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Abstract

Large Language Models (LLMs) have become more prevalent in long-context applications such as
interactive chatbots, document analysis, and agent workflows, but it is challenging to serve long-context
requests with low latency and high throughput. Speculative decoding (SD) is a widely used technique to
reduce latency without sacrificing performance but the conventional wisdom suggests that its efficacy is
limited to small batch sizes. In MagicDec, we show that surprisingly SD can achieve speedup even for a
high throughput inference regime for moderate to long sequences. More interestingly, an intelligent drafting
strategy can achieve better speedup with increasing batch size based on our rigorous analysis. MagicDec
first identifies the bottleneck shifts with increasing batch size and sequence length, and uses these insights
to deploy speculative decoding more effectively for high throughput inference. Then, it leverages draft
models with sparse KV cache to address the KV bottleneck that scales with both sequence length and
batch size. This finding underscores the broad applicability of speculative decoding in long-context serving,
as it can enhance throughput and reduce latency without compromising accuracy. For moderate to long
sequences, we demonstrate up to 2x speedup for LLaMA-2-7B-32K and 1.84x speedup for LLaMA-3.1-8
B when serving batch sizes ranging from 32 to 256 on 8 NVIDIA A100 GPUs. The code is available at
https://github.com/Infini-AI-Lab/MagicDec/.

1 Introduction

The landscape of language models has changed dramatically, with models capable of processing extremely
long context lengths becoming increasingly prevalent [3, 6, 10, 16]. Interactive use cases such as chatbots
[1] demand low latency, whereas background data-processing workloads prioritize high throughput [8, 20].
However, simultaneously achieving high throughput and low latency is challenging [2].

Speculative decoding (SD)[7, 15, 31] has emerged as a latency improvement technique which is guaranteed
to maintain the generation quality. A fast draft model is used to generate multiple tokens and then the
LLM verifies the speculated tokens in parallel, which is only marginally more expensive than decoding one
token. However, SD has been believed to be less effective in improving throughput with larger batch sizes
[17, 19, 26, 27]. On the other hand, methods like vLLM [14] and ORCA [34] can achieve high throughput by
serving more requests, but cannot reduce latency. Lossy methods like quantization [11, 13, 32] and pruning
[18, 28] have been proposed to improve both throughput and latency, but they can suffer from performance
degradation. Given these trade-offs, we pose the following question:
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(a) Throughput of Autoregressive decoding and
SD for prefill 8000.
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(b) Throughput ratio of SD vs Autoregressive
for various latency budgets.

Figure 1: Throughput vs. Latency for TinyLLama-1.1B speculating LLaMA-2-7B-32K at different prefill lengths.
(a) Throughput of autoregressive and SD against per-token latency for prefill 8000. (b) Throughput ratio of SD to
autoregressive across latency budgets, showing that SD improves throughput for sequences longer than 1024.

Can we simultaneously improve throughput and latency without sacrificing accuracy, particu-
larly for long sequences?

In this work, we challenge the conventional belief that speculative decoding is inefficient for increasing
throughput. We demonstrate that for moderate to large sequence lengths, speculative decoding can
achieve all three objectives: increased throughput, reduced latency, and lossless accuracy. Furthermore,
by addressing the KV bottleneck using draft models with sparse KV cache, we can achieve even better
speedup for larger batches of requests.

This conclusion is derived from a comprehensive analysis of LLM decoding performance, which reveals
that as batch size grows, LLM decoding remains memory-bound for medium-to-long sequences[5, 27]. In this
regime, KV cache becomes the dominant bottleneck. Unlike model parameter loading, this new bottleneck
scales with batch size, making speculative decoding even more effective for large batches. As Figure 1
illustrates, for a given latency budget, SD has higher throughput than autoregressive decoding, and the
efficacy of SD is evidently greater for longer sequences. Moreover, if we can allow a higher latency budget, we
can improve throughput even more with MagicDec.

The main contributions of our work are:

1. We performed a theoretical analysis of LLM inference performance with speculative decoding. Our
findings indicate that with medium-to-long sequence lengths and large batch sizes, LLM remains
memory-bound and can be effectively accelerated through speculative decoding.

2. We found KV cache size of draft models, rather than model weights, is the most important factor in large
batch and long sequence regime from our analysis. Therefore, we propose draft models with constant
KV cache by StreamingLLM [33], making improving speedup with increasing batch size possible.

3. To verify our analysis, we conducted empirical evaluations across various GPUs and LLMs by sweeping
batch sizes and sequence lengths. Our SD based system improves both throughput and latency, achieving
a 2x speedup over autoregressive decoding for LLaMA-2-7B-32K and a 1.84x speedup for LLaMA-3.1-8B
on 8 A100 GPUs .

2 Related Work

Numerous efforts have been made to improve the latency and throughput of LLMs. While methods like
Flash-decoding [9], Flash-decoding++[12], FasterTransformers[21] have performed system optimizations
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to improve latency, Speculative Decoding[7, 15, 31] has emerged as a novel sampling algorithm to speed
up inference. On the other hand, batching has been a natural technique to improve GPU utilization and
throughput. To make batching more effective, continuous batching [14, 22, 34] and chunked prefill [2]
techniques have proposed intelligent batch scheduling techniques. Although these techniques can address
the problems arising from heterogeneous batches with unequal context and generation lengths, they cannot
solve the memory-bound problem of autoregressive decoding. In our work, we have considered the orthogonal
direction of homogeneous batches, and therefore the aforementioned methods are complementary to our
observation.

In our work, we have used speculative decoding as a method to balance the throughput-latency trade-off.
We have particularly focused on draft models with StreamingLLM KV cache. This approach is motivated by
the recent finding in Triforce [27] that self-speculation with sparse KV is an effective draft choice when KV
loading is the main bottleneck. While Triforce is designed for small batches of extremely long sequences, we
have focused on large batches of moderate to long sequences in our work.

Although promising for single batch requests, Speculative Decoding poses new challenges when implemented
with batch support. Because the number of accepted tokens in SD follows a truncated geometric distribution
[15], the average accepted length can vary throughout the batch, leading to misalignment of the sequence
lengths. Qian et al.[24] have optimized the attention kernels to take care of this unequal number of accepted
tokens across the batch. However, as previously reported, the excess computation for SD could be restrictive
in a large batch size regime [17, 19, 26, 27]. Hence, [17, 26] suggest a reduction in speculation length with
increasing batch size.

These findings imply that SD is not as effective in improving throughput; however, we notice that these
observations are limited to a very small sequence-length regime. In our work, we focus on the relatively
longer sequences that have been ubiquitous in practice.

3 Theoretical Analysis

In this section, we first outline the theoretical model to estimate the speed-up using SD and discuss various
factors that affect it. In addition, we conduct several theoretical analysis on how the effect of these factors
varies in different sequence length and batch size regimes. This forms the basis of our empirical studies
discussed in section §5.

As introduced in §1, SD uses the LLM (target model) to verify the tokens speculated by a small draft
model. This parallel verification amortizes the cost of loading the model parameters. The final output tokens
are sampled using rejection sampling, ensuring the same output as the target distribution [7, 15].

3.1 Mathematical Formulation of Speedup

Given a speculation length γ for a sequence of length S and batch size B, let TT(B,S,1) and TD(B,S,1)
denote the times taken by the target and draft models to decode one token, respectively. The verification
time, TV(B,S, γ), is the time it takes the target model to verify the γ tokens speculated by the draft model
in a single forward pass. Given an acceptance rate α ∈ [0, 1] and speculation length γ, Ω(γ, α) represents the
expected number of tokens generated in one verification step, as described in [15].

Ω(γ, α) := E(# generated tokens) =
1− αγ+1

1− α
(1)

The total time taken for speculative decoding, TSD
Total, is given by:

TSD
Total = γ · TD(B,S, 1) + TV (B,S, γ)

The per-token latency for speculative decoding is simply TSD
Avg =

TSD
Total

Ω(γ,α) .

For simplicity, we will refer to these times as TT , TD, and TV going forward, with the dependence on B
and S implied unless otherwise specified. The total speedup from speculative decoding is then expressed as:

TT

TSD
Avg

= Ω(γ, α) · TT

γ · TD + TV (γ)
(2)
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Figure 2: Theoretical analysis and expected speedup for LLaMA-2-7B-32K (top row) and LLaMA-3.1-8B (bottom row)

models deployed on 8×A100s with γ = 3. (a, d) Theoretical TD
TT

versus batch sizes, (b, e) Theoretical TV(γ)
TT

versus

batch size, and (c, f) Theoretical expected speedup with self-speculation for a budget of 512 across different batch
sizes.

This equation can be further rewritten as:

TSD
Avg

TT
=

1

Ω(γ, α)

(
γ · TD

TT
+

TV (γ)

TT

)
(3)

3.2 Factors Affecting Speculative Decoding Speedup

Using Eq 3, we can see that speed-up depends on three primary factors: (a) draft to target cost ratio TD

TT
(b)

verification to target decoding cost ratio TV (γ)
TT

and (c) expected generation length Ω(γ, α).

1. Draft to Target Cost Ratio (TD/TT ) : A lightweight draft model is generally preferred for a shorter
model loading time and fewer computations, leading to TD/TT ≈ 0. However, with increasing sequence
length, the bottleneck is shifted to KV cache loading. Furthermore, this bottleneck scales linearly with batch
size, making KV loading an even bigger bottleneck for large batches as shown in Figure 3a. In the cases of
LLaMA-3.1-8B for LLaMA-3.1-70B and LLaMA-2-7B for LLaMA-2-70B , the draft models can occupy up to
38 ∼ 140% memory footprint of target models (Figures 3b and 3c)due to the fact that dimkv/dimmodel is
higher. Hence, for long sequences, draft models with sparse KV is quite beneficial[27]. This can be seen in
Figure 4a, which illustrates how TD/TT for self-speculation approaches 0 with increasing sequence length for
batch size 256.
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(b) LLaMA-3.1-8B /LLaMA-3.1-70B
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Figure 3: Theoretical analysis of KV cache bottleneck in speculative decoding. (a) Time breakdown of LLaMA-2-
7B vs batch size (4096 prefill): KV cache, weights, activations loading, and compute. (b,c) Draft/target memory
ratio vs batch size across different sequence lengths for LLaMA-3.1-8B /LLaMA-3.1-70B and LLaMA-2-7B /LLaMA-2-70
B architectures.

In addition, Figure 2a and Figure 2d show how this ratio diminishes with increasing batch size for
sufficiently long sequences. While the draft cost increases with larger batch sizes mainly due to increased
computation time, the target cost rises even more due to the greater KV loading time. This makes the
draft-to-target cost ratio decrease with increasing batch size, making speculative decoding more effective.

2. Verification to Target Decoding Cost Ratio (TV (γ)/TT ) : As evident from Eq 3, this ratio is
desired to be close to 1. In low batch size setting, the verification process makes use of the underutilized
compute and amortizes the cost of model loading. However, previous work [17] observed that with large batch
sizes, TV (γ)/TT becomes significantly greater than 1 as the model becomes more compute-bound [17, 19].

Our theoretical analysis challenges this argument. Figure 2b and Figure 2e illustrate how the ratio changes
for LLaMA-2-7B-32K and LLaMA-3.1-8B with increasing batch size for different sequence lengths and a fixed
speculation length of 3. As can be seen from the two figures, the (TV (γ)/TT ) ratio is expected to remain
reasonably close to 1 for long sequences even when the batch size is quite large.

3. The expected generation length (Ω(γ, α)): Ω is a function of the acceptance rate α and the speculation
length γ. Here we look at how α and γ affect Ω and hence the speedup.

(a) α: For a fixed draft cost, as α increases, Ω(γ, α) increases, leading to a higher speed-up. In the regimes
where TV (γ) ≫ TT , α becomes pivotal as a lower α leads to considerable time spent on verifying tokens
that are eventually discarded [17]. On the other hand, achieving a higher α usually comes at the cost
of a higher TD.

(b) γ: A longer speculation length increases Ω(γ, α), but it also raises the verification and draft decode
costs. In addition, the proportion of accepted tokens reduces with increasing γ [17]. This is because Ω
follows a truncated geometric distribution [15], as seen in eq. 1. Thus, finding the optimal γ is crucial
for achieving the best speedup under different batch sizes and sequence lengths.

3.3 Speculative Decoding Speedup Analysis

In this section, we examine the impact of increasing batch size on speculative decoding performance and
discuss how our theoretical analysis provides insights into overcoming this challenge.

Our analysis identifies a critical sequence length Sinflection for a given model pair and hardware.
When S ≥ Sinflection, the speculative decoding speedup tends to increase with batch size. However,
this is not the case for S < Sinflection.
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Figure 4: Theoretical analysis of self-speculation for LLaMA-2-7B and LLaMA-3.1-8B with a draft StreamingLLM

budget of 512 and a batch size of 256. (a) Ratio of target-draft latency
(

γ·TD
TT

)
and verification-target latency

(
TV (γ)
TT

)
versus sequence length for LLaMA-2-7B-32K , with γ = 3. (b) Theoretical speedup for different sequence lengths with
a fixed α = 0.8. (c) Theoretical arithmetic intensity for different sequence lengths and different models.

S < Sinflection: As noted in Subsection §3.2, a shorter verification time allows SD to achieve a greater
speedup. While serving smaller batches, SD can efficiently use underutilized compute resources for its
verification phase. However, large batches can saturate the available compute, making verification more
expensive. If the draft token acceptance rate is low, the target model spends considerable time verifying
incorrect speculations, reducing SD efficiency.

In this regime, our theoretical estimate aligns with Liu et al.[17]. As illustrated in Figure 2c, the speedup
with SD decreases with batch size for prefill lengths below the critical sequence length.

S ≥ Sinflection : In this regime, we note that both TD

TT
and TV (γ)

TT
are low, favoring speculative decoding as

per equation 3. For sufficiently long sequences, the ratio TD

TT
decreases with increasing batch size, as discussed

in Section §3.2. Furthermore, the rate of increase in TV (γ)
TT

with the batch size is significantly slowed for
longer sequences, while the acceptance rate remains unaffected. As a combined effect, there is an increase in
speedup with batch size.

The key observation behind our analysis is that, for large sequences, KV becomes the main bottleneck
instead of compute [5, 27]. This shift in bottleneck from compute to KV memory forces the target model to
be memory bound even for a large batch size. Figure 4c shows for batch size 256 how the bottleneck changes
from compute to memory with increasing sequence length (for different models and hardware pairs). As a

result of this shift, the estimated ratios of verification and decoding time
(

TV (γ)
TT

)
remain consistently close

to 1 for S > Sinflection (see Figure 2b). In addition, Figure 3a shows how KV loading becomes even more
dominant with increasing batch size. If we use sparse KV cache for the draft model, the draft to target cost
ratio will go down with increasing batch size. Consequently, we expect a greater speedup for larger batches.
Thus, as Figure 2c illustrates in the case of LLaMA-2-7B-32K , the speedup with SD is expected to improve
with increasing batch size for longer sequence lengths. It can be seen that the theoretical speedup decreases
with batch size for S < 1024, but for S ≥ 1024, the speedup increases with batch size.

Factors Affecting Sinflection: The critical sequence length, Sinflection, depends on both the model and the
hardware. Figure 4c shows the FLOPS-to-memory ratio for LLaMA-2-7B and LLaMA-3.1-8B . For a device
with a higher FLOPS-to-memory bandwidth ratio, we expect a lower Sinflection, as illustrated in Figure 4c.
Additionally, the model itself influences Sinflection. For instance, LLaMA-3.1-8B has a higher Sinflection due
to its Grouped Query Attention (GQA), which requires a larger sequence length to achieve the same KV
memory footprint (see Figure 4b).
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4 Draft Model Design

As discussed in §3, with the increasing batch size and the growing sequence length, the KV cache becomes the
bottleneck. Accurate draft models with constant KV cache are ideal. Similar to [27], we use StreamingLLM
[33] for draft models due to its simplicity and effectiveness. It employs attention sinks (KV of initial tokens)
with a sliding window KV for attention computation, enabling a stable, training-free method to handle
infinitely long contexts. Specifically,

Self-Speculation. We leverage target models with StreamingLLM cache for accurate drafting since KV
cache, rather than model weights, becomes major bottleneck. As we see in our theoretical analysis in Figure
4a for batch size 256, the relative cost of the self-speculation draft (with fixed budget 512) approaches 0 for
large sequence lengths.

Standalone GQA Draft Models. Since the KV size is several times smaller than that of regular (MHA)
models, GQA draft models can further reduce draft cost on the basis of StreamingLLM cache, when the
batch size and sequence length are large.

5 Experiments

In this section, we demonstrate how speculative decoding increases speedup with batch size for sufficiently
large sequence lengths, which matches our theoretical analysis. We conducted most experiments on 8 Nvidia
A100 GPUs with 8-way Tensor Parallelism. We also tested on higher-end GPUs like Nvidia H100 and
lower-cost alternatives like Nvidia L40, these results are shown in Table 2a and Table 2b. Across all these
devices, we show that speculative decoding achieves significantly better throughput and lower latency than
autoregressive decoding with long sequence lengths.

Algorithm 1 GQA Custom

Require: Matrices for incoming query Q ∈ RHq×T×d, incoming key and values K,V ∈ RHk×T×d, past KV
Kcache, Vcache ∈ RHk×L×d

Ensure: Output matrix Y ∈ RHq×T×d, updated Kcache, Vcache

1: Define G← Hq/Hk

2: Flatten query heads Qi·G, . . . Qi·G+G−1 along sequence length dimension ∀i ∈ {0, . . . , Hk − 1} such that, Q ∈
RHk×(T ·G)×d.

3: Initialize knew = (0)Hk×(T ·G)×d, vnew = (0)Hk×(T ·G)×d, offset← (0)T ·G
4: knew[:, i · G, :] ← k[:, i, :], vnew[:, i · G, :] ← v[:, i, :] ∀i ∈ {0, . . . , T − 1} {#zero vectors interleaved to simulate

block-diagonal masking}
5: offset[i ·G]← i · (G− 1) ∀i ∈ {0, . . . , T − 1} {#zero key vectors add bias to partition function}
6: y, lse← flash attn with kvcache(q, kcache, vcache, knew, vnew)
7: correction← 1/(1− offset · exp(−lse))
8: y ← y · correction
9: Reshape y back to (Hq, T, d)

10: Update kcache, vcache with new k, v
11: return y

5.1 Experimental Setup

In our experiments, we focused on two types of draft models as we discussed in Section 4. We tested various
StreamingLLM cache budgets to balance draft cost and acceptance rate. These experiments were performed
on the PG-19 dataset [25]. Each run was evaluated on 50 samples, generating 64 tokens per sentence in the
batch using greedy decoding. The specifics of our draft selection are as follows:

1. Self-Speculation: We experimented with LLaMA-2-7B-32K [29, 30] and LLaMA-3.1-8B-128K [3]
models with various StreamingLLM budgets for drafting.
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2. Standalone GQA Model: We used the long context variant of LLaMA-2-7B, LLaMA-2-7B-32K [29],
as the target model and TinyLLaMA-1.1B [35] for drafting.

5.2 System Implementation

We built our speculative decoding system on top of GPT-Fast [23]. FlashAttention-2 [9] was used to accelerate
attention computation. During implementation, we observed that Grouped-Query Attention (GQA) [4]
lacks adequate support from FlashAttention when verifying multiple tokens simultaneously. To address
this, we modified the GQA implementation to achieve the desired speed improvements detailed below (see
Algorithm 1). Additionally, we used Pytorch CUDA graphs to reduce CPU-side kernel launching overhead.
For self-speculation and draft models with limited context length, we used StreamingLLM [33] with fixed KV
cache budgets. This predetermined cache budget helps save CPU overhead through CUDA graphs.

Optimized Group Query Attention: The implementation of Group Query Attention (GQA) by
FlashAttention[9] is found to be poorly optimized for the verification of multiple tokens. However, there
is no such problem with regular Multi-Head Attention (MHA). Thus, to circumvent the problem of slow
verification, we utilized FlashAttention’s MHA to implement GQA. The implementation details can be found
in Algorithm 1.
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Figure 5: End-to-end speedups for target-draft pairs across various StreamingLLM budgets (top: 256, bottom: 512).
Annotations indicate γoptimal, the γ value corresponding to the highest speedup achieved, with γ ∈ {1, 2, 3, 4} for LLaM
A-2-7B-32K and γ ∈ {1, 2, 3, 4, 5} for LLaMA-3.1-8B targets.

5.3 Results

The main results of the experiment are summarized in Figures 5. These figures show the speedup achieved
by speculative decoding at the optimal speculation length (γoptimal) across various batch sizes and sequence
lengths.

We can find that speculative decoding consistently outperforms autoregressive decoding except when the
batch size is large and the sequence length is short. Moreover, as the sequence length increases, the speedup
grows with batch size, achieving both higher throughput and lower latency. With optimal speculation lengths,
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(a) LLaMA-2-7B-32K , TinyLLama-1.1B

S B γTD TV Ω TAR TSD x

1024 32 8.21 9.55 2.19 8.27 8.70 0.95

1024 48 8.46 10.66 2.19 9.41 9.33 1.01

1024 64 9.26 13.05 2.19 10.83 10.80 1.00

1024 128 12.04 18.87 2.19 14.02 14.83 0.94

4000 32 8.46 13.21 2.19 11.89 10.52 1.13

4000 48 8.71 16.19 2.19 14.39 12.02 1.20

4000 64 9.35 21.83 2.19 19.28 14.88 1.30

4000 128 12.31 33.82 2.19 28.77 21.78 1.32

8000 32 8.61 18.40 2.18 16.53 13.02 1.27

8000 48 8.91 23.67 2.18 21.45 15.58 1.38

8000 64 9.58 34.32 2.18 31.49 20.80 1.51

8000 128 12.54 53.78 2.18 49.89 31.25 1.60

16000 32 8.78 27.79 2.17 26.28 17.46 1.50

16000 48 9.33 38.29 2.18 35.83 22.52 1.59

16000 64 9.92 58.14 2.17 55.08 31.99 1.72

24000 32 8.68 37.57 2.16 35.70 22.05 1.62

24000 48 9.31 52.89 2.16 50.28 29.48 1.71

32000 32 8.83 47.35 2.17 44.94 26.55 1.69

(b) LLaMA-2-7B-32K Self Speculation

S B γTD TV Ω TAR TSD x

4000 32 15.42 13.17 2.56 11.89 11.69 1.02

4000 48 16.96 16.38 2.56 14.39 13.55 1.06

4000 64 19.75 22.01 2.57 19.28 16.82 1.15

4000 128 25.82 33.79 2.56 28.77 23.86 1.21

8000 32 15.70 18.23 2.53 16.53 13.99 1.18

8000 48 18.44 24.32 2.53 21.45 17.50 1.23

8000 64 20.03 34.30 2.53 31.49 22.05 1.43

8000 128 26.10 53.69 2.52 49.89 32.25 1.55

16000 32 16.06 27.54 2.50 26.28 18.02 1.46

16000 48 19.75 39.03 2.50 35.83 24.15 1.48

16000 64 20.87 58.15 2.51 55.08 32.16 1.71

24000 32 15.80 37.06 2.49 35.70 21.77 1.64

32000 32 16.19 46.55 2.50 44.94 25.64 1.75

(c) LLaMA-3.1-8B Self Speculation

S B γTD TV Ω TAR TSD x

4000 32 13.16 10.32 2.54 8.83 9.78 0.90

4000 64 16.48 13.55 2.54 10.07 12.36 0.81

4000 128 23.41 19.77 2.54 13.42 17.70 0.76

4000 256 39.29 35.05 2.53 23.23 30.46 0.76

8000 32 13.28 11.34 2.50 9.90 10.40 0.95

8000 64 16.98 16.06 2.51 14.16 13.72 1.03

8000 128 23.59 24.84 2.51 18.53 19.97 0.93

8000 256 39.32 46.44 2.51 35.35 34.99 1.01

16000 32 14.46 14.00 2.47 11.93 12.10 0.99

16000 64 18.00 21.15 2.48 17.17 16.40 1.05

16000 128 25.77 34.82 2.46 28.00 25.36 1.10

32000 32 14.12 19.04 2.46 17.13 14.05 1.22

32000 64 19.08 30.86 2.45 26.99 21.03 1.28

32000 128 28.26 54.98 2.45 47.24 34.94 1.35

64000 32 14.92 28.88 2.40 26.96 18.91 1.43

64000 64 18.25 50.19 2.40 46.09 29.22 1.58

100000 32 15.10 39.84 2.45 37.70 23.05 1.64

Table 1: Comparison of results for different LLaMA models and configurations (budget=512 and γ = 2, 8× A100).
Here S and B represent prefill length and batch size, respectively.

(a) Results on 8 × L40, StreamingLLM budget for the draft model is 512, each with the optimal γ

Target Draft Prefill Bsz γ γTD(1) TV(γ) Ω(γ, α) TAR TSD x

Llama3.1-8B Selfspec 32000 32 3 44.11 45.12 3.00 36.62 30.32 1.21

Llama2-7B Selfspec 8000 32 2 29.06 42.02 2.53 35.13 28.70 1.22

Llama2-7B Tinyllama1.1B 8000 32 3 12.01 42.96 2.53 22.32 56.48 1.57

Llama2-7B Selfspec 8000 64 3 58.33 74.85 3.14 62.92 42.96 1.46

Llama2-7B Tinyllama1.1B 8000 64 3 19.66 74.91 2.51 62.92 38.33 1.64

(b) Results on 4 × H100, StreamingLLM budget for the draft model is 256, each with the optimal γ

Target Draft Prefill Bsz γ γTD(1) TV(γ) Ω(γ, α) TAR TSD x

Llama3.1-8B Selfspec 32000 16 2 9.42 12.46 2.36 11.90 9.60 1.24

Llama3.1-8B Selfspec 32000 32 3 15.09 18.30 2.82 17.32 12.16 1.42

Llama2-7B Selfspec 8000 32 3 14.20 15.64 2.98 14.85 10.29 1.44

Llama2-7B Tinyllama1.1B 8000 32 3 6.57 15.65 2.48 14.85 9.28 1.60

Llama2-7B Selfspec 8000 64 4 23.63 27.90 3.37 26.17 15.58 1.68

Llama2-7B Tinyllama1.1B 8000 64 4 9.51 27.87 2.69 26.17 14.25 1.84

Table 2: Results on L40 and H100

SD achieves a 2x speedup over autoregressive decoding for LLaMA-2-7B-32K self-speculation at a sequence
length of 32k and batch size 32, and a 1.84x speedup for LLaMA-3.1-8B at a sequence length of 100k and
batch size 32. These combinations of sequence length and batch size correspond to the maximum KV size
that fits within our experimental setup as detailed in Section §5.1.

The raw values for the verification, draft, and target latencies for specific StreamingLLM budgets and γ
are reported to support our discussion (Table 1). The results on 8 L40 and 4 H100 GPUs are also shown in
Tables 2a and 2b, demonstrating that speculative decoding performs well when the batch size and sequence
length are large on different types of GPUs. These tables also illustrate the influence of FLOPS-to-memory
bandwidth ratios of different devices on speedup.

For most cases in our experiment, the relative gain in acceptance rate for budget 1024 over budgets 256
and 512 is not a good tradeoff. However, for longer sequences, as the relative size of the target KV is the
main bottleneck, a higher α of a higher budget can be an important factor in providing speedup, as Ω(γ, α)
is higher. Notably, our 2x speedup comes for batch size 32 and sequence length 32k for the LLaMA-2-7B-32K
self-speculation setting for the highest StreamingLLM budget size of 1024 (Figure 6b).

Based on these results, we infer the following:

1. As hypothesized in §3.3, this inflection is evident in Figure 5. SD does not provide speedup with
increased batch size for LLaMA-2-7B-32K and LLaMA-3.1-8B when S < 2000 and S < 8000, respectively.
However, for sequences longer than these inflection points, we observe consistent improvements in
speedups with higher batch sizes. These empirical values align well with the expectations on Figure 4b.
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The factors affecting Sinflection are discussed in detail in §3. We present the raw numbers in Tables 1 for
8 A100 GPUs.

2. Conventionally, γoptimal is expected to decrease with batch size [17]. However, this is not universal. As
shown in Figures 5b and 5a, for S > Sinflection, γoptimal can increase with larger batch sizes. Similarly,
an improved speedup is observed with batch size increasing in this regime.

3. Based on Figure 5 for A100 and Table 2b for H100, we observe a higher speedup on the H100 device.
This is because the H100 has a higher FLOPS-to-memory bandwidth ratio than the A100, leading to
TV ≈ TT . Additionally, the higher compute bandwidth of the H100 reduces TD, resulting in better
speedup.

6 Conclusion

This work reassesses the trade-off between throughput and latency in long-context scenarios. We show
that speculative decoding can enhance throughput, reduce latency, and maintain accuracy. Our theoretical
and empirical analysis reveals that as the sequence length and batch size increase, bottlenecks shift from
being compute-bound to memory-bound. This shift enables effective use of speculative decoding for longer
sequences, even with large batch sizes, achieving up to 2x speedup for LLaMA-2-7B-32K and 1.84x for L
LaMA-3.1-8B on 8 A100 GPUs. More surprisingly, larger batches can achieve even better speedup from
speculative decoding if draft models with sparse KV cache are used. These results highlight the need to
integrate speculative decoding into throughput optimization systems as long-context workloads become more
common.
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A Appendix

A.1 Additional Results
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Figure 6: End-to-end Speedups for LLaMA-2-7B-32K with TinyLLama-1.1B and self-speculation draft with
StreamingLLM of budget 1024. Annotations indicate γoptimal where γoptimal ∈ {1, 2, 3, 4}
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