
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

7 November 2022

P&S Heterogeneous Systems

Parallel Patterns: Reduction

Performance Considerations

n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

3Slide credit: Hwu & Kirk

Memory Hierarchy in CUDA Programs

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

4

Latency Hiding and Occupancy
n FGMT can hide long latency operations (e.g., memory accesses)
n Occupancy: ratio of active warps to the maximum number of

warps per GPU core

Warp 0

ti
m

e

Instruction 3

4 active warps
Warp 0

ti
m

e

Instruction 3

2 active warps

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5

5

Memory Coalescing (I)
n When threads in the same warp access consecutive

memory locations in the same burst, the accesses can be
combined and served by one burst
q One DRAM transaction is needed
q Known as memory coalescing

n If threads in the same warp access locations not in the
same burst, accesses cannot be combined
q Multiple transactions are needed
q Takes longer to service data to the warp
q Sometimes called memory divergence

Slide credit: Izzat El Hajj
6

n When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

n Peak bandwidth utilization occurs when all threads in a
warp access one cache line (or several consecutive cache
lines)

Md Nd

W
ID
TH

WIDTH

Thread 1
Thread 2

Not coalesced Coalesced

Memory Coalescing (II)

7Slide credit: Hwu & Kirk

Use Shared Memory to Improve Coalescing

Md Nd

W
ID
TH

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Slide credit: Hwu & Kirk 8

SIMD Utilization

Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths

10

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD

pipeline to save area
on control logic
q Groups scalar threads

into warps

n Branch divergence
occurs when threads
inside warps branch to
different execution
paths

11

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

SIMD Utilization
n Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do_this(threadIdx.x);
}
else{

Do_that(threadIdx.x);
}

Compute

If

Else

12

Increasing SIMD Utilization
n Divergence-free execution

Compute(threadIdx.x);
if (threadIdx.x < 32){

Do_this(threadIdx.x * 2);
}
else{

Do_that((threadIdx.x%32)*2+1);
}

Compute

If

Else

13

Reduction Operation

Reduction Operation
n A reduction operation reduces a set of values to a single

value
q Sum, Product, Minimum, Maximum are examples

n Properties of reduction
q Associativity
q Commutativity
q Identity value

n Reduction is a key primitive for parallel computing
q E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004 15

Sequential Reduction
n A sequential implementation of reduction only needs a for

loop to go through the whole input array
q N elements → N iterations

n Many independent operations
q A parallel implementation can calculate multiple partial sums,

and then reduce them

A[0] A[1] A[N-1]

sum = 0; // Initialize with identity value

for(i = 0; i < N; ++i) {

sum += A[i]; // Accumulate elements of input array A[]

}

16

Tree-Based Reduction
A[0] A[1] A[N-1]

Iteration 1

Iteration 2

Iteration 3

Iteration 4
log(N) iterations

Partial
results in
temporary
storage

17

Tree-Based Reduction on GPU
A[0] A[1] A[N-1]Warp 0

Block 0 Block 1
Warp 1 Warp 0 Warp 1

Partial results
in shared
memory
(or registers)

Intra-block
synchronization
__syncthreads();

Intra-block
synchronization
__syncthreads();

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory

18

Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3ite
ra
tio
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

19Slide credit: Hwu & Kirk

…

Vector Reduction: Naïve Mapping (II)
n Program with low SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = 1; stride < blockDim.x; stride *= 2){

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

}

20

stride = 1

stride = 2

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

How to avoid the
warp underutilization?

Divergence-Free Mapping (I)
n All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

ite
ra
tio
ns

21Slide credit: Hwu & Kirk

…

Divergence-Free Mapping (II)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

22

stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

Warp utilization
is maximized

Divergence-Free Mapping (III)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

23

stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

We can use warp shuffle
to avoid
shared memory accesses
and __syncthreads()

stride = 2

stride = 1

Warp Shuffle Functions
n Built-in warp shuffle functions enable threads to share data

with other threads in the same warp
q Faster than using shared memory and __syncthreads() to

share across threads in the same block
n Variants:

q __shfl_sync(mask, var, srcLane)
n Direct copy from indexed lane

q __shfl_up_sync(mask, var, delta)

n Copy from a lane with lower ID relative to caller

q __shfl_down_sync(mask, var, delta)

n Copy from a lane with higher ID relative to caller

q __shfl_xor_sync(mask, var, laneMask)

n Copy from a lane based on bitwise XOR of own lane ID

Slide credit: Izzat El Hajj
24

Read and Write Access to GPU Shared Memory

n Threads running on
processing engines
have access to a local
register file (LRF)

n And shared memory
banks (SRF)

25Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1

Read from Shared Memory Bank

26Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1

Write to Shared Memory Bank

27Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1

Shuffling Operations within a Warp

28Nickolls et al., "Single Interconnect Providing Read and Write Access to a Memory Shared by Concurrent Threads," US7680988B1

Divergence-Free Mapping (III)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

29

stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

We can use warp shuffle
to avoid
shared memory accesses
and __syncthreads()

stride = 2

stride = 1

Tree-Based Reduction on GPU (with Warp Shuffle)

A[0] A[1] A[N-1]Warp 0
Block 0 Block 1

Warp 1 Warp 0 Warp 1

Partial results
in shared
memory
(or registers)

Intra-block
synchronization
__syncthreads();

Warp
shuffle
__shfl_sync(…);

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory

30

Reduction with Warp Shuffle
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ float input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction tree with shuffle instructions
float sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, stride);

}

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

Slide credit: Izzat El Hajj
31

Warp Reduce Functions

32

n Ampere (cc 8.x) adds native support for warp-wide reduction
operations

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-reduce-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Tree-Based Reduction on GPU (with Warp Reduce)

A[0] A[1] A[N-1]Warp 0
Block 0 Block 1

Warp 1 Warp 0 Warp 1

Partial results
in shared
memory
(or registers)

Intra-block
synchronization
__syncthreads();

Inter-block synchronization
• Kernel termination and

• Final reduction on CPU, or
• Launch new reduction kernel on GPU

• Atomic operations in global memory

33

Warp
reduce
__reduce_add_sync(…);

Reduction with Warp Shuffle
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ float input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction tree with shuffle instructions
float sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, stride);

}

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

Slide credit: Izzat El Hajj
34

Reduction with Warp Reduce
__global__ void reduce_kernel(int* input, int* partialSums, unsigned int N) {

unsigned int segment = 2*blockDim.x*blockIdx.x;
unsigned int i = segment + threadIdx.x;

// Load data to shared memory

__shared__ int input_s[BLOCK_DIM];
input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
__syncthreads();

// Reduction tree in shared memory

for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
if(threadIdx.x < stride) {

input_s[threadIdx.x] += input_s[threadIdx.x + stride];
}
__syncthreads();

}

// Reduction with warp reduce instruction
int sum;
if(threadIdx.x < WARP_SIZE) {

sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];

// Warp reduce intrinsic for cc 8.0 or higher
sum = __reduce_add_sync(0xffffffff, sum);

}
// Store partial sum
if(threadIdx.x == 0) {

partialSums[blockIdx.x] = sum;
}

}

35

Atomic Operations (I)
n CUDA provides atomic instructions on shared memory and

global memory
q They perform read-modify-write operations atomically

n Arithmetic functions
q Add, sub, max, min, exch, inc, dec, CAS

int atomicAdd(int*, int);

n Bitwise functions
q And, or, xor

n Datatypes: int, uint, ull, float (half, single, double)*

36

Pointer to shared memory
or global memory Value to addReturn value (old value)

* Datatypes for different atomic operations in https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

n Atomic operations serialize the execution if there are
atomic conflicts

Atomic Operations (II)

th0

th1

tbase

tconflict
th0 th1

2 2

0 1 2 3 ...

Shared memory

0 1 2 3 ...

Shared memory

th0 th1

0 2

th0 th1

tbase

No atomic conflict =
concurrent updates

Atomic conflict =
serialized updates

37

Recall: Uses of Atomic Operations
n Computation

q Atomics on an array that will be the output of the kernel
q Example

n Histogram, reduction

n Synchronization
q Atomics on memory locations that are used for synchronization or

coordination
q Example

n Counters, locks, flags…

n Use them to prevent data races when more than one thread
need to update the same memory location

38

n Histograms are widely used in image processing
q Some computation before voting in the histogram may be needed

q Parallel threads frequently incur atomic conflicts in image histogram
computation

For (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Image Histogram

39

n 7 versions in CUDA samples: Tree-based reduction in
shared memory
q Version 0: No whole warps active
q Version 1: Contiguous threads, but many bank conflicts
q Version 2: No bank conflicts
q Version 3: First level of reduction when reading from global

memory
q Version 4: Warp shuffle or unrolling of final warp
q Version 5: Warp shuffle or complete unrolling
q Version 6: Multiple elements per thread sequentially

Optimized Parallel Reduction

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-parallel-reduction
Harris, “Optimizing Parallel Reduction in CUDA,” https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

40

https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

10,81 14,92 21,40

49,10
62,40

81,62

159,45

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4 5 6

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Fermi GTX 580

15,98 20,69
29,25

57,98

85,36
95,31

125,02

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Kepler K20

20,35
39,02 48,07

86,52
106,66 106,49

165,30

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4 5 6

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Maxwell GTX 980

7 Versions of Reduction

41

n 3 new versions of reduction based on 3 previous versions
q Version 0: No whole warps active
q Version 3: First level of reduction when reading from global

memory
q Version 6: Multiple elements per thread sequentially

n New versions 7, 8, and 9
q Replace the for loop (tree-based reduction) with one shared

memory atomic operation per thread

Reduction with Atomic Operations

42

20,35

56,57
39,02 48,07

86,52 93,56
106,66 106,49

165,30 165,46

0
20
40
60
80

100
120
140
160
180

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Maxwell GTX 980

15,98
3,76

20,69
29,25

57,98

4,37

85,36
95,31

125,02 118,20

0

20

40

60

80

100

120

140

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Kepler K20

10,81 2,28
14,92 21,40

49,10

5,86

62,40
81,62

159,45 152,44

0
20
40
60
80

100
120
140
160
180

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Fermi GTX 580

10 Versions of Reduction

43

20,35

56,57
39,02 48,07

86,52 93,56
106,66 106,49

165,30 165,46

0
20
40
60
80

100
120
140
160
180

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Maxwell GTX 980

15,98
3,76

20,69
29,25

57,98

4,37

85,36
95,31

125,02 118,20

0

20

40

60

80

100

120

140

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Kepler K20

10,81 2,28
14,92 21,40

49,10

5,86

62,40
81,62

159,45 152,44

0
20
40
60
80

100
120
140
160
180

0 7 1 2 3 8 4 5 6 9

Version

Th
ro

ug
hp

ut
 (G

B
/s

)

Fermi GTX 580

0
5

10
15
20
25
30
35
40
45

0 7 1 2 3 8 4 4
(_shfl)

5 5
(_shfl)

6 6
(_shfl)

9

Li
ne

s
of

 c
od

e

Version

Lines of code

10 Versions of Reduction

We save
lines of code

44

Search Space of Parallel Reduction

Over 85 different versions possible!

Garcia de Gonzalo et al., “Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and Portable Parallel
Reduction on GPUs,” CGO 2019

45

n Simon Garcia De Gonzalo, Sitao Huang, Juan Gomez-Luna, Simon
Hammond, Onur Mutlu, and Wen-mei Hwu,
"Automatic Generation of Warp-Level Primitives and Atomic
Instructions for Fast and Portable Parallel Reduction on GPUs"
Proceedings of the International Symposium on Code Generation and
Optimization (CGO), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]

Automatic Generation of Parallel Reduction

46

https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19.pdf
http://cgo.org/cgo2019/
https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/automatic-fast-portable-parallel-reduction-on-GPUs_cgo19-talk.pdf

n Reduction can be expressed as a dot product operation and get
accelerated by GPU tensor core units
q sum = A0 * B0 + A1 * B1 + … + AN-1 * BN-1
q With all Bi = 1, the result will be the sum of array A

Parallel Reduction with Tensor Cores

47Dakkak et al., “Accelerating Reduction and Scan Using Tensor Core Units,” ICS 2019

Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 5: Performance considerations
q Chapter 9 - Parallel patterns —
parallel histogram computation:
An introduction to atomic operations
and privatization

48

Recommended Readings (II)

n Hwu and Kirk and El Hajj, “Programming Massively Parallel
Processors,” Fourth Edition, 2022
q Chapter 6 - Performance considerations
q Chapter 10 - Reduction: And
minimizing divergence

49

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

7 November 2022

P&S Heterogeneous Systems

Parallel Patterns: Reduction

