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Abstract

Attention, as a core layer of the ubiquitous Transformer architecture, is the bottleneck for large language
models and long-context applications. FlashAttention elaborated an approach to speed up attention on GPUs
through minimizing memory reads/writes. However, it has yet to take advantage of new capabilities present in
recent hardware, with FlashAttention-2 achieving only 35% utilization on the H100 GPU. We develop three
main techniques to speed up attention on Hopper GPUs: exploiting asynchrony of the Tensor Cores and TMA
to (1) overlap overall computation and data movement via warp-specialization and (2) interleave block-wise
matmul and softmax operations, and (3) block quantization and incoherent processing that leverages hardware
support for FP8 low-precision. We demonstrate that our method, FlashAttention-3, achieves speedup on
H100 GPUs by 1.5-2.0× with FP16 reaching up to 740 TFLOPs/s (75% utilization), and with FP8 reaching
close to 1.2 PFLOPs/s. We validate that FP8 FlashAttention-3 achieves 2.6× lower numerical error than a
baseline FP8 attention.

1 Introduction
For the Transformer architecture [56], the attention mechanism constitutes the primary computational bottleneck,
since computing the self-attention scores of queries and keys has quadratic scaling in the sequence length. Scaling
attention to longer context will unlock new capabilities (modeling and reasoning over multiple long documents [24,
42, 49] and files in large codebases [30, 47]), new modalities (high-resolution images [11], audio [23], video [25]), and
new applications (user interaction with long history [51], agent workflow with long horizon [59]). This has generated
significant interest in making attention faster in the long-context regime, including by approximation [14, 27, 54]
and software optimization ([17, 29, 44]), or even alternative architectures [22, 41, 53].

In this work, we build on the work of Dao et al. [17] on developing exact-attention algorithms that integrate
knowledge of the GPU’s execution model and hardware characteristics into their high-level design. In [17], Dao et
al. introduced FlashAttention, a novel tiling strategy for parallelizing attention that eliminates intermediate
reads/writes to slow global memory through fusing all of the attention operations into a single GPU kernel. Dao
[15] restructured the algorithm as FlashAttention-2 to also parallelize over the sequence length dimension and
perform the inner loop of the forward pass over blocks of the key and value matrices, thus improving the occupancy
and distribution of work on the GPU. However, we observe that FlashAttention-2 nonetheless achieves poor
utilization on newer GPUs relative to optimized matrix-multiplication (GEMM) kernels, such as 35% vs. 80-90% on
the Hopper H100 GPU. Partially, this may be attributed to implementation-level differences, such as not using
Hopper-specific instructions in place of Ampere ones when targeting the Tensor Cores.

More fundamentally, FlashAttention-2’s algorithm adheres to a simplified synchronous model and makes
no explicit use of asynchrony and low-precision in its design. Asynchrony is a result of hardware specialization to
accelerate the most important operations in a ML workload: specific hardware units performing matrix multiplication
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(Tensor Cores) or memory loading (Tensor Memory Accelerator – TMA), separate from the rest of the CUDA
cores performing logic, integer, and floating point computation. Low precision such as FP8 in Hopper and FP4
in Blackwell, continuing the trend of FP16 (Pascal in 2017) and BF16 (Ampere in 2020), is a proven technique
to get double or quadruple throughput for the same power and chip area. We review the capabilities afforded by
Hopper in these directions in §2.2. The technical challenge is to redesign FlashAttention-2 to make use of these
hardware features: asynchrony requires overlapping computation between matmul and softmax even though one
depends on the output of the other, and low-precision requires care to minimize quantization error, especially in the
case of outlier features in LLMs [20, 52].

To this end, we propose FlashAttention-3, which contributes and synthesizes three new ideas to further
improve performance on newer GPU architectures:1

1. Producer-Consumer asynchrony: We define a warp-specialized software pipelining scheme that exploits
the asynchronous execution of data movement and Tensor Cores by splitting producers and consumers of data
into separate warps, thereby extending the algorithm’s ability to hide memory and instruction issue latencies.

2. Hiding softmax under asynchronous block-wise GEMMs: We overlap the comparatively low-throughput
non-GEMM operations involved in softmax, such as floating point multiply-add and exponential, with the
asynchronous WGMMA instructions for GEMM. As part of this, we rework the FlashAttention-2 algorithm
to circumvent certain sequential dependencies between softmax and the GEMMs. For example, in the 2-stage
version of our algorithm, while softmax executes on one block of the scores matrix, WGMMA executes in the
asynchronous proxy to compute the next block.

3. Hardware-accelerated low-precision GEMM: We adapt the forward pass algorithm to allow for targeting
the FP8 Tensor Cores for GEMM, nearly doubling the measured TFLOPs/s. This requires bridging the
different layout conformance requirements of WGMMA in terms of how blocks of FP32 accumulator and FP8
operand matrices are assumed to be laid out in memory. We use the techniques of block quantization and
incoherent processing to mitigate the loss of accuracy that results from moving to FP8 precision.

To validate our method empirically, we benchmark FlashAttention-3 on the H100 SXM5 GPU over a range
of parameters and show that (1) FP16 achieves 1.5-2.0× speedup over FlashAttention-2 in the forward pass
(reaching up to 740 TFLOPs/s) and 1.5-1.75× in the backward pass, (2) FP8 achieves close to 1.2 PFLOPs/s, and
(3) for large sequence length, FP16 outperforms and FP8 is competitive2 with a state-of-the-art implementation
of attention from NVIDIA’s cuDNN library. We also validate that FP16 FlashAttention-3 yields the same
numerical error as FlashAttention-2 and is better than the standard attention implementation as intermediate
results (e.g., softmax rescaling) are kept in FP32. Moreover, FP8 FlashAttention-3 with block quantization and
incoherent processing is 2.6× more accurate than standard attention with per-tensor quantization in cases with
outlier features.

We open-source FlashAttention-3 with a permissive license3 and plan to integrate it with PyTorch and
Hugging Face libraries to benefit the largest number of researchers and developers.

2 Background: Multi-Head Attention and GPU Characteristics

2.1 Multi-Head Attention
Let Q,K,V ∈ R𝑁×𝑑 be the query, key and value input sequences associated to a single head, where 𝑁 is the sequence
length and 𝑑 is the head dimension. Then the attention output O is computed as:

S = 𝛼QK⊤ ∈ R𝑁×𝑁 , P = softmax(S) ∈ R𝑁×𝑁 , O = PV ∈ R𝑁×𝑑 ,

where softmax is applied row-wise and one typically sets 𝛼 = 1/
√
𝑑 as the scaling factor. In practice, we subtract

rowmax(S) from S to prevent numerical instability with the exponential function. For multi-head attention (MHA),
1We describe our results in the context of NVIDIA’s Hopper architecture. However, our algorithm is operative for any GPU

architecture with sufficiently robust asynchronous execution and low-precision capabilities.
2More precisely, for head dimension 64 FlashAttention-3 FP8 is ahead, while for head dimensions 128 and 256 it is at par for

those cases without causal masking and behind with causal masking.
3FlashAttention-3 is available at https://github.com/Dao-AILab/flash-attention
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each head has its own set of query, key and value projections, and this computation parallelizes across multiple
heads and batches to produce the full output tensor.

Now let 𝜙 be a scalar loss function and let d(−) = 𝜕𝜙/𝜕 (−) be notation for the gradient. Given the output
gradient dO ∈ R𝑁×𝑑, we compute dQ, dK, and dV according to the chain rule as follows:

dV = P⊤dO ∈ R𝑁×𝑑

dP = dOV⊤ ∈ R𝑁×𝑁

dS = dsoftmax(dP) ∈ R𝑁×𝑁

dQ = 𝛼dSK ∈ R𝑁×𝑑

dK = 𝛼dS⊤Q ∈ R𝑁×𝑑 ,

Here, we have that d𝑠 = (diag(𝑝) − 𝑝𝑝⊤)d𝑝 for 𝑝 = softmax(𝑠) as a function of a vector 𝑠, and we write dsoftmax(dP)
for this formula applied row-wise. Finally, this computation again parallelizes across the number of heads and
batches for the backward pass of MHA.

2.2 GPU hardware characteristics and execution model
We describe the aspects of the GPU’s execution model relevant for FlashAttention-3, with a focus on the
NVIDIA Hopper architecture as a concrete instantiation of this model.

Memory hierarchy: The GPU’s memories are organized as a hierarchy of data locales, with capacity inversely
related to bandwidth (Table 1)4. Global memory (GMEM), also known as HBM, is the off-chip DRAM accessible
to all streaming multiprocessors (SMs). Data from GMEM gets transparently cached into an on-chip L2 cache.
Next, each SM contains a small on-chip, programmer-managed highly banked cache called shared memory (SMEM).
Lastly, there is the register file within each SM.

Thread hierarchy: The GPU’s programming model is organized around logical groupings of execution units
called threads. From the finest to coarsest level, the thread hierarchy is comprised of threads, warps (32 threads),
warpgroups (4 contiguous warps), threadblocks (i.e., cooperative thread arrays or CTAs), threadblock clusters (in
Hopper), and grids.

These two hierarchies are closely interlinked. Threads in the same CTA are co-scheduled on the same SM, and
CTAs in the same cluster are co-scheduled on the same GPC. SMEM is directly addressable by all threads within a
CTA, whereas each thread has at most 256 registers (RMEM) private to itself.

Table 1: Thread-Memory hierarchy for the NVIDIA Hopper H100 SXM5 GPU.

Hardware Level Parallel Agent Data Locale Capacity @ Bandwidth
Chip Grid GMEM 80 GiB @ 3.35 TB/s
GPC Threadblock Clusters L2 50 MiB @ 12 TB/s

SM Threadblock (CTA) SMEM 228 KiB per SM, 31TB/s per GPU
Thread Thread RMEM 256 KiB per SM

Asynchrony and warp-specialization: GPUs are throughput processors that rely on concurrency and asynchrony
to hide memory and execution latencies. For async memory copy between GMEM and SMEM, Hopper has the
Tensor Memory Accelerator (TMA) as a dedicated hardware unit [38, §7.29]. Furthermore, unlike prior architectures
such as Ampere, the Tensor Core of Hopper, exposed via the warpgroup-wide WGMMA instruction [39, §9.7.14], is
also asynchronous and can source its inputs directly from shared memory.

Hardware support for asynchrony allows for warp-specialized kernels, where the warps of a CTA are divided into
producer or consumer roles that only ever issue either data movement or computation. Generically, this improves
the compiler’s ability to generate optimal instruction schedules [4]. In addition, Hopper supports the dynamic

4Luo et al. [34] reports shared memory bandwidth of 128 bytes per clock cycle per SM, and we multiply that by 132 SMs and the
boost clock of 1830 MHz.
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reallocation of registers between warpgroups via setmaxnreg [39, §9.7.17.1], so those warps doing MMAs can obtain
a larger share of RMEM than those just issuing TMA (for which only a single thread is needed).

Low-precision number formats: Modern GPUs have specialized hardware units for accelerating low-precision
computation. For example, the WGMMA instruction can target the FP8 Tensor Cores on Hopper to deliver 2x the
throughput per SM when compared to FP16 or BF16.

However, correctly invoking FP8 WGMMA entails understanding the layout constraints on its operands. Given
a GEMM call to multiply 𝐴 × 𝐵⊤ for an 𝑀 × 𝐾-matrix 𝐴 and an 𝑁 × 𝐾-matrix 𝐵, we say that the 𝐴 or 𝐵 operand
is mn-major if it is contiguous in the outer 𝑀 or 𝑁 dimension, and k-major if is instead contiguous in the inner
𝐾-dimension. Then for FP16 WGMMA, both mn-major and k-major input operands are accepted for operands in
SMEM, but for FP8 WGMMA, only the k-major format is supported. Moreover, in situations such as attention
where one wants to fuse back-to-back GEMMs in a single kernel, clashing FP32 accumulator and FP8 operand
layouts pose an obstacle to invoking dependent FP8 WGMMAs.

In the context of attention, these layout restrictions entail certain modifications to the design of an FP8 algorithm,
which we describe in §3.3.

2.3 Standard Attention and Flash Attention
Following Dao et al. [17], we let standard attention denote an implementation of attention on the GPU that
materializes the intermediate matrices S and P to HBM. The main idea of FlashAttention was to leverage a
local version of the softmax reduction to avoid these expensive intermediate reads/writes and fuse attention into a
single kernel. Local softmax corresponds to lines 18-19 of the consumer mainloop in Algorithm 1 together with the
rescalings of blocks of O. The simple derivation that this procedure indeed computes O can be found in [15, §2.3.1].

3 FlashAttention-3: Algorithm
In this section, we describe the FlashAttention-3 algorithm. For simplicity, we focus on the forward pass, with
the backward pass algorithm described in Appendix B.1. We first indicate how to integrate warp-specialization with
a circular SMEM buffer into the base algorithm of FlashAttention-2. We then explain how to exploit asynchrony
of WGMMA to define an overlapped GEMM-softmax 2-stage pipeline. Finally, we describe the modifications needed
for FP8, both in terms of layout conformance and accuracy via block quantization and incoherent processing.

3.1 Producer-Consumer asynchrony through warp-specialization and pingpong schedul-
ing

Warp-specialization As with FlashAttention-2, the forward pass of FlashAttention-3 is embarrassingly
parallel in the batch size, number of heads, and query sequence length. Thus, it will suffice to give a CTA-level
view of the algorithm, which operates on a tile Q𝑖 of the query matrix to compute the corresponding tile O𝑖 of the
output. To simplify the description, we first give the warp-specialization scheme with a circular SMEM buffer that
does not have in addition the GEMM-softmax overlapping. Let 𝑑 be the head dimension, 𝑁 the sequence length,
and fix a query block size 𝐵𝑟 to divide Q into 𝑇𝑟 = ⌈ 𝑁

𝐵𝑟
⌉ blocks Q1, ..,Q𝑇𝑟 .
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Algorithm 1 FlashAttention-3 forward pass without intra-consumer overlapping – CTA view

Require: Matrices Q𝑖 ∈ R𝐵𝑟×𝑑 and K,V ∈ R𝑁×𝑑 in HBM, key block size 𝐵𝑐 with 𝑇𝑐 = ⌈ 𝑁
𝐵𝑐
⌉.

1: Initialize pipeline object to manage barrier synchronization with 𝑠-stage circular SMEM buffer.
2: if in producer warpgroup then
3: Deallocate predetermined number of registers.
4: Issue load Q𝑖 from HBM to shared memory.
5: Upon completion, commit to notify consumer of the load of Q𝑖.
6: for 0 ≤ 𝑗 < 𝑇𝑐 do
7: Wait for the ( 𝑗 % 𝑠)th stage of the buffer to be consumed.
8: Issue loads of K 𝑗 ,V 𝑗 from HBM to shared memory at the ( 𝑗 % 𝑠)th stage of the buffer.
9: Upon completion, commit to notify consumers of the loads of K 𝑗 ,V 𝑗 .

10: end for
11: else
12: Reallocate predetermined number of registers as function of number of consumer warps.
13: On-chip, initialize O𝑖 = (0) ∈ R𝐵𝑟×𝑑 and ℓ𝑖 , 𝑚𝑖 = (0), (−∞) ∈ R𝐵𝑟 .
14: Wait for Q𝑖 to be loaded in shared memory.
15: for 0 ≤ 𝑗 < 𝑇𝑐 do
16: Wait for K 𝑗 to be loaded in shared memory.
17: Compute S

( 𝑗 )
𝑖

= Q𝑖K
𝑇
𝑗

(SS-GEMM). Commit and wait.

18: Store 𝑚old
𝑖

= 𝑚𝑖 and compute 𝑚𝑖 = max(𝑚old
𝑖
, rowmax(S( 𝑗 )

𝑖
)).

19: Compute P̃
( 𝑗 )
𝑖

= exp(S( 𝑗 )
𝑖
− 𝑚𝑖) and ℓ𝑖 = exp(𝑚old

𝑖
− 𝑚𝑖)ℓ𝑖 + rowsum(P̃( 𝑗 )𝑖

).
20: Wait for V 𝑗 to be loaded in shared memory.
21: Compute O𝑖 = diag(exp(𝑚old

𝑖
− 𝑚𝑖))−1O𝑖 + P̃( 𝑗 )𝑖

V 𝑗 (RS-GEMM). Commit and wait.
22: Release the ( 𝑗 % 𝑠)th stage of the buffer for the producer.
23: end for
24: Compute O𝑖 = diag(ℓ𝑖)−1O𝑖 and 𝐿𝑖 = 𝑚𝑖 + log(ℓ𝑖).
25: Write O𝑖 and 𝐿𝑖 to HBM as the 𝑖th block of O and 𝐿.
26: end if

For our implementation of Algorithm 1 on Hopper, we use setmaxnreg for (de)allocations, TMA for loads of Q𝑖

and {K 𝑗 ,V 𝑗 }0≤ 𝑗<𝑇𝑐 , and WGMMA to execute the GEMMs in the consumer mainloop, with the SS or RS prefix
indicating whether the first operand is sourced from shared memory or register file. For interpreting the execution
flow of Algorithm 1, note that issuing TMA loads does not stall on the completion of other loads due to asynchrony.
Moreover, in the producer mainloop, no waits will be issued for the first 𝑠 iterations as the buffer gets filled.

Pingpong scheduling The asynchronous nature of WGMMA and TMA, along with warp-specialization, opens
up the opportunity to overlap the softmax computation of one warpgroup with the GEMM of another warpgroup.
To motivate this, notice that non-matmul operations have much lower throughput than matmul operations on
modern hardware accelerators. As an example, the H100 SXM5 GPU has 989 TFLOPS of FP16 matmul but only
3.9 TFLOPS of special functions such as exponential5 (necessary for softmax). For the attention forward pass in
FP16 with head dimension 128, there are 512x more matmul FLOPS compared to exponential operations, but
the exponential has 256x lower throughput, so exponential can take 50% of the cycle compared to matmul. The
situation is even worse with FP8, where the matmul throughput doubles but the exponential throughput stays the
same.

Since the exponential is performed by a separate hardware unit (the multi-function unit), ideally we’d want
the exponential calculation to be scheduled when the Tensor Cores are performing the matmul. To do so, we use
synchronization barriers (bar.sync instructions) to force the GEMMs (GEMM1 – PV of one iteration, and GEMM0
– QK⊤ of the next iteration) of warpgroup 1 to be scheduled before the GEMMs of warpgroup 2. As a result, the
softmax of warpgroup 1 will be scheduled while warpgroup 2 is performing its GEMMs. Then the roles swap, with
warpgroup 2 doing softmax while warpgroup 1 doing GEMMs (hence, “pingpong” scheduling). This is illustrated

5The CUDA programming guide specifies that 16 operations of special functions can be performed per streaming multiprocessor (SM)
per clock cycle. We multiply 16 by 132 SMs and 1830 MHz clock speed to get 3.9 TFLOPS of special functions.
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in Fig. 1. Though in practice the pingpong scheduling is not as clean as depicted in the figure, we generally find this
to improve performance (e.g., from 570 TFLOPS to 620-640 TFLOPS for FP16 forward with head dimension 128
and sequence length 8192).

Figure 1: Pingpong scheduling for 2 warpgroups to overlap softmax and GEMMs: the softmax of one warpgroup should be
scheduled when the GEMMs of another warpgroup are running. The same color denotes the same iteration.

Attention variants For multi-query attention [50] and grouped query attention [3], we follow the approach in
FlashAttention-2 and adjust the tensor indexing to avoid duplicating K and V in HBM.

3.2 Intra-warpgroup overlapping GEMMs and softmax
Even within one warpgroup, we can overlap some instructions in the softmax with some instructions in the GEMMs.
We describe one technique to do so.

In the attention algorithm, operations within the inner loop (main loop) have sequential dependencies that
impede parallelization within a single iteration. For example, (local) softmax (lines 18 to 19) relies on the output
S
( 𝑗 )
𝑖

of the first GEMM, while the second GEMM takes its result P̃
( 𝑗 )
𝑖

as an operand. Indeed, the wait statements
in lines 17 and 21 of Algorithm 1 serialize the execution of softmax and GEMMs. However, we can break these
dependencies by pipelining across iterations through additional buffers in registers. Pursuing this idea, we propose
the following two-stage6 GEMM-softmax pipelining algorithm:

Figure 2: 2-stage WGMMA-softmax pipelining

6Note that the number of stages of the overlapping scheme is bounded by, but need not equal, the number 𝑠 of stages in the circular
SMEM buffer.
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Algorithm 2 FlashAttention-3 consumer warpgroup forward pass

Require: Matrices Q𝑖 ∈ R𝐵𝑟×𝑑 and K,V ∈ R𝑁×𝑑 in HBM, key block size 𝐵𝑐 with 𝑇𝑐 = ⌈ 𝑁
𝐵𝑐
⌉.

1: Reallocate predetermined number of registers as function of number of consumer warps.
2: On-chip, initialize O𝑖 = (0) ∈ R𝐵𝑟×𝑑 and ℓ𝑖 , 𝑚𝑖 = (0), (−∞) ∈ R𝐵𝑟 .
3: Wait for Q𝑖 and K0 to be loaded in shared memory.
4: Compute Scur = Q𝑖K

𝑇
0 using WGMMA. Commit and wait.

5: Release the 0th stage of the buffer for K.
6: Compute 𝑚𝑖, P̃cur and ℓ𝑖 based on Scur, and rescale O𝑖.
7: for 1 ≤ 𝑗 < 𝑇𝑐 − 1 do
8: Wait for K 𝑗 to be loaded in shared memory.
9: Compute Snext = Q𝑖K

𝑇
𝑗

using WGMMA. Commit but do not wait.
10: Wait for V 𝑗−1 to be loaded in shared memory.
11: Compute O𝑖 = O𝑖 + P̃curV 𝑗−1 using WGMMA. Commit but do not wait.
12: Wait for the WGMMA Q𝑖K

𝑇
𝑗
.

13: Compute 𝑚𝑖, P̃next and ℓ𝑖 based on Snext.
14: Wait for the WGMMA P̃curV 𝑗−1 and then rescale O𝑖

15: Release the ( 𝑗 % 𝑠)th, resp. ( 𝑗 − 1% 𝑠)th stage of the buffer for K, resp. V.
16: Copy Snext to Scur.
17: end for
18: Wait for V𝑇𝑐−1 to be loaded in shared memory.
19: Compute O𝑖 = O𝑖 + P̃lastV𝑇𝑐−1 using WGMMA. Commit and wait.
20: Epilogue: Rescale O𝑖 based on 𝑚𝑖. Compute 𝐿𝑖 based on 𝑚𝑖 and ℓ𝑖. Write O𝑖 and 𝐿𝑖 to HBM as the 𝑖-th block

of O and 𝐿.

Algorithm 2 functions as a replacement for the consumer path of Algorithm 1 to comprise the complete
FlashAttention-3 algorithm for FP16 precision. At a high-level, we use WGMMA as a metonym for asynchronous
GEMM. Within the mainloop (lines 8 to 16), the second WGMMA operation of iteration 𝑗 (line 11) is overlapped
with softmax operations from iteration 𝑗 + 1 (line 13).

While the pipelined structure illustrated above offers theoretical performance gains, there are several practical
aspects to consider:

Compiler reordering The pseudocode represents an idealized execution order but the compiler (NVCC) often
rearranges instructions for optimization. This can disrupt the carefully crafted WGMMA and non-WGMMA
operation pipelining sequence, potentially leading to unexpected behavior or diminished performance gains. An
analysis of the SASS code shows that the compiler generates overlapped code as expected (Section B.2).

Register pressure To maintain optimal performance, register spilling should be minimized. However, the 2-stage
pipeline requires additional registers to store intermediate results and maintain context between stages. Specifically,
an extra Snext must be kept in registers, leading to extra register usage of size 𝐵𝑟 × 𝐵𝑐 × sizeof(float) per threadblock.
This increased register demand may conflict with using larger block sizes (another common optimization), which is
also register-hungry. In practice, trade-offs should be made based on profiling results.

3-stage pipelining Extending the 2-stage algorithm described above, we propose a 3-stage variant that would
further overlap the second WGMMA with softmax. While this approach offers the potential for even higher Tensor
Core utilization, it requires even more registers due to an additional stage in the pipeline, making the trade-off
between tile size and pipeline depth more difficult to balance. A detailed description of the 3-stage algorithm and
its evaluation results can be found in Appendix B.3.

3.3 Low-precision with FP8
Efficiency: layout transformations. Computing the forward pass of FlashAttention-3 in FP8 precision poses
additional challenges not encountered for FP16 in terms of layout conformance.
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T0 {d0, d1} T1 {d0, d1} T0 {d4, d5} T1 {d4, d5}T2 {d0, d1} T3 {d0, d1} T2 {d4, d5} T3 {d4, d5}
T0 {d2, d3} T1 {d2, d3} T0 {d6, d7} T1 {d6, d7}T2 {d2, d3} T3 {d2, d3} T2 {d6, d7} T3 {d6, d7}

Figure 3: FP32 accumulator register WGMMA layout – rows 0 and 8, threads 0-3, entries 0-7.

T0 {a0, a1} T0 {a2, a3} T1 {a0, a1} T1 {a2, a3} T2 {a0, a1} T2 {a2, a3} T3 {a0, a1} T3 {a2, a3}
T0 {a4, a5} T0 {a6, a7} T1 {a4, a5} T1 {a6, a7} T2 {a4, a5} T2 {a6, a7} T3 {a4, a5} T3 {a6, a7}

Figure 4: FP8 operand A register WGMMA layout – rows 0 and 8, threads 0-3, entries 0-7.

First, we note that the input tensors Q, K, and V are typically given as contiguous in the head dimension, while
to satisfy the k-major constraint on FP8 WGMMA for the second GEMM we need V, or rather the tiles of V
loaded into SMEM, to be contiguous in the sequence length dimension. Since the TMA load itself cannot change
the contiguous dimension, we then need to either (1) transpose V in GMEM as a pre-processing step, or (2) do an
in-kernel transpose of tiles of V after loading them into SMEM. To implement option (1), we can either (1a) fuse the
transpose to the epilogue of a preceding step such as the rotary embedding, or (1b) call a standalone pre-processing
transpose kernel7 to exchange the strides of the sequence length and head dimensions. However, (1a) is difficult to
integrate into a standard library, and (1b) is too wasteful in a memory-bound situation such as inference.

Instead, for FP8 FlashAttention-3 we opt for option (2). For the in-kernel transpose, we take advantage of
the LDSM (ldmatrix) and STSM (stmatrix) instructions, which involve a warp of threads collectively loading
SMEM to RMEM and storing RMEM to SMEM at a granularity of 128 bytes.8 The LDSM/STSM instructions are
both register efficient, allowing us to execute them in the producer warpgroup, and capable of transposing layouts
when doing memory copy. Moreover, after the first iteration we can arrange for the transpose of the next V tile to
be executed in the shadow of the two WGMMAs that involve the preceding V and current K tile.

Second, we observe that unlike with FP16, the memory layout of the FP32 accumulator of an FP8 WGMMA is
different from that assumed for its operand A when held in registers. We depict fragments of these two layouts
in Fig. 3 and Fig. 4, where the entries are held in registers per thread in the listed order. By using byte permute
instructions, we can then transform the first WGMMA’s accumulator into a format suitable for the second WGMMA,
and compatibly with the layout of the V tile produced by the in-kernel transpose. Specifically, with reference to
Fig. 3, we change the order in sequence to

{d0 d1 d4 d5 d2 d3 d6 d7},

and this register permutation is then replicated over every 8 bytes. In terms of the logical shape of the P tile, this
manuever permutes its columns (e.g., columns 0189 now become the first four columns). For WGMMA to then
compute the correct output tile, we can correspondingly arrange for the in-kernel transpose to write out a matching
row permutation of the V tile.9

Accuracy: block quantization and incoherent processing. With FP8 (e4m3) format, one only uses 3
bits to store the mantissa and 4 bits for the exponent. This results in higher numerical error than FP16/BF16.
Moreover, large models typically have outlier values [20, 52] that are much larger in magnitude than most other
values, making quantization difficult. One typically use per-tensor scaling [37] by keeping one scalar per tensor (e.g.,
one for Q, for K, and for V). To reduce the numerical error of attention in FP8, we employ two techniques:

1. Block quantization: we keep one scalar per block, so that for each of Q, K, V we split the tensor into blocks
of size 𝐵𝑟 × 𝑑 or 𝐵𝑐 × 𝑑 and quantize them separately. This quantization can be fused with an operation
right before attention (e.g., rotary embedding) with no additional slow down (since rotary embedding is
memory-bandwidth bound). As the FlashAttention-3 algorithm naturally operates on blocks, we can scale
each block of S to account for this block quantization at no computation cost.

7An optimized transpose kernel will achieve speed near the bandwidth of the device [45].
8In the PTX documentation, LDSM/STSM are described as copying 8× 8 matrices with 16-bit entries [39, §9.7.13.4.15-16], but we can

pack 8-bit entries two at a time to use LDSM/STSM in the context of FP8 precision. However, the transpose versions of LDSM/STSM
cannot split packed 8-bit entries, which necessitates certain register movements in between LDSM and STSM to actually perform a
tile-wise transpose; we omit the details.

9This additional freedom afforded by doing the in-kernel transpose eliminates having to use shuffle instructions to change register
ownership across threads, which we previously described in [7].
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2. Incoherent processing: to even out outliers, we multiply Q and K with a random orthogonal matrix M
before quantizing to FP8. Since M is orthogonal, MM⊤ = 𝐼 and so (QM) (KM)⊤ = QK⊤, i.e., multiplying both
Q and K with M does not change the attention output. This serves to “spread out” the outliers since each entry
of QM or KM is a random sum of entries of Q or K, thus reducing quantization error. In practice, we follow
Chee et al. [9] and choose M to be the product of random diagonal matrices of ±1 and a Hadamard matrix,
which can be multiplied in 𝑂 (𝑑 log 𝑑) instead of 𝑂 (𝑑2), and can also be fused with the rotary embedding at
no extra computation cost.

We validate that these two techniques reduces numerical error by up to 2.6× in §4.3.

4 Empirical Validation
We use the primitives from CUTLASS [55] such as WGMMA and TMA abstractions to implement FlashAttention-
3 and evaluate its efficiency and accuracy.

• Benchmarking attention. We measure the runtime of FlashAttention-3 across different sequence lengths
and compare it to a standard implementation in PyTorch, FlashAttention-2, FlashAttention-2 in
Triton (which uses H100-specific instructions), as well as a vendor’s implementation of FlashAttention-2
optimized for H100 GPUs from cuDNN. We confirm that FlashAttention-3 is up to 2.0× faster than
FlashAttention-2 and 1.5× faster than FlashAttention-2 in Triton. FlashAttention-3 reaches up to
740 TFLOPs/s, 75% of the theoretical maximum TFLOPs/s on H100 GPUs.

• Ablation study. We confirm that our algorithmic improvements with warp-specialization and GEMM-softmax
pipelining contribute to the speedup of FlashAttention-3.

• Accuracy of FP8 attention. We validate that block quantization and incoherent processing reduces the
numerical error of FP8 FlashAttention-3 by 2.6×.

4.1 Benchmarking Attention
We measure the runtime of different attention methods on an H100 80GB SXM5 GPU for different settings (without
/ with causal mask, head dimension 64 or 128) for FP16 inputs. We report the results in Fig. 5 and Fig. 6, showing
that FlashAttention-3 is around 1.5-2.0× faster than FlashAttention-2 in the forward pass and 1.5-1.75×
faster in the backward pass. Compared to a standard attention implementation, FlashAttention-3 can be up to
3-16× faster. For medium and long sequences (1k and above), FlashAttention-3 even surpasses the speed of a
vendor’s library (cuDNN – closed source) that has been optimized for H100 GPUs.

Benchmark settings: We vary the sequence length as 512, 1k, ..., 16k, and set batch size so that the total
number of tokens is 16k. We set the hidden dimension to 2048, and head dimension to be either 64, 128, or 256 (i.e.,
32 heads, 16 heads, or 8 heads). To calculate the FLOPs of the forward pass, we use:

4 · seqlen2 · head dimension · number of heads.

With causal masking, we divide this number by 2 to account for the fact that approximately only half of the entries
are calculated. To get the FLOPs of the backward pass, we multiply the forward pass FLOPs by 2.5 (since there
are 2 matmuls in the forward pass and 5 matmuls in the backward pass, due to recomputation).

We also measure the runtime for FP8 for the forward pass under similar settings. We report the results for
headdim 256 in Fig. 7 and give the full results in Appendix C.2.

4.2 Ablation Study: 2-Stage Pipelining Experiments
We ablate both the 2-stage WGMMA-softmax pipelining and warp-specialization for non-causal FP16 FlashAttention-
3 with fixed parameters {batch, seqlen, nheads, hdim} = {4, 8448, 16, 128}. The result in Table 2 confirms that our
algorithmic improvements (asynchrony with warp-specialization and overlapping between GEMM and softmax) lead
to significant speedup, from 570 to 661 TFLOPs.
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Figure 5: Attention forward speed (FP16/BF16) on H100 GPU

4.3 Numerical Error Validation
As there has been interest in the numerical error [21] of FlashAttention, we compare FlashAttention-2,
FlashAttention-3, and a standard implementation of attention against a reference implementation in FP64. To
simulate outlier features and activations in LLMs [20, 52], we generate the entries of Q,K,V with the following
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Figure 6: Attention backward speed (FP16/BF16) on H100 GPU
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Figure 7: Attention forward speed (FP8) on H100 GPU

Table 2: Pipelining ablation measurements

Configuration Time TFLOPs/s
FlashAttention-3 3.538 ms 661
No GEMM-Softmax Pipelining, Warp-Specialization 4.021 ms 582
GEMM-Softmax Pipelining, No Warp-Specialization 4.105 ms 570

distribution:
N(0, 1) + N (0, 100) · Bernoulli(0.001).

That is, each entry is normally distributed with zero mean and standard deviation 1, but for 0.1% of entries we
add an independent term that’s normally distributed with standard deviation 10. We then measure the root mean
squared error (RMSE) in Table 3. In FP16, both FlashAttention-2 and FlashAttention-3 achieves 1.7×
lower RMSE compared to the standard implementation since intermediate results (softmax) are kept in FP32. The
baseline attention in FP8 uses per-tensor scaling, with matmul accumulator in FP32 and intermediate softmax
results kept in FP16. Thanks to block quantization and incoherent processing, FlashAttention-3 in FP8 is 2.6×
more accurate than this baseline.
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Table 3: Numerical error comparisons in FP16 and FP8 (e4m3).

Method Baseline FP16 FlashAttention-2 FP16 FlashAttention-3 FP16
RMSE 3.2e-4 1.9e-4 1.9e-4

Method Baseline FP8 FlashAttention-3 FP8 No block quant No incoherent processing
RMSE 2.4e-2 9.1e-3 9.3e-3 2.4e-2

5 Dicussion, Limitations, Conclusion
With FlashAttention-3, we have demonstrated that new programming techniques and hardware features such
as asynchrony and low-precision can have a dramatic impact on the efficiency and accuracy of attention. We are
able to speed up attention by 1.5-2.0× times compared to FlashAttention-2, and reduce FP8 numerical error
by 2.6× compared to standard per-tensor quantization. Some limitations of our work that we hope to address in
the future include: optimizing for LLM inference, integrating a persistent kernel design into the FP8 kernel,10 and
understanding the effects of low-precision attention in large-scale training. Though we have focused on Hopper
GPUs in this work, we expect that the techniques developed here will apply to other hardware accelerators. We
hope that a faster and more accurate primitive such as attention will unlock new applications in long-context tasks.
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A Related Work
Attention variants and distributed attention Ever since attention became popular with the Transformer
architecture [56], there has been a large body of work on approximating attention to scale it to longer sequences.
These approximation methods can generally be categorized into two classes: sparse and low-rank. Sparse attention
only computes some entries of the attention matrix (softmax(QK𝑇 )) and assumes that other entries are zero.
Different methods have different ways of choosing which entries should be zero, either with a fixed pattern [12],
with a sliding window [6], or with a dynamic pattern through hashing [28] or routing [46]. The low-rank approach
instead assumes that the attention matrix has a low-rank structure, and apply a pointwise nonlinearity to the query
and key [27] with random projection [13, 43, 58]. One can also combine the sparse and low-rank approximation for
better quality [10, 60]. However, these approximation methods typically do not offer the same model quality as
standard attention [54], and so most large-scale models do not employ these techniques.

There are other variants of attention aimed at reducing the size of the KV cache to improve inference efficiency.
Multi-query attention [50] and grouped query attention [3] tie different heads of K and V, and multiple query heads
interact with the same key and value head. Multi-head latent attention [19] parameterizes the K and V as low-rank
projections of a shared matrix to further reduce the KV cache size. However, all of these approaches do not change
the core computation softmax(QK𝑇 )V during training and simply change how Q,K,V are obtained. As a result,
any efficiency or accuracy improvement to the standard attention computation benefits these methods.

To extend to even longer context, attention computation can be distributed across multiple GPUs. Methods such
as Ring attention [31, 32] and variants [8] can reach a context length of up to 1 million. They use FlashAttention
(or FlashAttention-2) as a primitive, and so the improvement from FlashAttention-3 would benefit these
distributed attention methods as well.

Alternative architectures Motivated by the limitations of attention, a variety of alternative architectures have
been proposed. They build on the connection between linear attention [27] and recurrent neural networks (RNNs).
RWKV [41], H3 [18], MEGA [35], Retnet [53] enhance the expressivity of the simple cumulative sum in linear
attention with more sophisticated recurrences. Mamba [22] and xLSTM [5] use learnable weighting for the recurrence
and can match the quality of Transformers in language modeling at small or medium scale. These approaches can
be connected to generalizations of linear attention through the lens of the structure of the token-mixing matrix [16].
These models have started to see some traction, seeing usage in some medium to large-scale models such as Jamba [2],
Zamba [61], Megalodon [36], and Mamba2-hybrid [57]. For the highest quality, these SSM- and RNN-based models
still employ many layers of attention. We expect that techniques to speed up attention presented in this work will
be useful to speedup these alternative architectures.

Low-precision attention Quantization is a promising approach to speed up attention, but they have mostly
focused on reducing the space for KV cache for inference efficiency. QuIP [9] uses incoherent processing to reduce the
quantization, and we adapted this technique for FP8 FlashAttention-3. Recent work suggests that for inference
the KV cache is highly compressible down to 4-, 3-, or even 2-bits [26, 33]. However, quantization during training is
still challenging as higher precision is typically required for stable training.

Hardware-aware Algorithms Our work presented in this paper focuses on the micro-architecture specific tuning
to leverage new instruction sets and adopt a natively asynchronous programming model. There are other orthogonal
axes for hardware-aware algorithm co-design being explored. A recent example of this is LeanAttention [48],
which recognizes the poor GPU occupancy and high memory bandwidth requirements of the sequential token
generation phase as primary bottlenecks for inference and optimizes it via a smarter load balancing strategy similar
to Stream-K load balancing [40] to achieve nearly peak occupancy. There is a large literature on optimizing GEMM
for specific hardware that employs many of the same techniques. As an example, Abdelfattah et al. [1] presents a
high performance batched GEMM kernel on K40c Graphics Processing Units (GPU) for both fixed and variable
sizes, proposing specialized GEMM designs and a comprehensive autotuning process to deliver state-of-the-art
performance.
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B Addition Details on Algorithms

B.1 Asynchrony Through Warp Specialization for the Backward Pass
Similar to the forward pass § 3.1, we use warp specialization to handle asynchrony. Instead of just a simple
producer-consumer pattern in the forward pass, we add one extra role of a dQ writer, since we need to accumulate
the value of dQ produced by each thread block to the global value of dQ. This dQ accumulation introduces memory
contention (many thread blocks writing to the same location) so having a separate warp to handle this (along with
asynchrony) will avoid blocking the rest of the warps in the thread block to perform the next computation (matmul).

We include the backward pass with warp specialization in Algorithm 3.

Algorithm 3 FlashAttention-3 backward pass with warp specialization

Require: Matrices Q,K,V,O, dO ∈ R𝑁×𝑑 in HBM, logsumexp vector 𝐿 ∈ R𝑁 in HBM, block sizes 𝐵𝑐, 𝐵𝑟 .
1: In a preprocessing kernel, compute 𝐷 = rowsum(dO ◦O) ∈ R𝑑 (pointwise multiply), write 𝐷 to HBM and divide

it into 𝑇𝑟 blocks 𝐷1, . . . , 𝐷𝑇𝑟 of size 𝐵𝑟 each.
2: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, . . . ,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1, . . . ,K𝑇𝑐

and V1, . . . ,V𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.
3: Divide dO into 𝑇𝑟 blocks dO𝑖 , . . . , dO𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide 𝐿 into 𝑇𝑟 blocks 𝐿𝑖 , . . . , 𝐿𝑇𝑟 of size 𝐵𝑟

each.
4: Initialize pipeline object to manage barrier synchronization with 𝑠-stage circular SMEM buffer.
5: if in producer warpgroup then
6: Deallocate predetermined number of registers.
7: Issue load K 𝑗 and V 𝑗 from HBM to shared memory.
8: Upon completion, commit to notify consumer of the load of K 𝑗 and V 𝑗 .
9: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do

10: Wait for the (𝑖% 𝑠)th stage of the buffer to be consumed.
11: Issue loads of Q𝑖 , dO𝑖 from HBM to shared memory at the (𝑖% 𝑠)th stage of the buffer.
12: Upon completion, commit to notify consumers of the loads of Q𝑖 , dO𝑖.
13: end for
14: else if in consumer warpgroups then
15: Reallocate predetermined number of registers as function of number of consumer warps.
16: On-chip, Initialize dK 𝑗 = (0)𝐵𝑐×𝑑 , dV 𝑗 = (0)𝐵𝑐×𝑑 .
17: Wait for K 𝑗 and V 𝑗 to be loaded in shared memory.
18: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do
19: Wait for Q𝑖 to be loaded in shared memory.
20: Load 𝐿𝑖 , 𝐷𝑖 from HBM to on-chip SRAM.
21: On chip, compute S

( 𝑗 )
𝑖

= Q𝑖K
𝑇
𝑗
∈ R𝐵𝑟×𝐵𝑐 (SS-GEMM). Commit.

22: Wait for dO𝑖 to be loaded in shared memory.
23: On chip, compute dP

( 𝑗 )
𝑖

= dO𝑖V
⊤
𝑗
∈ R𝐵𝑟×𝐵𝑐 (SS-GEMM). Commit.

24: On chip, wait for S
( 𝑗 )
𝑖

, then compute P
( 𝑗 )
𝑖

= exp(S𝑖 𝑗 − 𝐿𝑖) ∈ R𝐵𝑟×𝐵𝑐 .
25: On chip, wait for dP

( 𝑗 )
𝑖

, then compute dS
( 𝑗 )
𝑖

= P
( 𝑗 )
𝑖
◦ (dP( 𝑗 )

𝑖
− 𝐷𝑖) ∈ R𝐵𝑟×𝐵𝑐 .

26: On chip, compute dV 𝑗 ← dV 𝑗 + (P( 𝑗 )𝑖
)⊤dO𝑖 ∈ R𝐵𝑐×𝑑 (RS-GEMM). Commit.

27: On chip, compute dK 𝑗 ← dK 𝑗 + dS( 𝑗 )𝑖

⊤
Q𝑖 ∈ R𝐵𝑐×𝑑 (RS-GEMM). Commit and wait for both dV 𝑗 and dK 𝑗 .

28: On chip, compute dQ(local)
𝑖

= dS
( 𝑗 )
𝑖

K 𝑗 ∈ R𝐵𝑟×𝑑 (SS-GEMM), and write dQ(local)
𝑖

to smem. Notify the
dQ-writer.

29: end for
30: else if in dQ-writer warp then
31: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do
32: Wait for dQ(local)

𝑖
to be ready in smem.

33: Using a semaphore, atomically add dQ(local)
𝑖

to dQ𝑖 in global memory.
34: end for
35: end if
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B.2 2-Stage Pipelining SASS Analysis
We give simplified SASS code for the inside of the consumer warpgroup mainloop.

// Compute row_max
FMNMX.FTZ R0, R24, R6, !PT ;
SHFL.BFLY PT, R185, R2, 0x2, 0x1f ;
... FMNMX and SHFL.BFLY ...

// Apply exp2 and row_sum. Rescale O.
FMUL.FTZ R2, R4, UR9 ;
MUFU.EX2 R185, R184 ;
FFMA.FTZ R24, R24, UR9, -R6.reuse ;
FADD.FTZ R24, R211, R24 ;
... FMUL, FFMA, FMUL, MUFU.EX2, FADD ...

// FP32 -> FP16 conversion are interleaved with exp2, row_sum and O rescaling.
F2FP.F16.F32.PACK_AB R231, R25, R231 ;
... F2FP, FMUL, MUFU, FFMA, FADD ...

// Start the first WGMMA. Broken down into 8 HGMMAs.
// The first 7 HGMMAs are packed together.
WARPGROUP.ARRIVE ;
HGMMA.64x192x16.F32 R24, gdesc[UR44], RZ, !UPT ;
... HGMMA x 6 ...

// FP32->FP16, exp2, row_sum, O rescaling are interleaved with HGMMA.
F2FP.F16.F32.PACK_AB R214, R214, R187 ;
MUFU.EX2 R234, R5 ;
FADD.FTZ R237, R187, R2 ;
... F2FP, MUFU, FADD ...

// The last HGMMA is issued here. No need to wait.
HGMMA.64x192x16.F32 R24, gdesc[UR44], R24, gsb0 ;

// Start the second WGMMA. Broken down into 12 HGMMAs.
// All 12 HGMMAs are packed together. Not interleaved with other instructions.
WARPGROUP.ARRIVE ;
HGMMA.64x128x16.F32 R120, R228, gdesc[UR8].tnspB, R120 ;
... HGMMA x 10 ...
HGMMA.64x128x16.F32 R120, R184, gdesc[UR8].tnspB, R120, gsb0 ;

// wgmma.wait_group at the end.
WARPGROUP.DEPBAR.LE gsb0, 0x0 ;

We make the following observations:

1. Softmax is reordered to the very beginning, even before the first WGMMA.

2. The first WGMMA is interleaved with softmax and FP32 → FP16 datatype conversion of S. This indicates
that WGMMA and non-WGMMAs are executed in parallel.

3. exp2, row\_sum, O rescaling and FP32 → FP16 conversions are interleaved together.

4. The second WGMMA is not overlapped with other instructions, as expected.

Overall, SASS shows that the 2-stage pipelining idea works as expected.
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B.3 3-Stage Pipelining Algorithm
We experiment with a 3-stage pipelining algorithm to parallelize the first WGMMA from iteration 𝑗 + 2, softmax
from iteration 𝑗 + 1, and the second WGMMA from iteration 𝑗 . We describe this algorithm in Algorithm 4. This
algorithm behaves worse than the 2-stage pipelining algorithm due to the reasons below:

Figure 8: 3-Stage Pipelining

Algorithm 4 FlashAttention 3-stage pipelining consumer warpgroup forward pass

Require: Matrices Q,K,V ∈ R𝑁×𝑑 in HBM, block sizes 𝐵𝑐, 𝐵𝑟 . Each warpgroup reads 1 block Qi of size 𝐵𝑟 × 𝑑,
𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1, . . . ,K𝑇𝑐 and V1, . . . ,V𝑇𝑐 of size 𝐵𝑐 × 𝑑. Each warpgroup writes 1 output block O𝑖 of size

𝐵𝑟 × 𝑑, and 1 logsumexp block 𝐿𝑖 of size 𝐵𝑟 .
1: Initialization. Load Q𝑖 from HBM to on-chip SRAM. Initialize O𝑖 , ℓ𝑖 , 𝑚𝑖 , 𝑠𝑐𝑎𝑙𝑒_𝑜.
2: Wait for the producer warpgroup loading K0 from HBM to on-chip SRAM.
3: Compute S = Q𝑖K

𝑇
0 using WGMMA. Commit and wait.

4: Compute 𝑚𝑖, P̃𝑖, ℓ𝑖, 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
5: Wait for the producer warpgroup loading K1 from HBM to on-chip SRAM.
6: Compute S = Q𝑖K

𝑇
1 using WGMMA. Commit and wait.

7: for 2 ≤ 𝑗 < 𝑇𝑐 − 2 do
8: Wait for the producer warpgroup loading K 𝑗 from HBM to on-chip SRAM.
9: Compute S_𝑛𝑒𝑥𝑡 = Q𝑖K

𝑇
𝑗

using WGMMA. Commit but do not wait.
10: Wait for the producer warpgroup loading V 𝑗−2 from HBM to on-chip SRAM.
11: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
12: Compute O𝑖 = O𝑖 + P̃𝑖V 𝑗−2 using WGMMA. Commit but do not wait.
13: Compute 𝑚𝑖, P̃𝑖_𝑛𝑒𝑥𝑡, ℓ𝑖, 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
14: Wait for all previous WGMMAs.
15: Copy S_𝑛𝑒𝑥𝑡 to S.
16: Copy P̃𝑖_𝑛𝑒𝑥𝑡 to P̃𝑖.
17: end for
18: Wait for the producer warpgroup loading V𝑇𝑐−2 from HBM to on-chip SRAM.
19: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
20: Compute O𝑖 = O𝑖 + P̃𝑖V𝑇𝑐−2 using WGMMA. Commit and wait.
21: Compute 𝑚𝑖, P̃𝑖, ℓ𝑖, 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
22: Wait for the producer warpgroup loading V𝑇𝑐−1 from HBM to on-chip SRAM.
23: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
24: Compute O𝑖 = O𝑖 + P̃𝑖V𝑇𝑐−1 using WGMMA. Commit and wait.
25: Epilogue. Rescale O𝑖 based on ℓ𝑖. Compute 𝐿𝑖 based on ℓ𝑖 and 𝑚𝑖. Write O𝑖 and 𝐿𝑖 to HBM as the 𝑖-th block

of O and 𝐿.

Overlapping. We expected that softmax can be overlapped with (the first WGMMA + the second WGMMA).
However, the compiler doesn’t cooperate in this way. SASS code shows that only the first WGMMA is overlapped
with softmax, while the second WGMMA is not. It’s not clear why the compiler chooses to reorder instructions in
this way.
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Register pressure. This algorithm requires more registers compared to the 2-stage pipelining algorithm. In theory,
it needs to store an extra P̃𝑖 and 𝑠𝑐𝑎𝑙𝑒_𝑜, which is of size 𝐵𝑟 × 𝐵𝑐 × sizeof(input_data_type) + 𝐵𝑟 × sizeof(float).
As a result, a smaller block size needs to be chosen.

C Addition Details on Experiments and Benchmarking

C.1 System and libraries
We benchmark the speed on an H100 80GB SXM5 (700W). We generally use the latest versions of the libraries, at
the time of writing (May 2024). Specifically, we use:

• CUDA 12.3

• cuDNN 9.1.1.17

• CUTLASS 3.5

• FlashAttention 2.5.8

• Triton nightly 3.0.0.post20240424212437

• PyTorch 2.3.0

To reduce variability, we fix the GPU clock speed to 1830MHz (clock speed used to calculate the 989 TFLOPS
FP16 theoretical max throughput). We repeat the benchmarks 100 times and take the average timing.

C.2 FP8 Attention Full Results
We use following sequence lengths: 512, 1024, 2048, 4224, 8448, 16896. When sequence length ≥ 4k, we make it also
divisible by 132 (number of SMs in H100 SXM5) to avoid wave quantization.

21



512 1k 2k 4k 8k 16k
Sequence length

400

800

1200

Sp
ee

d 
(T

FL
OP

s/
s)

392
444 473 499 506 511

344
398

447
413 431 438

240

396
462

568 596 613

Attention forward speed, head dim 64 (H100 80GB SXM5)
Triton
cuDNN
FlashAttention-3

(a) Forward, without causal mask, head dim 64

512 1k 2k 4k 8k 16k
Sequence length

400

800

1200

Sp
ee

d 
(T

FL
OP

s/
s)

234

325
393

440 459 481

194
258

317 324

464 483

164

244

369

475
533

572

Attention forward speed, head dim 64 (H100 80GB SXM5)
Triton
cuDNN
FlashAttention-3

(b) Forward, with causal mask, head dim 64
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(e) Forward, without causal mask, head dim 256
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Figure 9: Attention forward speed (FP8) on H100 GPU
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