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Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently
been found to be largely ineffective in modern LLMs. Existing approaches for training self-correction either
require multiple models or rely on a more capable model or other forms of supervision. To this end, we
develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an
LLM’s self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants
of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling
self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution
mismatch between the training data and the model’s own responses or implicitly prefers only a certain mode
of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training
under the model’s own distribution of self-generated correction traces and using appropriate regularization
to steer the learning process into learning a self-correction strategy that is effective at test time as opposed
to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first
phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then
using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5
Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base
models’ self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.

1. Introduction
Large language models (LLMs) have proven to be a useful tool in reasoning and scientific domains such
as mathematical problem-solving and coding (Lozhkov et al., 2024; Shao et al., 2024; Team, 2024). An
aspirational property of LLMs in such settings is to able to implement algorithms: strategies that help
the LLM to use computation and interaction to improve its response on the test-time query. Modern
LLMs largely do not implement algorithms reliably: for instance, consider a problem setting that requires
models to detect and revise (or “self-correct”) their own responses to a given test-time query, so as to
be able to eventually arrive at the best-possible final response. This sort of self-correction capability has
been shown by several recent works to be severely lacking in current LLMs, especially in the absence of
external input (also referred to as intrinsic self-correction) (Huang et al., 2023; Kamoi et al., 2024).

To make progress towards the eventual goal of teaching LLMs to implement algorithms to handle
challenging inputs, we study a special instance of training LLMs to implement self-correction strategies
to fix their mistakes “on-the-fly”. This should be possible: on many queries where current LLMs fail,
they still contain the underlying “knowledge” needed to arrive at the correct response but are unable
to correctly elicit and draw inferences about their own knowledge when needed (Snell et al., 2024).
For example, strong LLMs can often successfully complete a sub-part of a math proof when prompted
with the remainder, but may not be able to complete it from scratch. In a similar vein, leveraging their
previous responses should, in principle, enable LLMs to improve their subsequent ones. Nevertheless,
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Figure 1 ∣ Left: SCoRe achieves state-of-the-art self-correction performance on MATH; Right: SCoRe inference-time scaling:
spending samples on sequential self-correction becomes more effective than only on parallel direct samples (Section 6.2).

self-correction has remained elusive, highlighting the need for going beyond existing training paradigms.

How canwe instill LLMs with self-correction abilities? Prior attempts toward self-correcting LLMs either
rely on prompt-engineering (Kim et al., 2023; Madaan et al., 2023) or fine-tuning models specifically for
self-correction (Havrilla et al., 2024b; Qu et al., 2024; Welleck et al., 2023; Yuan et al., 2024). While the
former class of approaches often fail to effectively perform meaningful intrinsic self-correction, existing
fine-tuning based approaches require running multiple models upon inference, e.g., a separate verifier or
refinement model (Havrilla et al., 2024b; Welleck et al., 2023), or require oracle “teacher” supervision to
guide the process of self-correction (Qu et al., 2024), without which self-correction does not necessarily
outperform independent uncorrelated attempts at the problem. We develop an approach that is effective
at self-correction without any of the aforementioned requirements. Our approach, Self-Correction via
Reinforcement Learning (SCoRe), trains only a single model that can both produce a response to a
reasoning problem and also correct errors despite not receiving any oracle feedback. More importantly,
SCoRe teaches this ability to models entirely by training on self-generated data, without any oracle.

We begin by studying the failure modes of existing fine-tuning based strategies in this setting. We observe
that running supervised fine-tuning on multi-turn self-correction traces coupled with rejection sampling
(i.e., a “multi-turn” variant of STaR (Zelikman et al., 2022)) often amplifies the model’s bias to not
make any error corrections. A minimal edit strategy appears somewhat optimal as it inhibits the model
from learning to make correct responses worse in the second attempt, even though it does not instill
self-correction abilities to the model. If the training dataset for SFT is altered to explicitly down-weight
certain correction traces that only make minor edits, then the resulting training is able to avoid collapse.
However, it suffers from the curse of distributional shift: a correction strategy learned by training on
off-policy data does not necessarily enable the model to be succeed at correcting its own mistakes.

How does SCoRe work? SCoRe addresses the aforementioned challenges with SFT by utilizing online
multi-turn reinforcement learning (RL). Concretely, SCoRe runs multi-turn RL on self-generated data to
avoid challenges with distribution mismatch between training and inference. To avoid the failure mode
of learning a minimal edit strategy when training on on-policy data, we train SCoRe in two stages, with
each stage regularizing the learning process to not collapse its behavior. The first stage replaces SFT
in conventional LLM fine-tuning workflows by training a model initialization that optimizes correction
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performance while constraining the first attempt to be close to the base model. The second stage runs
multi-turn RL to optimize reward at both attempts, while using a reward bonus term that encourages
improving responses from the first attempt to the second. Both the initialization and the reward bonus
ensure that the model cannot simply learn to produce the best first-attempt response and only minorly
edit it. Overall, SCoRe is able to elicit knowledge from the base model to enable positive self-correction.

Our main contribution is SCoRe, a multi-turn RL approach for teaching LLMs how to correct their own
mistakes. To the best of our knowledge, SCoRe is the first approach to attain significantly positive
intrinsic self-correction: relative to base Gemini models, our method attains an absolute 15.6% gain
on self-correction for reasoning problems from MATH (Hendrycks et al., 2021) and an absolute 9.1%
gain on coding problems from HumanEval (Chen et al., 2021). We additionally motivate the design of
SCoRe by extensively studying the failure modes of baseline approaches, which broadly indicate that
reinforcement learning may play an essential role in self-learned self-correction.

2. Related Work
Prior works study self-correction for LLMs under a variety of assumptions and problem settings. The
most prominent problem settings include problems where external input tokens from an environment is
available, for e.g., agentic tasks (Liu et al., 2023), code repair (Jain et al., 2024), and tool use (Chen
et al., 2023). While self-correction with external feedback is possible with strong proprietary models (Pan
et al., 2023), even the strongest models struggle in the substantially more challenging setting when no
external input is available (Kamoi et al., 2024). This setting is called intrinsic self-correction. Prior work
that attempts to amplify intrinsic correction abilities are largely based on prompting and fine-tuning.

Prompting for intrinsic self-correction. Recent work demonstrates that LLMs struggle to self-correct
their reasoning errors without external feedback and naïvely running self-correction can degrade perfor-
mance (Huang et al., 2023; Qu et al., 2024; Tyen et al., 2024; Zheng et al., 2024). These experimental
studies are at odds with prior work (Kim et al., 2023; Madaan et al., 2023; Shinn et al., 2023) and largely
stem from mismatched assumptions on the setting (Kamoi et al., 2024). For example, Kim et al. (2023);
Shinn et al. (2023) use oracle ground-truth answers during self-correction that may not be available
generally. Madaan et al. (2023) use weak prompts for initial responses, thereby perhaps overestimate the
improvement possible by self-correction. This indicates that there is no major work showing successful
intrinsic self-correction via prompting alone. In the context of code self-repair, Olausson et al. (2023)
show that even when strong models are prompted with some form of partial feedback, e.g., showing
test-cases but not the desired outcomes on those test-cases, they are often unable to correct their mistakes.
Sampling multiple responses in parallel attains much better results in Olausson et al. (2023).

Fine-tuning for intrinsic self-correction. To address the issues with prompting off-the-shelf models
alone, several works run supervised fine-tuning (SFT) or weighted SFT on the LLM to generate a revision
given an initial response. Nonetheless typical works in this literature rely on oracle feedback: e.g.,
obtaining revisions directly from human annotators (Saunders et al., 2022) or stronger models (Qu
et al., 2024; Ye et al., 2023). Our work aims to train for self-correction entirely without the use of bigger
models or humans, when the learner itself is asked to generate its own training data. Similar to these
prior works, we assume access to a reward function for evaluating model-generated outputs, similar
to Akyürek et al. (2023); Welleck et al. (2023); Zhang et al. (2024). Other approaches build pipelines
with multiple models for self-correction (e.g., GLoRE (Havrilla et al., 2024b), Self-correct (Welleck et al.,
2023), or Akyürek et al. (2023); Paul et al. (2023)). While this can lead to good results, these pipelines
do not quite tackle self-correction and require system design for serving multiple models at deployment.
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Problem. If 𝑛 ≡ 2 (mod 7), then find the remain-
der when (𝑛 + 2)(𝑛 + 4)(𝑛 + 6) is divided by 7.

SCoRe turn 1 solution (incorrect). Since 𝑛 ≡ 2
(mod 7), we can write 𝑛 = 7𝑘+2 for some integer
𝑘. Substituting, we get

(𝑛 + 2)(𝑛 + 4)(𝑛 + 6) = (7𝑘 + 4)(7𝑘 + 6)(7𝑘 + 8)
≡ 4 ⋅ 6 ⋅ 8 (mod 7)
≡ 192 (mod 7)
≡ 1 (mod 7).

Final Answer: The final answer is 1. I hope it is
correct.

Self-correction instruction. There might be an
error in the solution above because of lack of un-
derstanding of the question. Please correct the
error, if any, and rewrite the solution.

SCoRe turn 2 solution (correct). Since 𝑛 ≡ 2
(mod 7), we can write 𝑛 = 7𝑘+2 for some integer
𝑘. Substituting, we get

(𝑛 + 2)(𝑛 + 4)(𝑛 + 6) = (7𝑘 + 4)(7𝑘 + 6)(7𝑘 + 8)
≡ 4 ⋅ 6 ⋅ 8 (mod 7)
≡ 4 ⋅ 6 ⋅ 1 (mod 7)
≡ 24 (mod 7)
≡ 3 (mod 7).

Final Answer: The final answer is 3. I hope it is
correct.

Foundation model

Foundation model trained with ScoRe

prompt (x)

response (y)

first attempt (y1)
Improved 

response (y2)

prompt (x) Optional external 
input (p) 

Standard training

Training via SCoRe (Ours) Loss

Loss

The problem setting of self-correction. SCoRe trains a
model to not just produce the best possible response, but
instead aims to train the model to produce the best final
response in the final attempt. In the second turn, extra
input in the form of an instruction asking the model to
correct itself or model-generated may be provided.

Figure 2 ∣ An example trace and the problem setting of self-correction.

Multi-turn RL for LLMs. Our approach utilizes a multi-turn policy gradient approach for training for
self-correction, which extends the single-turn approach of Ahmadian et al. (2024) and can be viewed
as an instantiation of the hierarchical RL framework from Zhou et al. (2024). Generally, prior work at
the intersection of LLMs and multi-turn RL builds value-based (Farebrother et al., 2024; Shani et al.,
2024; Snell et al., 2022; Zhou et al., 2024), policy-based (Shao et al., 2024; Xiong et al., 2024), and
model-based (Hong et al., 2024) approaches. While this line of work builds machinery to do RL (i.e.,
optimize rewards) in a multi-turn Markov decision process (MDP), our primary contribution in this paper
is to devise a formalization, for learning self-correction behavior instead of the RL machinery itself.

Self-correction with external feedback. Many works study self-correction with additional feedback from
the environment, most commonly in the setting of code generation, where unit test results or compiler
execution feedback are available (Chen et al., 2024; Jain et al., 2024; Olausson et al., 2023). Largely
these works prompt models to reason about code execution; Ni et al. (2024) propose a self-training
method that leverages execution traces, though only evaluate it on correcting a fixed dataset of errors.
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3. Preliminaries and Problem Setup
Our goal is to develop an approach for training LLMs to improve their own predictions by entirely
training on self-generated data. As discussed so far, we situate ourselves in the intrinsic self-correction
setting (Huang et al., 2023), where models attempt to correct their initial responses without any external
feedback. Concretely, given a dataset 𝒟 = {(𝒙𝑖, 𝒚∗𝑖 )}𝑁𝑖=1 of problems 𝒙𝑖 and oracle responses 𝒚∗𝑖 , we will
train an LLM policy 𝜋𝜃(⋅∣[𝒙, 𝒚̂1∶𝑙, 𝑝1∶𝑙]) that, given the problem 𝒙, previous 𝑙 model attempts 𝒚̂1∶𝑙 at the
problem, and auxiliary instructions 𝑝1∶𝑙 (e.g., instruction to find a mistake and improve the response),
solves the problem 𝒙 as correctly as possible. This formalism is akin to the multi-turn MDP in Qu et al.
(2024). Moreover, we assume access to a reward function / verifier 𝑟(𝒚, 𝒚∗), such as a string-matching
based answer checking function) that evaluates correctness of response 𝒚 by comparing with the oracle
response 𝒚∗. Critically, we do not assume access to such a function at test-time and the model itself learns
to deduce whether there was a mistake and corrects it, as is often the case in e.g. mathematical reasoning
problems. An example and overview of our problem setting is given in Figure 2.

We aim to find a model 𝜋(□∣◦) (which we will also refer to as a policy) mapping a sequence of input
tokens ◦ to a sequence of output tokens □ that maximizes the correctness reward obtained from the
verifier at the end of 𝑙 + 1 turns. Formally, this can be written as the following multi-step RL objective:

max
𝜋𝜃

ℰ𝒙,𝒚∗∼𝒟, 𝒚̂ 𝑙+1∼𝜋𝜃(⋅∣[𝒙, 𝒚̂0∶𝑙 ,𝑝1∶𝑙]) [𝑟 ( 𝒚̂ 𝑙+1, 𝒚
∗)] . (1)

Crucially, note that unlike standard SFT or prevalent RL fine-tuning workflows that train the policy 𝜋 to
directly produce an optimal response 𝒚̂ for an input 𝒙, Equation 1 trains 𝜋 over multiple turns / attempts
simultaneously, where intermediate turn responses 𝒚̂1∶𝑙 are supervised indirectly with the final rewards.

A base RL approach for fine-tuning LLMs. Our RL toolkit is based on on-policy policy gradient. These
methods, such as REINFORCE with a KL-divergence penalty against a fixed model (Ahmadian et al.,
2024), are widely used in RL fine-tuning of LLMs, primarily in setting of single-turn RL from human
feedback. Formally, such policy gradient approaches train a policy 𝜋𝜃(⋅∣𝒙) to optimize:

max
𝜃

E𝒙𝑡 ,𝒚𝑡∼𝜋𝜃(⋅∣𝒙𝑡) [𝑟(𝒚𝑡, 𝒚
∗) − 𝛽1𝐷𝐾𝐿(𝜋𝜃(⋅∣𝒙𝑡)∣∣𝜋ref(⋅∣𝒙𝑡))] , (2)

where 𝜋ref is a reference anchor policy, typically chosen to be a pre-trained or SFT policy.

Metrics. For measuring self-correction performance, we report and analyze the following metrics: (1)
Accuracy@t1: the model’s accuracy at the first attempt; (2) Accuracy@t2: the model’s accuracy at the
second attempt, (3) Δ(t1, t2): the net improvement in model accuracy between the first and second
attempts, which measures the efficacy of self-correction, (4) Δi→c(t1, t2): the fraction of problems that
are incorrect in the first attempt but become correct at the second attempt, which measures how many
new problems can self-correction solve; and (5) Δc→i(t1, t2): the fraction of problems that are correct in
the first attempt but become incorrect at the second attempt, which measures how well the model is able
to understand what makes a response correct.

4. Supervised Fine-Tuning on Self-Generated Data is Insufficient for Self-Correction
Perhaps a natural approach to train for self-correction is to utilize some form of supervised fine-tuning
on data collected from a base model. Variants of this recipe have been shown to scale well in single-
turn reasoning problems (Havrilla et al., 2024a; Singh et al., 2023; Zelikman et al., 2022). Can such
SFT-based approaches be effective for self-correction as well?
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Table 1 ∣ Self-correction performance after training on 𝒟STaR and 𝒟SFT. For both approaches, we find that the gap between
second-attempt and first-attempt performance (Δ(𝑡1, 𝑡2)) is either overly negative or very small. In addition, both approaches
erroneously modify a correct response to be incorrect, i.e., reflected in a high Δ

c→i(𝑡1, 𝑡2) and a low Δ
i→c(𝑡1, 𝑡2).

Method Accuracy@t1 Accuracy@t2 Δ(t1, t2) Δ
i→c(t1, t2) Δ

c→i(t1, t2)

Base model 52.6% 41.4% -11.2% 4.6% 15.8%

STaR 𝒟StaR 55.4% 41.2% -14.2% 5.4% 19.6%
Pair-SFT 𝒟SFT 52.4% 54.2% 1.8% 5.4% 3.6%

Table 2 ∣ Self-correction performance after training on 𝒟+
STaR and 𝒟+

SFT. Performance improves for STaR indicating that a
higher coverage dataset helps improve performance, but not for SFT where traning on traces where both responses are correct
forces the model to simply not make any changes to its first-attempt response, no matter how correct or incorrect that is.

Method Accuracy@t1 Accuracy@t2 Δ(t1, t2) Δ
i→c(t1, t2) Δ

c→i(t1, t2)

Base model 52.6% 41.4% -11.2% 4.6% 15.8%

STaR 𝒟+
StaR 53.6% 54.0% 0.4% 2.6% 2.2%

Pair-SFT 𝒟+
SFT 55.0% 55.0% 0% 0% 0%

In this section, we perform an empirical study to answer this question. We study two approaches:
STaR (Zelikman et al., 2022) and an approach akin to Welleck et al. (2023) that trains only one model.
We do not use learned process or outcome verifiers to guide correction traces, so our setup differs from
SFT in Snell et al. (2024). We find that such methods improve substantially compared to the base model’s
self-correction behavior, but still fail to attain a positive self-correction rate and produce a worse second
attempt compared to their first attempt. By probing trained models, we find that these failures largely
stem from supervised fine-tuning amplifying the initial bias of the base model resulting in only minor
changes to its first-attempt response. While these failures can be addressed if a different distribution over
initial responses is used for training, doing so fails to induce effective self-correction behavior under the
model’s own response distribution. Either way, learning is affected by distribution shift or amplification
of the base model’s bias. These observations motivate the design of our method in Section 5.

4.1. Analysis Setup: Methods and Dataset Construction
Methods. We prompt off-the-shelf models to obtain a large number of two-turn self-correction traces.
The STaR approach, analogous to ReST𝐸𝑀 (Singh et al., 2023), filters these trajectories to only retain
those that successfully revise incorrect responses and runs SFT on the resulting dataset. In contrast,
Welleck et al. (2023) use the base model data from above to construct sets of correct and incorrect
responses and then generates “synthetic” repair traces by pairing incorrect responses with correct ones.
We study a variant of their method we call Pair-SFT, which does not train a separate corrector model
and does not augment this initial dataset with multi-turn traces.

Dataset construction. We perform our study on the MATH dataset, and generate self-correction traces
by prompting the Gemini 1.5 Flash (Reid et al., 2024) using temperature 1.0. We construct datasets for
STaR and Pair-SFT as follows: (1) 𝒟STaR ∶= {(𝒙𝑖, 𝒚̂−𝑖 , 𝒚̂+𝑖 )}𝑁𝑖=1, where 𝒚̂−𝑖 and 𝒚̂+𝑖 correspond to incorrect
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(a) Histograms of edit distance ratios on MATH 500.

(b) STaR edit distance ratios.

(c) Pair-SFT edit distance ratios.

Figure 3 ∣ Edit distance between first-attempt and second-attempt responses obtained from fine-tuned models, our
approach (SCoRe) and the base model. Observe that while training on self-generated error correction traces inherits the
bi-modal distribution of edits as the base model, SFT tends to be quite conservative.

and correct responses appearing within a single sequence of attempts from the current model, and (2)
𝒟SFT ∶= {(𝒙𝑖, 𝒚̂−𝑖 , 𝒚̃+𝑖 )}𝑁𝑖=1, where 𝒚̃+𝑖 is a random correct response for problem 𝒙, randomly sampled
from the set of all first-turn and second-turn responses produced by the model. We then ran supervised
fine-tuning on both of these datasets: following Singh et al. (2023), we repeat 3 iterations of collecting
and running SFT on 𝒟STaR, but only 1 epoch on 𝒟SFT given the large dataset size.

4.2. Empirical Findings
We plot the self-correction performance of the Gemini 1.5 Flash before and after running fine-tuning
on 𝒟STaR (3 iterations) and 𝒟SFT in Table 1. We find that although Δ(t1, t2) is substantially higher for
Pair-SFT relative to the base model, there is still little benefit to doing self-correction (1.8% gain). By
considering Δ

i→c and Δ
c→i, we find that SFT mainly helps by reducing the number of correct problems

that are mistakenly changed to incorrect after revision, and does not significantly increase the fraction of
incorrect first attempts that are correctly repaired. This result is consistent with prior studies on intrinsic
self-correction that have found negligible or even negative Δ(t1, t2) (Huang et al., 2023; Qu et al., 2024).

We also find that unlike Pair-SFT, training on 𝒟STaR does not reduce Δ
c→i, indicating that the STaR policy

does not have a clear understanding of when and when not to make modifications. We hypothesize
that this discrepancy is due to the data distributions of 𝒟𝑆𝐹𝑇 and 𝒟𝑆𝑇𝑎𝑅: the former covers a much more
diverse space of revision trajectories due to the nature of random pairing. Observing this, we also
trained on an extended version of 𝒟+

STaR (and also 𝒟
+
SFT), which additionally presents more tuples with

both correct responses. We would expect the addition of such “correct-to-correct” data to prevent the
model from erroneously revising a correct response and, at the very least, restrict the modification of a
correct response into only another correct response. As shown in Table 2, perhaps interestingly, we find
that including such data has opposite effects on STaR and SFT: for STaR, inclusion of this data helps
substantially, though it still results in barely any meaningful self-correction performance. On the other
hand, for SFT, inclusion of this data overly biases the model to not change its answer at all.
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Figure 4 ∣ Tracking self-correction performance on a different sets of
first-attempt responses: (a) “fixed validation”: first response is distributed
identically as the training set, (b) “self-generated”: first response is
generated by the learner itself. Observe that over the course of training,
while accuracy of correcting a fixed validation set of responses largely
stays constant (and perhaps even slightly improves) and the accuracy on
the training data improves substantially (note the different axis for the
training set accuracy on the right), the model’s correction abilities its own
first-attempt response degrade substantially. This indicates that training
on a fixed offline dataset may not be effective at inducing self-correction
abilities due to distribution shift.

Diving deeper: analyzing self-correction
behavior. We also visualized how the
STaR and SFT models edit their responses.
In particular, we measured edit distance
ratio, defined as the edit distance be-
tween the responses normalized by the
total length of both the responses, to sum-
marize the extent to which models mod-
ify their first-attempt response. As shown
in Figure 3a, while the base model some-
times makes substantially large edits to
the original response, models fine-tuned
on 𝒟STaR and 𝒟SFT are overly conserva-
tive, and often make no edits at all. We
will show in Section 5 that our proposed
method SCoRe is able to avoid amplifying
this bias of not making changes, without
any explicit training for controlling how
much to edit solutions.

We also plotted edit distance ratios in cor-
rection traces appearing in the training data and compared it against the ratios in self-correction traces
generated by STaR and Pair-SFT on training and validation problems in Figures 3b and 3c. While
STaR produces qualitatively similar edit distance ratios on both train and validation problems (meaning
that it performs within the training distribution very well), we still observe somewhat of a discrepancy
between train and validation edit distance ratios for SFT. This means that Pair-SFT is not very effective at
generalizing to new problems from the same distribution.

Seeing the discrepancy in the edit distance ratios between train and validation problems for Pair-SFT,
we also analyzed the self-correction accuracy of the SFT model on a fixed set of first-attempt responses
and self-generated first-attempt responses in Figure 4. We observe clearly different behaviors on both
training vs. validation as well as static vs self-generated first-attempt distributions: while the model is able
to optimize training correction accuracy well and also maintains its initial correction accuracy on first
attempts appearing in the validation set (distributed i.i.d. to the training distribution), its self-correction
accuracy degrades with more training.

Takeaways: Insufficiency of SFT

We showed two distinct sources of failure of SFT methods: STaR latched onto only one mode
of correction behavior that made minor changes, and training via Pair-SFT on data with wider
coverage resulted in a degradation in self-correction abilities on responses from the model’s
distribution of initial responses, due to distribution shift. This implies that an effective approach
must satisfy two desiderata: [D1] it should directly train on self-generated traces to alleviate
distribution mismatch that affected SFT (Figure 4), and [D2] self-generated traces employed
should prevent a collapse to making minor edits during learning. We will next develop an online
RL approach that addresses these challenges with a careful initialization and reward shaping.
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Broader Implications of these Results

These results more generally suggest that offline supervised fine-tuning is likely not effective
at making use of additional in-context tokens to learn nuanced algorithmic behaviors, due to
challenges of distribution shift in training data and amplification of certain pathological behaviors
that seem promising on the training data but do not learn the right strategy.

5. SCoRe: Self-Correction via Multi-Turn Reinforcement Learning
To develop an effective approach for teaching LLMs to self-correct by training entirely on self-generated
data, we have to satisfy the two desiderata discussed above. Utilizing on-policy RL in our method is
a natural way to satisfy desideratum [D1]. Our approach, SCoRe will extend standard single-turn RL
(Equation 2) to the multi-turn setting under the hierarchical framework from Zhou et al. (2024).

Key challenges. While multi-turn RL that optimizes Equation 1 addresses the issue with distribution
shift, it is unclear whether it also satisfies desideratum [D2]. Base model initializations for fine-tuning
present a highly-skewed distribution over edit distances (Figure 3a), which makes them susceptible to
mode collapse, a well-known issue in deep RL (Mei et al., 2020; Schaul et al., 2019). Even if the base
model could produce a less-skewed distribution over edit distance ratios during self-correction, we still
need the RL training procedure to learn a self-correction strategy from the training data that generalizes
to test prompts.

To see whether RL training can learn a self-correction strategy by purely optimizing the final attempt’s
reward, we ran a naïvemulti-turn RL baseline to optimize Equation 1. We find empirically in Figure 5 that
while the performance of each attempt improves with training via naïve multi-turn RL, the performance
of the second attempt is tightly coupled with the first attempt. As training progresses, standard multi-turn
converges to be overly biased towards not changing its response, resulting in no self-correction ability.

Why does this happen? There are at least two equally good solutions when optimizing a policy with
RL on the training data: (i) learning to improve from the first to the second attempt, or (ii) learning to
produce the best first-attempt response followed by no correction in the second attempt. Of course only
the former strategy generalizes to new problems, but an overparameterized LLM may not necessarily
learn strategy (i) instead of (ii), since both of these strategies appear equally optimal on the training set.

Abstractly, learning the “meta strategy” of self-correction during training is difficult unless the “direct”
strategy that optimizes reward appears less viable. Conceptually, this is similar to the memorization
challenge in meta-learning (Yin et al., 2019), which suggests that when provided with mutually exclusive
tasks, few-shot meta-learning is likely to recover the supervised learning solution (without relying on
additional context from the few shots) that directly predicts the output for an input. In our case, this is
analogous to not self-correcting past attempts, but rather directly attempting produce a good response.

Method overview. Our approach SCoRe is designed to address the key challenges identified above. SCoRe
operates in two stages. In the first stage (Stage I), SCoRe trains a model initialization that is less prone to
collapse in subsequent RL by explicitly teaching the model to correct its second-attempt responses under
a relatively static first-attempt distribution. This initialization amplifies the coverage of second-attempt
responses given the model’s own first attempt distribution, with a bias towards high-reward responses.
We then use this model initialization to seed the actual multi-turn RL run (Stage II). To bias learning
towards a solution that learns to self-correct, we shape the reward at the second attempt to provide
a large positive reward bonus in favor of self-correction. Both stages bias the model towards learning
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the policy initialization as in SCoRe, the policy quickly learns
to not change its answer, leading to poor exploration. This
is evident by a decrease in the number of prompts for which
the second attempt produces a different answer.

Figure 5 ∣ Failure modes of naïve multi-turn RL training for inducing self-correction capabilities. These results indicate that
some explicit approach to alter the policy initialization is required for learning. Stage I in SCoRe exactly tackles this.

self-correction by initializing the model appropriately and controlling subsequent RL.

5.1. Stage I: Training a Model Initialization to Prevent Collapse
The goal of Stage I of SCoRe is to obtain a good model initialization by improving the base model’s
coverage over second-attempt responses so that subsequent training for self-correction is less susceptible
to collapse we observed with STaR/SFT. While this would typically be done via SFT in LLM fine-tuning
pipelines, our experiments in Section 4 show that SFT trains the model to latch onto only one mode
of correction behavior. As a result, an SFT initialization is not expected to generate informative and
exploratory traces for learning. Therefore, we do not initialize our RL training with SFT and instead
develop Stage I to produce a separate initialization that is less prone to collapse.

To do so, we explicitly fine-tune the base model to produce high-reward revisions at the second attempt,
while forcing the model to not change its first-attempt response, by constraining the first-attempt response
distribution as close as possible to that of the base model using a KL-divergence. While does this appear
sub-optimal – a first-attempt response with fewer mistakes could be corrected to a better second-attempt
response – but as we will show, this stage is critical in reducing the base model’s bias towards simply
coupling the first and second-attempt distributions, and thus becoming trapped in a local optima when
actual multi-turn RL is run. Formally, the objective we optimize is:

max
𝜃

E𝒙1,𝒚1∼𝜋𝜃(⋅∣𝒙),𝒚2∼𝜋𝜃(⋅∣[𝒙1,𝑝1])[𝑟(𝒚2, 𝒚
∗) − 𝛽2𝐷𝐾𝐿 (𝜋𝜃(⋅∣∣𝒙1)∣∣𝜋ref(⋅∣𝒙1))], (3)

where 𝛽2 is a hyper parameter designed to enforce a strict KL penalty only on the first attempts to
avoid shift of the first-turn responses (denoted by the term in blue). Note that we still utilize the default
KL-divergence penalty from Equation 2, but that is applied with a much smaller weight and is omitted
from Equation 3 for brevity. Indeed, we show that unlike naïve multi-turn RL, Stage I is more effective at
decoupling the two responses (Figure 5b).
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Figure 6 ∣ An overview of our approach (SCoRe). SCoRe trains a model in two stages: Stage I: instead of running SFT
(that produces pathological amplification of biases) to initialize RL training, we train a good initialization that can produce
high-reward responses in the second-attempt while mimicking the base model’s initial response at the first attempt. Stage II:
jointly optimizing both attempts, where the latter uses a shaped reward to incentivize discovery of the self-correction strategy
instead of the simple strategy of product the best first response followed by making any minor edits to it in the second attempt.

5.2. Stage II: Multi-Turn RL with Reward Shaping
Equipped with a model initialization from Stage I that exhibits a substantially smaller bias to couple the
two responses, the second stage of SCoRe now trains responses at both attempts towards optimizing
reward in line with Equation 1. Of course, we also want to make sure to not degrade the first-attempt
responses in the process. Therefore, for two-turn self-correction problem, we train the policy 𝜋𝜃(⋅∣⋅)
against the following objective:

max
𝜃

E𝒙1,𝒚1∼𝜋𝜃(⋅∣𝒙),𝒚2∼𝜋𝜃(⋅∣[𝒙1,𝑝1]) [
2
∑
𝑖=1

𝑟(𝒚 𝑖, 𝒚
∗) − 𝛽1𝐷𝐾𝐿 (𝜋𝜃(⋅∣𝒙𝑖)∣∣𝜋ref(⋅∣𝒙𝑖))] , (4)

where 𝒙𝑖, 𝑖 ∈ {1, 2} corresponds to the set of input tokens passed as context to the model. SCoRe optimizes
Equation 4 with an on-policy policy gradient approach.

Reward shaping to incentivize self-correction. As discussed earlier, it is unclear if running RL for
optimizing Equation 4 prefers a strategy that incentivizes self-correction over finding the best first-attempt
response and keeping it unchanged, since both of these strategies appear equally good on the small
training dataset. To mitigate this issue, we bias the learning problem towards the self-correction strategy
via reward shaping: by providing a higher emphasis to traces that flip correctness from the first attempt
to the second, we can bias the model to learn a self-correction solution. Concretely, given an two-turn
on-policy rollout 𝜏 = {𝒙1, 𝒚̂1, 𝑟(𝒚1, 𝒚∗), 𝒙2, 𝒚̂2, 𝑟(𝒚2, 𝒚∗)} (where 𝒙2 denotes all the tokens from the first
turn concatenated with each other), we propose to modify the reward 𝑟(𝒚2, 𝒚∗) used for training in
Equation 4, at the second attempt with an additional bonus 𝑏(𝒚2∣𝒚1, 𝒚∗) given by:

𝑏(𝒚2∣𝒚1, 𝒚
∗) = 𝛼 ⋅ (𝑟(𝒚2, 𝒚

∗) − 𝑟(𝒚1, 𝒚
∗)) , (5)

where 𝛼 is a positive constant multiplier, ideally a real number significantly larger than 1.0. Adding this
bonus to the second attempt only emphasizes traces that flip the correctness of the response and assigns
a heavy negative penalty to transitions that change a correct response to incorrect in the second attempt.
In contrast, transitions that do not flip correctness of the response and are likely to lead to collapse of not

11



Training Language Models to Self-Correct via Reinforcement Learning

making meaningful edits contribute much less to the overall loss. Thus, the addition of this bonus should
regularize the training process from collapsing on to the “direct” solution that might look optimal on the
training set but does not produce self-correction behavior on new examples.

5.3. Putting it Together and Implementation Details
Our approach is illustrated pictorially in Figure 6. SCoRe applies stages I and II in an interleaved fashion
for multiple iterations (e.g., Figure 5 shows two applications each of Stage I and II). We use a small 𝛽1 for
all experiments (i.e., the coefficient on the KL divergence penalty against the base model in Equation 2),
and found that setting 𝛽2 = 10𝛽1 to work sufficiently well in our experiments. In practice, one can also
use an adaptive 𝛽2 that attempts to balance the magnitudes of the first-attempt KL regularization and
the second-attempt policy loss. In some of our experiments, we also choose to amplify the coverage of
states used for on-policy RL by incorporating first-attempt solutions obtained by repeatedly sampling the
base model as offline prompts in RL. We find that incorporating this data, especially in Stage 2, where
the first-turn policy may have drifted further from that of the base model, can have substantial benefits
especially when attempting to learn from limited data.

Takeaways and Implications

The core insight behind our method is that we must make it more attractive to learn the more
nuanced algorithmic strategy instead of collapsing to an ungeneralizable behavior mode. Further-
more, to avoid the challenge of distribution shift, this must be done on self-generated online data.
SCoRe instantiates this principle when learning the model initialization for multi-turn RL (Stage
I) and when using a reward bonus to prevent training from producing non-correcting strategies
(Stage II).

6. Experimental Evaluation
The goal of our experiments is to demonstrate the efficacy of SCoRe in teaching LLMs how to correct
their own mistakes by training on their own data. In addition, we also aim to understand the impact of
each of the components of SCoRe in contributing to this ability. To this end, we perform a comparative
evaluation of SCoRe against prior methods that also use self-generated data to train for self-correction,
and run several ablation studies on two representative reasoning tasks where error correction is crucial.

Tasks. We mainly focus on math and coding tasks: (a) math problem solving on MATH (Hendrycks
et al., 2021), and (b) code generation on MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021)
for evaluating the efficacy of our approach. Concretely, we use the following train-test splits in our
experiments: (1) MATH: following Lightman et al. (2023), we augment the MATH training set with 4500
problems from the test set, and report results on the remaining 500 problems; and (2) Code generation:
we train on MBPP and report results on HumanEval, which does not expose test cases to the model.

Evaluation protocol and metrics. We report the self-correction accuracy on a number of tasks with
two sequential attempts at the problem, i.e., one round of self-correction. For MBPP, following the
evaluation protocol of Ni et al. (2024), we also report results on MBPP-R, an offline repair task that
requires correcting incorrect first-attempt programs generated from PaLM 2.

Models. For all of our experiments on MBPP, we fine-tune Gemini 1.0 Pro and for MATH, we fine-
tune Gemini 1.5 Flash. For all evaluations, we use greedy decoding (i.e. temperature 0), except for
inference-compute scaling in Section 6.2 where we set temperature to be 0.7. For all training methods, we
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Table 3 ∣ Performance of SCoRe on MATH. Observe that SCoRe not only attains a higher accuracy at both attempts, but also
provides the most positive self-correction performance Δ(t1, t2), and improves upon the number of problems that move from
incorrect to correct, while substantially reducing the number of problems that become incorrect in the second attempt.

Approach Accuracy@t1 Accuracy@t2 Δ(t1, t2) Δ
i→c(t1, t2) Δ

c→i(t1, t2)

Base model 52.6% 41.4% -11.2% 4.6% 15.8%
Self-Refine 52.8% 51.8% -1.0% 3.2% 4.2%
STaR w/ 𝒟+

StaR 53.6% 54.0% 0.4% 2.6% 2.2%
Pair-SFT w/ 𝒟SFT 52.4% 54.2% 1.8% 5.4% 3.6%

SCoRe (Ours) 60.0% 64.4% 4.4% 5.8% 1.4%

attempted to use a fixed budget of model samples and gradient updates, and do not vary hyperparameters
such as learning rate and batch size between runs. For all RL runs, we selected checkpoints with the
highest training reward, although a small held-out validation set of problems can also be used. Additional
details about the experimental setup can be found in the Appendix.

Evaluation prompts. We use a zero-shot CoT prompting for evaluation on MATH, zero-shot prompting
for evaluation on HumanEval, and the canonical three-shot prompt for first-attempt training samples
on MBPP. At the second attempt, we utilize an instruction that does not reveal the correctness of the
previous answer, but asks the model to attempt to deduce whether a mistake exists in its first attempt
response, and, if so, potentially rewrite its response. Full prompts and self-correction instructions can be
found in Appendix A.

Prior approaches and comparisons. We compare SCoRe to prior approaches and baselines. We compare
to Self-Refine (Madaan et al., 2023), a representative prompting-based approach to elicit self-correction
behaviors from a model, akin to Reflexion (Shinn et al., 2023). Of the fine-tuning based approaches, we
compare to Pair-SFT based on the approach from Welleck et al. (2023), and multi-turn STaR (Singh
et al., 2023; Zelikman et al., 2022) that fine-tune the model by minimizing negative log-likelihood
on synthetically paired repair traces and successful repair traces respectively. Due to a difference in
assumptions and base models, we cannot compare SCoRe directly with results in prior papers that utilize
oracle information (e.g., RISE (Qu et al., 2024)) or run multiple models (e.g., GLoRE (Havrilla et al.,
2024b), the full version of Self-Correct (Welleck et al., 2023) with a refinement model), largely because
these comparisons will be apples-to-oranges with distinct setups, different refinement or oracle models.

6.1. Benchmark Results
MATH.Our results are in Table 3, as well as in Figure 1. SCoRe exhibits substantially stronger performance
on both direct and self-correction accuracies. Notably, the intrinsic self-correction gain Δ(t1, t2) of 4.4%
is the first significantly positive delta, despite having fewer incorrect problems to correct by virtue of its
higher Accuracy@t1. Relative to the base 1.5 Flash model, SCoRe improves Δ(t1, t2) by 15.6%, and
Accuracy@t2 by 23.0%, and over the nearest baseline, Pair-SFT, by 10.2% and 2.6% respectively.

By observing the frequency of problems that change from incorrect at from the first attempt to correct
in the second attempt and vice versa, we see that SCoRe improves the rate at which it fixes incorrect
answers (14.5%, compared to 9.5% for base) and reduces the proportion of correct answers it changes.
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Table 4 ∣ Performance of SCoRe on HumanEval. Observe that ScoRe attains the highest accuracy at the second attempt
(Accuracy@t2), and also substantially improves the number of problems that become correct with the use of additional
sequential attempts. In addition, SCoRe also attains the highest correction rate on MBPP-R, an offline repair task.

Method MBPP-R Accuracy@t1 Accuracy@t2 Δ(t1, t2) Δ
i→c(t1, t2) Δ

c→i(t1, t2)

Base model 47.3% 53.7% 56.7% 3.0% 7.9% 4.9%
Self-Refine 30.7% 53.7% 52.5% -1.2% 9.8% 11.0%
Pair-SFT 59.8% 56.1% 54.3% -1.8% 4.3% 6.1%

SCoRe (Ours) 60.6% 52.4% 64.6% 12.2% 15.2% 3.0%

Table 5 ∣ Ablation studies to understand the impact of various components in SCoRe. Observe that while single-turn
training is effective at optimizing the first-attempt accuracy of the model, it leads to degradation in the second attempt. Instead,
SCoRe allows us to attain a higher second-attempt accuracy even though it attains a slightly worse first-attempt accuracy. The
performance improvements without Stage I or without reward shaping in SCoRe are small when measured by the difference in
accuracy over the two attempts. Utilizing STaR generally leads to worse performance even when it is run from an effective
Stage I checkpoint. These results highlight the importance of various components in SCoRe.

Method Accuracy@t1 Accuracy@t2 Δ(t1, t2)

SCoRe (Ours) 60.0% 64.4% 4.4%
w/o multi-turn training 61.8% 59.4% -2.4%
w/o Stage I 59.2% 61.4% 2.2%
w/o reward shaping 60.0% 62.6% 2.6%
w/ STaR instead of REINFORCE Stage II 56.2% 58.4% 2.2%

Code generation. Our results for the code generation task are shown in Table 4. Generally, we find that
SCoRe achieves both improved self-correction as well as strong offline repair performance. For MBPP-R,
we find that SCoRe improves the base model from 47.3% to 60.6%, which is comparable to the gap
between GPT-3.5 and GPT-4 (42.9% and 63.2% respectively) (Ni et al., 2024). Despite only training
on MBPP, we find that SCoRe is especially effective at generalizing to HumanEval, achieving a 12.2%
intrinsic self-correction delta, or 9% higher than the base model. By contrast, Pair-SFT works nearly
as well on the static repair task MBPP-R, but actually degrades the base model when evaluated in the
self-correction setting, thus underscoring the importances of on-policy sampling for self-correction.

6.2. Inference-Compute Scaling with Self-Correction
Next, we investigate if SCoRe can be used in conjunction with inference-time compute scaling strategies.
To do so, we evaluate self-consistency decoding (Wang et al., 2022), also known as majority voting, where
we sample a diverse set of solutions, and then select the most consistent answer among these solutions.
Typically, the default strategy is to sample all solutions in parallel to perform majority voting. However,
we show in Figure 1 (right) that instead of sampling 2𝐾 solutions in parallel, it is more compute-efficient
to sample 𝐾 solutions in parallel, then perform one round of self-correction on each solution. With 32
solution budget per problem, parallel sampling shows a 7.4% accuracy gain, while combining it with
sequential sampling using self-correction yields a 10.5% improvement.
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6.3. Ablation Studies: Understanding the Impact of SCoRe Components

Finally, we also present a number of ablation studies to understand the importance of various compo-
nents in SCoRe. We perform these ablations on the MATH dataset. Concretely, we aim to answer the
following questions: (1) the importance of multi-turn training: Can RL trained to maximize single-turn
performance achieve better accuracy@t1 or accuracy@t2?; (2) the importance of multi-stage training:
How essential is Stage I to SCoRe? In other words, why not run Stage II directly?; (3) the impact of
reward shaping. How would removing the reward shaping terms affect performance of SCoRe in Stage
II, assuming Stage I was done identically?; (4) the importance of on-policy RL:What if we replaced
REINFORCE in Stage II with STaR?.

The results of all of these ablation experiments are shown in Table 5. As expected, single-turn training
improves turn 1 performance, but has negative Δ(t1, t2). As shown in Figure 5, Stage I is critical to
SCoRe; without it, the model achieves 2% lower Δ(t1, t2) and 3% lower accuracy@t2. Similarly, we find
that removing reward shaping also hurts performance, indicating that the RL objectives in both stages
play a significant role in teaching self-correction behavior. We also find that replacing REINFORCE with
STaR in Stage II results in significantly lower absolute performance with no visible improvements in
self-improvement performance, which contrasts with the findings in Havrilla et al. (2024a) that STaR and
on-policy RL have similar convergence rates for single-turn RL. This suggests that leveraging on-policy
samples is especially critical in the self-correction setting, which presents a multi-turn problem that
admits potentially spurious solutions.

6.4. Qualitative Analysis of SCoRe
We also perform a qualitative investigation into how SCoRe addresses the self-repair shortcomings of
base LLMs, and provide several examples in Appendix B. We find that SCoRe is able to refine its own
responses in a variety of manners - rewriting the entire solution when necessary, or reproducing the
correct parts of the solution, while revising the incorrect ones. For the latter, we interestingly find that
SCoRe is especially adept at revising its computational mistakes, and even demonstrates a bias towards
showing more steps in certain computations and manipulations in order to increase its probability of
producing a correct answer. We additionally observe that the model learns to occasionally self-correct
within a turn, e.g. MATH example 4.

7. Discussion, Limitations, and Conclusion
In this work, we investigated how to imbue LLMs with a self-correction strategy that enables them
to correct their own responses on the fly, at test-time. Specifically, we proposed SCoRe, a multi-turn
online reinforcement learning (RL) approach for training language models to correct their own mistakes,
and demonstrated through extensive evaluations that it is the first method that can attain significantly
positive intrinsic self-correction performance. To motivate the design of SCoRe, we rigorously analyzed
the behavior of various fine-tuning baselines and identified failure modes in which the model learns a
non-correcting strategy (e.g. learning to make no edits) under these approaches. SCoRe is designed to
elicit a self-correcting strategy by utilizing a two-stage structure and reward shaping, both of which help
prevent model collapse into not learning effective self-improvement behavior.

Limitations. There are various limitations of this work that also provide interesting avenues for future
work. We did not train SCoRe for more than one round of iterative self-correction in this paper, which
means that subsequent rounds of self-correction may not be as effective as the first one. An interesting
avenue for future work is to train with more than two attempts via RL, which is already a common and
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effective practice to obtain effective self-correction behavior over more than two rounds with SFT (Qu
et al., 2024; Snell et al., 2024). Unifying Stages I and II of SCoRe is also an interesting avenue for
research, since that would alleviate the limitation of running multiple steps and help in designing a more
robust method.

Broader perspectives. Our work has several implications. First, it suggests that learning meta-strategies
(e.g., self-correction in this paper) might require going beyond the standard paradigm of supervised
fine-tuning followed by single-turn RL (as shown in Section 4). It demonstrates that multi-turn RL can
provide for one such approach. Second, our results also hint that perhaps using more detailed or granular
supervision when generating on-policy rollouts in multi-turn RL might further improve the model’s
capabilities at implementing nuanced strategies: even though SCoRe did not use dense or fine-grained
feedback, it was already able to improve performance of existing models substantially. Utilizing dense
feedback is likely to complement our method well. Finally, the importance of our two-stage recipe (based
on careful initialization and reward shaping) in obtaining positive self-correction perhaps more generally
hints that some kind of regularization is required to ensure that LLMs learn nuanced strategies that can
generalize well to novel, unseen queries at test-time.
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Appendices

A. Prompts

MATH Zero-shot Prompt
You are a math expert. When you respond, respond only with the Solution of the final Problem, thinking step by
step. At the end of the Solution, when you give your final answer, write it in the form "Final Answer: The final
answer is $answer$. I hope it is correct."

MATH Self-Correction Instruction
There might be an error in the solution above because of lack of understanding of the question. Please correct
the error, if any, and rewrite the solution. Only output the final solution! At the end of the Solution, when you
give your final answer, write it in the form "Final Answer: The final answer is $answer$. I hope it is correct."

MBPP 3-shot Prompt
You are an expert Python programmer, and here is your task: Write a function to find the similar elements from
the given two tuple lists. Your code should pass these tests:

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

[BEGIN]

def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res)

[DONE]

You are an expert Python programmer, and here is your task: Write a python function to identify non−prime
numbers. Your code should pass these tests:

assert is_not_prime(2) == False
assert is_not_prime(10) == True
assert is_not_prime(35) == True

[BEGIN]

import math
def is_not_prime(n):
result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n %
result = True

return result
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[DONE]

You are an expert Python programmer, and here is your task: Write a function to find the largest integers from a
given list of numbers using heap queue algorithm. Your code should pass these tests:

assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]
assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]
assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]

[BEGIN]

import heapq as hq
def heap_queue_largest(nums,n):
largest_nums = hq.nlargest(n, nums)
return largest_nums

[DONE]

MBPP/HumanEval Self-Correction Instruction
# There might be an error in the code above because of lack of understanding of the question. Please correct the
error, if any, and rewrite the solution. Only output the final correct Python program!

B. Examples of SCoRe Self-Correction

HumanEval Example 1
Problem:
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in

the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True

"""

Turn 1 solution (incorrect):
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in

the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
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cycpattern_check("himenss","simen") => True

"""
for i in range(len(b)):
if a.find(b[i:])!=−1:
return True

return False

Turn 2 solution (correct):
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in

the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True

"""
for i in range(len(b)):
rotated_b = b[i:] + b[:i]
if a.find(rotated_b) != −1:
return True

return False

HumanEval Example 2
Problem:
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""

Turn 1 solution (incorrect):
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""
even_count = 0
odd_count = 0

for digit in str(num):
int_digit = int(digit)
if int_digit %
even_count += 1
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else:
odd_count += 1

return even_count, odd_count

Turn 2 solution (correct):
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""

even_count = 0
odd_count = 0

for digit in str(abs(num)):
int_digit = int(digit)
if int_digit %
even_count += 1

else:
odd_count += 1

return even_count, odd_count
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MATH Example 1

Problem. Let 𝑨 be a matrix such that

𝑨
⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

2
4
−3

⎞
⎟⎟
⎠
and 𝑨

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

0
−5
−5

⎞
⎟⎟
⎠
.

Find 𝑨
⎛
⎜⎜
⎝

−13
3
4

⎞
⎟⎟
⎠
.

SCoRe turn 1 solution (incorrect). We can write

⎛
⎜⎜
⎝

−13
3
4

⎞
⎟⎟
⎠
= 𝑎

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+ 𝑏

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠

for some scalars 𝑎 and 𝑏. Solving the system of equations

3𝑎 − 5𝑏 = −13,
𝑎 + 2𝑏 = 3,
2𝑏 = 4,

we find 𝑎 = −1 and 𝑏 = 2. Therefore,

𝑨
⎛
⎜⎜
⎝

−13
3
4

⎞
⎟⎟
⎠
= 𝑨

⎛
⎜⎜
⎝
−1

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+ 2

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
= −1𝑨

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+ 2𝑨

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠
= −1

⎛
⎜⎜
⎝

2
4
−3

⎞
⎟⎟
⎠
+ 2

⎛
⎜⎜
⎝

0
−5
−5

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

−2
−14
−13

⎞
⎟⎟
⎠
.

Final Answer: The final answer is
⎛
⎜⎜
⎝

−2
−14
−13

⎞
⎟⎟
⎠
. I hope it is correct.

SCoRe turn 2 solution (correct). We can write

⎛
⎜⎜
⎝

−13
3
4

⎞
⎟⎟
⎠
= 𝑎

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+ 𝑏

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠

for some scalars 𝑎 and 𝑏. This gives us the system of equations:

3𝑎 − 5𝑏 = −13,
𝑎 + 2𝑏 = 3,
2𝑏 = 4.

Solving the third equation, we get 𝑏 = 2. Substituting into the second equation, we get 𝑎 = −1. We can
check that these values of 𝑎 and 𝑏 also satisfy the first equation.
Therefore,

𝑨
⎛
⎜⎜
⎝

−13
3
4

⎞
⎟⎟
⎠
= 𝑨

⎛
⎜⎜
⎝
−1

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+ 2

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
= −1𝑨

⎛
⎜⎜
⎝

3
1
0

⎞
⎟⎟
⎠
+2𝑨

⎛
⎜⎜
⎝

−5
2
2

⎞
⎟⎟
⎠
= −1

⎛
⎜⎜
⎝

2
4
−3

⎞
⎟⎟
⎠
+2

⎛
⎜⎜
⎝

0
−5
−5

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

−2
−4
3

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
−10
−10

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

−2
−14
−7

⎞
⎟⎟
⎠
.

Final Answer: The final answer is
⎛
⎜⎜
⎝

−2
−14
−7

⎞
⎟⎟
⎠
. I hope it is correct.
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MATH Example 2

Problem. Simplify 15 ⋅
8
7 ÷

12
20 .

SCoRe turn 1 solution (incorrect). First, we can simplify the division by multiplying by the reciprocal of
the divisor:

1
5 ⋅
8
7 ÷

12
20 =

1
5 ⋅
8
7 ⋅
20
12

Next, we can simplify by canceling common factors:

1
5 ⋅
8
7 ⋅
20
12 =

1 ⋅ 8 ⋅ 20
5 ⋅ 7 ⋅ 12 =

1 ⋅ 2 ⋅ 4 ⋅ 5 ⋅ 4
5 ⋅ 7 ⋅ 2 ⋅ 6 =

4 ⋅ 4
7 ⋅ 6 =

2 ⋅ 2 ⋅ 2 ⋅ 2
7 ⋅ 2 ⋅ 3 =

2 ⋅ 2
7 ⋅ 3

Finally, we can multiply the remaining factors:

2 ⋅ 2
7 ⋅ 3 =

4
21

Final Answer: The final answer is 421 . I hope it is correct.

SCoRe turn 2 solution (correct).

1
5 ⋅
8
7 ÷

12
20 =

1
5 ⋅
8
7 ⋅
20
12 =

1 ⋅ 8 ⋅ 20
5 ⋅ 7 ⋅ 12 =

1 ⋅ 8 ⋅ 4 ⋅ 5
5 ⋅ 7 ⋅ 4 ⋅ 3 =

1 ⋅ 8
7 ⋅ 3 =

8
21

Final Answer: The final answer is 821 . I hope it is correct.

MATH Example 3

Problem. Suppose the polynomial

𝑓(𝑥) = 𝑎𝑛𝑥
𝑛
+ 𝑎𝑛−1𝑥

𝑛−1
+⋯+ 𝑎2𝑥

2
+ 𝑎1𝑥 + 𝑎0

has integer coefficients, and its roots are distinct integers.
Given that 𝑎𝑛 = 2 and 𝑎0 = 66, what is the least possible value of ∣𝑎𝑛−1∣?

SCoRe turn 1 solution (incorrect). Let the roots of 𝑓(𝑥) be 𝑟1, 𝑟2, . . . , 𝑟𝑛. Then by Vieta’s formulas,

𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛 = −
𝑎𝑛−1
𝑎𝑛

= −
𝑎𝑛−1
2 .

Since the roots are distinct integers, 𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛 is an integer. Thus, 𝑎𝑛−1 must be even.
Also,

𝑟1𝑟2 . . . 𝑟𝑛 =
(−1)𝑛𝑎0

𝑎𝑛
=

(−1)𝑛 ⋅ 66
2 = (−1)𝑛 ⋅ 33.

Since the roots are integers, 𝑟1𝑟2 . . . 𝑟𝑛 is an integer. Thus, 𝑛 must be odd.
Since 𝑛 is odd, the sum of the roots is an integer, and 𝑎𝑛−1 is even, the least possible value of ∣𝑎𝑛−1∣ is 2 .
Final Answer: The final answer is 2. I hope it is correct.

SCoRe turn 2 solution (correct). Let the roots of 𝑓(𝑥) be 𝑟1, 𝑟2, . . . , 𝑟𝑛. Then by Vieta’s formulas,

𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛 = −
𝑎𝑛−1
𝑎𝑛

= −
𝑎𝑛−1
2 .

Since the roots are distinct integers, 𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛 is an integer. Thus, 𝑎𝑛−1 must be even.
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Also,

𝑟1𝑟2 . . . 𝑟𝑛 =
(−1)𝑛𝑎0

𝑎𝑛
=

(−1)𝑛 ⋅ 66
2 = (−1)𝑛 ⋅ 33.

Since the roots are integers, 𝑟1𝑟2 . . . 𝑟𝑛 is an integer. Since 33 has a factor of 11, one of the roots must be a
multiple of 11. Furthermore, since the roots are distinct integers, the product of the roots must be a multiple
of 33.
We want to minimize ∣𝑎𝑛−1∣, which is the absolute value of the sum of the roots. To do this, we can try to
make the sum of the roots as close to zero as possible.
Since the product of the roots is ±33, we can consider the following cases:
* **Case 1:** 𝑛 = 3 and the roots are −11, 1, and 3. In this case, the sum of the roots is −7, and ∣𝑎𝑛−1∣ = 14.
* **Case 2:** 𝑛 = 5 and the roots are −11, −3, −1, 1, and 3. In this case, the sum of the roots is −11, and
∣𝑎𝑛−1∣ = 22.
* **Case 3:** 𝑛 = 7 and the roots are −11, −3, −1, 1, 3, 5, and 7. In this case, the sum of the roots is −11,
and ∣𝑎𝑛−1∣ = 22.
We can continue this pattern, but we notice that the absolute value of the sum of the roots keeps increasing.
Therefore, the least possible value of ∣𝑎𝑛−1∣ is 14 .
Final Answer: The final answer is 14. I hope it is correct.

MATH Example 4

Problem. Find the minimum value of
(𝑥 + 5)(𝑥 + 2)

𝑥 + 1
for 𝑥 > 0.

SCoRe turn 1 solution (incorrect). We can write

(𝑥 + 5)(𝑥 + 2)
𝑥 + 1 =

𝑥
2 + 7𝑥 + 10
𝑥 + 1

=
(𝑥2 + 7𝑥 + 10) − (𝑥2 + 𝑥)

𝑥 + 1

=
6𝑥 + 10
𝑥 + 1

=
(6𝑥 + 6) + 4

𝑥 + 1

= 6 +
4

𝑥 + 1 .

Since 𝑥 > 0, 𝑥 + 1 > 1, so 4
𝑥+1 < 4. Therefore,

(𝑥 + 5)(𝑥 + 2)
𝑥 + 1 < 6 + 4 = 10.

Equality occurs when 𝑥 = 0, so the minimum value is 6 .
Final Answer: The final answer is 6. I hope it is correct.
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SCoRe turn 2 solution (correct). We can write

(𝑥 + 5)(𝑥 + 2)
𝑥 + 1 =

𝑥
2 + 7𝑥 + 10
𝑥 + 1

=
(𝑥2 + 𝑥) + (6𝑥 + 6) + 4

𝑥 + 1

=
𝑥(𝑥 + 1) + 6(𝑥 + 1) + 4

𝑥 + 1

=
(𝑥 + 1)(𝑥 + 6) + 4

𝑥 + 1

= 𝑥 + 6 +
4

𝑥 + 1 .

Since 𝑥 > 0, 𝑥 + 1 > 1, so 4
𝑥+1 < 4. Therefore,

(𝑥 + 5)(𝑥 + 2)
𝑥 + 1 > 𝑥 + 6.

Since 𝑥 > 0, 𝑥 + 6 > 6. Thus, the minimum value is greater than 6.
Furthermore, as 𝑥 increases, the term 4

𝑥+1 decreases, so the expression
(𝑥+5)(𝑥+2)

𝑥+1 decreases. Therefore, the
minimum value occurs when 4

𝑥+1 is as large as possible, which occurs when 𝑥 is as small as possible. Since
𝑥 > 0, the minimum value is

6 +
4
0 + 1 = 10.

Equality occurs when 𝑥 = 0, but this contradicts the condition 𝑥 > 0. Therefore, the minimum value does
not exist.
We made an error in assuming that the minimum value occurs when 4

𝑥+1 is as large as possible. Instead,
we should minimize the entire expression. Since 𝑥 > 0, the term 4

𝑥+1 is always positive. Therefore, the
minimum value occurs when 𝑥 + 6 + 4

𝑥+1 is as small as possible.
By AM-GM,

𝑥 + 6 +
4

𝑥 + 1 = (𝑥 + 1) + 4
𝑥 + 1 + 5 ≥ 2

√
(𝑥 + 1) ⋅ 4

𝑥 + 1 + 5 = 9.

Equality occurs when (𝑥 + 1) =
4

𝑥+1 , so 𝑥
2 + 2𝑥 + 1 = 4, which means 𝑥2 + 2𝑥 − 3 = 0. This factors as

(𝑥 + 3)(𝑥 − 1) = 0, so 𝑥 = 1 (since 𝑥 > 0).
Therefore, the minimum value is 9 .
Final Answer: The final answer is 9. I hope it is correct.

MATH Example 5

Problem. Four points, 𝐴, 𝐵, 𝐶, and 𝐷, are chosen randomly and independently on the circumference of a
circle. What is the probability that segments 𝐴𝐵 and 𝐶𝐷 intersect?

SCoRe turn 1 solution (incorrect). The segments 𝐴𝐵 and 𝐶𝐷 will intersect if and only if the points 𝐴, 𝐵, 𝐶,
and 𝐷 appear in alternating order around the circle. There are 4! ways to order the points, and 2 ways to
divide the points into two pairs. Therefore, the probability that the segments intersect is 24! =

2
24 =

1
12 .

Final Answer: The final answer is 112 . I hope it is correct.

SCoRe turn 2 solution (correct). The segments 𝐴𝐵 and 𝐶𝐷 will intersect if and only if the points 𝐴, 𝐵, 𝐶,
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and 𝐷 appear in alternating order around the circle. Without loss of generality, let’s assume that 𝐴 is the
first point chosen. Then, there are three possible cases for the placement of 𝐵:
* **Case 1:** 𝐵 is placed in the arc between 𝐴 and 𝐶. In this case, 𝐶 and 𝐷 can be placed anywhere on the
remaining circumference, and the segments will not intersect. * **Case 2:** 𝐵 is placed in the arc between
𝐴 and 𝐷. In this case, 𝐶 and 𝐷 can be placed anywhere on the remaining circumference, and the segments
will not intersect. * **Case 3:** 𝐵 is placed in the arc between 𝐶 and 𝐷. In this case, the segments 𝐴𝐵 and
𝐶𝐷 will intersect.
The probability of Case 3 is 13 . Since the points are chosen independently, the probability that the segments

intersect is
1
3 .

Final Answer: The final answer is 13 . I hope it is correct.

MATH Example 6

Problem. Let 𝑓(𝑥) = ⌊(−58)
𝑥⌋ be a function that is defined for all values of 𝑥 in [0,∞) such that 𝑓(𝑥) is a

real number. How many distinct values exist in the range of 𝑓(𝑥)?

SCoRe turn 1 solution (incorrect). As 𝑥 increases, the value of (−58)
𝑥
decreases. Since the floor function

rounds down to the nearest integer, the range of 𝑓(𝑥) consists of all the integers less than or equal to
⌊(−58)

0⌋ = 1. Therefore, the range of 𝑓(𝑥) is {1, 0,−1,−2, . . . }, and there are ∞ distinct values in the
range.
Final Answer: The final answer is∞. I hope it is correct.

SCoRe turn 2 solution (correct). As 𝑥 increases from 0 to∞, the value of (−58)
𝑥
oscillates between positive

and negative values, but its absolute value decreases. The floor function rounds down to the nearest integer,
so the range of 𝑓(𝑥) consists of the integers less than or equal to ⌊(−58)

0⌋ = 1. Since the absolute value of

(−58)
𝑥
decreases as 𝑥 increases, the range of 𝑓(𝑥) is finite and consists of the integers: {1, 0,−1}.

Final Answer: The final answer is 3. I hope it is correct.

MATH Example 7

Problem. The 7th and 8th grades have enrollments of 520 and 650 respectively. The two grades have a
total of 18 representatives on the Student Council. How many representatives should the 8th grade have if
there is to be a fair representation of the two grades?

SCoRe turn 1 solution (incorrect). The total enrollment of the two grades is 520 + 650 = 1170. The ratio
of 7th grade students to 8th grade students is 520/1170 = 52/117. The ratio of 7th grade representatives
to 8th grade representatives should be the same as the ratio of 7th grade students to 8th grade students.
Let x be the number of representatives for the 8th grade. Then the number of representatives for the 7th
grade is 18 - x. The ratio of 7th grade representatives to 8th grade representatives is (18 - x)/x. Setting the
two ratios equal, we have (18 - x)/x = 52/117. Cross-multiplying, we get 117(18 - x) = 52x. Expanding,
we get 2106 - 117x = 52x. Combining like terms, we get 2106 = 169x. Solving for x, we get x = 2106/169
= 12.47. Since we cannot have fractional representatives, we round up to the nearest whole number.
Final Answer: The final answer is 13. I hope it is correct.

SCoRe turn 2 solution (correct). The ratio of 7th grade students to 8th grade students is 520/650 =
4/5. Since the two grades should have a fair representation on the Student Council, the ratio of 7th grade
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representatives to 8th grade representatives should be the same as the ratio of 7th grade students to 8th
grade students, which is 4/5. Let x be the number of representatives for the 8th grade. Then the number of
representatives for the 7th grade is 18 - x. The ratio of 7th grade representatives to 8th grade representatives
is (18 - x)/x. Setting the two ratios equal, we have (18 - x)/x = 4/5. Cross-multiplying, we get 5(18 - x) =
4x. Expanding, we get 90 - 5x = 4x. Combining like terms, we get 90 = 9x. Solving for x, we get x = 10.
Final Answer: The final answer is 10. I hope it is correct.

MATH Example 8

Problem. The sum of 27 consecutive positive integers is 37. What is their median?

SCoRe turn 1 solution (incorrect). The sum of an arithmetic series is equal to the average of the first and
last term, multiplied by the number of terms. Let the first term of the arithmetic series be 𝑎, and the last
term be 𝑙. Then the sum of the series is (𝑎+𝑙)⋅27

2 . Since the sum of the series is 37, we have (𝑎+𝑙)⋅27
2 = 37.

Simplifying, we get (𝑎 + 𝑙) =
37⋅2
27 = 34 ⋅ 2 = 162. Since the series consists of consecutive integers, the

median of the series is the middle term, which is the 14th term. The 14th term of the series is 𝑎 + 13, and
the average of the first and last term is 𝑎+𝑙

2 . Therefore, the median of the series is
𝑎+𝑙
2 + 13

2 =
162
2 + 13

2 =
175
2 .

Final Answer: The final answer is 87.5. I hope it is correct.

SCoRe turn 2 solution (correct). The sum of an arithmetic series is equal to the average of the first and
last term, multiplied by the number of terms. Let the first term of the arithmetic series be 𝑎, and the last
term be 𝑙. Then the sum of the series is (𝑎+𝑙)⋅27

2 . Since the sum of the series is 37, we have (𝑎+𝑙)⋅27
2 = 37.

Simplifying, we get (𝑎 + 𝑙) = 37⋅2
27 =

37⋅2
33 = 34 ⋅ 2 = 162.

Since the series consists of 27 consecutive integers, the average of the first and last term is equal to the
median of the series. Therefore, the median of the series is 𝑎+𝑙

2 =
162
2 = 81.

Final Answer: The final answer is 81. I hope it is correct.

29


	Introduction
	Related Work
	Preliminaries and Problem Setup
	Supervised Fine-Tuning on Self-Generated Data is Insufficient for Self-Correction
	Analysis Setup: Methods and Dataset Construction
	Empirical Findings

	SCoRe: Self-Correction via Multi-Turn Reinforcement Learning
	Stage I: Training a Model Initialization to Prevent Collapse
	Stage II: Multi-Turn RL with Reward Shaping
	Putting it Together and Implementation Details

	Experimental Evaluation
	Benchmark Results
	Inference-Compute Scaling with Self-Correction
	Ablation Studies: Understanding the Impact of SCoRe Components
	Qualitative Analysis of SCoRe

	Discussion, Limitations, and Conclusion
	Prompts
	Examples of SCoRe Self-Correction

