The simpliest form of priority inversion
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Un-bounded priority inversion Solutions
Task1 Task9 Task2 = Tasks are forced’ to follow certain rules when locking
- Shared Resource R . . .
- - - and unlocking semaphores (requesting and releasing
toar o | Gengr : resources)

Ve Ve = The rules are called 'Resource access protocols’

= NPP, BIP, HLP, PCP
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Non Preemption Protocol (NPP) NPP: + and —
= Modify P(S) so that the caller is assigned = Simple and easy to implement (+), how?

the highest priority if it succeeds in locking S = Deadlock free (++), why?
= Highest priority=non preemtion!

N f blocking = 1 (+), Why?
= Modify V(S) so that the caller is assigned its own = Number o b_oc_ ng ), y. Lo
priority back when it releases S " Allow !ow-pnonty tasks to block h_lgh-prlorlty tasks
including those that have no sharing resources (-)

This is the simplest method to avoid Priority Inversion! Missinig all deadlines!
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Basic Priority Inheritance Protocol (BIP)

= supported in RT POSIX

» Idea:
= Agets semaphore S
= B with higher priority tries to lock S, and blocked by S
= Btransfers its priority to A (so A is resumed and run with
B’s priority)
= Run time behaviour: whenever a lower-
priotity task blocks a higher priority task, it
inherits the priority of the blocked task

Problem 1: potential deadlock
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Task 2: ... P(S2) ... P(S1)...
Task 1: ... P(S1) ... P(S2)...

BIP: Blocking time calculation

= Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S
= The maximal blocking time for task i:

= B=SUM{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}
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Example
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Problem 2: chained blocking — many preemptions
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Task 1 needs M resources may be blocked M times:
-> many preemptions/much run-time overheads
- maximal blocking=sum of all CS sections for lower-priority tasks

Properties of BIP: + and -

= Bounded Priority inversion (+)

= Reasonable Run-time performance (+)

= Require no info on resource usage of tasks (+)
= Potential deadlocks (-)

= Chain-blocking — many preemptions (-)



Implementation of Ceiling Protocols

= Main ideas:
= Priority-based scheduling

= Implement P/V operations on Semaphores to assign task
priorities dynamically
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Standard P-operation (without BIP)

= P(scb):

Disable-interrupt;

If sch.counter>0 then {scb.counter - -1;

else
{save-context( );
current-task.state := blocked;
insert(current-task, scb.queue);
dispatch();
load-context() }

Enable-interrupt
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Standard V-operation (without BIP)

= V(scb):
Disable-interrupt;
If not-empty(scb.queue) then
{ next-to-run := get-first(scb.queue);
next-to-run.state := ready;
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }
else scb.counter ++1;
Enable-interrupt
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Semaphore Control Block for BIP

counter

queue

Pointer to next SCB

Holder
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P-operation with BIP
= P(scb):
Disable-interrupt;
If scb.counter>0 then {scb.counter - -1;
scb.holder:= current-task
add(current-task.sem-list,scb)}
else
{save-context();
current-task.state := blocked;
insert(current-task, scb.queue);
/* queue sorted according to task priority */
save(scb.holder.priotiry);
scb.holder.priority := current-task.priority;
dispatch();
load-context() }
Enable-interrupt
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V-operation with BIP

= V(sch):
Disable-interrupt;
current-task.priority := "original/previous priority”
/*highest-priority of tasks blocked by smaphors ownd by current-task*/
/*check all blocked tasks waiting for sem in current-tcb. semlist*/
If not-empty(scb.queue) then
{ next-to-run := get-first(sch.queue);
/*queue sorted according to task priority */
next-to-run.state := ready;
scb.holder := next-to-run;
add(next-to-run.sem-list, scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }
else sch.counter ++1;
Enable-interrupt



Immediate Priority Inheritance:

=Highest Locker’s Priority Protocol (HLP)
=Priority Protect Protocol (PPP)

= Adopted in Ada95 (protected object), POSIX mutexes
= Idea: define the ceiling C(S) of a semaphore S to be

the highest priority of all tasks that use S during
execution. Note that C(S) can be calculated statically
(off-line).
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Example
priority use C(S1)=M
Task 1 H S3 C(s2)=L
Task2 M s1,s C(S3)=H
C(S)=M
Task 3 L S1,S2
Task 4 Lower S2,S
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Property 1: Deadlock free (HLP)

released TZ) P(S1)
H Task 1
P(s1) P(S2)
L ‘ LTask 2

Once task 2 gets S1, it runs with pri H, task 1 will

be blocked (no chance to get S2 before task 2)
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Run-time behaviour of HLP

= Whenever a task succeeds in holding a semaphor S,
its priority is changed dynamically to the maximum of
its current priority and C(S).

= When it finishes with S, it sets its priority back to
what it was before
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Example: Highest Locker’s Priority Protocol

M and Lower share S
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Property 2:
Tasks will be blocked at most once
P(S1) V(S1)V(S2)
Ready and blocked P(s2)
Ready and blocked P(S2) V(S2)
P(S1) V(81)
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HLP: Blocking time calculation

= Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S

= Then the maximal blocking time B for task i is as
follows:

= B=max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}
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Semaphore Control Block for HLP

Ceiling
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V-operation with HLP

= V(scb):

Disable-interrupt;

current-task.priority := get(previous-priority)

If not-empty(scb.queue) then
next-to-run := get-first(scb.queue);
next-to-run.state := ready;
next-to-run.priority := Ceiling(scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context();

end then

else scb.counter ++1;

end else

Enable-interrupt
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Implementation of HLP

= Calculate the ceiling for all semaphores
= Modify SCB
= Modify P and V-operations
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P-operation with HLP

= P(scb):
Disable-interrupt;
If scb.counter>0 then
{ scb.counter - -1;
save(current-task.priority);
current-task.priority := Ceiling(scb) }
else
{save-context();
current-task.state := blocked
insert(current-task, scb.queue);
dispatch();
load-context() }
Enable-interrupt
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Properties of HLP: + and -

= Bounded priority inversion

= Deadlock free (+), Why?

= Number of blocking = 1 (+), Why?

= HLP is a simplified version of PCP (+)
= The extreme case of HLP=NPP (-)

= E.g when the highest priority task uses all semaphores, the
lower priority tasks will inherit the highest priority
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Summary

NPP BIP HLP
Bounded Priority Inversion yes yes yes
Avoid deadlock yes no yes
Avoid Un-necessary blocking no yes yes/no
Blocking time calculalation Easy |hard |easy
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Example: PCP
A: ..P(51)..V(S1)... Prio(A)=H
B: ...P(52)...P(S3)...V(S3)..V(S2)...  Prio(B)=M C(S1)=H
C:...P(S3)...P(S2)...V(52)...V(S3) Prio(C)=L C(S2)=C(S3)=M
P(S1) V(S1)
Barrives P(S2) ockedon s3  ©eES2 R(S3) V(S3M(S2)
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P(S3

=

P(S2) V(S2)V(S3)

Run with B's priority (+¢)

1.

Run with its own priority

Exercise: implementation of PCP

= Implement P,V-operations that follow PCP
= (thisis not so easy)
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Priority Ceiling Protocol (combining HLP and BIP)

= Each semaphore S has a Ceiling C(S)
= Run-time behaviour:

= Assumethat S is the semaphore with highest ceiling locked by
other tasks currently: C(S) is "the current system priority”

= If A wants to lock a semaphore (not necessarily S), it must have a
strictly higher priority than C(S) i.e. P(A)> C(S). Otherwise A is
blocked, and it transmitts its priority(+¢) to the task currently
holding S
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PCP: Blocking time calculation

s Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S
= The maximal blocking time for task i:

= B =max{CS(k,S)| ik in Use(S), pr(k)<pr(i)<=C(S)}
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Properties of PCP: + and -

= Bounded priority inversion (+)

= Deadlock free (+)

= Number of blocking = 1 (+)

= Better response times for high priority tasks (+)
= Avoid un-necessary blocking

= Not easy to implement (-)
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Summary

NPP BIP HLP PCP
Bounded Priority Inversion yes yes yes yes
Avoid deadlock yes no yes yes
Avoid Un-necessary blocking no yes yes/no|yes
Blocking time calculalation easy |hard |easy |easy
Number of blocking 1 >1 1 1
Implementation easy |easy |easy |hard
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