P&S Heterogeneous Systems

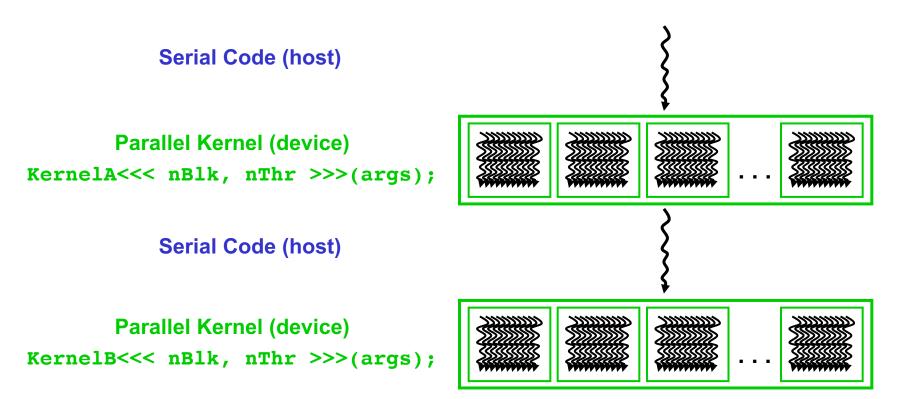
Parallel Patterns: Reduction

Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Fall 2022 7 November 2022

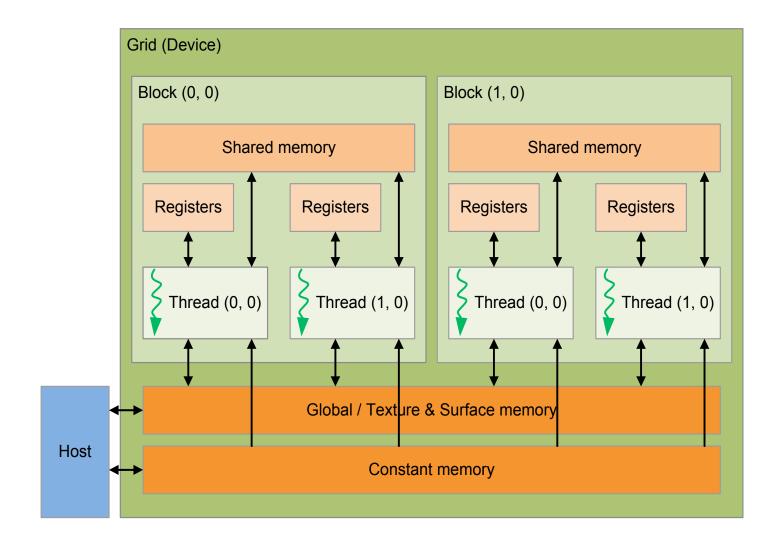
Performance Considerations

Traditional Program Structure

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU

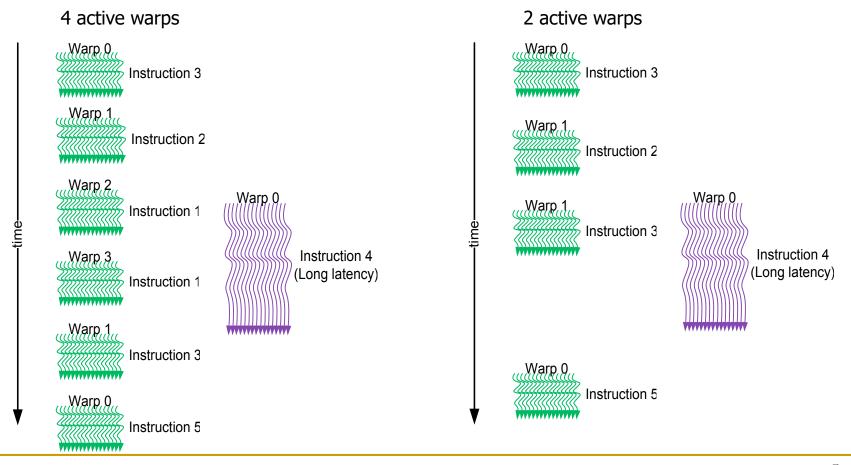


Memory Hierarchy in CUDA Programs



Latency Hiding and Occupancy

- FGMT can hide long latency operations (e.g., memory accesses)
- Occupancy: ratio of active warps to the maximum number of warps per GPU core

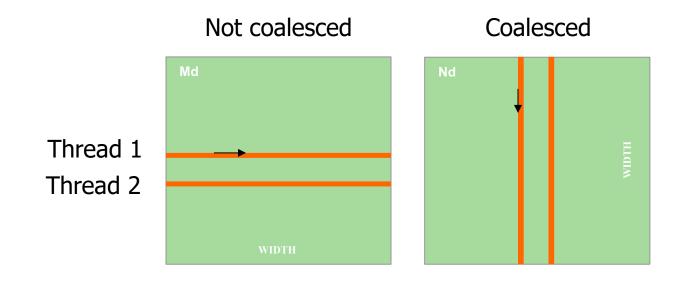


Memory Coalescing (I)

- When threads in the same warp access consecutive memory locations in the same burst, the accesses can be combined and served by one burst
 - One DRAM transaction is needed
 - Known as memory coalescing
- If threads in the same warp access locations not in the same burst, accesses cannot be combined
 - Multiple transactions are needed
 - Takes longer to service data to the warp
 - Sometimes called memory divergence

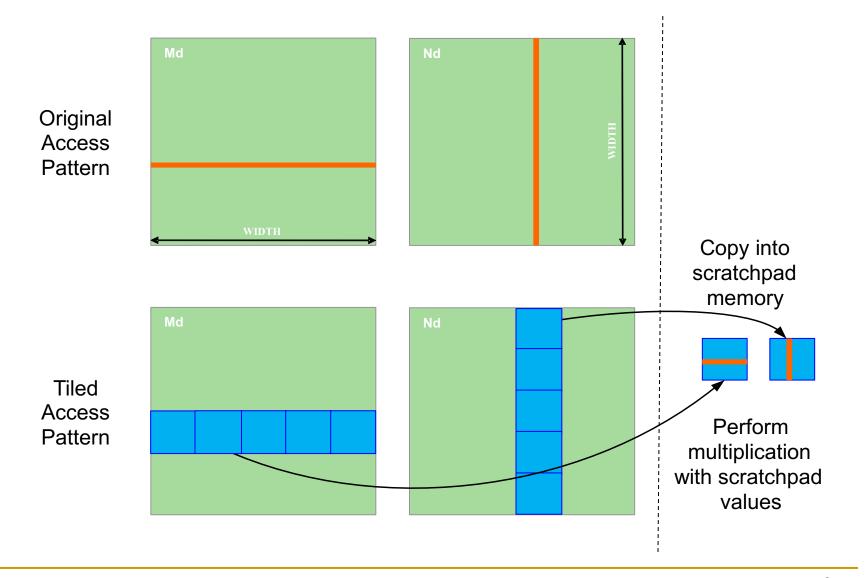
Memory Coalescing (II)

- When accessing global memory, we want to make sure that concurrent threads access nearby memory locations
- Peak bandwidth utilization occurs when all threads in a warp access one cache line (or several consecutive cache lines)



Slide credit: Hwu & Kirk

Use Shared Memory to Improve Coalescing

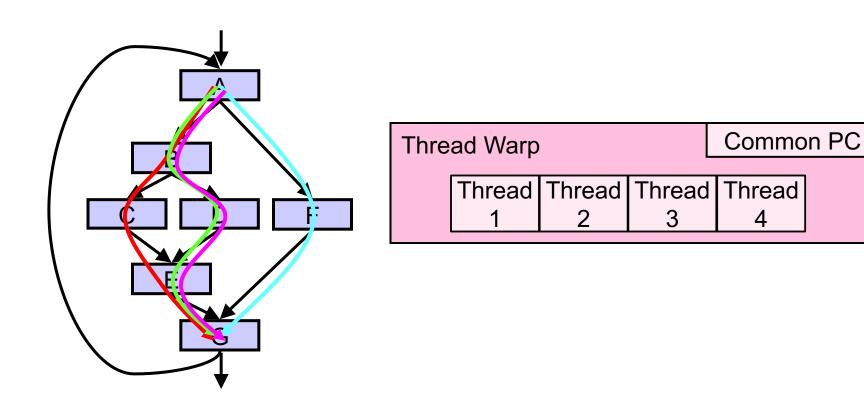


8

SIMD Utilization

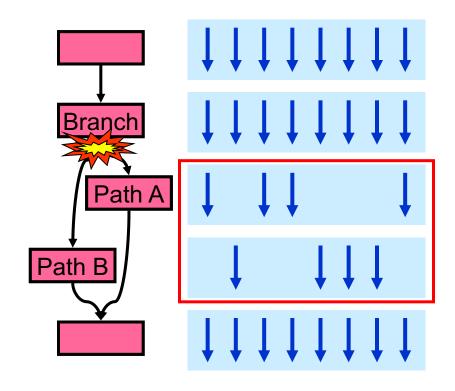
Threads Can Take Different Paths in Warp-based SIMD

- Each thread can have conditional control flow instructions
- Threads can execute different control flow paths



Control Flow Problem in GPUs/SIMT

- A GPU uses a SIMD pipeline to save area on control logic
 - Groups scalar threads into warps
- Branch divergence occurs when threads inside warps branch to different execution paths

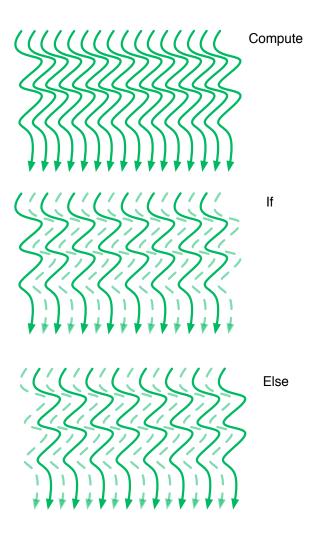


This is the same as conditional/predicated/masked execution. Recall the Vector Mask and Masked Vector Operations?

SIMD Utilization

Intra-warp divergence

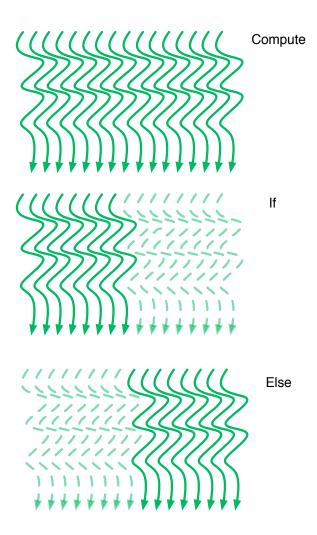
```
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
   Do_this(threadIdx.x);
}
else{
   Do_that(threadIdx.x);
}
```



Increasing SIMD Utilization

Divergence-free execution

```
Compute(threadIdx.x);
if (threadIdx.x < 32){
   Do_this(threadIdx.x * 2);
}
else{
   Do_that((threadIdx.x%32)*2+1);
}</pre>
```



Reduction Operation

Reduction Operation

- A reduction operation reduces a set of values to a single value
 - Sum, Product, Minimum, Maximum are examples
- Properties of reduction
 - Associativity
 - Commutativity
 - Identity value
- Reduction is a key primitive for parallel computing
 - E.g., MapReduce programming model

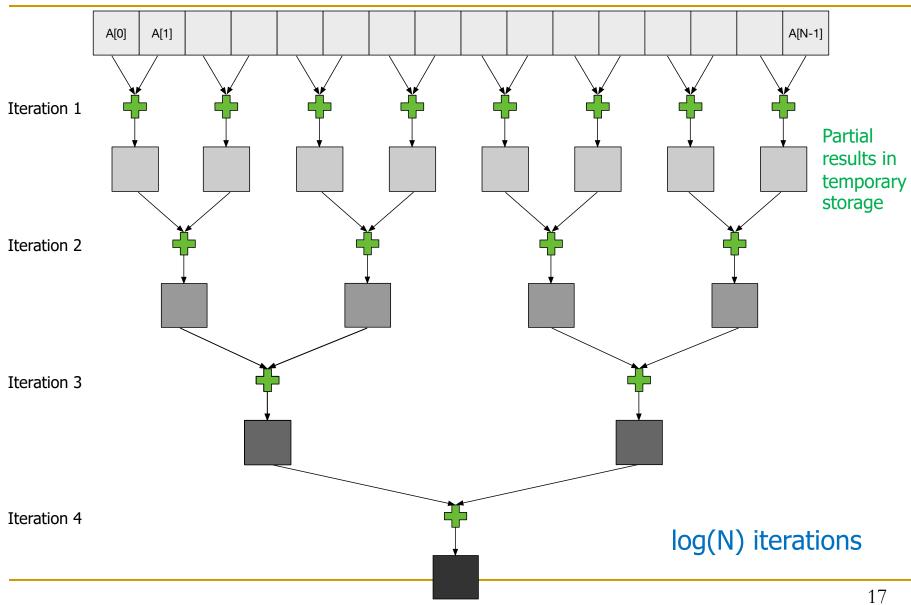
Sequential Reduction

- A sequential implementation of reduction only needs a for loop to go through the whole input array
 - □ N elements → N iterations

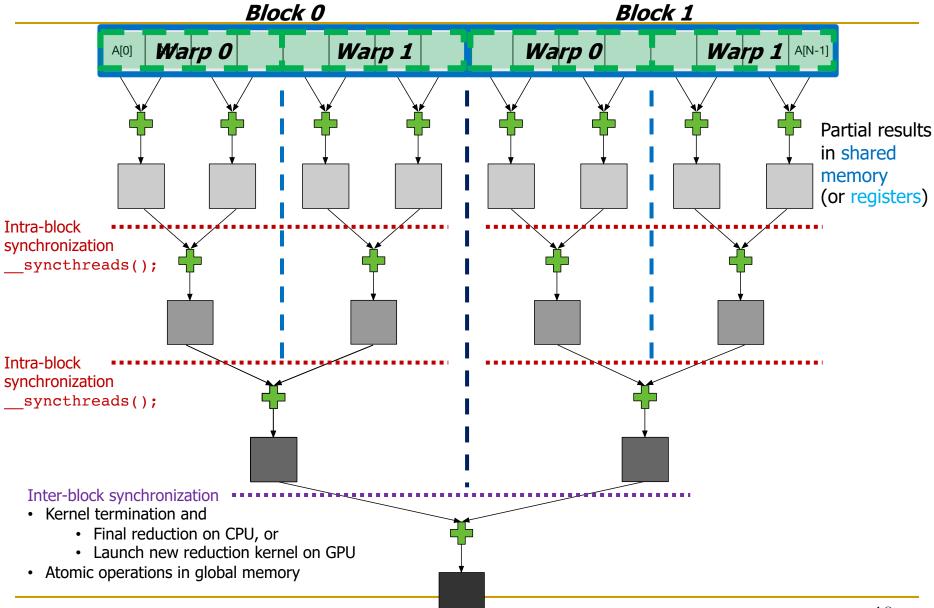

```
sum = 0; // Initialize with identity value
for(i = 0; i < N; ++i) {
   sum += A[i]; // Accumulate elements of input array A[]
}</pre>
```

- Many independent operations
 - A parallel implementation can calculate multiple partial sums, and then reduce them

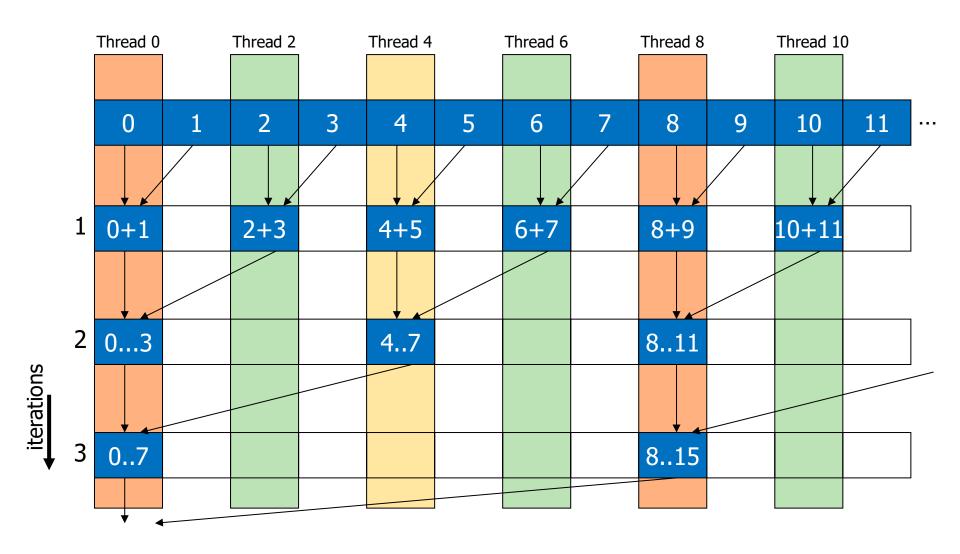
Tree-Based Reduction



Tree-Based Reduction on GPU



Vector Reduction: Naïve Mapping (I)



Slide credit: Hwu & Kirk

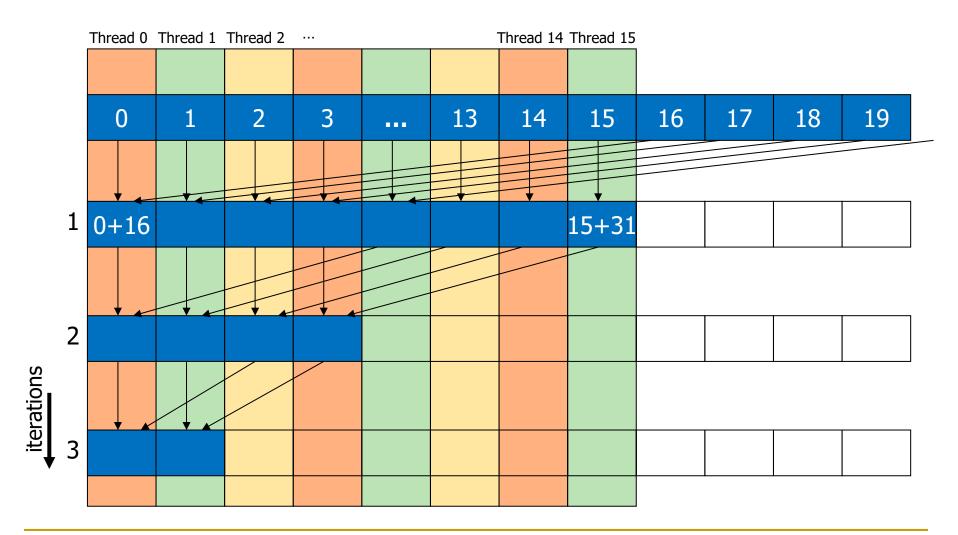
Vector Reduction: Naïve Mapping (II)

Program with low SIMD utilization

```
shared float partialSum[]
unsigned int t = threadIdx.x;
for(int stride = 1; stride < blockDim.x; stride *= 2){</pre>
  syncthreads();
 if (t % (2*stride) == 0)
   partialSum[t] += partialSum[t + stride];
}
                         stride = 1
                         stride = 2
How to avoid the
warp underutilization?
                         stride = 4
```

Divergence-Free Mapping (I)

All active threads belong to the same warp



Slide credit: Hwu & Kirk

21

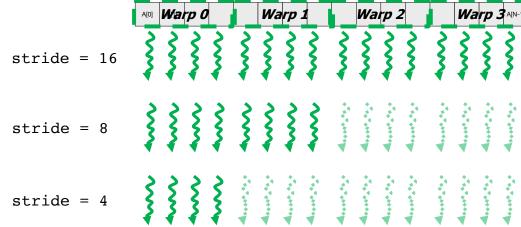
Divergence-Free Mapping (II)

Program with high SIMD utilization

```
__shared__ float partialSum[]
unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];
}</pre>
```

Warp utilization is maximized



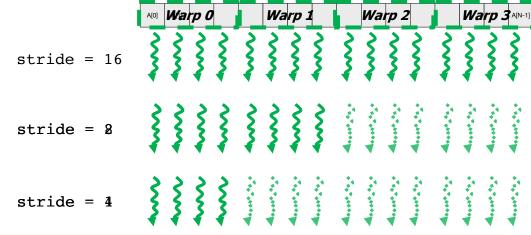
Divergence-Free Mapping (III)

Program with high SIMD utilization

```
__shared__ float partialSum[]
unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];
}</pre>
```

We can use warp shuffle to avoid shared memory accesses and __syncthreads()



Warp Shuffle Functions

- Built-in warp shuffle functions enable threads to share data with other threads in the same warp
 - Faster than using shared memory and __syncthreads() to share across threads in the same block

Variants:

- □ __shfl_sync(mask, var, srcLane)
 - Direct copy from indexed lane
- □ __shfl_up_sync(mask, var, delta)
 - Copy from a lane with lower ID relative to caller
- □ __shfl_down_sync(mask, var, delta)
 - Copy from a lane with higher ID relative to caller
- □ __shfl_xor_sync(mask, var, laneMask)
 - Copy from a lane based on bitwise XOR of own lane ID

Read and Write Access to GPU Shared Memory

- Threads running on processing engines have access to a local register file (LRF)
- And shared memory banks (SRF)

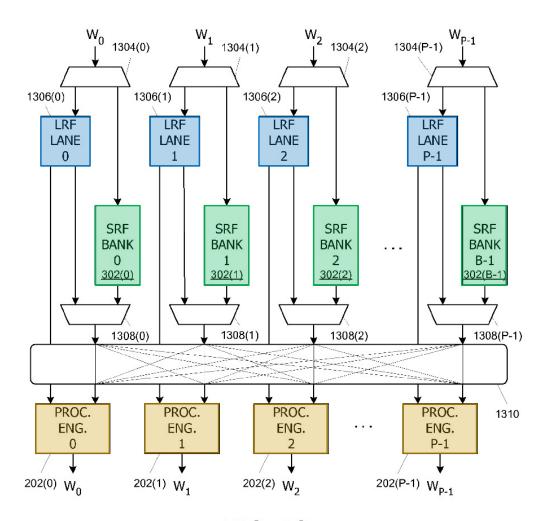


FIG. 13

Read from Shared Memory Bank

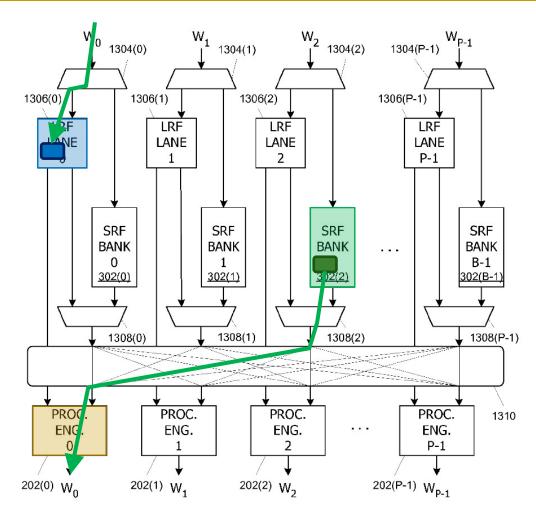


FIG. 13

Write to Shared Memory Bank

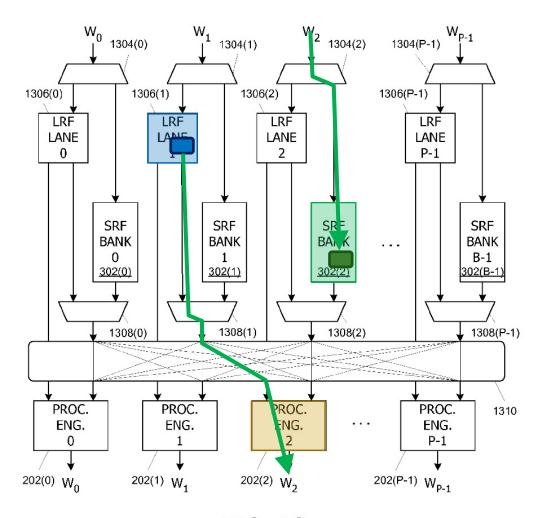


FIG. 13

Shuffling Operations within a Warp

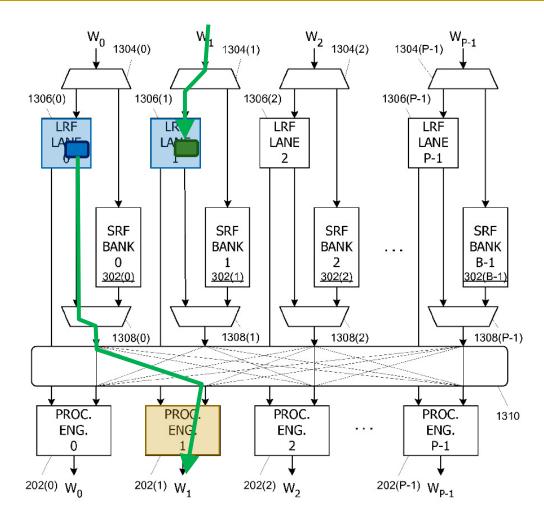


FIG. 13

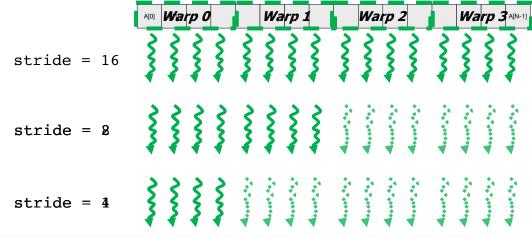
Divergence-Free Mapping (III)

Program with high SIMD utilization

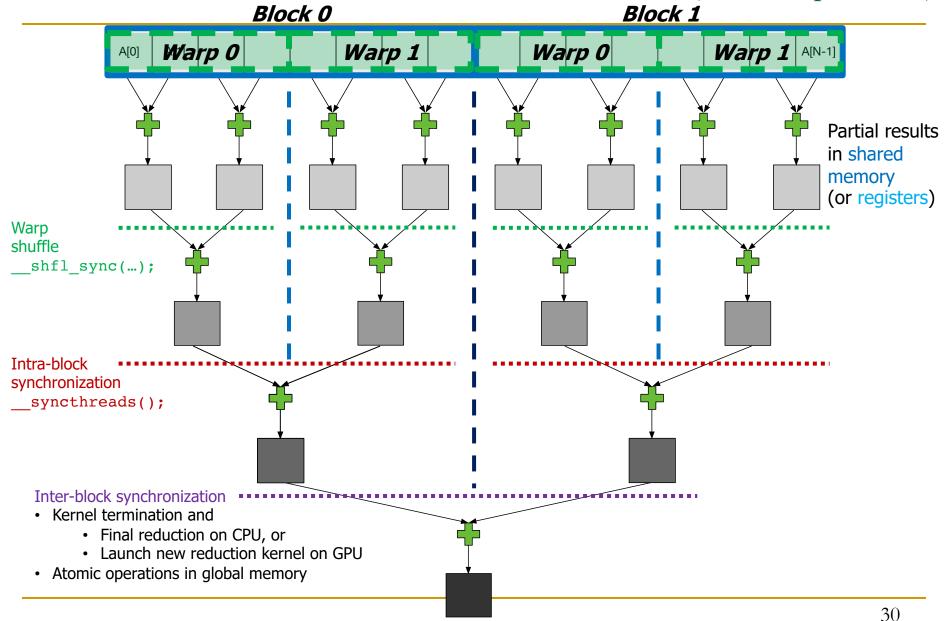
```
__shared__ float partialSum[]
unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];
}</pre>
```

We can use warp shuffle to avoid shared memory accesses and __syncthreads()



Tree-Based Reduction on GPU (with Warp Shuffle)



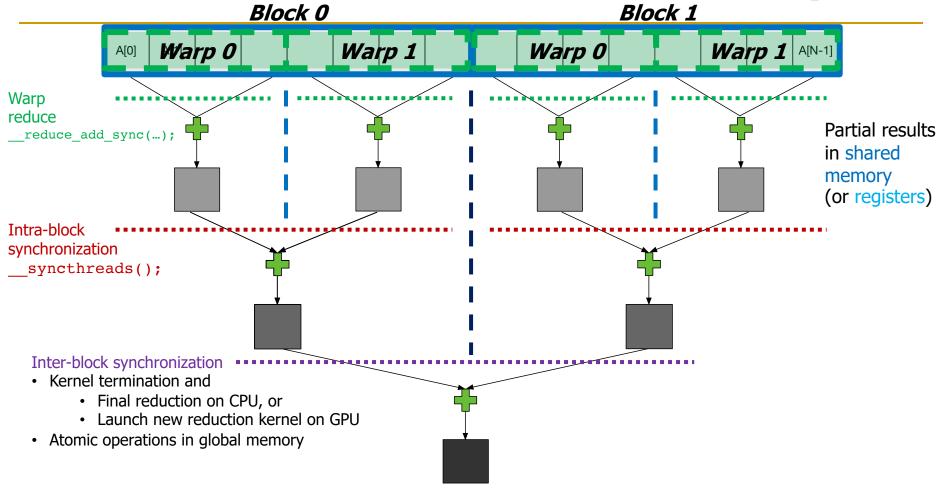
Reduction with Warp Shuffle

```
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {
   unsigned int segment = 2*blockDim.x*blockIdx.x;
   unsigned int i = segment + threadIdx.x;
   // Load data to shared memory
   __shared__ float input_s[BLOCK_DIM];
   input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
   __syncthreads();
   // Reduction tree in shared memory
   for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
       if(threadIdx.x < stride) {</pre>
           input_s[threadIdx.x] += input_s[threadIdx.x + stride];
       __syncthreads();
   }
   // Reduction tree with shuffle instructions
   float sum;
   if(threadIdx.x < WARP_SIZE) {</pre>
       sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];
       for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
           // Store partial sum
   if(threadIdx.x == 0) {
       partialSums[blockIdx.x] = sum;
}
```

Warp Reduce Functions

Ampere (cc 8.x) adds native support for warp-wide reduction operations

Tree-Based Reduction on GPU (with Warp Reduce)



Reduction with Warp Shuffle

```
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {
    unsigned int segment = 2*blockDim.x*blockIdx.x;
    unsigned int i = segment + threadIdx.x;
    // Load data to shared memory
    __shared__ float input_s[BLOCK_DIM];
    input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
    __syncthreads();
    // Reduction tree in shared memory
   for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
        if(threadIdx.x < stride) {</pre>
            input_s[threadIdx.x] += input_s[threadIdx.x + stride];
        __syncthreads();
    }
    // Reduction tree with shuffle instructions
   float sum;
    if(threadIdx.x < WARP_SIZE) {</pre>
        sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];
        for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
            sum += __shfl_down_sync(0xffffffff, sum, stride);
    // Store partial sum
    if(threadIdx.x == 0) {
        partialSums[blockIdx.x] = sum;
}
```

Reduction with Warp Reduce

```
__global__ void reduce_kernel(int* input, int* partialSums, unsigned int N) {
    unsigned int segment = 2*blockDim.x*blockIdx.x;
    unsigned int i = segment + threadIdx.x;
    // Load data to shared memory
    __shared__ int input_s[BLOCK_DIM];
    input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
    __syncthreads();
    // Reduction tree in shared memory
   for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
        if(threadIdx.x < stride) {</pre>
            input_s[threadIdx.x] += input_s[threadIdx.x + stride];
        __syncthreads();
    }
    // Reduction with warp reduce instruction
   int sum;
    if(threadIdx.x < WARP_SIZE) {</pre>
        sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];
        // Warp reduce intrinsic for cc 8.0 or higher
        sum = __reduce_add_sync(0xffffffff, sum);
    // Store partial sum
    if(threadIdx.x == 0) {
        partialSums[blockIdx.x] = sum;
}
```

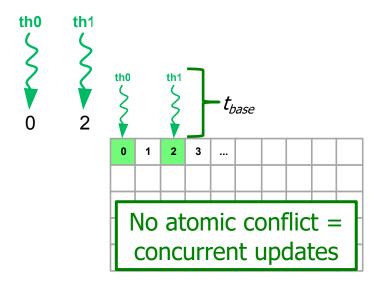
Atomic Operations (I)

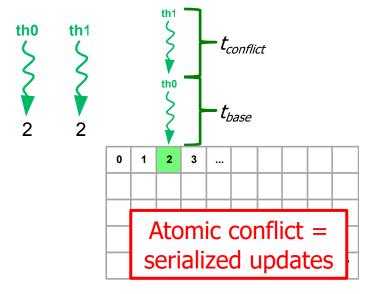
- CUDA provides atomic instructions on shared memory and global memory
 - They perform read-modify-write operations atomically
- Arithmetic functions
 - Add, sub, max, min, exch, inc, dec, CAS

- Bitwise functions
 - And, or, xor
- Datatypes: int, uint, ull, float (half, single, double)*

Atomic Operations (II)

 Atomic operations serialize the execution if there are atomic conflicts





Recall: Uses of Atomic Operations

Computation

- Atomics on an array that will be the output of the kernel
- Example
 - Histogram, reduction

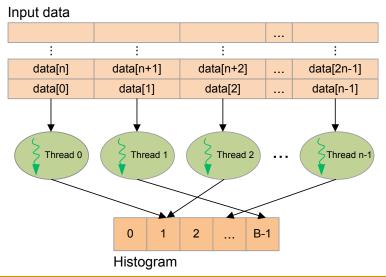
Synchronization

- Atomics on memory locations that are used for synchronization or coordination
- Example
 - Counters, locks, flags...
- Use them to prevent data races when more than one thread need to update the same memory location

Image Histogram

- Histograms are widely used in image processing
 - Some computation before voting in the histogram may be needed

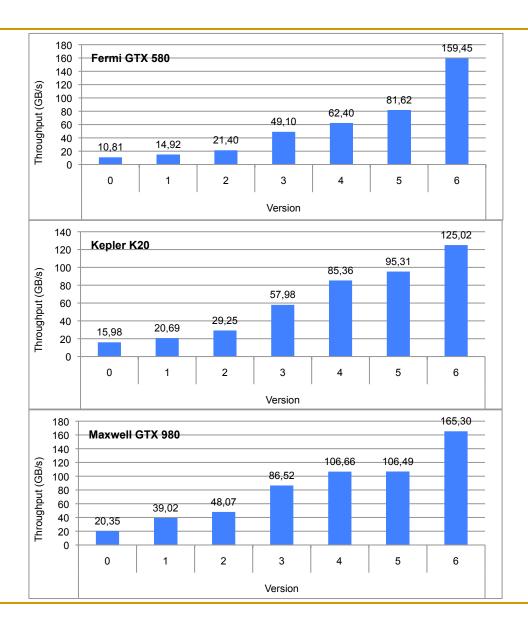
Parallel threads frequently incur atomic conflicts in image histogram computation



Optimized Parallel Reduction

- 7 versions in CUDA samples: Tree-based reduction in shared memory
 - Version 0: No whole warps active
 - Version 1: Contiguous threads, but many bank conflicts
 - Version 2: No bank conflicts
 - Version 3: First level of reduction when reading from global memory
 - Version 4: Warp shuffle or unrolling of final warp
 - Version 5: Warp shuffle or complete unrolling
 - Version 6: Multiple elements per thread sequentially

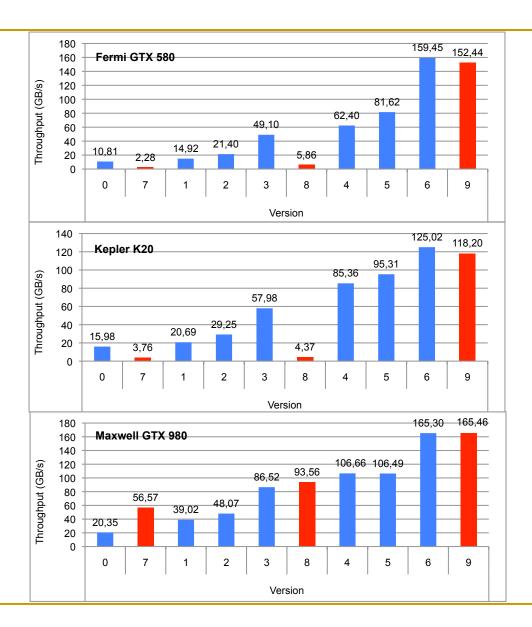
7 Versions of Reduction



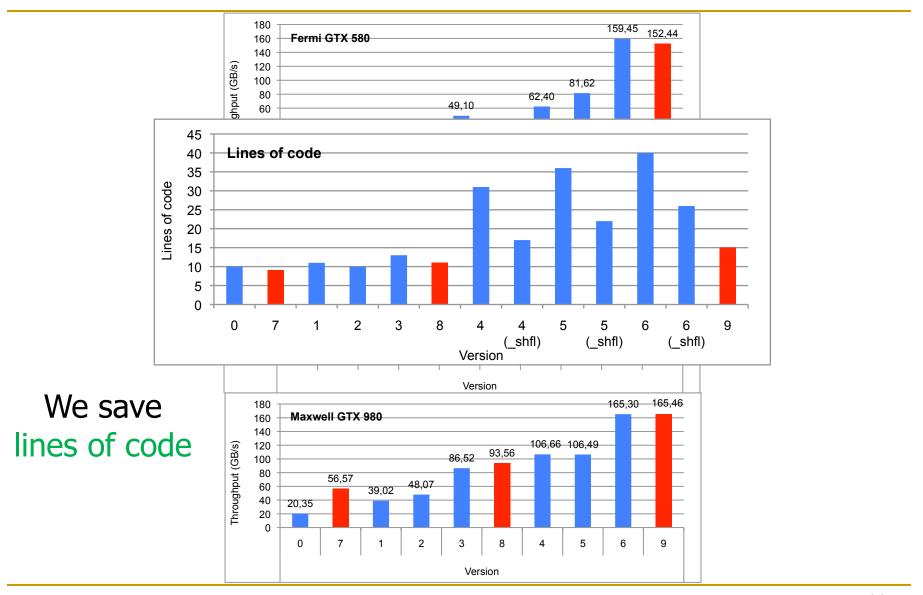
Reduction with Atomic Operations

- 3 new versions of reduction based on 3 previous versions
 - Version 0: No whole warps active
 - Version 3: First level of reduction when reading from global memory
 - Version 6: Multiple elements per thread sequentially
- New versions 7, 8, and 9
 - Replace the for loop (tree-based reduction) with one shared memory atomic operation per thread

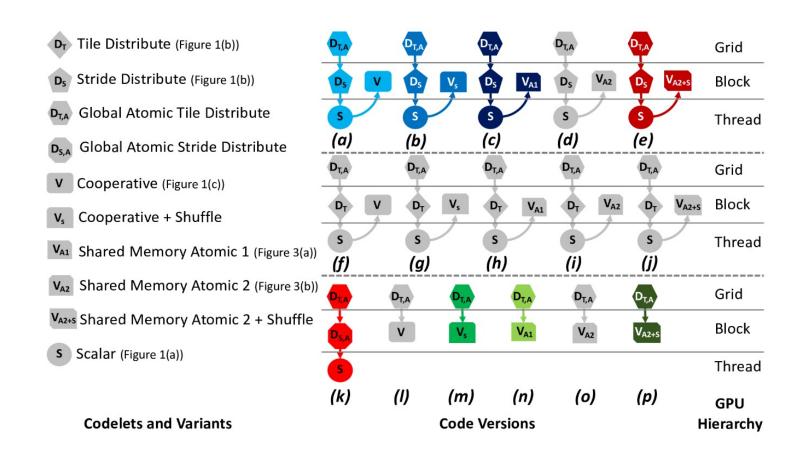
10 Versions of Reduction



10 Versions of Reduction



Search Space of Parallel Reduction



Over 85 different versions possible!

Automatic Generation of Parallel Reduction

Simon Garcia De Gonzalo, Sitao Huang, Juan Gomez-Luna, Simon Hammond, Onur Mutlu, and Wen-mei Hwu,
 "Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and Portable Parallel Reduction on GPUs" Proceedings of the International Symposium on Code Generation and Optimization (CGO), Washington, DC, USA, February 2019.
 [Slides (pptx) (pdf)]

Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and Portable Parallel Reduction on GPUs

Simon Garcia De Gonzalo
CS and Coordinated Science Lab
UIUC
grcdgnz2@illinois.edu

Simon Hammond Scalable Computer Architecture Sandia National Laboratories sdhammo@sandia.gov Sitao Huang
ECE and Coordinated Science Lab
UIUC
shuang91@illinois.edu

Onur Mutlu Computer Science ETH Zurich omutlu@ethz.ch Juan Gómez-Luna Computer Science ETH Zurich juang@ethz.ch

Wen-mei Hwu
ECE and Coordinated Science Lab
UIUC
w-hwu@illinois.edu

Parallel Reduction with Tensor Cores

 Reduction can be expressed as a dot product operation and get accelerated by GPU tensor core units

- \square sum = A_0 * B_0 + A_1 * B_1 + ... + A_{N-1} * B_{N-1}
- \square With all $B_i = 1$, the result will be the sum of array A

Accelerating Reduction and Scan Using Tensor Core Units

Abdul Dakkak, Cheng Li University of Illinois Urbana-Champaign Urbana, Illinois {dakkak,cli99}@illinois.edu

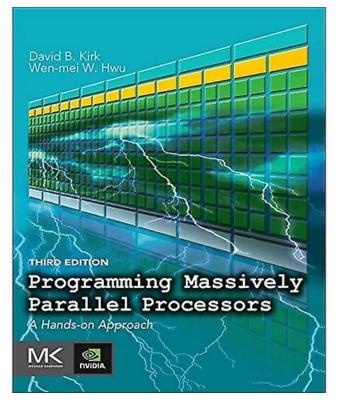
> Isaac Gelado NVIDIA Corporation Santa Clara, California igelado@nvidia.com

Jinjun Xiong
IBM T. J. Watson Research Center
Yorktown Heights, New York
jinjun@us.ibm.com

Wen-mei Hwu
University of Illinois Urbana-Champaign
Urbana, Illinois
w-hwu@illinois.edu

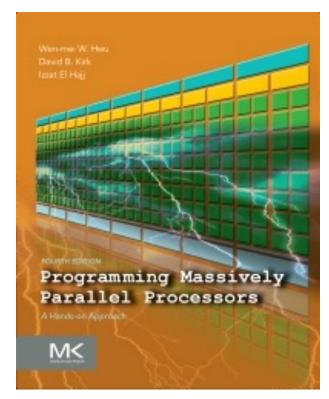
Recommended Readings (I)

- Hwu and Kirk, "Programming Massively Parallel Processors,"
 Third Edition, 2017
 - Chapter 5: Performance considerations
 - Chapter 9 Parallel patterns —
 parallel histogram computation:
 An introduction to atomic operations
 and privatization



Recommended Readings (II)

- Hwu and Kirk and El Hajj, "Programming Massively Parallel Processors," Fourth Edition, 2022
 - Chapter 6 Performance considerations
 - Chapter 10 Reduction: And minimizing divergence



P&S Heterogeneous Systems

Parallel Patterns: Reduction

Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Fall 2022 7 November 2022