The simpliest form of priority inversion

,) Task 1 Task9
Today’s topic: . Shared Resource R
Resource/Data Sharing and Synchronization - -
P(s) <~ | PGS
Using R "y Using R

v(s) v(s)

Priority Ceiling Protocols

. computing
|:| using R
ko _ [N PG)| vo [, B bocked

Un-bounded priority inversion Solutions
Task1 Task9 Task2 = Tasks are forced’ to follow certain rules when locking
- Shared Resource R . . .
- - - and unlocking semaphores (requesting and releasing
toar o | Gengr : resources)

Ve Ve = The rules are called 'Resource access protocols’

= NPP, BIP, HLP, PCP

Tosk 2 _ . computing
Task 9 P(S) (S) It E Ez:i;
3 4
Non Preemption Protocol (NPP) NPP: + and —
= Modify P(S) so that the caller is assigned = Simple and easy to implement (+), how?

the highest priority if it succeeds in locking S = Deadlock free (++), why?
= Highest priority=non preemtion!

N f blocking = 1 (+), Why?
= Modify V(S) so that the caller is assigned its own = Number o b_oc_ ng), y. Lo
priority back when it releases S " Allow !ow-pnonty tasks to block h_lgh-prlorlty tasks
including those that have no sharing resources (-)

This is the simplest method to avoid Priority Inversion! Missinig all deadlines!

ey

[r(s) (s)

Basic Priority Inheritance Protocol (BIP)

= supported in RT POSIX

» Idea:
= Agets semaphore S
= B with higher priority tries to lock S, and blocked by S
= Btransfers its priority to A (so A is resumed and run with
B’s priority)
= Run time behaviour: whenever a lower-
priotity task blocks a higher priority task, it
inherits the priority of the blocked task

Problem 1: potential deadlock

PFSZ)
H P(s) Task 1

P(S1)

L i Deadlock! Task 2

Task 2: ... P(S2) ... P(S1)...
Task 1: ... P(S1) ... P(S2)...

BIP: Blocking time calculation

= Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S
= The maximal blocking time for task i:

= B=SUM{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

11

Example
V(S1)
P(s1) P(S2) V(S2)
H Task 1
P(S1)
V(S1)
M Task 2
P(S2)
V(S2)
L B || Task3
Il Blocked
[] UsingSi
Running with priority H [UsingS2

Problem 2: chained blocking — many preemptions

V(s1)
P(s1) P(S2) V(S2)

H Task 1

P(S1)

V(S1)
M BT] W eew B e

P(S2)
V(S2)
L [| Task3

Il Blocked
[] UsingS1
[] usingS2

Task 1 needs M resources may be blocked M times:
-> many preemptions/much run-time overheads
- maximal blocking=sum of all CS sections for lower-priority tasks

Properties of BIP: + and -

= Bounded Priority inversion (+)

= Reasonable Run-time performance (+)

= Require no info on resource usage of tasks (+)
= Potential deadlocks (-)

= Chain-blocking — many preemptions (-)

Implementation of Ceiling Protocols

= Main ideas:
= Priority-based scheduling

= Implement P/V operations on Semaphores to assign task
priorities dynamically

13

Standard P-operation (without BIP)

= P(scb):

Disable-interrupt;

If sch.counter>0 then {scb.counter - -1;

else
{save-context();
current-task.state := blocked;
insert(current-task, scb.queue);
dispatch();
load-context() }

Enable-interrupt

15

Standard V-operation (without BIP)

= V(scb):
Disable-interrupt;
If not-empty(scb.queue) then
{ next-to-run := get-first(scb.queue);
next-to-run.state := ready;
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }
else scb.counter ++1;
Enable-interrupt

17

Semaphore Control Block for BIP

counter

queue

Pointer to next SCB

Holder

14
P-operation with BIP
= P(scb):
Disable-interrupt;
If scb.counter>0 then {scb.counter - -1;
scb.holder:= current-task
add(current-task.sem-list,scb)}
else
{save-context();
current-task.state := blocked;
insert(current-task, scb.queue);
/* queue sorted according to task priority */
save(scb.holder.priotiry);
scb.holder.priority := current-task.priority;
dispatch();
load-context() }
Enable-interrupt
16

V-operation with BIP

= V(sch):
Disable-interrupt;
current-task.priority := "original/previous priority”
/*highest-priority of tasks blocked by smaphors ownd by current-task*/
/*check all blocked tasks waiting for sem in current-tcb. semlist*/
If not-empty(scb.queue) then
{ next-to-run := get-first(sch.queue);
/*queue sorted according to task priority */
next-to-run.state := ready;
scb.holder := next-to-run;
add(next-to-run.sem-list, scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }
else sch.counter ++1;
Enable-interrupt

Immediate Priority Inheritance:

=Highest Locker’s Priority Protocol (HLP)
=Priority Protect Protocol (PPP)

= Adopted in Ada95 (protected object), POSIX mutexes
= Idea: define the ceiling C(S) of a semaphore S to be

the highest priority of all tasks that use S during
execution. Note that C(S) can be calculated statically
(off-line).

19

Example
priority use C(S1)=M
Task 1 H S3 C(s2)=L
Task2 M s1,s C(S3)=H
C(S)=M
Task 3 L S1,S2
Task 4 Lower S2,S

21

Property 1: Deadlock free (HLP)

released TZ) P(S1)
H Task 1
P(s1) P(S2)
L ‘ LTask 2

Once task 2 gets S1, it runs with pri H, task 1 will

be blocked (no chance to get S2 before task 2)
23

Run-time behaviour of HLP

= Whenever a task succeeds in holding a semaphor S,
its priority is changed dynamically to the maximum of
its current priority and C(S).

= When it finishes with S, it sets its priority back to
what it was before

20

Example: Highest Locker’s Priority Protocol

M and Lower share S

I computing
H Li1l1nnl I B p|ocked
New relea |:| using resource
M
P(S):: V(S)
Lo l
P(S V(S
¥
LowerJ l l
2
Property 2:
Tasks will be blocked at most once
P(S1) V(S1)V(S2)
Ready and blocked P(s2)
Ready and blocked P(S2) V(S2)
P(S1) V(81)

24

HLP: Blocking time calculation

= Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S

= Then the maximal blocking time B for task i is as
follows:

= B=max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

25

Semaphore Control Block for HLP

Ceiling

27

V-operation with HLP

= V(scb):

Disable-interrupt;

current-task.priority := get(previous-priority)

If not-empty(scb.queue) then
next-to-run := get-first(scb.queue);
next-to-run.state := ready;
next-to-run.priority := Ceiling(scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context();

end then

else scb.counter ++1;

end else

Enable-interrupt

29

Implementation of HLP

= Calculate the ceiling for all semaphores
= Modify SCB
= Modify P and V-operations

26

P-operation with HLP

= P(scb):
Disable-interrupt;
If scb.counter>0 then
{ scb.counter - -1;
save(current-task.priority);
current-task.priority := Ceiling(scb) }
else
{save-context();
current-task.state := blocked
insert(current-task, scb.queue);
dispatch();
load-context() }
Enable-interrupt

28

Properties of HLP: + and -

= Bounded priority inversion

= Deadlock free (+), Why?

= Number of blocking = 1 (+), Why?

= HLP is a simplified version of PCP (+)
= The extreme case of HLP=NPP (-)

= E.g when the highest priority task uses all semaphores, the
lower priority tasks will inherit the highest priority

30

Summary

NPP BIP HLP
Bounded Priority Inversion yes yes yes
Avoid deadlock yes no yes
Avoid Un-necessary blocking no yes yes/no
Blocking time calculalation Easy |hard |easy
31
Example: PCP
A: ..P(51)..V(S1)... Prio(A)=H
B: ...P(52)...P(S3)...V(S3)..V(S2)... Prio(B)=M C(S1)=H
C:...P(S3)...P(S2)...V(52)...V(S3) Prio(C)=L C(S2)=C(S3)=M
P(S1) V(S1)
Barrives P(S2) ockedon s3 ©eES2 R(S3) V(S3M(S2)
\)

P(S3

=

P(S2) V(S2)V(S3)

Run with B's priority (+¢)

1.

Run with its own priority

Exercise: implementation of PCP

= Implement P,V-operations that follow PCP
= (thisis not so easy)

33

35

Priority Ceiling Protocol (combining HLP and BIP)

= Each semaphore S has a Ceiling C(S)
= Run-time behaviour:

= Assumethat S is the semaphore with highest ceiling locked by
other tasks currently: C(S) is "the current system priority”

= If A wants to lock a semaphore (not necessarily S), it must have a
strictly higher priority than C(S) i.e. P(A)> C(S). Otherwise A is
blocked, and it transmitts its priority(+¢) to the task currently
holding S

32

PCP: Blocking time calculation

s Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S
= The maximal blocking time for task i:

= B =max{CS(k,S)| ik in Use(S), pr(k)<pr(i)<=C(S)}

34

Properties of PCP: + and -

= Bounded priority inversion (+)

= Deadlock free (+)

= Number of blocking = 1 (+)

= Better response times for high priority tasks (+)
= Avoid un-necessary blocking

= Not easy to implement (-)

36

Summary

NPP BIP HLP PCP
Bounded Priority Inversion yes yes yes yes
Avoid deadlock yes no yes yes
Avoid Un-necessary blocking no yes yes/no|yes
Blocking time calculalation easy |hard |easy |easy
Number of blocking 1 >1 1 1
Implementation easy |easy |easy |hard

37

