of I − γPπ lies within at least one of the Gershgorin

circles. The ith Gershgorin circle has a center at [I − γPπ]ii = 1 − γpπ(si|si) and

a radius equal to
∑

j 6=i[I − γPπ]ij = −∑j 6=i γpπ(sj|si). Since γ < 1, we know that

the radius is less than the magnitude of the center:
∑

j 6=i γpπ(sj|si) < 1− γpπ(si|si).
Therefore, all Gershgorin circles do not encircle the origin, and hence no eigenvalue

of I − γPπ is zero.

� (I − γPπ)−1 ≥ I, meaning that every element of (I − γPπ)−1 is nonnegative and,

more specifically, no less than that of the identity matrix. This is because Pπ has

nonnegative entries, and hence (I − γPπ)−1 = I + γPπ + γ2P 2
π + · · · ≥ I ≥ 0.

� For any vector r ≥ 0, it holds that (I − γPπ)−1r ≥ r ≥ 0. This property follows from

the second property because [(I − γPπ)−1 − I]r ≥ 0. As a consequence, if r1 ≥ r2, we

have (I − γPπ)−1r1 ≥ (I − γPπ)−1r2.

27

2.7. Solving state values from the Bellman equation

2.7.2 Iterative solution

Although the closed-form solution is useful for theoretical analysis purposes, it is not

applicable in practice because it involves a matrix inversion operation, which still needs

to be calculated by other numerical algorithms. In fact, we can directly solve the Bellman

equation using the following iterative algorithm:

vk+1 = rπ + γPπvk, k = 0, 1, 2, . . . (2.11)

This algorithm generates a sequence of values {v0, v1, v2, . . . }, where v0 ∈ Rn is an initial

guess of vπ. It holds that

vk → vπ = (I − γPπ)−1rπ, as k →∞. (2.12)

Interested readers may see the proof in Box 2.1.

Box 2.1: Convergence proof of (2.12)

Define the error as δk = vk − vπ. We only need to show that δk → 0. Substituting

vk+1 = δk+1 + vπ and vk = δk + vπ into vk+1 = rπ + γPπvk gives

δk+1 + vπ = rπ + γPπ(δk + vπ),

which can be rewritten as

δk+1 = −vπ + rπ + γPπδk + γPπvπ,

= γPπδk − vπ + (rπ + γPπvπ),

= γPπδk.

As a result,

δk+1 = γPπδk = γ2P 2
πδk−1 = · · · = γk+1P k+1

π δ0.

Since every entry of Pπ is nonnegative and no greater than one, we have that 0 ≤
P k
π ≤ 1 for any k. That is, every entry of P k

π is no greater than 1. On the other hand,

since γ < 1, we know that γk → 0, and hence δk+1 = γk+1P k+1
π δ0 → 0 as k →∞.

2.7.3 Illustrative examples

We next apply the algorithm in (2.11) to solve the state values of some examples.

The examples are shown in Figure 2.7. The orange cells represent forbidden areas.

The blue cell represents the target area. The reward settings are rboundary = rforbidden = −1

28

2.7. Solving state values from the Bellman equation

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

2.8 2.5 10.0 5.9 6.6

2.5 10.0 10.0 10.0 7.3

2.3 9.0 10.0 9.0 8.1

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

3.5 3.9 4.3 4.8 5.3

3.1 3.5 4.8 5.3 5.9

2.8 2.5 10.0 5.9 6.6

2.5 10.0 10.0 10.0 7.3

2.3 9.0 10.0 9.0 8.1

(a) Two “good” policies and their state values. The state values of the two policies are the same,
but the two policies are different at the top two states in the fourth column.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

-6.6 -7.3 -8.1 -9.0 -10.0

-8.5 -8.3 -8.1 -9.0 -10.0

-7.5 -8.3 -8.1 -9.0 -10.0

-7.5 -7.2 -9.1 -9.0 -10.0

-7.6 -7.3 -8.1 -9.0 -10.0

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

0.0 0.0 0.0 -10.0 -10.0

-9.0 -10.0 -0.4 -0.5 -10.0

-10.0 -0.5 0.5 -0.5 0.0

0.0 -1.0 -0.5 -0.5 -10.0

0.0 0.0 0.0 0.0 0.0

(b) Two “bad” policies and their state values. The state values are smaller than those of the
“good” policies.

Figure 2.7: Examples of policies and their corresponding state values.

and rtarget = 1. Here, the discount rate is γ = 0.9.

29

2.8. From state value to action value

Figure 2.7(a) shows two “good” policies and their corresponding state values obtained

by (2.11). The two policies have the same state values but differ at the top two states in

the fourth column. Therefore, we know that different policies may have the same state

values.

Figure 2.7(b) shows two “bad” policies and their corresponding state values. These

two policies are bad because the actions of many states are intuitively unreasonable.

Such intuition is supported by the obtained state values. As can be seen, the state values

of these two policies are negative and much smaller than those of the good policies in

Figure 2.7(a).

2.8 From state value to action value

While we have been discussing state values thus far in this chapter, we now turn to

the action value, which indicates the “value” of taking an action at a state. While the

concept of action value is important, the reason why it is introduced in the last section

of this chapter is that it heavily relies on the concept of state values. It is important to

understand state values well first before studying action values.

The action value of a state-action pair (s, a) is defined as

qπ(s, a)
.
= E[Gt|St = s, At = a].

As can be seen, the action value is defined as the expected return that can be obtained

after taking an action at a state. It must be noted that qπ(s, a) depends on a state-action

pair (s, a) rather than an action alone. It may be more rigorous to call this value a

state-action value, but it is conventionally called an action value for simplicity.

What is the relationship between action values and state values?

� First, it follows from the properties of conditional expectation that

E[Gt|St = s]︸ ︷︷ ︸
vπ(s)

=
∑
a∈A

E[Gt|St = s, At = a]︸ ︷︷ ︸
qπ(s,a)

π(a|s).

It then follows that

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a). (2.13)

As a result, a state value is the expectation of the action values associated with that

state.

� Second, since the state value is given by

vπ(s) =
∑
a∈A

π(a|s)
[∑
r∈R

p(r|s, a)r + γ
∑
s′∈S

p(s′|s, a)vπ(s′)
]
,

30

2.8. From state value to action value

comparing it with (2.13) leads to

qπ(s, a) =
∑
r∈R

p(r|s, a)r + γ
∑
s′∈S

p(s′|s, a)vπ(s′). (2.14)

It can be seen that the action value consists of two terms. The first term is the mean

of the immediate rewards, and the second term is the mean of the future rewards.

Both (2.13) and (2.14) describe the relationship between state values and action val-

ues. They are the two sides of the same coin: (2.13) shows how to obtain state values

from action values, whereas (2.14) shows how to obtain action values from state values.

2.8.1 Illustrative examples

p = 0.5
r = −1

r = 0
p = 0.5

r = 1

r = 1
r = 1

s1 s2

s3 s4

Figure 2.8: An example for demonstrating the process of calculating action values.

We next present an example to illustrate the process of calculating action values and

discuss a common mistake that beginners may make.

Consider the stochastic policy shown in Figure 2.8. We next only examine the actions

of s1. The other states can be examined similarly. The action value of (s1, a2) is

qπ(s1, a2) = −1 + γvπ(s2),

where s2 is the next state. Similarly, it can be obtained that

qπ(s1, a3) = 0 + γvπ(s3).

A common mistake that beginners may make is about the values of the actions that

the given policy does not select. For example, the policy in Figure 2.8 can only select

a2 or a3 and cannot select a1, a4, a5. One may argue that since the policy does not

select a1, a4, a5, we do not need to calculate their action values, or we can simply set

qπ(s1, a1) = qπ(s1, a4) = qπ(s1, a5) = 0. This is wrong.

� First, even if an action would not be selected by a policy, it still has an action value.

In this example, although policy π does not take a1 at s1, we can still calculate its

31

2.8. From state value to action value

action value by observing what we would obtain after taking this action. Specifically,

after taking a1, the agent is bounced back to s1 (hence, the immediate reward is −1)

and then continues moving in the state space starting from s1 by following π (hence,

the future reward is γvπ(s1)). As a result, the action value of (s1, a1) is

qπ(s1, a1) = −1 + γvπ(s1).

Similarly, for a4 and a5, which cannot be possibly selected by the given policy either,

we have

qπ(s1, a4) = −1 + γvπ(s1),

qπ(s1, a5) = 0 + γvπ(s1).

� Second, why do we care about the actions that the given policy would not select?

Although some actions cannot be possibly selected by a given policy, this does not

mean that these actions are not good. It is possible that the given policy is not good,

so it cannot select the best action. The purpose of reinforcement learning is to find

optimal policies. To that end, we must keep exploring all actions to determine better

actions for each state.

Finally, after computing the action values, we can also calculate the state value ac-

cording to (2.14):

vπ(s1) = 0.5qπ(s1, a2) + 0.5qπ(s1, a3),

= 0.5[0 + γvπ(s3)] + 0.5[−1 + γvπ(s2)].

2.8.2 The Bellman equation in terms of action values

The Bellman equation that we previously introduced was defined based on state values.

In fact, it can also be expressed in terms of action values.

In particular, substituting (2.13) into (2.14) yields

qπ(s, a) =
∑
r∈R

p(r|s, a)r + γ
∑
s′∈S

p(s′|s, a)
∑

a′∈A(s′)

π(a′|s′)qπ(s′, a′),

which is an equation of action values. The above equation is valid for every state-action

pair. If we put all these equations together, their matrix-vector form is

qπ = r̃ + γPΠqπ, (2.15)

where qπ is the action value vector indexed by the state-action pairs: its (s, a)th element

is [qπ](s,a) = qπ(s, a). r̃ is the immediate reward vector indexed by the state-action

pairs: [r̃](s,a) =
∑

r∈R p(r|s, a)r. The matrix P is the probability transition matrix, whose

32

2.9. Summary

row is indexed by the state-action pairs and whose column is indexed by the states:

[P](s,a),s′ = p(s′|s, a). Moreover, Π is a block diagonal matrix in which each block is a

1× |A| vector: Πs′,(s′,a′) = π(a′|s′) and the other entries of Π are zero.

Compared to the Bellman equation defined in terms of state values, the equation

defined in terms of action values has some unique features. For example, r̃ and P are

independent of the policy and are merely determined by the system model. The policy

is embedded in Π. It can be verified that (2.15) is also a contraction mapping and has a

unique solution that can be iteratively solved. More details can be found in [5].

2.9 Summary

The most important concept introduced in this chapter is the state value. Mathematically,

a state value is the expected return that the agent can obtain by starting from a state.

The values of different states are related to each other. That is, the value of state s

relies on the values of some other states, which may further rely on the value of state s

itself. This phenomenon might be the most confusing part of this chapter for beginners.

It is related to an important concept called bootstrapping, which involves calculating

something from itself. Although bootstrapping may be intuitively confusing, it is clear if

we examine the matrix-vector form of the Bellman equation. In particular, the Bellman

equation is a set of linear equations that describe the relationships between the values of

all states.

Since state values can be used to evaluate whether a policy is good or not, the process

of solving the state values of a policy from the Bellman equation is called policy evalu-

ation. As we will see later in this book, policy evaluation is an important step in many

reinforcement learning algorithms.

Another important concept, action value, was introduced to describe the value of

taking one action at a state. As we will see later in this book, action values play a

more direct role than state values when we attempt to find optimal policies. Finally, the

Bellman equation is not restricted to the reinforcement learning field. Instead, it widely

exists in many fields such as control theories and operation research. In different fields,

the Bellman equation may have different expressions. In this book, the Bellman equation

is studied under discrete Markov decision processes. More information about this topic

can be found in [2].

2.10 Q&A

� Q: What is the relationship between state values and returns?

A: The value of a state is the mean of the returns that can be obtained if the agent

starts from that state.

33

2.10. Q&A

� Q: Why do we care about state values?

A: State values can be used to evaluate policies. In fact, optimal policies are defined

based on state values. This point will become clearer in the next chapter.

� Q: Why do we care about the Bellman equation?

A: The Bellman equation describes the relationships among the values of all states.

It is the tool for analyzing state values.

� Q: Why is the process of solving the Bellman equation called policy evaluation?

A: Solving the Bellman equation yields state values. Since state values can be used to

evaluate a policy, solving the Bellman equation can be interpreted as evaluating the

corresponding policy.

� Q: Why do we need to study the matrix-vector form of the Bellman equation?

A: The Bellman equation refers to a set of linear equations established for all the

states. To solve state values, we must put all the linear equations together. The

matrix-vector form is a concise expression of these linear equations.

� Q: What is the relationship between state values and action values?

A: On the one hand, a state value is the mean of the action values for that state. On

the other hand, an action value relies on the values of the next states that the agent

may transition to after taking the action.

� Q: Why do we care about the values of the actions that a given policy cannot select?

A: Although a given policy cannot select some actions, this does not mean that these

actions are not good. On the contrary, it is possible that the given policy is not good

and misses the best action. To find better policies, we must keep exploring different

actions even though some of them may not be selected by the given policy.

34

