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Performance Considerations



n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

3Slide credit: Hwu & Kirk



Memory Hierarchy in CUDA Programs

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)
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Shared memory
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Global / Texture & Surface memory

Constant memory
Host
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Latency Hiding and Occupancy
n FGMT can hide long latency operations (e.g., memory accesses)
n Occupancy: ratio of active warps to the maximum number of 

warps per GPU core
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Memory Coalescing (I)
n When threads in the same warp access consecutive 

memory locations in the same burst, the accesses can be 
combined and served by one burst
q One DRAM transaction is needed
q Known as memory coalescing

n If threads in the same warp access locations not in the 
same burst, accesses cannot be combined
q Multiple transactions are needed
q Takes longer to service data to the warp
q Sometimes called memory divergence

Slide credit: Izzat El Hajj
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n When accessing global memory, we want to make sure 
that concurrent threads access nearby memory locations

n Peak bandwidth utilization occurs when all threads in a 
warp access one cache line (or several consecutive cache 
lines)
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Thread 1
Thread 2

Not coalesced Coalesced

Memory Coalescing (II)
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Use Shared Memory to Improve Coalescing
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memory
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SIMD Utilization



Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths
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Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD 

pipeline to save area 
on control logic
q Groups scalar threads 

into warps

n Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch
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Branch

Path A
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Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 
Recall the Vector Mask and Masked Vector Operations?



SIMD Utilization
n Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do_this(threadIdx.x);
}
else{

Do_that(threadIdx.x);
}

Compute

If

Else
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Increasing SIMD Utilization
n Divergence-free execution

Compute(threadIdx.x);
if (threadIdx.x < 32){

Do_this(threadIdx.x * 2);
}
else{

Do_that((threadIdx.x%32)*2+1);
}

Compute

If

Else

13



Reduction Operation



Reduction Operation
n A reduction operation reduces a set of values to a single 

value
q Sum, Product, Minimum, Maximum are examples

n Properties of reduction
q Associativity
q Commutativity
q Identity value

n Reduction is a key primitive for parallel computing
q E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004 15



Sequential Reduction
n A sequential implementation of reduction only needs a for

loop to go through the whole input array
q N elements → N iterations

n Many independent operations
q A parallel implementation can calculate multiple partial sums, 

and then reduce them

A[0] A[1] A[N-1]

sum = 0; // Initialize with identity value

for(i = 0; i < N; ++i) {

sum += A[i]; // Accumulate elements of input array A[]

}
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Tree-Based Reduction
A[0] A[1] A[N-1]

Iteration 1

Iteration 2

Iteration 3

Iteration 4
log(N) iterations

Partial 
results in 
temporary 
storage
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Tree-Based Reduction on GPU
A[0] A[1] A[N-1]Warp 0

Block 0 Block 1
Warp 1 Warp 0 Warp 1

Partial results 
in shared 
memory
(or registers)

Intra-block 
synchronization
__syncthreads();

Intra-block 
synchronization
__syncthreads();

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory
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Vector Reduction: Naïve Mapping (I)
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Vector Reduction: Naïve Mapping (II)
n Program with low SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = 1; stride < blockDim.x; stride *= 2){

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

}

20

stride = 1

stride = 2

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

How to avoid the
warp underutilization?



Divergence-Free Mapping (I)
n All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

ite
ra
tio
ns
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Divergence-Free Mapping (II)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0;  stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}
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stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

Warp utilization 
is maximized



Divergence-Free Mapping (III)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0;  stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}
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stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

We can use warp shuffle
to avoid 
shared memory accesses
and __syncthreads()

stride = 2

stride = 1



Warp Shuffle Functions
n Built-in warp shuffle functions enable threads to share data 

with other threads in the same warp
q Faster than using shared memory and __syncthreads() to 

share across threads in the same block
n Variants:

q __shfl_sync(mask, var, srcLane)
n Direct copy from indexed lane

q __shfl_up_sync(mask, var, delta)

n Copy from a lane with lower ID relative to caller

q __shfl_down_sync(mask, var, delta)

n Copy from a lane with higher ID relative to caller

q __shfl_xor_sync(mask, var, laneMask)

n Copy from a lane based on bitwise XOR of own lane ID

Slide credit: Izzat El Hajj
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Read and Write Access to GPU Shared Memory

n Threads running on 
processing engines
have access to a local 
register file (LRF)

n And shared memory
banks (SRF)

25Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1



Read from Shared Memory Bank

26Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1



Write to Shared Memory Bank

27Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1



Shuffling Operations within a Warp

28Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1



Divergence-Free Mapping (III)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0;  stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}
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stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

We can use warp shuffle
to avoid 
shared memory accesses
and __syncthreads()

stride = 2

stride = 1



Tree-Based Reduction on GPU (with Warp Shuffle)

A[0] A[1] A[N-1]Warp 0
Block 0 Block 1

Warp 1 Warp 0 Warp 1

Partial results 
in shared 
memory
(or registers)

Intra-block 
synchronization
__syncthreads();

Warp 
shuffle
__shfl_sync(…);

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory
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Reduction with Warp Shuffle
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ float input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction tree with shuffle instructions
float sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, stride);

}

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

Slide credit: Izzat El Hajj
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Warp Reduce Functions

32

n Ampere (cc 8.x) adds native support for warp-wide reduction 
operations

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-reduce-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Tree-Based Reduction on GPU (with Warp Reduce)

A[0] A[1] A[N-1]Warp 0
Block 0 Block 1

Warp 1 Warp 0 Warp 1

Partial results 
in shared 
memory
(or registers)

Intra-block 
synchronization
__syncthreads();

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory
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Warp 
reduce
__reduce_add_sync(…);



Reduction with Warp Shuffle
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ float input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction tree with shuffle instructions
float sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, stride);

}

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

Slide credit: Izzat El Hajj
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Reduction with Warp Reduce
__global__ void reduce_kernel(int* input, int* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ int input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction with warp reduce instruction
int sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

// Warp reduce intrinsic for cc 8.0 or higher
sum = __reduce_add_sync(0xffffffff, sum);

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

35



Atomic Operations (I)
n CUDA provides atomic instructions on shared memory and 

global memory
q They perform read-modify-write operations atomically

n Arithmetic functions
q Add, sub, max, min, exch, inc, dec, CAS

int atomicAdd(int*, int);

n Bitwise functions
q And, or, xor

n Datatypes: int, uint, ull, float (half, single, double)*

36

Pointer to shared memory 
or global memory Value to addReturn value (old value)

* Datatypes for different atomic operations in https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


n Atomic operations serialize the execution if there are 
atomic conflicts

Atomic Operations (II)

th0

th1

tbase

tconflict
th0 th1

2 2

0 1 2 3 ...

Shared memory

0 1 2 3 ...

Shared memory

th0 th1

0 2

th0 th1

tbase

No atomic conflict = 
concurrent updates

Atomic conflict = 
serialized updates
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Recall: Uses of Atomic Operations
n Computation

q Atomics on an array that will be the output of the kernel
q Example

n Histogram, reduction

n Synchronization
q Atomics on memory locations that are used for synchronization or 

coordination
q Example

n Counters, locks, flags…

n Use them to prevent data races when more than one thread 
need to update the same memory location

38



n Histograms are widely used in image processing
q Some computation before voting in the histogram may be needed

q Parallel threads frequently incur atomic conflicts in image histogram 
computation

For (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Image Histogram
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n 7 versions in CUDA samples: Tree-based reduction in 
shared memory
q Version 0: No whole warps active
q Version 1: Contiguous threads, but many bank conflicts
q Version 2: No bank conflicts
q Version 3: First level of reduction when reading from global 

memory
q Version 4: Warp shuffle or unrolling of final warp
q Version 5: Warp shuffle or complete unrolling
q Version 6: Multiple elements per thread sequentially

Optimized Parallel Reduction

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-parallel-reduction
Harris, “Optimizing Parallel Reduction in CUDA,” https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

40

https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
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n 3 new versions of reduction based on 3 previous versions
q Version 0: No whole warps active
q Version 3: First level of reduction when reading from global 

memory
q Version 6: Multiple elements per thread sequentially

n New versions 7, 8, and 9
q Replace the for loop (tree-based reduction) with one shared 

memory atomic operation per thread

Reduction with Atomic Operations

42
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Search Space of Parallel Reduction

Over 85 different versions possible!

Garcia de Gonzalo et al., “Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and Portable Parallel 
Reduction on GPUs,” CGO 2019
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n Simon Garcia De Gonzalo, Sitao Huang, Juan Gomez-Luna, Simon 
Hammond, Onur Mutlu, and Wen-mei Hwu,
"Automatic Generation of Warp-Level Primitives and Atomic 
Instructions for Fast and Portable Parallel Reduction on GPUs"
Proceedings of the International Symposium on Code Generation and 
Optimization (CGO), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]

Automatic Generation of Parallel Reduction

46

https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19.pdf
http://cgo.org/cgo2019/
https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19-talk.pdf


n Reduction can be expressed as a dot product operation and get 
accelerated by GPU tensor core units
q sum = A0 * B0 + A1 * B1 + … + AN-1 * BN-1
q With all Bi = 1, the result will be the sum of array A

Parallel Reduction with Tensor Cores

47Dakkak et al., “Accelerating Reduction and Scan Using Tensor Core Units,” ICS 2019



Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 5: Performance considerations
q Chapter 9 - Parallel patterns —
parallel histogram computation: 
An introduction to atomic operations 
and privatization
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Recommended Readings (II)

n Hwu and Kirk and El Hajj, “Programming Massively Parallel 
Processors,” Fourth Edition, 2022
q Chapter 6 - Performance considerations
q Chapter 10 - Reduction: And 
minimizing divergence
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